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LINEAR REPRESENTATIONS OF FINITE GEOMETRIES

AND ASSOCIATED LDPC CODES.

PETER SIN, JULIEN SORCI AND QING XIANG

Abstract. The linear representation of a subset of a finite projective space
is an incidence system of affine points and lines determined by the subset.
In this paper we use character theory to show that the rank of the incidence
matrix has a direct geometric interpretation in terms of certain hyperplanes.
We consider the LDPC codes defined by taking the incidence matrix and its
transpose as parity-check matrices, and in the former case prove a conjecture
of Vandendriessche that the code is generated by words of minimum weight
called plane words. In the latter case we compute the minimum weight in
several cases and provide explicit constructions of minimum weight code-
words.

1. Introduction

Codes with sparse parity-check matrix were first considered in the seminal
PhD dissertation of Gallagher [5]. Such a code is called a low-density parity-
check, or LDPC, code. While Gallagher’s ideas were largely overlooked for
many years, since the 1990s there has been a resurgence of interest in con-
structing LDPC codes due to their relatively fast decoding algorithms while
still achieving high rates of transmission. One method of constructing these
codes is by taking the incidence matrix of a finite geometry as parity-check
matrix, which is the method that we shall consider here.

Let q = pe be a prime power and n ≥ 2 be an integer. Let E be an
(n + 1)-dimensional vector space over Fq and V an n-dimensional subspace.
Then H := PG(V ) ∼= PG(n − 1, q) is a hyperplane of PG(E) ∼= PG(n, q).
Let P := PG(E) \H ∼= AG(n, q) be the complementary affine space, which we
shall often view as a set of qn affine points with H as the hyperplane at infinity.
Additionally, if ℓ is an affine line of P with point at infinity u in H , we will at
times refer to u as the direction of the line ℓ, and thus view the points of H as
the directions of affine lines in P .

Fixing an arbitrary subset K of H , we consider the point-line incidence
system whose point set is P and whose line set L is the set of affine lines of
P whose direction is in K. Each point of K is the direction of qn−1 parallel
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Figure 1. A point a and two lines in the geometry T ∗
n−1(K).

lines in L, so that |L| = qn−1|K|. A line in L will be viewed as a set of q
points of P and we define a line to be incident to its points. This point-line
incidence system is called the linear representation of the set K and is denoted
by T ∗

n−1(K) (Figure 1). It has been studied for many choices of K in [4], and
the automorphism group has been studied in [2].

We introduce homogeneous coordinates X0, X1,..,Xn in PG(n, q) and with-
out loss of generality let H be the hyperplane X0 = 0. We fix arbitrary
orderings on P and L and let N denote the point-line incidence matrix. We
have defined N as an integer matrix, but we can consider it as a matrix over
any field. The following theorem gives a geometric interpretation of the rank
of N .

Theorem 1.1. Let F be a field in which q 6= 0. Then rankF N is equal to

the number of functions in the dual space V ∗ = Hom(V,Fq) that take the value

zero at some point of K. In geometric terms, rankF N = 1 + (q − 1)hK, where

hK is the number of hyperplanes in the projective space H that have nonempty

intersection with K.

Remark 1.2. If q = 0 in F , then rankF N will be bounded above by rankQ N ,
which is given by the theorem. However, small examples show that inequality
will be strict in general, and we have no conjecture yet for the exact value of
rankF N in this case.

We define the F -codes C and D to be the codes with parity-check matrices
N and NT , respectively. Each row of N has weight |K| and each column
has weight q so that C and D are LDPC codes of lengths |K|qn−1 and qn,
respectively, with dimensions given by Theorem 1.1. The code C has been
studied in [13], [9] and [12]. In [14], Kou et al. considered the codes C and
D for F = F2 and when K is the set of all points of H , referring to C as the
type-II geometry-G LDPC code and D as the type-I geometry-G LDPC code.
In this case the geometry T ∗

n−1(K) is isomorphic to AG(n, q), so the parity-
check matrix for C is the full incidence matrix of AG(n, q) and the parity-check
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matrix for D is the transpose. Kou et al. noted that C is one-step majority-
logic decodable and can correct ⌊q/2⌋ errors with this decoding scheme, so that
the minimum distance of C is at least q + 1. Similarly, they also noted that
using the same decoding algorithm, one can correct ⌊|K|/2⌋ errors in D so that
D has minimum distance at least |K|+ 1.

In [11], Tang et al. studied the codes C and D when F = F2 and for an ar-
bitrary subset of points K in H , referring to C as the Complementary Gallager

Euclidean Geometry LDPC code and D as the Gallager Euclidean Geometry

LDPC code. For these more general codes, they also provided the lower bounds
q+1 and |K|+1 on the minimum distances of C and D, respectively, by observ-
ing that any q columns of N or |K| columns of NT are linearly independent.
We note here that these lower bounds hold for any field F , and any prime
power q by the following argument. A codeword of D is an element of F P ,
whose support is a set of points in P . If x is a codeword of D, and s is a point
in the support of x, then each of the |K| lines meeting s must contain a further
point of the support. These further points are distinct, hence the weight of x
is at least |K|+ 1. Similarly, any codeword x in C has the property that if ℓ is
a line in the support of x, then for each of the q points incident to ℓ there is a
further line of the support meeting ℓ at that point, so that x must have weight
at least q + 1.

The proof of Theorem 1.1 will be given in the next section, but we can sketch
the main ideas now. We consider the actions of the additive group of the vector
space V on the affine space P and on the set L of lines. These actions turn
the spaces F P and FL of F -valued functions on P and L into FV -modules,
where FV is the group algebra of V , and the incidence relation then defines an
FV -module homomorphism FL → F P , whose matrix is N . The regular action
of V on P gives in addition an FV -isomorphism from F P to the space F V of F -
valued functions on V . Thus, rankF N equals the dimension of the image in F V

of the composite homomorphism FL → F V . The standard bases for FL, F P

and F V consist of the characteristic functions of elements. When F contains a
primitive p-th root of unity, F V has a second natural basis, namely the group
V̂ = Hom(V, F×) of F -characters of V . Using character theory, we can reduce
the rank problem to one of counting certain characters. Finally, we make use
of a natural bijection between V̂ and the dual space V ∗ = HomFq

(V,Fq) to
arrive at Theorem 1.1.

In §3 we consider the F -codes C and D and prove a conjecture of P. Vanden-
driessche [12] that the code C is generated by certain codewords called plane

words, which are known to be words of minimum weight. We will also define
words in D analogous to plane words called capacitor words and show that
they are codewords that span D. In §4 we apply Theorem 1.1 in particular
cases of n and K. In the case where K is a rational normal curve minus its
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point at infinity the sets P and L form the bipartition of the vertex set of a
bipartite graph called the Wenger graph. The Wenger graphs have been stud-
ied extensively; their automorphism groups have been found in [1] and their
spectra determined in [3]. Our theorem shows that the rank of the adjacency
matrix of a Wenger graph over any field F in which q 6= 0, is the same as the
real rank, hence equal to the matrix size minus the multiplicity of zero as an
eigenvalue of the adjacency matrix. The multiplicity of every eigenvalue has
been computed in [3]. However we shall derive the rank independently, directly
from Theorem 1.1. In the special case n = 3, we obtain a simple new proof for
the dimensions of the LDPC codes called LU(3, q), that were first computed in
[10] for fields of characteristic 2, and for other fields with q 6= 0 in [13].

2. Proof of Theorem 1.1

In proving Theorem 1.1 F may be replaced by any extension field F ′, as
rankF ′ N = rankF N , so we assume from now on that F is a field in which q 6= 0,
that contains a primitive p-th root of unity ω. Let FL be the space of F -valued
functions on L and F P the space of F -valued functions on P . These vector
spaces are actually FV -permutation modules, as V permutes the sets L and P
by an action that we now describe. A point of P has homogeneous coordinates
(1 : a1 : · · · : an) with ai ∈ Fq for all i, and together with (0 : b1 : · · · : bn) ∈ K
determines an affine line consisting of the q points (1 : a1 + tb1 : · · · : an + tbn)
for t ∈ Fq. The additive group of V acts regularly on P via the action

(0, v1, . . . , vn) · (1 : a1 : · · · : an) = (1 : a1 + v1 : · · · : an + vn)

From the description of lines in L above it follows that the action of the
group V on P induces an incidence-preserving action on L, where the vec-
tor (0, v1, . . . , vn) ∈ V moves the line {(1 : a1 + tb1 : · · · : an + tbn) | t ∈ Fq} to
the line {(1 : a1 + v1 + tb1 : · · · : an + vn + tbn) | t ∈ Fq}.

There are natural bases for the vectors spaces FL and F P : For ℓ ∈ L we
denote by [ℓ] ∈ FL the characteristic function of the element ℓ, which takes
value one at ℓ and zero elsewhere. These form a basis of FL. Similarly, for
a ∈ P , we let χa ∈ F P denote the characteristic function of a, and the χa form
a basis of F P . More generally, for any subset A of P we let χA denote the
characteristic function of A. We consider the incidence map η : FL → F P ,
defined by [ℓ] 7→ χℓ =

∑
a∈ℓ χa. With respect to the bases {[ℓ]}ℓ∈L of FL and

{χa}a∈P of F P , the matrix of η is N , considered as a matrix over F .
The set P is isomorphic, as a V -set, to the set V , with the left regular

action, under the map taking each point (1 : a1 : a2 : · · · : an) to the vector
(0, a1, a2, . . . , an). Hence we have an induced FV -module isomorphism σ :
F P → F V , mapping the characteristic function of a point to the characteristic
function of the corresponding vector. We shall study the composite map ση :
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FL → F V , since the dimension of its image is equal to rankF N . The basis
element [ℓ] for ℓ ∈ L is mapped to the sum of all the characteristic functions
of vectors corresponding to points of ℓ.

Next, we briefly present the character theory necessary for the proof of
Theorem 1.1. For θ ∈ V ∗ = HomFq

(V,Fq), the dual vector space to V , we

can define an F -character λ by λ(v) = ωTr(θ(v)), for all v ∈ V , where Tr is
the trace map from Fq to Fp. In this way we obtain a bijection from V ∗

to the group V̂ := Hom(V, F×) of F -characters of V . We shall denote the
character corresponding to the linear function θ by λθ and the linear func-
tion corresponding to a character λ by θλ. An element of V ∗ can be repre-
sented in the usual way using dual coordinates as θ = [c1, c2, . . . , cn], where
θ(0, v1, . . . , vn) = c1v1 + c2v2 + · · ·+ cnvn for (0, v1, v2, . . . , vn) ∈ V . Note that
if W is an Fq-subspace of V , then for θ ∈ V ∗ we have

(1) Tr(θ(W )) =

{
Fp, if W * ker(θ),

{0}, if W ⊆ ker(θ).

Lemma 2.1. If W is an Fq-subspace of V and λ ∈ V̂ , then
∑

w∈W λ(w) 6= 0
if and only if W ⊆ ker(θλ).

Proof. SupposeW * ker(θλ). Then by (1) the composite map Tr◦θλ is a surjec-
tive group homomorphism from W to Fp. Therefore,

∑
w∈W λ(w) is a multiple

of the complete sum of p-th roots of unity, hence equal to zero. Conversely, if
W ⊆ ker(θλ), then

∑
w∈W λ(w) = |W | 6= 0. �

Let F V be the space of F -valued functions on V , with V acting by the
formula (vg)(w) = g(w− v), for v, w ∈ V and g ∈ F V . The space F V has two
bases. The first is the set of characteristic functions δv of elements v ∈ V ; the
second is V̂ . By the orthogonality relations we have, for v ∈ V ,

(2) δv =
1

|V |

∑

λ∈V̂

λ(−v)λ

For g ∈ F V , we write g =
∑

λ∈V̂ aλλ as an F -linear combination of charac-
ters, where aλ = 1

|V |

∑
v∈V g(v)λ(−v); if aλ = 0 then we say that λ is a root of

g; otherwise λ is a nonroot of g. Define V̂g := {λ ∈ V̂ | aλ 6= 0}, the set of
nonroots of g.

The following is a special case of a well-known general principle.

Lemma 2.2. For each g ∈ F V , the set V̂g is a basis for the FV -submodule of

F V generated by g.

Proof. It is clear that the F -span of V̂g contains g. Since the span is itself an
FV -submodule, it contains the F -submodule FV g generated by g. Conversely,
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for each λ ∈ V̂ , FV contains the idempotent eλ = 1
|V |

∑
v∈V λ(v)v and an

easy computation using the orthogonality relations shows that eλ acts as the
identity on λ while annihilating all other characters. Thus eλg = aλλ, and so
FV g contains V̂g. �

Remark 2.3. In coding theory terms, for each g ∈ F V , the F -submodule FV g
is the ideal F [V ] generated by g. The lemma is saying that the dimension of
FV g is the number of nonroots of g.

We are now ready to complete the proof of Theorem 1.1. If ℓ = {(1 : a1+tb1 :
a2 + tb2 : · · · : an + tbn) | t ∈ Fq}, then

(3) ση([ℓ]) =
∑

t∈Fq

δ(0,a1+tb1,a2+tb2,...,an+tbn).

In particular, if ℓ ∈ L is a line through (1 : 0 : 0 : · · · : 0) ∈ P then the elements
of V corresponding to points of ℓ form the one-dimensional subspace Wℓ of V
generated by (0, b1, b2 · · · , bn). Thus,

(4)

ση([ℓ]) =
∑

w∈Wℓ

δw

=
1

|V |

∑

w∈Wℓ

∑

λ∈V̂

λ(−w)λ

=
1

|V |

∑

θ∈V ∗

[
∑

w∈Wℓ

λθ(w)]λθ,

since V̂ is parametrized by V ∗ and negation permutes Wℓ. By Lemma 2.1, the
coefficient of λθ is nonzero if and only if Wℓ ⊆ ker(θ), or in other words,

V̂ση([ℓ]) = {λθ ∈ V̂ | Wℓ ⊆ ker(θ)}.

Let L0 ⊂ L denote the set of lines through (1 : 0 : 0 : · · · : 0) ∈ P .
By Lemma 2.2 the set

(5) {λθ ∈ V̂ | ∃ℓ ∈ L0, Wℓ ⊆ ker(θ)}.

is a basis for the FV -submodule of F V generated by the images of lines in L0.
As every line of L is in the V -orbit of a line through (1 : 0 : 0 : · · · : 0) ∈ P ,
this submodule is equal to Im(ση). For each ℓ ∈ L0, the subspace Wℓ may be
viewed as a point of H , and as such it is the point at infinity of the line ℓ. In
this way, L0 corresponds bijectively with K, so the basis (5) of Im(ση) is equal
to

(6) {λθ ∈ V̂ | ∃u ∈ K, θ(u) = 0}.
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Thus, the first statement of Theorem 1.1 is proved. For the last statement of
Theorem 1.1 we observe that nonzero linear functions in V ∗ define hyperplanes
of H and two such functions define the same hyperplane if and only if each
is a nonzero scalar multiple of the other. Thus, if hK denotes the number of
hyperplanes of H that meet K, there are 1 + (q − 1)hK linear functions in V ∗

that take the value 0 at some point of K.

3. The codes associated to T ∗
n−1(K)

3.1. The Code C. The code C ≤ FL is defined as the kernel of η. That is, C
is the F -linear code with N as its parity check matrix, hence its dimension can
be found immediately from Theorem 1.1. We shall next define a subcode C′,
following [12]. A plane word is defined as follows. Let u1 and u2 be two points

of K. There are qn−1−1
q−1

planes in PG(E) containing the line joining u1 and u2,

among which there are qn−2−1
q−1

planes contained in H . We shall refer to these

qn−2 planes not contained in H as affine planes. Let T be an affine plane of
PG(E) whose line at infinity in H is the line joining u1 and u2. Then the plane
word w(u1, u2, T ) is the sum of the characteristic functions of the q affine lines
of T having u1 as point at infinity minus the corresponding sum with respect
to u2. A plane word clearly belongs to C and it has weight 2q. We denote by C′

the subcode spanned by the plane words for all possible choices of u1, u2 ∈ K
and T .

Theorem 3.1. Assume that q 6= 0 in F . Then C′ = C.

Proof. Since we will be considering geometries and codes associated with dif-
ferent subsets K of H , we will adopt notation such as LK for the set of lines
of the geometry T ∗

n−1(K), ηK for the incidence map, and CK, C
′
K for the codes.

We proceed by induction on |K|, the case of K = ∅ being trivial. Assume in-
ductively that for some K we have CK = C′

K and let u0 be a point of H outside
K, and K′ = K ∪ {u0}. We shall consider the vector space E = E/u0 and its
projective space PG(E). We use the bar convention for images in PG(E) of
objects in PG(E). Thus H = PG(V ) is a hyperplane of PG(E) and P is its
affine complement. The image K of K in H has one point for each line of H
through u0 that meets K. Let L denote the set of affine lines in P with point at
infinity in K. Under the projection from PG(E) to PG(E) the set L{u0} maps

bijectively to P and the set T of affine planes T with line at infinity passing
through u0 and some point of K maps bijectively to L. Naturally, these bijec-
tions preserve incidence. Thus, the incidence system (L{u0}, T ) is isomorphic

to T ∗
n−2(K). In the decomposition

(7) FLK′ = FL{u0} ⊕ FLK
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let π be the projection onto the first summand FL{u0} . Then the projection
π(w(u0, u1, T )) of a plane word is just the sum of the characteristic functions
of the q affine lines of T having u0 as point at infinity. Then, under the isomor-
phism of FL{u0} with F P induced by the above bijection, these q affine lines
become the q points of the affine line T , so the image in F P of π(w(u0, u1, T ))
is the characteristic function of T . It follows that π(C′

K′) is isomorphic to the

subspace of F P spanned by the characteristic functions of lines in L, so its
dimension is equal to the rank of ηK : FL → F P . Since π(C′

K) = {0} we have
shown that

(8) dim C′
K′ − dim C′

K ≥ rankF ηK.

By our induction hypothesis and the fact that C′
K′ ⊆ CK′ , we therefore obtain

(9) dim CK′ − dim CK ≥ rankF ηK,

with equality if and only if C′
K′ = CK′ . On the other hand by considering the

linear maps ηK and ηK′ we obtain

(10) dim CK′ − dim CK = qn−1 − (rankF ηK′ − rankF ηK).

By Theorem 1.1,
(11)
rankF ηK′ − rankF ηK = #{θ ∈ V ∗ | θ(u0) = 0 and θ(u) 6= 0 for all u ∈ K}

= #{θ ∈ V
∗
| θ(u) 6= 0 for all u ∈ K}

= qn−1 − rankF ηK.

Therefore, we have equality in (9) and the inductive step is established. �

Remark 3.2. Theorem 3.1 was conjectured in [12], where the case n = 3 was
proved. Now that Theorem 3.1 is established, the minimum weight of C (for
arbitrary n and K) is given by [12, Theorem 5.4]. As long as C 6= 0 the plane
words are words of minimum weight 2q (although not the only words of this
weight in general). Thus, in all cases, C is generated by its words of minimum
weight.

3.2. The Code D. We begin our discussion of D by describing a generating
set of codewords with a geometric flavor similar to that of the plane words.
First we need some expressions regarding indicator functions. If U is an affine
hyperplane of P , then we can view U as a coset of a subgroup U0 of V , say
U = U0 + x, where U0 is the hyperplane parallel to U containing 0. We can
express the indicator function of U0 in terms of characters

χU0
=

1

q

∑

λ∈ ̂(V/U0)

λ(12)
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where (̂V/U0) denotes the characters of V̂ whose kernels contain U0. The
indicator function of the coset U = U0 + x is simply the translate of χU0

by x,
given by

χU =
1

q

∑

λ∈ ̂(V/U0)

λ(−x)λ.(13)

Let U1, U2 be parallel affine hyperplanes of the affine space P whose common
subspace at infinity is a hyperplane T of H that does not meet K. We define
a capacitor word of U1, U2 to be the indicator function of U1 minus that of U2.

Theorem 3.3. Let F be a field with q 6= 0. The capacitor words are codewords

generating the F -code DK.

Proof. Let w be a capacitor word on the affine hyperplanes U1 and U2. The
condition on their common subspace at infinity implies that every line ℓ ∈ L
meets the hyperplanes U1 and U2 each at exactly one point, so that w is indeed
a codeword of DK. To show that the capacitor words generate DK, let W be
the F -subspace generated by the capacitor words on all pairs of parallel affine
hyperplanes with subspace at infinity not meeting K. Then W ⊆ DK. By
Theorem 1.1 the dimension of DK is equal to the number of functions in V ∗

that do not contain any point of K in its kernel. Each such function θ ∈ V ∗

corresponds bijectively to a character λθ ∈ V̂ , as in §2. We shall show that
each such character lies in W , which will imply that dimW ≥ dimDK, and
hence that W = DK. Thus, let θ ∈ V ∗ be given, such that no point of K lies

in ker(θ). Let U0 = ker(θ), an Fq-hyperplane of V , and let λθ ∈ V̂/U0 be the
corresponding character. Our aim is to show that λθ ∈ W . By Lemma 2.2,
it suffices to show that λθ appears with nonzero coefficient in some capacitor
word when the latter is expressed as a linear combination of characters. We
can choose x ∈ V such that λθ(x) 6= 1. Then x /∈ U0, and from 12 and 13 we
see that the indicator function of the capacitor word based on U = U0 + x and
U0 is equal to

(14) χU − χU0
=

1

q

∑

λ∈ ̂(V/U0)

(λ(−x)− 1)λ.

By choice of x, the coefficient of λθ in this expression is nonzero, and the proof
is complete. �

Similarly, we can define a codeword whose weight depends on the dimension
of the subspace spanned by the points of K. Suppose that the points of K span
a d-dimensional subspace of H denoted by X , and let Y be an affine (d + 1)-
dimensional space whose intersection at infinity is X , and T a hyperplane of X
not meeting K. Then let S1 and S2 be hyperplanes of Y whose intersections at
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+

−

S1

S2

H

T

K

Figure 2. The hyperplanes giving a capacitor word.

infinity are both T . Define a d-capacitor word as the sum of the characteristic
functions of points of S1 minus the corresponding sum of points of S2. It is
easy to see that this is indeed a codeword of D of weight 2qd: given any line ℓ
of L, either ℓ has no points contained in Y , or ℓ is totally contained in Y . In
the latter case, ℓ must meet each of the hyperplanes S1 and S2 in exactly one
point, and hence we have a sum of zero when summing over the points incident
to ℓ.

Now we turn to the question of the minumum weight of D. As mentioned in
the Introduction, we have a general lower bound of |K| + 1 for the minimum
weight, but this bound may be improved for certain fields and subsets K. We
record in the next lemma a few facts about the code DK that will be useful.

Lemma 3.4. Let F be any field which may or may not have q = 0.

(1) If K′ ⊆ K then DK ⊆ DK′, and hence d(DK) ≥ d(DK′).
(2) If w is a codeword of DK, then any line ℓ in LK is either skew to the

support of w, or contains at least two points of the support of w.
(3) d(DK) ≥ |K|+ 1.
(4) If w is a codeword of DK for K properly contained in a line, then either

wt(w) ≥ 2|K| + 2 or the support of w is contained in an affine plane

whose line at infinity contains K.

Proof. For (1), if a word satisfies the parity-check equations of NT
K then it also

satisfies the equations of NT
K′ for any K′ ⊆ K.

For (2), if a line ℓ ∈ LK meets exactly one point of the support of w, then
w does not satisfy the parity-check equation associated to ℓ and hence cannot
be a codeword.

Part (3) was proven in the Introduction, so it only remains to prove part
(4). Suppose there are two affine planes π1, π2 with line at infinity containing
K and both containing a point in the support of w. Using the same argument
as the proof of part (3), each plane π1, π2 must contain at least |K|+1 distinct
points so that w has weight at least 2|K|+ 2. �
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+1

−1 +1

−1

+1−1 +1

−1

+1

−1 +1

−1

+1

−1

Figure 3. The codewords w (left) and w′ (right) of weights 6
and 8, respectively, given in Example 3.8.

Remark 3.5. Part (4) of Lemma 3.4 implies that when K is properly contained
in a line, either d(DK) ≥ 2|K| + 2 or DK has the same minimum distance as
the code given by the parity-check matrix NT

K restricted to the lines of T ∗
1 (K).

Theorem 3.6. Let F be a totally ordered field. Then the minimum distance

of the F -code DK is at least 2|K|. In particular, when F = Q or R then

d(DK) ≥ 2|K|.

Proof. Let w be a codeword in DK, and let s be a point in the support of
w, where without loss of generality we assume that w(s) > 0. There are |K|
lines containing s, each of which contains a point t in the support of w with
w(t) < 0. Each such point t is also met by |K| lines, each of which contains a
point u in the support of w with w(u) > 0. Therefore the sets

{x ∈ P : w(x) > 0}

{x ∈ P : w(x) < 0}

both have cardinality at least |K|. �

Example 3.7. Let ℓ be a line of PG(n, q) contained in H , and let v be a point
on ℓ. Let K be a subset of ℓ \ {v}. If ℓ1 and ℓ2 are any two affine lines with
point at infinity v, and both lying in an affine plane with line at infinity ℓ, then
the word χℓ1 − χℓ2 is a codeword of DK of weight 2q.

Example 3.8. When K is a particular set of 3 or 4 points contained in a line
we can give explicit codewords of weight 6 and 8, respectively. As proved in
Lemma 3.4 these words are contained in an affine plane. In these examples,
we assume that the characteristic of Fq is large enough for the given points to
be distinct. Let

K = {〈(1, 0)〉, 〈(0, 1)〉, 〈(1, 1)〉},

K′ = {〈(1, 0)〉, 〈(0, 1)〉, 〈(1,−1)〉, 〈(1, 1)〉},
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Table 1.

i ai bi
1 (0,0) (0,0)
2 (0,1) (0,1)
3 (1,2) (1,2)
4 (2,2) (2,2)
5 (2,1) (3,1)
6 (1,0) (3,0)
7 — (2,-1)
8 — (1,-1)

Then set w =
∑6

i=1(−1)iδai , w
′ =

∑8
i=1(−1)iδbi , where the points ai, bi are

given in Table 1. It is an easy exercise to check that w ∈ DK and w′ ∈ DK′,
and that wt(w) = 6, wt(w′) = 8. It would be interesting if there were a general
construction for similar codewords of DK for arbitrary K.

The next examples shows that the minimum distance of DK can be less than
2|K| when q = 0 in F .

Example 3.9. Let ℓ be a line of PG(n, q) contained in H and K = ℓ. Choose
a point v ∈ K. If ℓ1 and ℓ2 are any two affine lines with v as point at infinity,
and both lying in a plane with ℓ as line at infinity then, in the special case that
q = 0, the word χℓ1 − χℓ2 is a codeword of DK of weight 2q = 2|K| − 2.

Example 3.10. In PG(n, 2), let K = H and let w be the sum of the charac-
teristic functions of the points of P = PG(n, 2) \ H . That is, the support of
w is the set of points of the affine space AG(n, 2). Every affine line has two
points, so when F = F2 then w is a codeword in DK of weight |K|+1, meeting
the bound of [14]. Of course, in this case DK = {0, w} is not a very interesting
code.

4. Applications

In this section we retain the general hypotheses of Theorems 1.1 and 3.1 and
consider the implications of these theorems in some special cases.

Corollary 4.1. Assume q 6= 0 in F . If K contains a line of H then N has full

rank qn.

Proof. This is immediate since every hyperplane of H must meet K. �

Remark 4.2. In the special case K = PG(n− 1, q) of this corollary, T ∗
n−1(K) is

the 2-design of points and lines in affine space.
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Remark 4.3. A blocking set in PG(2, q) is any set of points that meets every
line. (Sets containing a line are considered to be trivial examples of blocking
sets.) Clearly, by Theorem 1.1, the set K is a blocking set if and only if N has
full rank qn. Baer subplanes are nontrivial examples.

4.1. Wenger graphs. Let K = {(0 : 1 : u : u2 : · · · : un−1) | u ∈ Fq}. Then
the bipartite graph having P and L as the bipartition of its vertex set, with
adjacency defined by point-line incidence, is called the Wenger graph Wn−1(q).
Thus the matrix

A =

(
0 N
NT 0

)

is an adjacency matrix of Wn−1(q). This graph has many alternative descrip-
tions. (See [3].)

From Theorem 1.1 we can derive the following formula for rankF N .

Corollary 4.4. Let F be a field in which q 6= 0. Then rankF N is equal to the

number of polynomials in Fq[X ] of degree ≤ n− 1 having a root in Fq.

Proof. As H = PG(V ), a point of K is a one-dimensional subspace of V of the
form 〈(0, 1, u, u2, . . . , un−1)〉. A hyperplane of H is defined by a nonzero linear
function on V , which we can write in dual coordinates as θ = [c1 : c2 : · · · : cn].
The point lies on the hyperplane if and only if 0 = θ((0, 1, u, u2, . . . , un−1)) =
c1 + c2u + · · · + cnu

n−1. Thus, the hyperplane meets K if and only if the
polynomial c1 + c2X + · · · + cnX

n−1 has a root in Fq. Since a nonzero scalar
multiple of a linear function defines the same hyperplane and a nonzero scalar
multiple of a polynomial has the same roots, the corollary now follows from
Theorem 1.1. �

Remark 4.5. It is an easy exercise to count polynomials of degree at most n−1
having no root in Fq. The number of them is

(15) (q − 1)

n−1∑

d=0

d∑

k=0

(−1)k
(
q

k

)
qd−k.

(cf. [3, Lemma 2.2].) It then follows that

rankF N = qn − (q − 1)
n−1∑

d=0

d∑

k=0

(−1)k
(
q

k

)
qd−k

Remark 4.6. As pointed out in [1], the incidence system T ∗
n−1(K) is dual, in

the sense of interchanging the roles of points and lines, to the system (actually
several isomorphic systems) described in [3]. Of course, dual systems give rise
to isomorphic bipartite graphs, so [1] and [3] are studying the same bipartite
graphs.
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Remark 4.7. In [3], a proposed open problem was to determine the parameters
of the linear codes whose Tanner graphs are the Wenger graphs. These corre-
spond to the code we have called C and its dual. The minimum weight of C
is 2q, by Theorem 3.1. Our corollary shows that (15) gives the dimension of
such a code over a field where q 6= 0, as the code is defined as the nullspace
of N (or NT ). As mentioned in the Introduction, the dimension could also
be deduced by combining Theorem 1.1 with the known multiplicity from [3]
of the eigenvalue zero. This is because Theorem 1.1 shows that the rank is
the same for all fields where q 6= 0 and is in particular equal to the rank in
characteristic zero, which, for a symmetric real matrix, is the matrix size minus
the algebraic multiplicity of zero. The problem of computing rankF N has also
been considered in unpublished work of M. Tait and C. Timmons, where the
formula for rankF N in the case n = 4 was correctly conjectured.

Remark 4.8. If n = 3, the Wenger graphs coincide with the graphs in [7] and the
codes having these as their Tanner graphs are denoted LU(3, q) and LU(3, q)D.
They were studied in [6] where a conjecture for the dimension of the binary
code was made. The conjecture was proved in [10] and the result generalized
to other fields in [13], where also the connection to T ∗

2 (K) was made.

4.2. Hyperovals. Assume n = 3, and let q be a power of 2 and K a hyperoval
in H ∼= PG(2, q). Then it is well known that T ∗

2 (K) is a generalized quadrangle
of order (q − 1, q + 1) ([8, 3.1.3]). By definition of a hyperoval, each line of H
meets K in 0 or 2 points, and so there are

(
q+2
2

)
lines that meet K. Therefore,

rankF N = 1 + (q − 1)

(
q + 2

2

)

for any field F that is not of characteristic 2. This rank formula does not depend
on the choice of hyperoval K. Note that if we now modify K by removing any
point, then the rank will be unchanged, since certain secant lines through the
point just become tangent lines, and the same lines meet K. These ranks were
previously computed in [12] by a different method.

Finally, we could drop our assumption of coprime characteristics and consider
the F2-rank of N for hyperovals. This seems to be an interesting and difficult
problem with possible applications in coding theory. Some computer results
are tabulated in [12], and the F2-ranks will depend on the choice of hyperoval
K.
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