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Abstract

Let P be a finite set of points in the plane in general position, that is, no three points
of P are on a common line. We say that a set H of five points from P is a 5-hole in P
if H is the vertex set of a convex 5-gon containing no other points of P . For a positive
integer n, let h5(n) be the minimum number of 5-holes among all sets of n points in the
plane in general position.

Despite many efforts in the last 30 years, the best known asymptotic lower and upper
bounds for h5(n) have been of order Ω(n) and O(n2), respectively. We show that h5(n) =

Ω(n log4/5 n), obtaining the first superlinear lower bound on h5(n).
The following structural result, which might be of independent interest, is a crucial

step in the proof of this lower bound. If a finite set P of points in the plane in general
position is partitioned by a line ` into two subsets, each of size at least 5 and not in convex
position, then ` intersects the convex hull of some 5-hole in P . The proof of this result is
computer-assisted.

1 Introduction

We say that a set of points in the plane is in general position if it contains no three points on
a common line. A point set is in convex position if it is the vertex set of a convex polygon. In
1935, Erdős and Szekeres [16] proved the following theorem, which is a classical result both
in combinatorial geometry and Ramsey theory.

Theorem ([16], The Erdős–Szekeres Theorem). For every integer k ≥ 3, there is a smallest
integer n = n(k) such that every set of at least n points in general position in the plane
contains k points in convex position.

The Erdős–Szekeres Theorem motivated a lot of further research, including numerous
modifications and extensions of the theorem. Here we mention only results closely related to
the main topic of our paper.
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Let P be a finite set of points in general position in the plane. We say that a set H of k
points from P is a k-hole in P if H is the vertex set of a convex k-gon containing no other
points of P . In the 1970s, Erdős [15] asked whether, for every positive integer k, there is a
k-hole in every sufficiently large finite point set in general position in the plane. Harborth [21]
proved that there is a 5-hole in every set of 10 points in general position in the plane and gave
a construction of 9 points in general position with no 5-hole. After unsuccessful attempts of
researchers to answer Erdős’ question affirmatively for any fixed integer k ≥ 6, Horton [22]
constructed, for every positive integer n, a set of n points in general position in the plane
with no 7-hole. His construction was later generalized to so-called Horton sets and squared
Horton sets [30] and to higher dimensions [31]. The question whether there is a 6-hole in
every sufficiently large finite planar point set remained open until 2007 when Gerken [19] and
Nicolás [23] independently gave an affirmative answer.

For positive integers n and k, let hk(n) be the minimum number of k-holes in a set
of n points in general position in the plane. Due to Horton’s construction, hk(n) = 0 for
every n and every k ≥ 7. Asymptotically tight estimates for the functions h3(n) and h4(n)
are known. The best known lower bounds are due to Aichholzer et al. [5] who showed

that h3(n) ≥ n2 − 32n
7 + 22

7 and h4(n) ≥ n2

2 − 9n
4 − o(n). The best known upper bounds

h3(n) ≤ 1.6196n2 + o(n2) and h4(n) ≤ 1.9397n2 + o(n2) are due to Bárány and Valtr [12].
For h5(n) and h6(n), no matching bounds are known. So far, the best known asymptotic

upper bounds on h5(n) and h6(n) were obtained by Bárány and Valtr [12] and give h5(n) ≤
1.0207n2 + o(n2) and h6(n) ≤ 0.2006n2 + o(n2). For the lower bound on h6(n), Valtr [32]
showed h6(n) ≥ n/229− 4.

In this paper we give a new lower bound on h5(n). It is widely conjectured that h5(n)
grows quadratically in n, but to this date only lower bounds on h5(n) that are linear in
n have been known. As noted by Bárány and Füredi [10], a linear lower bound of bn/10c
follows directly from Harborth’s result [21]. Bárány and Károlyi [11] improved this bound to
h5(n) ≥ n/6 − O(1). In 1987, Dehnhardt [14] showed h5(11) = 2 and h5(12) = 3, obtaining
h5(n) ≥ 3bn/12c. However, his result remained unknown to the scientific community until
recently. Garćıa [18] then presented a proof of the lower bound h5(n) ≥ 3bn−48 c and a slightly
better estimate h5(n) ≥ d3/7(n− 11)e was shown by Aichholzer, Hackl, and Vogtenhuber [6].
Quite recently, Valtr [32] obtained h5(n) ≥ n/2−O(1). This was strengthened by Aichholzer
et al. [5] to h5(n) ≥ 3n/4 − o(n). All improvements on the multiplicative constant were
achieved by utilizing the values of h5(10), h5(11), and h5(12). In the bachelor’s thesis of
Scheucher [27] the exact values h5(13) = 3, h5(14) = 6, and h5(15) = 9 were determined and
h5(16) ∈ {10, 11} was shown. During the preparation of this paper, we further determined
the value h5(16) = 11; see the webpage [26]. Table 1 summarizes our knowledge on the values
of h5(n) for n ≤ 20. The values h5(n) for n ≤ 16 can be used to obtain further improvements
on the multiplicative constant. By revising the proofs of [5, Lemma 1] and [5, Theorem 3],
one can obtain h5(n) ≥ n − 10 and h5(n) ≥ 3n/2 − o(n), respectively. We also note that it
was shown in [25] that if h3(n) ≥ (1 + ε)n2 − o(n2), then h5(n) = Ω(n2).

n 9 10 11 12 13 14 15 16 17 18 19 20

h5(n) 0 1 2 3 3 6 9 11 ≤ 16 ≤ 21 ≤ 26 ≤ 33

Table 1: The minimum number h5(n) of 5-holes determined by any set of n ≤ 20 points.

As our main result, we give the first superlinear lower bound on h5(n). This solves an

2



open problem, which was explicitely stated, for example, in a book by Brass, Moser, and
Pach [13, Chapter 8.4, Problem 5] and in the survey [2].

Theorem 1. There is an absolute constant c > 0 such that for every integer n ≥ 10 we have
h5(n) ≥ cn log4/5 n.

Let P be a finite set of points in the plane in general position and let ` be a line that
contains no point of P . We say that P is `-divided if there is at least one point of P in each
of the two halfplanes determined by `. For an `-divided set P , we use P = A ∪ B to denote
the fact that ` partitions P into the subsets A and B. In the rest of the paper, we assume
without loss of generality that ` is vertical and directed upwards, A is to the left of `, and B
is to the right of `.

The following result, which might be of independent interest, is a crucial step in the proof
of Theorem 1.

Theorem 2. Let P = A ∪ B be an `-divided set with |A|, |B| ≥ 5 and with neither A nor B
in convex position. Then there is an `-divided 5-hole in P .

The proof of Theorem 2 is computer-assisted. We reduce the result to several state-
ments about point sets of size at most 11 and then verify each of these statements by an
exhaustive computer search. To verify the computer-aided proofs we have implemented two
independent programs, which, in addition, are based on different abstractions of point sets;
see Subsection 5.2. Some of the tools that we use originate from the bachelor’s theses of
Scheucher [27, 28].

Using a result of Garćıa [18], we adapt the proof of Theorem 1 to provide improved lower
bounds on the minimum numbers of 3-holes and 4-holes.

Theorem 3. The following two bounds are satisfied for every positive integer n:

(i) h3(n) ≥ n2 + Ω(n log2/3 n) and

(ii) h4(n) ≥ n2

2 + Ω(n log3/4 n).

In the rest of the paper, we assume that every point set P is planar, finite, and in gen-
eral position. We also assume, without loss of generality, that all points in P have distinct
x-coordinates. We use conv(P ) to denote the convex hull of P and ∂ conv(P ) to denote the
boundary of the convex hull of P .

A subset Q of P that satisfies P ∩ conv(Q) = Q is called an island of P . Note that every
k-hole in an island Q of P is also a k-hole in P . For any subset R of the plane, if R contains
no point of P , then we say that R is empty of points of P .

In Section 2 we derive quite easily Theorem 1 from Theorem 2. Theorem 3 is proved in
Section 3. Then, in Section 4, we give some preliminaries for the proof of Theorem 2, which
is presented in Section 5. Finally, in Section 6, we give some final remarks. In particular, we
show that the assumptions in Theorem 2 are necessary. To provide a better general view, we
present a flow summary of the proof of Theorem 1 in Appendix A.

2 Proof of Theorem 1

We now apply Theorem 2 to obtain a superlinear lower bound on the number of 5-holes in a
given set of n points. It clearly suffices to prove the statement for the case in which n = 2t

for some integer t ≥ 55.
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We prove by induction on t ≥ 55 that the number of 5-holes in an arbitrary set P of n = 2t

points is at least f(t) := c · 2tt4/5 = c ·n log
4/5
2 n for some absolute constant c > 0. For t = 55,

we have n > 10 and, by the result of Harborth [21], there is at least one 5-hole in P . If the

constant c is sufficiently small, then f(t) = c · n log
4/5
2 n ≤ 1 and we have at least f(t) 5-holes

in P , which constitutes our base case.
For the inductive step we assume that t > 55. We first partition P with a line ` into two

sets A and B of size n/2 each. Then we further partition A and B into smaller sets using
the following well-known lemma, which is, for example, implied by a result of Steiger and
Zhao [29, Theorem 1].

Lemma 4 ([29]). Let P ′ = A′ ∪ B′ be an `-divided set and let r be a positive integer such
that r ≤ |A′|, |B′|. Then there is a line that is disjoint from P ′ and that determines an open
halfplane h with |A′ ∩ h| = r = |B′ ∩ h|.

We set r := blog
1/5
2 nc, s := bn/(2r)c, and apply Lemma 4 iteratively in the following

way to partition P into islands P1, . . . , Ps+1 of P so that for every i ∈ {1, . . . , s}, the size of
each Pi ∩ A and Pi ∩ B is exactly r. Let P ′0 := P . For every i = 1, . . . , s, we consider a line
that is disjoint from P ′i−1 and that determines an open halfplane h with |P ′i−1 ∩A∩ h| = r =
|P ′i−1 ∩B ∩ h|. Such a line exists by Lemma 4 applied to the `-divided set P ′i−1. We then set
Pi := P ′i−1 ∩ h, P ′i := P ′i−1 \ Pi, and continue with i+ 1. Finally, we set Ps+1 := P ′s.

Let i ∈ {1, . . . , s}. If one of the sets Pi ∩ A and Pi ∩ B is in convex position, then there
are at least

(
r
5

)
5-holes in Pi and, since Pi is an island of P , we have at least

(
r
5

)
5-holes

in P . If this is the case for at least s/2 islands Pi, then, given that s = bn/(2r)c and thus

s/2 ≥ bn/(4r)c, we obtain at least bn/(4r)c
(
r
5

)
≥ c · n log

4/5
2 n 5-holes in P for a sufficiently

small constant c > 0.
We thus further assume that for more than s/2 islands Pi, neither of the sets Pi ∩ A

nor Pi ∩ B is in convex position. Since r = blog
1/5
2 nc ≥ 5, Theorem 2 implies that there is

an `-divided 5-hole in each such Pi. Thus there is an `-divided 5-hole in Pi for more than
s/2 islands Pi. Since each Pi is an island of P and since s = bn/(2r)c, we have more than
s/2 ≥ bn/(4r)c `-divided 5-holes in P . As |A| = |B| = n/2 = 2t−1, there are at least f(t− 1)
5-holes in A and at least f(t− 1) 5-holes in B by the inductive assumption. Since A and B
are separated by the line `, we have at least

2f(t− 1) + n/(4r) = 2c(n/2) log
4/5
2 (n/2) + n/(4r) ≥ cn(t− 1)4/5 + n/(4t1/5)

5-holes in P . The right side of the above expression is at least f(t) = cnt4/5, because the
inequality cn(t − 1)4/5 + n/(4t1/5) ≥ cnt4/5 is equivalent to the inequality (t − 1)4/5t1/5 +
1/(4c) ≥ t, which is true if the constant c is sufficiently small, as (t− 1)4/5t1/5 ≥ t− 1. This
finishes the proof of Theorem 1.

3 Proof of Theorem 3

In this section we improve the lower bounds on the minimum number of 3-holes and 4-holes.
To this end we use the notion of generated holes as introduced by Garćıa [18].

Given a 5-hole H in a point set P , a 3-hole in P is generated by H if it is spanned by the
leftmost point p of H and the two vertices of H that are not adjacent to p on the boundary
of conv(H). Similarly, a 4-hole in P is generated by H if it is spanned by the vertices of H
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with the exception of one of the points adjacent to the leftmost point of H on the boundary
of conv(H). We call a 3-hole or a 4-hole in P generated if it is generated by some 5-hole
in P . We denote the number of generated 3-holes and generated 4-holes in P by h3|5(P ) and
h4|5(P ), respectively. We also denote by h3|5(n) and h4|5(n) the minimum of h3|5(P ) and
h4|5(P ), respectively, among all sets P of n points.

For an integer k ≥ 3 and a point set P , let hk(P ) be the number of k-holes in P . We say
that a point from P is extremal in P if it is a vertex of the polygon conv(P ). A point from
P that is not extremal is inner in P . Garćıa [18] proved the following relationships between
h3(P ) and h3|5(P ) and between h4(P ) and h4|5(P ).

Theorem 5 ([18]). Let P be a set of n points and let γ(P ) be the number of extremal points
of P . Then the following two equalities are satisfied:

(i) h3(P ) = n2 − 5n+ γ(P ) + 4 + h3|5(P ) and

(ii) h4(P ) = n2

2 − 7n
2 + γ(P ) + 3 + h4|5(P ).

The proofs of both parts of Theorem 3 are carried out by induction on n similarly to the
proof of Theorem 1. The base cases follow from the fact that each set P of n ≥ 10 points
contains at least one 5-hole in P and thus a generated 3-hole in P and a generated 4-hole
in P . For the inductive step, let P = A∪B be an `-divided set of n points with |A|, |B| ≥

⌊
n
2

⌋
,

where n is a sufficiently large positive integer.
To show part (i), it suffices to prove h3|5(P ) ≥ Ω(n log2/3 n) as the statement then follows

from Theorem 5. We use the recursive approach from the proof of Theorem 1, where we

choose r = blog
1/3
2 nc. In each step of the recursion we either obtain

⌊
n
4r

⌋
pairwise disjoint

r-holes in P or
⌊
n
4r

⌋
pairwise disjoint `-divided 5-holes in P .

In the first case, each r-hole in P admits
(
r
3

)
3-holes in P and, by Theorem 5, it contains(

r
3

)
− r2 + 5r− r−4 generated 3-holes in P . Thus, in total, we count at least n

4r

(
r
3

)
−O(nr) ≥

Ω(n log2/3 n) generated 3-holes in P .
In the second case, we have at least

⌊
n
4r

⌋
`-divided 5-holes in P . Without loss of generality,

we can assume that at least 1
2

⌊
n
4r

⌋
≥
⌊
n
8r

⌋
of those `-divided 5-holes in P contain at least two

points to the right of `, as we otherwise continue with the horizontal reflection of P , which
has ` as the axis of reflection. Therefore we have at least

⌊
n
8r

⌋
`-divided generated 3-holes

in P and, analogously as in the proof of Theorem 1, we obtain

h3|5(P ) ≥ 2h3|5

(⌊n
2

⌋)
+
⌊ n

4r

⌋
≥ Ω(n log2/3 n).

This finishes the proof of part (i).

The proof of part (ii) is almost identical. We choose r = blog
1/4
2 nc and use the facts that

every r-hole in P contains
(
r
4

)
− r2

2 + 7r
2 −r−3 generated 4-holes in P and that every `-divided

5-hole in P generates two 4-holes in P , at least one of which is `-divided. This finishes the
proof of Theorem 3.

4 Preliminaries for the proof of Theorem 2

Before proceeding with the proof of Theorem 2, we first introduce some notation and defini-
tions, and state some immediate observations.
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Let a, b, c be three distinct points in the plane. We denote the line segment spanned by

a and b as ab, the ray starting at a and going through b as
−→
ab, and the line through a and

b directed from a to b as ab. We say c is to the left (right) of ab if the triple (a, b, c) traced
in this order is oriented counterclockwise (clockwise). Note that c is to the left of ab if and
only if c is to the right of ba, and that the triples (a, b, c), (b, c, a), and (c, a, b) have the same
orientation. We say a point set S is to the left (right) of ab if every point of S is to the left
(right) of ab.

Sectors of polygons For an integer k ≥ 3, let P be a convex polygon with vertices
p1, p2, . . . , pk traced counterclockwise in this order. We denote by S(p1, p2, . . . , pk) the open
convex region to the left of each of the three lines p1p2, p1pk, and pk−1pk. We call the re-
gion S(p1, p2, . . . , pk) a sector of P. Note that every convex k-gon defines exactly k sectors.
Figure 1(a) gives an illustration.

P

p1

p2

p3

p4

S(p2, p3, p4, p1)

S(p1, p2, p3, p4)

S(p3, p4, p1, p2)

S(p4, p1, p2, p3)

(a)

a∗
a5

`

a1

a4

W1

W4

W2

W3

a2

W5

a3

(b)

a∗
a6

`

a1

a4

W1

W4

W2

W3

a2

W5

a3a5

W6

(c)

Figure 1: (a) An example of sectors. (b) An example of a∗-wedges with t = |A| − 1. (c) An example
of a∗-wedges with t < |A| − 1.

We use 4(p1, p2, p3) to denote the closed triangle with vertices p1, p2, p3. We also use
�(p1, p2, p3, p4) to denote the closed quadrilateral with vertices p1, p2, p3, p4 traced in the
counterclockwise order along the boundary.

The following simple observation summarizes some properties of sectors of polygons.

Observation 6. Let P = A ∪B be an `-divided set with no `-divided 5-hole in P . Then the
following conditions are satisfied.

(i) Every sector of an `-divided 4-hole in P is empty of points of P .

(ii) If S is a sector of a 4-hole in A and S is empty of points of A, then S is empty of points
of B.

`-critical sets and islands An `-divided set C = A ∪B is called `-critical if it fulfills the
following two conditions.

(i) Neither A nor B is in convex position.

(ii) For every extremal point x of C, one of the sets (C \ {x}) ∩ A and (C \ {x}) ∩ B is in
convex position.
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Note that every `-critical set C = A∪B contains at least four points in each of A and B.
Figure 2 shows some examples of `-critical sets. If P = A∪B is an `-divided set with neither
A nor B in convex position, then there exists an `-critical island of P . This can be seen by
iteratively removing extremal points so that none of the parts is in convex position after the
removal.

A

B

`

(a)

A
B

`

(b)

A
B

`

(c)

A B

`

(d)

Figure 2: Examples of `-critical sets.

a-wedges and a∗-wedges Let P = A ∪ B be an `-divided set. For a point a in A, the

rays
−→
aa′ for all a′ ∈ A \ {a} partition the plane into |A| − 1 regions. We call the closures of

those regions a-wedges and label them as W
(a)
1 , . . . ,W

(a)
|A|−1 in the clockwise order around a,

where W
(a)
1 is the topmost a-wedge that intersects `. Let t(a) be the number of a-wedges

that intersect `. Note that W
(a)
1 , . . . ,W

(a)

t(a)
are the a-wedges that intersect ` sorted in top-to-

bottom order on `. Also note that all a-wedges are convex if a is an inner point of A, and
that there exists exactly one non-convex a-wedge otherwise. The indices of the a-wedges are

considered modulo |A| − 1. In particular, W
(a)
0 = W

(a)
|A|−1 and W

(a)
|A| = W

(a)
1 .

If A is not in convex position, we denote the rightmost inner point of A as a∗ and write

t := t(a
∗) and Wk := W

(a∗)
k for k = 1, . . . , |A| − 1. Recall that a∗ is unique, since all points

have distinct x-coordinates. Figures 1(b) and 1(c) give an illustration.
We set wk := |B ∩ Wk| and label the points of A so that Wk is bounded by the rays−−−−→

a∗ak−1 and
−−→
a∗ak for k = 1, . . . , |A| − 1. Again, the indices are considered modulo |A| − 1. In

particular, a0 = a|A|−1 and a|A| = a1.

Observation 7. Let P = A ∪B be an `-divided set with A not in convex position. Then the
points a1, . . . , at−1 lie to the right of a∗ and the points at, . . . , a|A|−1 lie to the left of a∗.

5 Proof of Theorem 2

First, we give a high-level overview of the main ideas of the proof of Theorem 2. We proceed
by contradiction and we suppose that there is no `-divided 5-hole in a given `-divided set
P = A ∪ B with |A|, |B| ≥ 5 and with neither A nor B in convex position. If |A|, |B| = 5,
then the statement follows from the result of Harborth [21]. Thus we assume that |A| ≥ 6 or
|B| ≥ 6. We reduce P to an island Q of P by iteratively removing points from the convex
hull until one of the two parts Q∩A and Q∩B contains exactly five points or Q is `-critical
with |Q ∩ A|, |Q ∩ B| ≥ 6. If |Q ∩ A| = 5 and |Q ∩ B| ≥ 6 or vice versa, then we reduce
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Q to an island of Q with eleven points and, using a computer-aided result (Lemma 14), we
show that there is an `-divided 5-hole in that island and hence in P . If Q is `-critical with
|Q ∩ A|, |Q ∩ B| ≥ 6, then we show that |A ∩ ∂ conv(Q)|, |B ∩ ∂ conv(Q)| ≤ 2 and that, if
|A∩∂ conv(Q)| = 2, then a∗ is the only inner point of Q∩A and similarly for B (Lemma 19).
Without loss of generality, we assume that |A ∩ ∂ conv(Q)| = 2 and thus a∗ is the only inner
point of Q ∩ A. Using this assumption, we prove that |Q ∩ B| < |Q ∩ A| (Proposition 21).
By exchanging the roles of Q ∩A and Q ∩B, we obtain |Q ∩A| ≤ |Q ∩B| (Proposition 22),
which gives a contradiction.

To prove that |Q ∩ B| < |Q ∩ A|, we use three results about the sizes of the parameters
w1, . . . , wt for the `-divided set Q, that is, about the numbers of points of Q ∩ B in the
a∗-wedges W1, . . . ,Wt of Q. We show that if we have wi = 2 = wj for some 1 ≤ i < j ≤ t,
then wk = 0 for some k with i < k < j (Lemma 12). Further, for any three or four consecutive
a∗-wedges whose union is convex and contains at least four points of Q ∩ B, each of those
a∗-wedges contains at most two such points (Lemma 18). Finally, we show that w1, . . . , wt ≤ 3
(Lemma 20). The proofs of Lemmas 18 and 20 rely on some results about small `-divided
sets with computer-aided proofs (Lemmas 15, 16, and 17). Altogether, this is sufficient to
show that |Q ∩B| < |Q ∩A|.

We now start the proof of Theorem 2 by showing that if there is an `-divided 5-hole in
the intersection of P with a union of consecutive a∗-wedges, then there is an `-divided 5-hole
in P .

Lemma 8. Let P = A ∪ B be an `-divided set with A not in convex position. For integers
i, j with 1 ≤ i ≤ j ≤ t, let W :=

⋃j
k=iWk and Q := P ∩W . If there is an `-divided 5-hole

in Q, then there is an `-divided 5-hole in P .

Proof. If W is convex then Q is an island of P and the statement immediately follows. Hence

we assume that W is not convex. The region W is bounded by the rays
−−−−→
a∗ai−1 and

−−→
a∗aj and

all points of P \Q lie in the convex region R2 \W ; see Figure 3.

a∗
ai−1

aj

h

P \Q

(a)

a∗
ai−1

aj
x

zh

P \Q

(b)

a∗

Wi

Wj

Wi+1

. . .

ai−1

aj

`

p′

H ′
H

(c)

Figure 3: Illustration of the proof of Lemma 8. (a) The point aj is to the right of a∗. (b) The point

aj is to the left of a∗. (c) The hole H properly intersects the ray
−−→
a∗aj . The boundary of the convex

hull of H is drawn red and the convex hull of H ′ is drawn blue.

Since W is non-convex and every a∗-wedge contained in W intersects `, at least one of
the points ai−1 and aj lies to the left of a∗. Moreover, the points ai, . . . , aj−1 are to the right
of a∗ by Observation 7. Without loss of generality, we assume that ai−1 is to the left of a∗,
as otherwise we consider the vertical reflection of the whole point set P .
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If aj is to the left of a∗, then we let h be the closed halfplane determined by the vertical
line through a∗ such that ai−1 and aj lie in h. Otherwise, if aj is to the right of a∗, then we
let h be the closed halfplane determined by the line a∗aj such that ai−1 lies in h. In either
case, h ∩A ∩Q = {a∗, ai−1, aj}.

Let H be an `-divided 5-hole in Q. We say that H properly intersects a ray r if the interior

of conv(H) intersects r. Now we show that if H properly intersects the ray
−−→
a∗aj , then H

contains ai−1. Assume there are points p, q ∈ H such that the relative interior of pq intersects

r :=
−−→
a∗aj . Since r lies in h and neither of p and q lies in r, at least one of the points p and q

lies in h \ r. Without loss of generality, we assume p ∈ h \ r. From h∩A∩Q = {a∗, ai−1, aj}
we have p = ai−1. By symmetry, if H properly intersects the ray

−−−−→
a∗ai−1, then H contains aj .

Suppose for contradiction that H properly intersects both rays
−−−−→
a∗ai−1 and

−−→
a∗aj . Then H

contains the points ai−1, aj , x, y, z for some points x, y, z ∈ Q, where ai−1x intersects
−−→
a∗aj ,

and ajz intersects
−−−−→
a∗ai−1. Observe that z is to the left of ai−1a∗ and that x is to the right

of aja∗. If aj lies to the right of a∗, then z is to the left of a∗, and thus z is in A; see
Figure 3(a). However, this is impossible as z also lies in h. Hence, aj lies to the left of a∗;
see Figure 3(b). As x and z are both to the right of a∗, the point a∗ is inside the convex
quadrilateral �(ai−1, aj , x, z). This contradicts the assumption that H is a 5-hole in Q.

So assume that H properly intersects exactly one of the rays
−−−−→
a∗ai−1 and

−−→
a∗aj , say

−−→
a∗aj ; see

Figure 3(c). In this case, H contains ai−1. The interior of the triangle4(a∗, ai−1, aj) is empty
of points of Q, since the triangle is contained in h. Moreover, conv(H) cannot intersect the
line that determines h both strictly above and strictly below a∗. Thus, all remaining points
of H \ {ai−1} lie to the right of ai−1a∗ and to the right of aja∗. If H is empty of points
of P \ Q, we are done. Otherwise, we let H ′ := (H \ {ai−1}) ∪ {p′} where p′ ∈ P \ Q is a
point inside 4(a∗, ai−1, aj) closest to aja∗. Note that the point p′ might not be unique. By
construction, H ′ is an `-divided 5-hole in P . An analogous argument shows that there is an

`-divided 5-hole in P if H properly intersects
−−−−→
a∗ai−1.

Finally, if H does not properly intersect any of the rays
−−−−→
a∗ai−1 and

−−→
a∗aj , then conv(H)

contains no point of P \Q in its interior, and hence H is an `-divided 5-hole in P .

5.1 Sequences of a∗-wedges with at most two points of B

In this subsection we consider an `-divided set P = A∪B with A not in convex position. We
consider the union W of consecutive a∗-wedges, each containing at most two points of B, and
derive an upper bound on the number of points of B that lie in W if there is no `-divided
5-hole in P ∩W ; see Corollary 13.

Observation 9. Let P = A ∪ B be an `-divided set with A not in convex position. Let Wk

be an a∗-wedge with wk ≥ 1 and 1 ≤ k ≤ t and let b be the leftmost point in Wk ∩ B. Then
the points a∗, ak−1, b, and ak form an `-divided 4-hole in P .

From Observation 6(i) and Observation 9 we obtain the following result.

Observation 10. Let P = A ∪B be an `-divided set with A not in convex position and with
no `-divided 5-hole in P . Let Wk be an a∗-wedge with wk ≥ 2 and 1 ≤ k ≤ t and let b be
the leftmost point in Wk ∩B. For every point b′ in (Wk ∩B) \ {b}, the line bb′ intersects the
segment ak−1ak. Consequently, b is inside 4(ak−1, ak, b

′), to the left of akb′, and to the right
of ak−1b′.

9



The following lemma states that there is an `-divided 5-hole in P if two consecutive
a∗-wedges both contain exactly two points of B.

Lemma 11. Let P = A ∪ B be an `-divided set with A not in convex position and with
|A|, |B| ≥ 5. Let Wi and Wi+1 be consecutive a∗-wedges with wi = 2 = wi+1 and 1 ≤ i < t.
Then there is an `-divided 5-hole in P .

Proof. The overall idea of the proof is as follows. We suppose for contradiction that there is
no `-divided 5-hole in P . Then we prove a sequence of structural facts on the layout of the
points of P forced by this assumption. Eventually we show that the structure of the point set
P resembles the point set from Figure 6(a). In particular, we arrive at the conclusion that
|B| = 4, which contradicts our assumption |B| ≥ 5.

Suppose for contradiction that there is no `-divided 5-hole in P . Let W := Wi∪Wi+1 and
let Q := P ∩W . By Lemma 8, there is also no `-divided 5-hole in Q. We label the points
in B ∩Wi as bi−1 and bi so that bi−1 is to the right of bi. Similarly, we label the points in
B ∩Wi+1 as bi+1 and bi+2 so that bi+2 is to the right of bi+1. By Observation 10, the point ai
is to the right of bibi−1 and to the left of bi+1bi+2. If the points bi−1, bi, bi+1, bi+2 are in convex
position, then ai, bi+1, bi+2, bi−1, bi form an `-divided 5-hole in P ; see Figure 4(a). Thus, we
assume the points bi−1, bi, bi+1, bi+2 are not in convex position. Without loss of generality,
we assume that the line bibi−1 intersects the segment bi+1bi+2, as otherwise we consider the
vertical reflection of the whole point set P .

Claim 11.1. The segments aibi−1 and bibi+1 intersect.

As bibi−1 intersects aiai−1 and bi+1bi+2, the point bi−1 lies in the triangle 4(bi, bi+1, bi+2).
Moreover, bi−1 is to the right of bi+1bi, ai is to the left of bi+1bi, bi is to the left of aibi−1,
and bi+1 is to the right of aibi−1. Consequently, the points ai, bi+1, bi−1, bi form an `-divided
4-hole in P , and, in particular, the segments aibi−1 and bibi+1 intersect; see Figure 4(b). This
finishes the proof of Claim 11.1.

a∗

ai−1

ai

ai+1

bi

bi−1

bi+2

bi+1

`

(a)

a∗

ai−1

ai

ai+1

bi bi−1

bi+2

bi+1

`

(b)

Figure 4: (a) If bi−1, bi, bi+1, bi+2 are in convex position, then there is an `-divided 5-hole in P .
(b) The points a∗, ai+1, ai, ai−1 form a 4-hole in P .

The points ai−1, bi, bi−1, bi+2 are in convex position because ai−1 is the leftmost and bi+2

is the rightmost of those four points and because both ai−1 and bi+2 lie to the left of bibi−1.
Moreover, the points ai−1, bi, bi−1, bi+2 form an `-divided 4-hole in P as �(ai−1, bi, bi−1, bi+2)
lies in W and wi = wi+1 = 2.

Claim 11.2. Among the four points bi+2, bi−1, bi+1, ai+1, the clockwise order around bi+2 is
ai+1, bi+1, bi−1.
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The point bi+2 is the rightmost of those four points. By Observation 10, bi+1 lies to the
right of aibi+2 and ai+1 lies to the right of bi+1bi+2. Since bi−1 ∈ Wi and bi+2 ∈ Wi+1, the
point bi−1 lies to the left of aibi+2. This finishes the proof of Claim 11.2.

Claim 11.3. The points bi+2, bi−1, bi+1, ai+1 are not in convex position.

Suppose for contradiction that the points bi+2, bi−1, bi+1, ai+1 form a convex quadrilat-
eral. Due to the clockwise order around bi+2, the convex quadrilateral is �(bi+2, bi−1, bi+1,
ai+1). The only points of P that can lie in the interior of this quadrilateral are a∗, ai−1,
ai, and bi. Since the triangle 4(bi+2, bi+1, ai+1) is contained in Wi+1, it contains neither
of the points a∗, ai−1, ai, and bi. Since the triangle 4(bi+2, bi−1, bi+1) is contained in the
convex hull of B, it does not contain a∗, ai−1, nor ai. Moreover, as bi−1 lies in the triangle
4(bi, bi+1, bi+2), the triangle 4(bi+2, bi−1, bi+1) also does not contain bi. Thus the quadri-
lateral �(bi+2, bi−1, bi+1, ai+1) is empty of points of P . By Observation 6(i), the two sectors
S(ai−1, bi, bi−1, bi+2) and S(bi+2, bi−1, bi+1, ai+1) contain no point of P . Since every point of
B \ {bi−1, bi, bi+1, bi+2} is either in S(ai−1, bi, bi−1, bi+2) or in S(bi+2, bi−1, bi+1, ai+1), we have
B = {bi−1, bi, bi+1, bi+2}. This contradicts the assumption that |B| ≥ 5 and finishes the proof
of Claim 11.3.

In particular, the point bi+1 lies in the triangle4(bi−1, ai+1, bi+2), since ai+1 is the leftmost
and bi+2 is the rightmost of the points bi+2, bi−1, bi+1, ai+1 and since bi−1 lies in Wi. The red
area in Figure 4(b) gives an illustration.

Consequently, the point ai+1 lies to the left of bi+1bi−1. By Observation 6(i), the point
ai+1 is not in the sector S(bi+1, bi−1, bi, ai), as otherwise the points bi+1, bi−1, bi, ai, ai+1 form
an `-divided 5-hole in P . Thus the point ai+1 lies to the left of aibi; see Figure 4(b).

Claim 11.4. The points a∗, ai+1, ai, ai−1 are not in convex position.

The points a∗, ai+1, ai, ai−1 do not form a 4-hole in P because otherwise bi lies in the sector
S(ai−1, a

∗, ai+1, ai) and forms a 5-hole together with ai−1, a
∗, ai+1, ai, which is impossible by

Observation 6(ii). This finishes the proof of Claim 11.4.

Claim 11.5. The point a∗ is inside the triangle 4(ai−1, ai+1, ai).

The point ai is not inside 4(ai−1, ai+1, a
∗), since, by Observation 7, ai is to the right of

a∗ and since a∗ is the rightmost inner point of A. Since ai−1 is to the left of a∗ai and ai+1

is to the right of a∗ai, a
∗ is the inner point of a∗, ai+1, ai, ai−1. Figure 5 gives an illustration.

This finishes the proof of Claim 11.5.

a∗

ai−1

ai

bi
bi−1

bi+2

bi+1
ai+1

`

Figure 5: Location of the points of A \Q.
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Claim 11.6. All points of B \Q lie in a∗-wedges below Wi+1.

Since |B| ≥ 5, there is another a∗-wedge besides Wi and Wi+1 that intersects `. Now

we show that all points of B \ Q lie in a∗-wedges below Wi+1. The rays
−−−→
biai−1 and

−−−−−→
bi−1bi+2

both start in Wi and then leave Wi. Moreover, the segment biai−1 intersects ` and bi−1bi+2

intersects
−−→
a∗ai. As both bi and bi−1 lie to the right of ai−1bi+2, all points of B \ Q that

lie in an a∗-wedge above Wi also lie in the sector S(ai−1, bi, bi−1, bi+2). We recall that, by
Observation 6(i), the sector S(ai−1, bi, bi−1, bi+2) is empty of points of P . This finishes the
proof of Claim 11.6.

Claim 11.7. We have i = 1. That is, Wi is the topmost a∗-wedge that intersects `.

By Observation 7, ai+1 lies to the right of a∗. Since ai and ai+1 are both to the right of
a∗ and since a∗ is inside the triangle 4(ai−1, ai+1, ai), the point ai−1 is to the left of a∗. By
Observation 7, we have i = 1. This proves Claim 11.7.

Claim 11.8. All points of A \Q lie to the left of ai+1ai, to the right of ai+1bi+1, and to the
right of a∗ai+1.

The violet area in Figure 5 gives an illustration where the remaining points of A \ Q
lie. We recall that the sector S(ai−1, bi, bi−1, bi+2) (red shaded area in Figure 5) is empty
of points of P . By Observation 9, both sets {a∗, ai, bi, ai−1} and {a∗, ai+1, bi+1, ai} form `-
divided 4-holes in P . By Observation 6(i), the two sectors S(a∗, ai, bi, ai−1) (green shaded
area in Figure 5) and S(a∗, ai+1, bi+1, ai) (blue shaded area in Figure 5) are thus empty of
points of P . Therefore, no point of A \Q lies to the left of ai+1bi+1. Since W is non-convex,
every point of P that is to the left of a∗ai+1 lies in Q. Thus every point of A \ Q lies to
the right of a∗ai+1. Moreover, no point a of A \ Q lies to the right of ai+1ai (gray area in
Figure 5) because otherwise, ai+1 is an inner point of 4(ai, a

∗, a), which is impossible since
a∗ is the rightmost inner point of A and ai+1 is to the right of a∗. This finishes the proof of
Claim 11.8.

Now we have restricted where the points of A \Q lie. In the rest of the proof we show the
following claim. We will then use the sectors S(bi+2, bi+1, ai+1, ai+2) and S(ai−1, bi, bi−1, bi+2)
to argue that |B| = |B ∩Q| = 4, which then contradicts the assumption |B| ≥ 5.

Claim 11.9. The points bi+2, bi+1, ai+1, ai+2 form an `-divided 4-hole in P .

We consider ai+2 and show that the points ai+1, a
∗, ai−1, ai+2 are in convex position. It suf-

fices to show that ai+2 does not lie in the triangle 4(a∗, ai−1, ai+1) because of the cyclic order
of A\{a∗} around a∗. Recall that a∗ lies inside the triangle 4(ai−1, ai+1, ai), that bi+1 lies in-
side the triangle 4(ai, ai+1, bi+2), and that bi−1 lies inside the triangle 4(ai−1, ai, bi+2). Since
the triangles 4(ai−1, ai+1, ai), 4(ai, ai+1, bi+2), and 4(ai−1, ai, bi+2) are oriented counter-
clockwise along the boundary, the point ai lies inside 4(ai−1, ai+1, bi+2). Thus also the points
a∗, bi, bi+1 lie in the triangle 4(ai−1, ai+1, bi+2). Consequently, the triangle 4(a∗, ai−1, ai+1)
is contained in the union of the sectors S(ai+1, bi+1, ai, a

∗) (blue shaded area in Figure 5)
and S(a∗, ai, bi, ai−1) (green shaded area in Figure 5). Thus ai+2 does not lie in the triangle
4(a∗, ai−1, ai+1) and the points ai+1, a

∗, ai−1, ai+2 are in convex position.
We now show that the sector S(ai+1, a

∗, ai−1, ai+2) is empty of points of P . If the quadri-
lateral �(ai+1, a

∗, ai−1, ai+2) is not empty of points of P , then there is a point a′i−1 of A in
4(a∗, ai−1, ai+2). This is because 4(a∗, ai+2, ai+1) is empty of points of A due to the cyclic
order of A\{a∗} around a∗. We can choose a′i−1 to be a point that is closest to the line a∗ai+2
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among the points of A inside 4(a∗, ai+2, ai+1). If the quadrilateral �(ai+1, a
∗, ai−1, ai+2) is

empty of points of P , then we set a′i−1 := ai−1.
By the choice of a′i−1, the quadrilateral �(ai+1, a

∗, a′i−1, ai+2) is empty of points of P .
Since ai+1 and ai+2 are consecutive in the order around a∗, no point of A lies in the sector
S(ai+1, a

∗, a′i−1, ai+2). By Observation 6(ii), the sector S(ai+1, a
∗, a′i−1, ai+2) (gray shaded

area in Figure 6(a)) is empty of points of P . Since the sector S(ai+1, a
∗, ai−1, ai+2) is a subset

of S(ai+1, a
∗, a′i−1, ai+2), the sector S(ai+1, a

∗, ai−1, ai+2) is empty of points of P .

`

a∗

ai−1

ai

bi
bi−1

bi+2

bi+1ai+1

a′i−1
ai+2

(a)

a∗ ai

bi

ai+1

(b)

Figure 6: (a) Location of the points of B \Q. (b) The point ai+1 lies to the left of ai.

We show that ai+1 is to the left of ai and to the right of ai+2. Recall that ai lies to the
right of a∗ and to the left of bi. The point bi lies to the left of a∗ai and the point ai+1 lies to
the right of this line; see Figure 6(b). The point ai+1 then lies to the left of ai, since we know
already that ai+1 lies to the left of aibi. Recall that ai+1 is to the right of a∗. Consequently,
the point ai+2 lies to the left of ai+1, as ai+2 lies to the right of a∗ai+1 and to the left of
ai+1ai by Claim 11.8.

Now we are ready to prove that the points bi+2, bi+1, ai+1, ai+2 form an `-divided 4-hole
in P (green area in Figure 6(a)). Recall that bi+2 and ai+2 both lie to the right of ai+1bi+1, and
that ai+2 is the leftmost and bi+2 is the rightmost of those four points. Altogether, we see that
the points bi+2, bi+1, ai+1, ai+2 are in convex position. The four sectors S(bi+2, ai−1, bi, bi−1)
(red shaded area in Figure 6(a)), S(bi−1, bi, ai, bi+1) (orange shaded area in Figure 6(a)),
S(bi+1, ai, a

∗, ai+1) (blue shaded area in Figure 6(a)), and S(ai+1, a
∗, a′i−1, ai+2) (gray shaded

area in Figure 6(a)) contain the quadrilateral �(bi+2, bi+1, ai+1, ai+2) (green area in Fig-
ure 6(a)). The sectors are empty of points of P by Observation 6(i). Consequently, the
convex quadrilateral �(bi+2, bi+1, ai+1, ai+2) is an `-divided 4-hole in P . This concludes the
proof of Claim 11.9.

To finish the proof of Lemma 11, recall that all points of B\Q lie in a∗-wedges below Wi+1

by Claim 11.6. Since ai+2 is to the left of ai+1, the line ai+2ai+1 intersects ` above ` ∩Wi+2.
The line ai+1bi+1 also intersects ` above `∩Wi+2, since ai+1 and bi+1 both lie in Wi+1. From
i = 1, every point of B \ Q is to the right of ai+2ai+1 and to the right of ai+1bi+1. Since
the points bi+2, bi+1, ai+1, ai+2 form an `-divided 4-hole in P by Claim 11.9, Observation 6(i)
implies that the sector S(bi+2, bi+1, ai+1, ai+2) is empty of points of P . Thus every point of
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B \ Q lies to the left of bi+1bi+2. Since bi+1bi+2 intersects ` ∩Wi+1 above ` ∩ ai+1bi+1 and
since bi−1 lies to the left of bi+2 and to the left of bi+1bi+2, every point of B \Q lies to the left
of bi−1bi+2 and to the right of bi+2, and thus in the sector S(ai−1, bi, bi−1, bi+2). However, by
Observation 6(i), this sector is empty of points of P . Thus we obtain B = {bi−1, bi, bi+1, bi+2},
which contradicts the assumption |B| ≥ 5. This concludes the proof of Lemma 11.

Next we show that if there is a sequence of consecutive a∗-wedges where the first and the
last a∗-wedge both contain two points of B and every a∗-wedge in between them contains
exactly one point of B, then there is an `-divided 5-hole in P .

Lemma 12. Let P = A∪B be an `-divided set with A not in convex position and with |A| ≥ 5
and |B| ≥ 6. Let Wi, . . . ,Wj be consecutive a∗-wedges with 1 ≤ i < j ≤ t, wi = 2 = wj, and
wk = 1 for every k with i < k < j. Then there is an `-divided 5-hole in P .

Proof. For i = j − 1, the statement follows by Lemma 11. Thus we assume j ≥ i + 2. That
is, we have at least three consecutive a∗-wedges. Suppose for contradiction that there is no
`-divided 5-hole in P . Let W :=

⋃j
k=iWk and Q := P ∩W . By Lemma 8, there is also no

`-divided 5-hole in Q. Note that |Q ∩ B| = j − i + 3. Also observe that |Q ∩ A| = j − i + 2
if ai−1 = aj = at and |Q ∩ A| = j − i + 3 otherwise. We label the points in B ∩Wi as bi−1
and bi so that bi−1 is to the right of bi. Further, we label the unique point in B ∩Wk as bk
for each i < k < j, and the two points in B ∩Wj as bj and bj+1 so that bj+1 is to the right
of bj ; see Figure 7.

a∗

bi bi−1

bj−1

aj

bj

bj+1

ai−1

bi+1

...

...

`

ai

at−1

Wi

Wj

Wi+1

Wj−1

P \Q

ai+1

Figure 7: An illustration of a∗-wedges Wi, . . . ,Wj in the proof of Lemma 12.

Claim 12.1. All points of B ∩ (Wk−1 ∪Wk ∪Wk+1) are to the right of akak−1 for every k
with i < k < j.

The claim clearly holds for points from B∩Wk. Thus it suffices to prove the claim only for
points from B ∪Wk−1, as for points from B ∪Wk+1 it follows by symmetry. Since i < k < j,
Observation 7 implies that the points ak−1 and ak are both to the right of a∗.

We now distinguish the following two cases.

1. The point ak−2 is to the left of a∗ak; see Figure 8(a). Since a∗ is the rightmost inner point
of A, ak−1 does not lie inside the triangle4(a∗, ak, ak−2) and thus �(ak−2, a

∗, ak, ak−1) is
a 4-hole in P . All points of B∩Wk−1 lie to the right of a∗ak−2 and to the left of ak−2ak−1.
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By Observation 6(ii), no point of B ∩Wk−1 lies in the sector S(ak−2, a
∗, ak, ak−1) (red

shaded area in Figure 8(a)) and thus all points of B ∩Wk−1 are to the right of akak−1.

ak−1
ak

ak−2

a∗
B ∩Wk−1

`

(a)

ak−1

ak

ak−2

a∗
B ∩Wk−1

ak+1

`

(b)

Figure 8: An illustration of the proof of Claim 12.1.

2. The point ak−2 is to the right of a∗ak; see Figure 8(b). Since ak−1 and ak are to the
right of a∗ and since ak−2 is to the left of a∗ak−1 and to the right of a∗ak, the point
ak−2 is to the left of a∗. By Observation 7, we have k = 2. That is, Wk−1 is the topmost
a∗-wedge that intersects `.

There is another a∗-wedge below Wk+1, since otherwise |B| = |B ∩ (Wk−1 ∪ Wk ∪
Wk+1)| ≤ 2 + 1 + 2 = 5, which is impossible according to the assumption |B| ≥ 6. By
Observation 7, the point ak+1 is to the right of a∗. Moreover, since a∗ is the rightmost
inner point of A, the point ak does not lie inside the triangle 4(a∗, ak+1, ak−1). The
points a∗, ak+1, ak, ak−1 then form a 4-hole in P , which has a∗ as the leftmost point.

By definition, all points of B ∩ Wk−1 lie to the left of a∗ak−1. As the ray
−−−−→
a∗ak+1

intersects `, all points of B ∩Wk−1 lie also to the left of a∗ak+1. By Observation 6(ii),
no point of B∩Wk−1 lies in the sector S(a∗, ak+1, ak, ak−1). Thus all points of B∩Wk−1
lie to the right of akak−1.

This finishes the proof of Claim 12.1.
We say that points p1, p2, p3, p4 form a counterclockwise-oriented convex quadrilateral if

every triple (px, py, pz) with 1 ≤ x < y < z ≤ 4 is oriented counterclockwise.

Claim 12.2. The points bi−1, bi, ai, ai+1 form a counterclockwise-oriented convex quadrilat-
eral.

Due to Claim 12.1, the points bi−1 and bi are both to the right of ai+1ai. Thus the points
ai and ai+1 are both extremal points of those four points. Also the point bi−1 is extremal,
since it is the rightmost of those four points. The point bi does not lie inside the triangle
4(ai+1, ai, bi−1), since, by Observation 10, bi lies to the left of aibi−1. To finish the proof of
Claim 12.2, it suffices to observe that the triples (bi−1, bi, ai), (bi−1, bi, ai+1), (bi−1, ai, ai+1),
and (bi, ai, ai+1) are all oriented counterclockwise.

Claim 12.3. The point bi+1 lies to the right of bibi−1.

Suppose for contradiction that bi+1 lies to the left of bibi−1. We consider the five points
ai−1, ai, bi−1, bi, bi+1; see Figure 9. By Claim 12.1, the points bi−1, bi, and bi+1 lie to the right
of aiai−1. Moreover, since bi−1 and bi lie in Wi and since bi+1 lies in Wi+1, the points bi−1
and bi both lie to the left of aibi+1. By Observation 10, the point ai−1 lies to the left of
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bibi−1 and bi+1 is to the right of bi−1. Consequently, the points bi−1 and bi lie in the triangle
4(ai−1, ai, bi+1). Altogether, the points ai−1, bi, bi−1, and bi+1 are in convex position.

ai+1

ai

ai−1

a∗

bi
bi−1

bi+1

`

Figure 9: An illustration of the proof of Claim 12.3.

By Claim 12.1, the points bi−1 and bi+1 lie to the right of ai+1ai. Moreover, since bi−1 is
to the left of bi+1 and to the left of aibi+1, the points bi+1, bi−1, ai, and ai+1 are in convex
position. Since there are no further points in Wi and Wi+1, the sets {ai−1, bi, bi−1, bi+1} and
{bi+1, bi−1, ai, ai+1} are `-divided 4-holes in P . By Observation 6(i), the point bi+2 lies neither

in S(ai−1, bi, bi−1, bi+1) nor in S(bi+1, bi−1, ai, ai+1). Recall that the ray
−−−−−→
bi−1bi+1 intersects−−→

a∗ai and the ray
−−−→
biai−1 does not intersect

−−→
a∗ai. Therefore bi+2 is to the right of aiai+1. This

contradicts Claim 12.1 and finishes the proof of Claim 12.3.

Claim 12.4. For each k with i < k < j, the point bk lies to the left of akbi−1 and to the left
of bi−1.

Recall the labeling of the points in B ∩W ; see Figure 7. We show by induction on k that

(i) the points bi−1, bk−1, ak−1, and ak form a counterclockwise-oriented convex quadrilat-
eral, which has bi−1 as the rightmost point, and

(ii) the point bk lies inside this convex quadrilateral and, in particular, to the left of akbi−1.

Claim 12.4 then clearly follows.
For the base case, we consider k = i+ 1. By Claim 12.2, the points bi−1, bi, ai, and ai+1

form a counterclockwise-oriented convex quadrilateral. By definition, bi−1 is the rightmost of
those four points. Figure 10(a) gives an illustration. The point bi+1 lies to the right of ai+1ai
and, by Claim 12.3, to the right of bibi−1. Moreover, since bi+1 lies in Wi+1, it lies to the right
of aibi. By Observation 6(i), bi+1 does not lie in the sector S(bi−1, bi, ai, ai+1). Consequently,
bi+1 lies inside the quadrilateral �(bi−1, bi, ai, ai+1).

For the inductive step, let i + 1 < k < j. By the inductive assumption, the point bk−1
lies to the left of ak−1bi−1 and to the left of bi−1. By Claim 12.1, bk−1 lies to the right of
akak−1. Hence, the points ak and bi−1 both lie to the right of ak−1bk−1. Recall that the
points bi−1, bk−1, ak−1, ak lie to the right of a∗. Since bi−1 is the first and ak is the last in
the clockwise order around a∗, the points bi−1, bk−1, ak−1, ak form a counterclockwise-oriented
convex quadrilateral,

Recall that the points bk−1 and bk both lie to the right of akak−1 and that bk−1 is to the
left of ak−1bi−1. Since bk ∈ Wk, the point bk lies to the right of ak−1bi−1. Therefore the
clockwise order of {bk−1, bi−1, bk} around ak−1 is bk−1, bi−1, bk. Since bi−1 is not contained in
Wk−1∪Wk, the point bi−1 is not contained in the triangle4(ak−1, bk, bk−1). Consequently, the
points ak−1, bk, bi−1, bk−1 form a convex quadrilateral and, in particular, bk lies to the right of
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Figure 10: (a) An illustration of the proof of Claim 12.4. (b) An illustration of the proof of Lemma 12.

bk−1bi−1. Figure 10(a) gives an illustration. Since bk lies in Wk, it lies to the right of ak−1bk−1.
By Observation 6(i), the point bk does not lie in the sector S(bi−1, bk−1, ak−1, ak). Thus bk
lies inside the quadrilateral �(bi−1, bk−1, ak−1, ak). This finishes the proof of Claim 12.4.

Using Claim 12.4, we now finish the proof of Lemma 12, by finding an `-divided 5-hole in
the island Q and thus obtaining a contradiction with the assumption that there is no `-divided
5-hole in P . In the following, we assume, without loss of generality, that bj+1 is to the right
of bi−1. Otherwise we can consider a vertical reflection of P .

We consider the polygon P through the points bi−1, bj−1, aj−1, bj , bj+1 and we show that
P is convex and empty of points of Q. See Figure 10(b) for an illustration. This will give us
an `-divided 5-hole in Q.

We show that P is convex by proving that every point of {bi−1, bj−1, aj−1, bj , bj+1} is a
convex vertex of P. The point aj−1 is a convex vertex of P because it is the leftmost point
in P. The point bi−1 is a convex vertex of P because all points of P lie to the right of a∗ and
bi−1 is the topmost point in the clockwise order around a∗. The point bj+1 is a convex vertex
of P because bj+1 is the rightmost point in P by Claim 12.4 and by the assumption that bj+1

is to the right of bi−1. The point bj−1 is a convex vertex of P because bj−1 lies to the left of
aj−1bi−1 by Claim 12.4 while bj and bj+1 both lie to the right of this line. The point bj is
a convex vertex of P because, by Observation 10, bj lies to the right of aj−1bj+1 while bj−1
and bi−1 both lie to the right of this line. Consequently, P is a convex pentagon with vertices
from both A and B. Moreover, by Claim 12.4, all points bk with i < k < j lie to the left of
akbi−1. Since bi is to the left of bj−1bi−1, P is thus empty of points of Q, which gives us a
contradiction with the assumption that there is no `-divided 5-hole in P .

We now use Lemma 12 to show the following upper bound on the total number of points
of B in a sequence Wi, . . . ,Wj of consecutive a∗-wedges with wi, . . . , wj ≤ 2.

Corollary 13. Let P = A ∪ B be an `-divided set with no `-divided 5-hole, with A not in
convex position, and with |A| ≥ 5 and |B| ≥ 6. For 1 ≤ i ≤ j ≤ t, let Wi, . . . ,Wj be

consecutive a∗-wedges with wk ≤ 2 for every k with i ≤ k ≤ j. Then
∑j

k=iwk ≤ j − i+ 2.

Proof. Let n0, n1, and n2 be the number of a∗-wedges from Wi, . . . ,Wj with 0, 1, and 2
points of B, respectively. Due to Lemma 12, we can assume that between any two a∗-wedges
from Wi, . . . ,Wj with two points of B each, there is an a∗-wedge with no point of B. Thus
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n2 ≤ n0 + 1. Since n0 + n1 + n2 = j − i + 1, we have
∑j

k=iwk = 0n0 + 1n1 + 2n2 =
(j − i+ 1) + (n2 − n0) ≤ j − i+ 2.

5.2 Computer-assisted results

We now provide lemmas that are key ingredients in the proof of Theorem 2. All these lemmas
have computer-aided proofs. Each result was verified by two independent implementations,
which are also based on different abstractions of point sets; see below for details.

Lemma 14. Let P = A ∪ B be an `-divided set with |A| = 5, |B| = 6, and with A not in
convex position. Then there is an `-divided 5-hole in P .

Lemma 15. Let P = A ∪ B be an `-divided set with no `-divided 5-hole in P , |A| = 5,
4 ≤ |B| ≤ 6, and with A in convex position. Then for every point a of A, every convex
a-wedge contains at most two points of B.

Lemma 16. Let P = A ∪ B be an `-divided set with no `-divided 5-hole in P , |A| = 6, and
|B| = 5. Then for each point a of A, every convex a-wedge contains at most two points of B.

Lemma 17. Let P = A ∪ B be an `-divided set with no `-divided 5-hole in P , 5 ≤ |A| ≤ 6,
|B| = 4, and with A in convex position. Then for every point a of A, if the non-convex
a-wedge is empty of points of B, every a-wedge contains at most two points of B.

To prove these lemmas, we employ an exhaustive computer search through all combina-
torially different sets of |P | ≤ 11 points in the plane. Since none of these statements depends
on the actual coordinates of the points but only on the relative positions of the points, we
distinguish point sets only by orientations of triples of points as proposed by Goodman and
Pollack [20]. That is, we check all possible equivalence classes of point sets in the plane with
respect to their triple-orientations, which are known as order types.

We wrote two independent programs to verify Lemmas 14 to 17. Both programs are
available online [8, 26].

The first implementation is based on programs from the two bachelor’s theses of Scheu-
cher [27, 28]. For our verification purposes we reduced the framework from there to a very
compact implementation [26]. The program uses the order type database [3, 7], which stores
all order types realizable as point sets of size up to 11. The order types realizable as sets of
ten points are available online [1] and the ones realizable as sets of eleven points need about
96 GB and are available upon request from Aichholzer. The running time of each of the
programs in this implementation does not exceed two hours on a standard computer.

The second implementation [8] neither uses the order type database nor the program used
to generate the database. Instead it relies on the description of point sets by so-called signature
functions [9, 17]. In this description, points are sorted according to their x-coordinates and
every unordered triple of points is represented by a sign from {−,+}, where the sign is − if
the triple traced in the order by increasing x-coordinates is oriented clockwise and the sign
is + otherwise. Every 4-tuple of points is then represented by four signs of its triples, which
are ordered lexicographically. There are only eight 4-tuples of signs that we can obtain (out
of 16 possible ones); see [9, Theorem 3.2] or [17, Theorem 7] for details. In our algorithm,
we generate all possible signature functions using a simple depth-first search algorithm and
verify the conditions from our lemmas for every signature. The running time of each of the
programs in this implementation takes up to a few hundreds of hours.
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5.3 Applications of the computer-assisted results

Here we present some applications of the computer-assisted results from Section 5.2.

Lemma 18. Let P = A ∪ B be an `-divided set with no `-divided 5-hole in P , with |A| ≥ 6,
and with A not in convex position. Then the following two conditions are satisfied.

(i) Let Wi,Wi+1,Wi+2 be three consecutive a∗-wedges whose union is convex and contains
at least four points of B. Then wi, wi+1, wi+2 ≤ 2.

(ii) Let Wi,Wi+1,Wi+2,Wi+3 be four consecutive a∗-wedges whose union is convex and con-
tains at least four points of B. Then wi, wi+1, wi+2, wi+3 ≤ 2.

Proof. To show part (i), let W := Wi ∪ Wi+1 ∪ Wi+2, A
′ := A ∩ W , B′ := B ∩ W , and

P ′ := A′ ∪ B′. Since W is convex, P ′ is an island of P and thus there is no `-divided 5-hole
in P ′. Note that |A′| = 5 and A′ is in convex position. If |B′| ≤ 5, then every convex a∗-wedge
in P ′ contains at most two points of B′ by Lemma 15 applied to P ′. So assume that |B′| ≥ 6.
If necessary, we remove points from P ′ from the right to obtain P ′′ = A′ ∪ B′′, where B′′

contains exactly six points of B′. Note that there is no `-divided 5-hole in P ′′, since P ′′ is
an island of P ′. By Lemma 15, each a∗-wedge in P ′′ contains exactly two points of B′′. Let
B̃ be the set of points of B that are to the left of the rightmost point of B′′, including this
point, and let P̃ := A ∪ B̃. Note that B′′ ⊆ B̃. Since |B′′| = 6 and since W ∩ B̃ = B′′, each
of the a∗-wedges Wi,Wi+1,Wi+2 contains exactly two points of B̃. The a∗-wedges Wi, Wi+1,
and Wi+2 are also a∗-wedges in P̃ . Thus, Lemma 11 applied to P̃ and Wi,Wi+1 then gives
us an `-divided 5-hole in P̃ . From the choice of P̃ , we then have an `-divided 5-hole in P , a
contradiction.

To show part (ii), let W := Wi ∪ Wi+1 ∪ Wi+2 ∪ Wi+3, A
′ := A ∩ W , B′ := B ∩ W ,

and P ′ := A′ ∪ B′. Since W is convex, P ′ is an island of P and thus there is no `-divided
5-hole in P ′. Note that |A′| = 6 and A′ is in convex position. If |B′| = 4, then the statement
follows from Lemma 17 applied to P ′ since a∗ is an extremal point of P ′. If |B′| = 5, then the
statement follows from Lemma 16 applied to P ′ and thus we can assume |B′| ≥ 6. Suppose
for contradiction that wj ≥ 3 for some i ≤ j ≤ i + 3. If necessary, we remove points from
P from the right to obtain P ′′ so that B′′ := P ′′ ∩ B contains exactly six points of W ∩ B.
By applying part (i) for P ′′ and Wi ∪Wi+1 ∪Wi+2 and Wi+1 ∪Wi+2 ∪Wi+3, we obtain that
|B′′∩Wi|, |B′′∩Wi+3| = 3 and |B′′∩Wi+1|, |B′′∩Wi+2| = 0. Let b be the rightmost point from
P ′′ ∩W . By Lemma 16 applied to W ∩ (P ′′ \ {b}), there are at most two points of B′′ \ {b} in
every a∗-wedge in W ∩ (P ′′ \ {b}). This contradicts the fact that either |(B′′ ∩Wi) \ {b}| = 3
or |(B′′ ∩Wi+3) \ {b}| = 3.

5.4 Extremal points of `-critical sets

Recall the definition of `-critical sets: An `-divided point set C = A ∪B is called `-critical if
neither C ∩ A nor C ∩B is in convex position and if for every extremal point x of C, one of
the sets (C \ {x}) ∩A and (C \ {x}) ∩B is in convex position.

In this section, we consider an `-critical set C = A ∪ B with |A|, |B| ≥ 5. We first show
that C has at most two extremal points in A and at most two extremal points in B. Later,
under the assumption that there is no `-divided 5-hole in C, we show that |B| ≤ |A| − 1 if
A contains two extremal points of C (Section 5.4.1) and that |B| ≤ |A| if B contains two
extremal points of C (Section 5.4.2).
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Lemma 19. Let C = A ∪B be an `-critical set. Then the following statements are true.

(i) If |A| ≥ 5, then |A ∩ ∂ conv(C)| ≤ 2.

(ii) If A ∩ ∂ conv(C) = {a, a′}, then a∗ is the only inner point in A and every point of
A \ {a, a′} lies in the convex region spanned by the lines a∗a and a∗a′ that does not have
any of a and a′ on its boundary.

(iii) If A ∩ ∂ conv(C) = {a, a′}, then the a∗-wedge that contains a and a′ contains no point
of B.

By symmetry, analogous statements hold for B.

Proof. To show statement (i), suppose for contradiction that |A ∩ ∂ conv(C)| ≥ 3. Let a, a′,
and a′′ be three points from A ∩ ∂ conv(C) that are consecutive vertices of the convex hull
conv(C). If there is no point of A in the triangle 4(a, a′, a′′) spanned by the points a, a′,
and a′′, then A \ {a′} is not in convex position. This is impossible, since C is an `-critical
set. If there is at least one point a(1) in 4(a, a′, a′′), then we consider an arbitrary point a(2)

from A \ {a, a′, a′′, a(1)}. Such a point a(2) exists, since |A| ≥ 5. The point a(1) lies inside
one of the triangles 4(a, a′, a(2)), 4(a, a′′, a(2)), or in 4(a′, a′′, a(2)) and thus one of the sets
A\{a′′}, A\{a′}, or A\{a} is not in convex position, which is again impossible. In any case,
C cannot be `-critical and we obtain a contradiction.

To show statement (ii), assume that A ∩ ∂ conv(C) = {a, a′}. Every triangle in A with
a point of A in its interior has a and a′ as vertices, as otherwise A \ {a} or A \ {a′} is
not in convex position, which is impossible. Consider points a(1) and a(2) from A such that
4(a, a′, a(1)) contains a(2). Denote by R the region bounded by aa(2) and a′a(2) that contains
a(1). If there is a point a(3) in A \ (R ∪ {a, a′}) then a(2) lies in one of 4(a, a(1), a(3)) and
4(a′, a(1), a(3)), implying that A\{a} or A\{a′} is not in convex position. Hence all points of
A\{a, a′, a(2)} lie in R. Moreover, any further inner point a(4) from A∩R lies in some triangle
4(a, a′, a(5)) for some a(5) ∈ A ∩R. Thus, a(4) also lies in one of the triangles 4(a, a(2), a(5))
or 4(a′, a(2), a(5)). This implies that A \ {a} or A \ {a′} is not in convex position. Hence a(2)

is the only inner point of A.
To show statement (iii), assume that A ∩ ∂ conv(C) = {a, a′}. Let Wi be the wedge that

contains a and a′. Since a and a′ are the only extremal points of C contained in A, the
segment aa′ is an edge of conv(C). The points a, a′, and a∗ all lie in A and thus the triangle
4(a, a′, a∗) contains no points of B. Since all points of C lie in the closed halfplane that is
determined by the line aa′ and that contains a∗, the wedge Wi contains no points of B.

We remark that the assumption |A| ≥ 5 in part (i) of Lemma 19 is necessary. In fact,
arbitrarily large `-critical sets with only four points in A and with three points of A on
∂ conv(C) exist, and analogously for B. Figure 2(c) gives an illustration.

Lemma 20. Let C = A∪B be an `-critical set with no `-divided 5-hole in C and with |A| ≥ 6.
Then wi ≤ 3 for every 1 < i < t. Moreover, if |A ∩ ∂ conv(C)| = 2, then w1, wt ≤ 3.

Proof. Recall that, since C is `-critical, we have |B| ≥ 4. Let i be an integer with 1 ≤ i ≤ t.
First, assume that A ∩ ∂ conv(C) ⊂ Wi. By Lemma 19(i), we have |A ∩ ∂ conv(C)| ∈ {1, 2}.
If |A ∩ ∂ conv(C)| = 1, then i ∈ {1, t}, so there is nothing to prove for wi. In the remaining
case |A ∩ ∂ conv(C)| = 2, by Lemma 19(iii) we have Wi ∩B = ∅, and thus wi = 0.
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In the remaining case there is a point a ∈ A∩ ∂ conv(C) \Wi. We consider C ′ := C \ {a}.
Since C is an `-critical set, A′ := C ′ ∩ A is in convex position. Thus, there is a non-convex
a∗-wedge W ′ of C ′. Since W ′ is non-convex, all other a∗-wedges of C ′ are convex. Moreover,
since W ′ is the union of the two a∗-wedges of C that contain a, all other a∗-wedges of C ′ are
also a∗-wedges of C. Let W be the union of all a∗-wedges of C that are not contained in W ′.
Note that W is convex and contains at least |A| − 3 ≥ 3 a∗-wedges of C. Since |A| ≥ 6, the
statement follows from Lemma 18(i).

5.4.1 Two extremal points of C in A

Proposition 21. Let C = A ∪ B be an `-critical set with no `-divided 5-hole in C, with
|A|, |B| ≥ 6, and with |A ∩ ∂ conv(C)| = 2. Then |B| ≤ |A| − 1.

Proof. Since |A ∩ ∂ conv(C)| = 2, Lemma 20 implies that wi ≤ 3 for every 1 ≤ i ≤ t. Let a
and a′ be the two points in A ∩ ∂ conv(C). By Lemma 19(ii), all points of A \ {a, a′} lie in
the convex region R that is bounded by the lines a∗a, a∗a′, and `, and does not have any of
a and a′ on its boundary. That is, without loss of generality, a = ah−1 and a′ = ah for some
1 ≤ h ≤ |A| − 1 and, by Lemma 19(iii), we have wh = 0. Since all points of A \ {a, a′} lie in
the convex region R, the regions W := cl(R2 \ (Wh−1 ∪Wh)) and W ′ := cl(R2 \ (Wh ∪Wh+1))
are convex; see Figure 11. Here cl(X) denotes the closure of a set X ⊆ R2. Recall that
the indices of the a∗-wedges are considered modulo |A| − 1 and that R2 is the union of all
a∗-wedges.

a∗

a

a′

`R

Wh

W

W ′

Figure 11: An illustration of the proof of Proposition 21.

First, suppose for contradiction that |A| = 6. There are exactly five a∗-wedges W1, . . . ,W5,
and only four of them can contain points of B, since wh = 0. We apply Lemma 18(i) to W and
to W ′. An easy case analysis shows that either wi ≤ 2 for every 1 ≤ i ≤ t or wh−1, wh+1 = 3
and wi = 0 for every i 6∈ {h − 1, h + 1}. In the first case, Corollary 13 implies that |B| ≤ 5
and in the latter case Lemma 16 applied to P \{b}, where b is the rightmost point of B, gives
|B| ≤ 5, a contradiction to |B| ≥ 6. Hence, we assume |A| ≥ 7.

Claim 21.1. For 1 ≤ k ≤ t − 3, if one of the four consecutive a∗-wedges Wk, Wk+1, Wk+2,
or Wk+3 contains 3 points of B, then wk + wk+1 + wk+2 + wk+3 = 3.

There are |A| − 1 ≥ 6 a∗-wedges and, in particular, W and W ′ are both unions of at least
four a∗-wedges. For every Wi with wi = 3 and 1 ≤ i ≤ t, the a∗-wedge Wi is either contained
in W or in W ′. Thus we can find four consecutive a∗-wedges Wk,Wk+1,Wk+2,Wk+3 whose
union is convex and contains Wi. Lemma 18(ii) implies that each of Wk,Wk+1,Wk+2,Wk+3

except of Wi is empty of points of B. This finishes the proof of Claim 21.1.
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Claim 21.2. For all integers i and j with 1 ≤ i < j ≤ t, we have
∑j

k=iwk ≤ j − i+ 2.

Let S := (wi, . . . , wj) and let S′ be the subsequence of S obtained by removing every 1-
entry from S. If S contains only 1-entries, the statement clearly follows. Thus we can assume
that S′ is non-empty. Recall that, by Lemma 20, S′ contains only 0-, 2-, and 3-entries, since
wi ≤ 3 for all 1 ≤ i ≤ t. Due to Claim 21.1, there are at least three consecutive 0-entries
between every pair of nonzero entries of S′ that contains a 3-entry. Together with Lemma 12,
this implies that there is at least one 0-entry between every pair of 2-entries in S′.

By applying the following iterative procedure, we show that
∑

s∈S′ s ≤ |S′| + 1. While
there are at least two nonzero entries in S′, we remove the first nonzero entry s from S′. If
s = 2, then we also remove the 0-entry from S′ that succeeds s in S. If s = 3, then we also
remove the two consecutive 0-entries from S′ that succeed s in S′. The procedure stops when
there is at most one nonzero element s′ in the remaining subsequence S′′ of S′. If s′ = 3,
then S′′ contains at least one 0-entry and thus S′′ contains at least s′ − 1 elements. Since
the number of removed elements equals the sum of the removed elements in every step of the
procedure, we have

∑
s∈S′ s ≤ |S′|+ 1. This implies

j∑
k=i

wk =
∑
s∈S

s = |S| − |S′|+
∑
s∈S′

s ≤ |S| − |S′|+ |S′|+ 1 = j − i+ 2

and finishes the proof of Claim 21.2.
If Wh does not intersect `, that is, t < h ≤ |A| − 1, then the statement follows from

Claim 21.2 applied with i = 1 and j = t. Otherwise, we have h = 1 or h = t and we apply
Claim 21.2 with (i, j) = (2, t) or (i, j) = (1, t− 1), respectively. Since t ≤ |A| − 1 and wh = 0,
this gives us |B| ≤ |A| − 1.

5.4.2 Two extremal points of C in B

Proposition 22. Let C = A ∪ B be an `-critical set with no `-divided 5-hole in C, with
|A|, |B| ≥ 6, and with |B ∩ ∂ conv(C)| = 2. Then |B| ≤ |A|.
Proof. If wk ≤ 2 for all 1 ≤ k ≤ t, then the statement follows from Corollary 13, since
|B| =

∑t
k=1wk ≤ t + 1 ≤ |A|. Therefore we assume that there is an a∗-wedge Wi that

contains at least three points of B. Let b1, b2, and b3 be the three leftmost points in Wi ∩B
from left to right. Without loss of generality, we assume that b3 is to the left of b1b2. Otherwise
we can consider a vertical reflection of P . Figure 12 gives an illustration.

b1

b2

b3

a∗
ai

R2

R1

`

ai−1

Figure 12: An illustration of the proof of Proposition 22.

Let R1 be the region that lies to the left of b1b2 and to the right of b2b3 and let R2 be the
region that lies to the right of aib1 and to the right of a∗ai. Let B′ := B \ {b1, b2, b3}.
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Claim 22.1. Every point of B′ lies in R1 ∪R2.

We first show that every point of B′ that lies to the left of b1b2 lies in R1. Then we show
that every point of B′ that lies to the right of b1b2 lies in R2.

By Observation 10, both lines b1b2 and b1b3 intersect the segment ai−1ai. Since the
segment ai−1b1 intersects ` and since b1 is the leftmost point of Wi ∩B, all points of B′ that
lie to the left of b1b2 lie to the left of ai−1b1. The four points ai−1, b1, b2, b3 form an `-divided
4-hole in P , since ai−1 is the leftmost and b3 is the rightmost point of ai−1, b1, b2, b3 and both
ai−1 and b3 lie to the left of b1b2. By Observation 6(i), the sector S(ai−1, b1, b2, b3) is empty
of points of P (green shaded area in Figure 12). Altogether, all points of B′ that lie to the
left of b1b2 are to the right of b2b3 and thus lie in R1.

Since the segment aib1 intersects ` and since b1 is the leftmost point of Wi ∩B, all points
of B′ that lie to the right of b1b2 lie to the right of aib1. By Observation 6(i), the sector
S(b1, b2, b3, ai−1) is empty of points of P . Combining this with the fact that a∗ is to the right
of ai−1b3, we see that a∗ lies to the right of b1b2. Since b1 and b2 both lie to the left of a∗ai
and since a∗ and ai both lie to the right of b1b2, the points b2, b1, a

∗, ai form an `-divided
4-hole in P . By Observation 6(i), the sector S(b2, b1, a

∗, ai) (blue shaded area in Figure 12)
is empty of points of P . Altogether, all points of B′ that lie to the right of b1b2 are to the
right of a∗ai and to the right of aib1 and thus lie in R2. This finishes the proof of Claim 22.1.

Claim 22.2. If b4 is a point from B′ \R1, then b2 lies inside the triangle 4(b3, b1, b4).

By Claim 22.1, b4 lies in R2 and thus to the right of aib1 and to the right of a∗ai. We
recall that b4 lies to the right of b1b2.

We distinguish two cases. First, we assume that the points b2, b3, b1, ai are in convex
position. Then b2, b3, b1, ai form an `-divided 4-hole in P and, by Observation 6(i), the sector
S(b2, b3, b1, ai) is empty of points from P . Thus b4 lies to the right of b2b3 and the statement
follows.

Second, we assume that the points b2, b3, b1, ai are not in convex position. Due to Obser-
vation 10, b2 and b3 both lie to the right of aib1. Moreover, since b3 is the rightmost of those
four points, b2 lies inside the triangle 4(b3, b1, ai). In particular, ai lies to the right of b2b3.
Therefore, since b2 and b3 are to the left of a∗ai, the line b2b3 intersects ` in a point p above
` ∩ a∗ai. Let q be the point ` ∩ b1b2. Note that q is to the left of a∗ai. The point b4 is to the
right of b2b3, as otherwise b4 lies in 4(p, q, b2), which is impossible because the points p, q, b2
are in Wi while b4 is not. Altogether, b2 is inside 4(b3, b1, b4) and this finishes the proof of
Claim 22.2.

Claim 22.3. Either every point of B′ is to the right of b3 or b3 is the rightmost point of B.

By Observation 6(i), the sector S(b3, ai−1, b1, b2) is empty of points of P and thus all
points of B′ ∩R1 lie to the left of ai−1b3 and, in particular, to the right of b3.

Suppose for contradiction that the claim is not true. That is, there is a point b4 ∈ B′ that
is the rightmost point in B and there is a point b5 ∈ B′ that is to the left of b3. Note that
b4 is an extremal point of C. By Claim 22.1 and by the fact that all points of B′ ∩R1 lie to
the right of b3, b5 lies in R2 \R1. By Claim 22.2, b2 lies in the triangle 4(b1, b5, b3), and thus
B \{b4} is not in convex position. This contradicts the assumption that C is an `-critical set.
This finishes the proof of Claim 22.3.

Claim 22.4. The point b3 is the third leftmost point of B. In particular, Wi is the only
a∗-wedge with at least three points of B.
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Suppose for contradiction that b3 is not the third leftmost point of B. Then by Claim 22.3,
b3 is the rightmost point of B and therefore an extremal point of B. This implies that
B′ ⊆ R2 \ R1, since all points of B′ ∩ R1 lie to the right of b3. By Claim 22.2, each point of
B′ then forms a non-convex quadrilateral together with b1, b2, and b3. Since neither b1 nor
b2 are extremal points of C and since |B ∩ ∂ conv(C)| = 2, there is a point b4 ∈ B that is an
extremal point of C. Since |B| ≥ 5, the set C \ {b4} has none of its parts separated by ` in
convex position, which contradicts the assumption that C is an `-critical set. Since Wi is an
arbitrary a∗-wedge with wi ≥ 3, Claim 22.4 follows.

Claim 22.5. Let W be a union of four consecutive a∗-wedges that contains Wi. Then
|W ∩B| ≤ 4.

Suppose for contradiction that |W ∩ B| ≥ 5. Let C ′ := C ∩W . Note that |C ′ ∩ A| = 6
and that a∗, ai−1, ai lie in C ′. By Lemma 8, there is no `-divided 5-hole in C ′. We obtain
C ′′ by removing points from C ′ from the right, if necessary, until |C ′′ ∩ B| = 5. Since C ′′ is
an island of C ′, there is no `-divided 5-hole in C ′′. From Claim 22.4 we know that b1, b2, b3
are the three leftmost points in C and thus lie in C ′′. We apply Lemma 16 to C ′′ and, since
b1, b2, b3 lie in a convex a∗-wedge of C ′′, we obtain a contradiction. This finishes the proof of
Claim 22.5.

We now complete the proof of Proposition 22. First, we assume that 1 ≤ i ≤ 4. Let
W := W1 ∪W2 ∪W3 ∪W4. By Claim 22.5, |W ∩B| ≤ 4. Claim 22.4 implies that wk ≤ 2 for
every k with 5 ≤ k ≤ t. By Corollary 13, we have

|B| =
4∑

k=1

wk +
t∑

k=5

wk ≤ 4 + (t− 3) = t+ 1 ≤ |A|.

The case t− 3 ≤ i ≤ t follows by symmetry.
Finally, we assume that 5 ≤ i ≤ t− 4. Let W := Wi−3 ∪Wi−2 ∪Wi−1 ∪Wi. Note that W

is convex, since 2 ≤ i− 3 and i < t. By Lemma 18(ii), we have wi−3 + wi−2 + wi−1 + wi ≤ 3
and wi +wi+1 +wi+2 +wi+3 ≤ 3. By Claim 22.4, wk ≤ 2 for all k with 1 ≤ k ≤ i− 4. Thus,
by Corollary 13,

∑i−4
k=1wk ≤ i− 3. Similarly, we have

∑t
k=i+4wk ≤ t− i− 2. Altogether, we

obtain that

|B| =
i−4∑
k=1

wk +
i−1∑

k=i−3
wk +wi +

i+3∑
k=i+1

wk +
t∑

k=i+4

wk ≤ (i− 3) + 3 + (t− i− 2) = t− 2 ≤ |A|− 3.

5.5 Finalizing the proof of Theorem 2

We are now ready to prove Theorem 2. Namely, we show that for every `-divided set P = A∪B
with |A|, |B| ≥ 5 and with neither A nor B in convex position there is an `-divided 5-hole
in P .

Suppose for the sake of contradiction that there is no `-divided 5-hole in P . By the result
of Harborth [21], every set P of ten points contains a 5-hole in P . In the case |A|, |B| = 5, the
statement then follows from the assumption that neither of A and B is in convex position.

So assume that at least one of the sets A and B has at least six points. We obtain an island
Q of P by iteratively removing extremal points so that neither part is in convex position after
the removal and until one of the following conditions holds.
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(i) One of the parts Q ∩A and Q ∩B has only five points.

(ii) Q is an `-critical island of P with |Q ∩A|, |Q ∩B| ≥ 6.

In case (i), we have |Q ∩ A| = 5 or |Q ∩ B| = 5. We can assume by symmetry that
|Q ∩ A| = 5 and |Q ∩ B| ≥ 6. We let Q′ be the union of Q ∩ A with the six leftmost points
of Q∩B. Since Q∩A is not in convex position, Lemma 14 implies that there is an `-divided
5-hole in Q′, which is also an `-divided 5-hole in Q, since Q′ is an island of Q. However, this
is impossible as then there is an `-divided 5-hole in P because Q is an island of P .

In case (ii), we have |Q∩A|, |Q∩B| ≥ 6. There is no `-divided 5-hole in Q, since Q is an is-
land of P . By Lemma 19(i), we can assume without loss of generality that |A ∩ ∂ conv(Q)| = 2,
as |A∩∂ conv(Q)|+ |B∩∂ conv(Q)| ≥ 3 and thus |A∩∂ conv(Q)| and |B∩∂ conv(Q)| cannot
be both smaller than 2. Then it follows from Proposition 21 that |Q ∩ B| < |Q ∩ A|. By
exchanging the roles of Q ∩ A and Q ∩ B and by applying Proposition 22, we obtain that
|Q ∩A| ≤ |Q ∩B|, a contradiction. This finishes the proof of Theorem 2.

6 Final Remarks

At a first glance, it might seem that a similar approach could be used to derive stronger lower
bounds also on the minimum number of 6-holes h6(n). However, since there are point sets
of 29 points with no 6-hole [24], one would need to investigate point sets of size at least 30
in order to find an `-divided 6-hole. This task is too demanding for our implementations,
since the number of combinatorially different point sets grows too rapidly. Moreover, the case
analysis in several steps of our proof would become much more complicated.

6.1 Necessity of the assumptions in Theorem 2

In the statement of Theorem 2 we require that the `-divided set P = A∪B satisfies |A|, |B| ≥ 5.
We now show that those requirements are necessary in order to guarantee an `-divided 5-hole
in P by constructing an arbitrarily large `-critical set C = A ∪ B with |A| = 4 and with no
`-divided 5-hole in C.

Proposition 23. For every integer n ≥ 5, there exists an `-critical set C = A ∪ B with
|A| = 4, |B| = n, and with no `-divided 5-hole in C.

Proof. First, we consider the case where n is odd. Let p+ = (0, 1) and p− = (0,−1) be two
auxiliary points and let `+ = {(x, y) ∈ R2 : y = x/4} and `− = {(x, y) ∈ R2 : y = −x/4} be
two auxiliary lines. We place the point b′1 = (2,−1/2) on the line `− and the auxiliary point
q = (2, 1/2) on the line `+. For i = 2, . . . , n, we iteratively let b′i be the intersection of the
line `+ with the segment p+b′i−1 if i is even and the intersection of `− with p−b′i−1 if i is odd.
We place two points a1 and a2 sufficiently close to p+ so that a1 is above a2, the segment
a1a2 is vertical with the midpoint p+, and all non-collinear triples (b′i, b

′
j , p

+) have the same
orientation as (b′i, b

′
j , a1) and (b′i, b

′
j , a2). Similarly, we place two points a3 and a4 sufficiently

close to p− so that a3 is to the left of a4, the segment a3a4 lies on the line p−q and has p− as
its midpoint, the point a4 is to the left of b′n, and all non-collinear triples (b′i, b

′
j , p
−) have the

same orientation as (b′i, b
′
j , a3) and (b′i, b

′
j , a4). Figure 13 gives an illustration.

We let A, B′, and B′3 be the sets {a1, a2, a3, a4}, {b′1, . . . , b′n}, and B′ \ {b′3}, respectively.
Note that the line a3a4 intersects the segment b′1b

′
3. Since maxa∈A x(a) < minb′∈B′ x(b′), the

sets A and B′ are separated by a vertical line `.
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Figure 13: The set C constructed in the proof of Proposition 23 for n odd.

Next we slightly perturb b′3 to obtain a point b3 such that b3 lies above `− and all non-
collinear triples (b3, c, d) with c, d ∈ A ∪B′3 have the same orientation as (b′3, c, d). Note that
the point b3 lies in the interior of conv(B′3), since n ≥ 5.

To ensure general position, we transform every point b′i = (x, y) ∈ B′3 ∩ `+ to bi =
(x, y − εx2) and every point b′i = (x, y) ∈ B′3 ∩ `− to bi = (x, y + εx2) for some ε > 0. The
remaining points in A ∪ {b3} remain unchanged. We choose ε sufficiently small so that all
non-collinear triples of points from A ∪B′3 ∪ {b3} have the same orientations as their images
after the perturbation. Finally, let B be the set {b1, . . . , bn} and set B3 := B \ {b3}.

Since the points from B3 lie on two parabolas, the set B is in general position. In par-
ticular, points from B3 are in convex position and the point b3 lies inside conv(B3). Also
observe that the line ` separates A and B and that a1, a3, and b1 are the extremal points of
C := A ∪ B. Since neither of the sets A and B is in convex position, and removal of any of
the extremal points a1, a3, b1 leaves either A or B in convex position, the set C = A ∪ B is
`-critical.

We now show that C contains no `-divided 5-hole. Suppose for contradiction that there is
an `-divided 5-hole H in C. We set A+ := {a1, a2}, A− := {a3, a4}, B+ := {b2, b4, . . . , bn−1},
and B− := {b1, b3, . . . , bn}. First we assume that H contains points from both A+ and A−.
Then H ∩ B ⊆ {bn−1, bn}, since if there is a point bi in H with i < n − 1, then bn lies in
the interior of conv(H). Note that if H ∩ B = {bn−1, bn}, then neither a4 nor a1 lies in H
and thus |H| < 5. Hence |H ∩ B| = 1, which is again impossible, as H cannot contain all
points from A. Therefore we either have H ∩ A ⊆ A+ or H ∩ A ⊆ A− and, in particular,
1 ≤ |H ∩A| ≤ 2.

We now distinguish the following two cases.
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1. |H ∩ A| = 2. If H ∩ A = A+, then the hole H can contain only the point bn from B−.
This is because if there is a point bi in H ∩ B− with i < n, then the point bi+1 lies in
the interior of conv(H). Additionally, H contains at most two points from B+, since
otherwise H is not in convex position. Consequently, bn lies in H and |H ∩ B+| = 2,
which is impossible, as H would not be in convex position.

If H ∩A = A−, then the hole H contains no point from B+. This is because if there is
a point bi in H ∩ B+, then the point bi+1 lies in the interior of conv(H). The point b1
cannot lie in H because otherwise H is not in convex position as the line a3a4 separates
b1 from B \{b1}. Additionally, H contains at most two points from B−, since otherwise
H is not in convex position. Thus H contains at most four points of C, which is
impossible.

2. |H ∩A| = 1. Assume first that H ∩A ⊆ A+. Note that for bi, bj ∈ B− with i < j ≤ n,
the point bi+1 lies inside the triangle 4(a1, bi, bj) and, if j < n, the point bj+1 lies
inside 4(a2, bi, bj). Thus H contains at most one point from B− or we have H ∩B− =
{bn−2, bn} and H ∩ A = {a2}. The latter case does not occur, since for every bi ∈ B+

with i < n − 1 the point bn−1 lies in the interior of conv({a2, bi, bn−2, bn}). Therefore
we consider the case |H ∩B−| ≤ 1. However, |H ∩B+| ≥ 3 is impossible since H would
not be in convex position. Altogether, we obtain |H| < 5, which is impossible.

Now we assume that H ∩ A ⊆ A−. Note that for bi, bj ∈ B+ with i < j < n, the point
bi+1 lies inside the triangle 4(a4, bi, bj) and the point bj+1 lies inside 4(a3, bi, bj). Thus
H contains at most one point from B+. Consequently, H contains at least three points
from B−, which is possible only if H ∩ B− = {b1, b3, b5}. However, then H contains a
point bi from B+ and b3 lies in the interior of conv(H).

Thus, in any case, H is not an `-divided 5-hole in C, a contradiction.
To finish the proof, we consider the case where n is even. Let C̃ = A ∪ B̃ be the set

constructed above with |A| = 4 and |B̃| = n+ 1. We set B := B̃ \ {b2} and C := A∪B. Note
that C is `-critical.

It remains to show that C contains no `-divided 5-hole. Suppose for contradiction that
there is an `-divided 5-hole H in C. There is no `-divided 5-hole in C̃ and thus b2 lies in the
interior of conv(H). Since b1 is the only point from C to the right of b2, the point b1 lies in H.
Since a1 is the only point of C to the left of b2b1, all other points of H lie to the right of b2b1.
Then, however, the set (H \ {a1}) ∪ {b2} is a 5-hole in C̃, which gives a contradiction.

6.2 Necessity of the assumptions in Lemmas 14 to 17

We remark that all the assumptions in the statements of Lemmas 14 to 17 are necessary;
Figure 14(a) shows that the conditions |B| = 5 in Lemma 16 and the convexity of A in
Lemma 17 are both necessary. The horizontal reflection of Figure 14(a) also shows the
necessity of the assumption |A| = 5 in Lemma 14. It follows from the example in Figure 14(b)
that the condition |B| = 4 cannot be omitted in Lemma 17, since there is an a-wedge with
three points of B. The same point set without the point a′ shows that the assumption |B| ≥ 4
in Lemma 15 is necessary. The example from Figure 14(c) shows that the conditions |B| = 6
in Lemma 14, the convex position of A in Lemma 15, and |A| = 6 in Lemma 16 are all
necessary. The same set without the point a shows that |A| = 5 in Lemma 15 is also needed
and, if we remove the points a and a′, then the resulting point set shows that we need 5 ≤ |A|
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in Lemma 17. We can make statements only about convex a-wedges in Lemmas 15 and 16, as
there are counterexamples for the corresponding statements without the convexity condition.
It suffices to consider so-called double-chains, which are point sets obtained by placing n
points on each of the two branches of a hyperbola. Double-chains also show, that A cannot
be in convex position in Lemma 14, and, that the non-convex a-wedge must be empty of
points in B in Lemma 17.

`

a∗

(a)

`

a

a′

(b)

`

a∗

a

a′

(c)

Figure 14: Examples of points sets that witness tightness of Lemmas 14 to 17. All k-holes in these
sets with k ≥ 5 are highlighted in gray.
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by Charles University project UNCE/SCI/004. Hackl and Scheucher were partially supported
by the Austrian Science Fund (FWF): P23629-N18. Balko, Scheucher, and Valtr were par-
tially supported by the ERC Advanced Research Grant no 267165 (DISCONV). Scheucher,
Parada, and Vogtenhuber were partially supported within the collaborative DACH project
Arrangements and Drawings, by grants DFG: FE 340/12-1 and FWF: I 3340-N35, respec-
tively.

We thank Günter Rote and the anonymous reviewers for carefully going through the
manuscript and for their valuable comments that helped to improve the quality of the paper
and the overall presentation.

28



References

[1] O. Aichholzer. Enumerating order types for small point sets with applications. http:

//www.ist.tugraz.at/aichholzer/research/rp/triangulations/ordertypes/.

[2] O. Aichholzer. [Empty] [colored] k-gons. Recent results on some Erdős–Szekeres type
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Figure 15: Flow summary. The shaded boxes correspond to computer-assisted results.
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