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BIJECTIVE PROOFS OF SKEW SCHUR POLYNOMIAL
FACTORIZATIONS

ARVIND AYYER AND ILSE FISCHER

Abstract. In a recent paper, Ayyer and Behrend present for a wide class of partitions fac-
torizations of Schur polynomials with an even number of variables where half of the variables
are the reciprocals of the others into symplectic and/or orthogonal group characters, thereby
generalizing results of Ciucu and Krattenthaler for rectangular shapes. Their proofs proceed
by manipulations of determinants underlying the characters. The purpose of the current pa-
per is to provide bijective proofs of such factorizations. The quantities involved have known
combinatorial interpretations in terms of Gelfand-Tsetlin patterns of various types or half
Gelfand-Tsetlin patterns, which can in turn be transformed into perfect matchings of weighted
trapezoidal honeycomb graphs. An important ingredient is then Ciucu’s theorem for graphs
with reflective symmetry. However, before being able to apply it, we need to employ a certain
averaging procedure in order to achieve symmetric edge weights. This procedure is based on
a “randomized” bijection, which can however also be turned into a classical bijection. For one
type of Schur polynomial factorization, we also need an additional graph operation that almost
doubles the underlying graph. Finally, our combinatorial proofs reveal that the factorizations
under consideration can in fact also be generalized to skew shapes as discussed at the end of
the paper.

1. Introduction

Schur polynomials sλpx1, . . . , xnq are central objects in algebraic combinatorics with various
beautiful properties and numerous applications. In representation theory, they are the irre-
ducible characters of polynomial representations of the general linear group GLnpCq. Ayyer
and Behrend [1, Theorem 1] showed that for two families of partitions, Schur polynomials with
2n variables factorize into characters of other classical groups when specializing such that half
of the variables are the reciprocals of the others. The two families of partitions are

pλ1 ` 1, λ2 ` 1, . . . , λn ` 1,´λn,´λn´1, . . . ,´λ1q ` λ1 (1.1)

and
pλ1, . . . , λn,´λn, . . . ,´λ1q ` λ1, (1.2)

where λ “ pλ1, . . . , λnq is a partition, allowing here and throughout the whole paper zero parts
in a partition and “`λ1” means that we add λ1 to each part. An illustration of the families is
provided in Figure 1.

In order to state the precise result, we use the following standard notation for characters of
classical groups. Let n be a positive integer and λ “ pλ1, . . . , λnq be a partition with at most n
non-zero parts, adding trailing zeros if necessary. Recall the following well-known formula for
Schur polynomials.

sλpx1, . . . , xnq “
det1ďi,jďn

´
x
λj`n´j

i

¯

det1ďi,jďn

`
x
n´j
i

˘ (1.3)
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Figure 1. The two families of partitions

The other characters appearing in this paper are the following. Throughout the article, we set
x̄ “ x´1.

‚ Symplectic characters are the irreducible characters of the symplectic group Sp2npCq,
and they are given by

spλpx1, . . . , xnq “
det1ďi,jďn

´
x
λj`n´j`1

i ´ x̄
λj`n´j`1

i

¯

det1ďi,jďn

`
x
n´j`1
i ´ x̄

n´j`1
i

˘ . (1.4)

‚ Even orthogonal characters are the irreducible characters of the even orthogonal group
O2npCq, and they are given by

oevenλ px1, . . . , xnq “ p1 ` rλn ‰ 0sq
det1ďi,jďn

´
x
λj`n´j

i ` x̄
λj`n´j

i

¯

det1ďi,jďn

`
x
n´j
i ` x̄

n´j
i

˘ , (1.5)

where we use the Iverson bracket, i.e., rSs is 1 if S is true and 0 if S is false.
‚ Odd orthogonal characters are the irreducible characters of the special odd orthogonal
group SO2n`1pCq, and they are given by

sooddλ px1, . . . , xnq “
det1ďi,jďn

´
x
λj`n´j`1{2
i ´ x̄

λj`n´j`1{2
i

¯

det1ďi,jďn

´
x
n´j`1{2
i ´ x̄

n´j`1{2
i

¯ , (1.6)

where δ is the Kronecker delta.

A half-integer is an odd integer divided by 2. A half-integer partition is a finite weakly decreas-
ing sequence of positive half-integers. In the case of the even orthogonal group, the character
formula has a representation theoretic meaning as characters of spin covering groups when λ

is a half-integer partition. For more information see, e.g., the book by Fulton and Harris [8,
Chap. 24].

The starting point for the research presented in this paper was to provide a combinatorial
proof of the following theorem, which appeared in [1, Theorem 1] in a slightly different but
equivalent form as also explained there: The case of [1, Theorem 1] in which all parts of λ are
half-integers corresponds to the first part of the theorem below (see also [1, Equation (19)]),
while the case in which all parts of λ are integers corresponds to the second part (see also [1,
Equation (18)]).
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For a partition λ and an integer or half-integer ℓ, we denote by λ ` ℓ the tuple obtained by
adding ℓ to each part of λ, and we set x̄ “ x´1.

Theorem 1.1. Let n be a positive integer and λ “ pλ1, . . . , λnq be a partition.

(1) For
pλ “ pλ1 ` 1, λ2 ` 1, . . . , λn ` 1,´λn,´λn´1, . . . ,´λ1q ` λ1, (1.7)

we have

spλpx1, x̄1, . . . , xn, x̄nq “ spλpx1, . . . , xnq oevenλ`1px1, . . . , xnq. (1.8)

(2) For
pλ “ pλ1, . . . , λn,´λn, . . . ,´λ1q ` λ1, (1.9)

we have

spλpx1, x̄1, . . . , xn, x̄nq “
nź

i“1

px
1{2
i ` x̄

1{2
i q´1sooddλ px1, . . . , xnq oeven

λ` 1

2

px1, . . . , xnq. (1.10)

Special cases of this theorem were known earlier; those for rectangular shapes in [6] and
those for double-staircase shapes were announced in [2, 3]. The known proofs of Theorem 1.1
and its special cases all proceed by manipulations of determinants underlying the characters.
In this paper, we interpret the characters as generating functions of Gelfand-Tsetlin patterns,
or, equivalently, as matching generating functions of edge-weighted subgraphs of the hexagonal

grid, which makes it possible to provide a combinatorial proof. The partitions pλ in Theorem 1.1
are chosen in such a way that the graphs employ a vertical symmetry, which suggests the
use of Ciucu’s factorization theorem for graphs with reflective symmetry [5]. However, since
the edge weights of the graphs are not symmetric, we need to “symmetrize” the weights.
This is accomplished by a certain averaging procedure. This procedure is most conveniently
explained by what we call a “randomized” bijection (but it can also be turned into a classical
bijection). This procedure suffices to fully deal with the identity in Theorem 1.1(1). In the case
of Theorem 1.1(2), this procedure results in graphs with symmetric edge weights except for
edges incident with the symmetry axis. We resolve this problem by applying a certain graph
operation that, in a sense, almost doubles the graph and then Ciucu’s factorization theorem is
applicable also in this case.

A merit of bijective proofs is often that they reveal more about the relation between two
types of objects than “just” the fact that they are counted by the same numbers. In our
case, it actually reveals quite naturally the following generalization of Theorem 1.1 to skew
shapes. This was not obvious from the previous proofs as they are based on determinantal
formulas for the group characters that do not generalize to skew shapes. For the definition of
skew symplectic characters and of skew orthogonal characters as well as a discussion of their
appearance in the literature as restrictions of straight characters to certain subgroups, we defer
to Section 6.

Theorem 1.2. Let m,n be non-negative integers with m ă n, and µ “ pµ1, . . . , µmq and
λ “ pλ1, . . . , λnq be partitions.

(1) For

pµ “ pµ1 ` 1, µ2 ` 1, . . . , µm ` 1,´µm,´µm´1, . . . ,´µ1q ` λ1, (1.11)

pλ “ pλ1 ` 1, λ2 ` 1, . . . , λn ` 1,´λn,´λn´1, . . . ,´λ1q ` λ1, (1.12)
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we have

spλ{pµpx1, x̄1, . . . , xn´m, x̄n´mq “ spλ{µpx1, . . . , xn´mq oevenpλ`1q{pµ`1qpx1, . . . , xn´mq. (1.13)

(2) For

pµ “ pµ1, µ2, . . . , µm,´µm,´µm´1, . . . ,´µ1q ` λ1, (1.14)

pλ “ pλ1, λ2, . . . , λn,´λn,´λn´1, . . . ,´λ1q ` λ1, (1.15)

we have

spλ{pµpx1, x̄1, . . . , xn´m, x̄n´mq “
n´mź

i“1

px
1{2
i `x̄

1{2
i q´1sooddλ{µpx1, . . . , xn´mqoevenpλ` 1

2
q{pµ` 1

2
qpx1, . . . , xn´mq.

(1.16)

In both statements, the skew Schur polynomial on the left-hand side has to be interpreted to

be zero if the shape pµ is not contained in pλ, and the situation is similar for the characters
appearing on the right-hand side.

It would be interesting to find representation-theoretic proofs of Theorems 1.1 and 1.2.

Structure of the paper. The paper is organized as follows. In Section 2, we establish graph-
ical interpretations of the group characters appearing in Theorem 1.1. For Schur polynomials,
this is fairly standard. For the other characters, we rely on the work of Proctor [10, 11, 13]
where he provides combinatorial interpretations in terms of various types of half (Gelfand-
Testlin) patterns. We then use the general idea from the Schur case to obtain equivalent
graphical models in terms of honeycomb graphs. However, in these cases there are a few sub-
tleties to take into account. In Section 3, we then perform the above mentioned averaging
procedure to achieve symmetric edge weights in the case of Theorem 1.1(1). The proof of this
identity is then concluded in Section 4 using Ciucu’s factorization result. As for the proof of
Theorem 1.1(2), we introduce the above mentioned doubling operation in Section 5 and then
complete the proof again by using Ciucu’s factorization result. In Section 6, we deal with the
case of skew Schur polynomials, where it will be seen that it is straightforward to generalize
the proof for straight shapes. Building on previous work by Koike and Terada [12] and others,
we briefly discuss the previous appearance of the factors on the right-hand sides of (1.13) and
(1.16) in a representation theoretic setting.

Conventions. Throughout the article, we set

x̄ “ x´1. (1.17)

For a partition λ “ pλ1, . . . , λnq, we always allow zero parts in a partition. Our graphs are
edge-weighted in general and if the weight of an edge is not specified, it is 1. Whenever we
speak of a matching of a graph, we usually mean a perfect matching unless stated differently.

2. Combinatorial interpretations of group characters as matching
generating functions

The purpose of this section is to provide combinatorial interpretations of the quantities in
Theorem 1.1 in terms of matching generating functions.
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Figure 2. The trapezoidal honeycomb graphs (a) T6,8 and (b) T 1,4,7,8,11,14
6,8 px1, . . . , x6q.

2.1. The general linear group. For a positive integer n and a partition λ, the associated
Schur polynomial sλpx1, . . . , xnq is known to be the generating function of semistandard tableaux
of shape λ1 with entries in t1, 2, . . . , nu where the weight of a particular semistandard tableau
T is

x
# of 1’s in T
1 x

# of 2’s in T
2 ¨ ¨ ¨x# of n’s in T

n . (2.1)

From this interpretation it is obvious that the Schur polynomial sλpx1, . . . , xnq vanishes if λ
has more than n non-zero parts. It is fundamental to our combinatorial proof to work with
a different interpretation as a generating function which is in terms of the (perfect) matching
generating function of a certain subgraph of the hexagonal grid of trapezoidal shape. The
graphs relevant for our graphical model are the following.

Definition 2.1 (The graph Tn,k). Let n, k be positive integers. The subgraph of the hexagonal
grid that consists of n´1 centered rows of consecutive hexagons of lengths k, k`1, . . . , k`n´2
with two edges added, one incident with the bottom vertex of the leftmost vertical edge and the
other incident with the bottom vertex of the rightmost vertical edge, is denoted by Tn,k. The
degenerate case T1,k consists of a zig-zag line with 2k ` 1 vertices.

See Figure 2(a) for a drawing of T6,8, where the two additional edges are marked in red. The
graph Tn,k is a bipartite graph that has n more vertices in one vertex class than in the other
vertex class, thus it has no perfect matching. This can be changed by attaching n vertical
edges to a selection of n of the n ` k bottommost vertices. In addition, we also introduce edge
weights.

Definition 2.2 (The graphs Tp

n,k and Tp

n,kpx1, . . . , xnq). Let n, k be positive integers and p “
pp1, . . . , pnq be a sequence of integers with 1 ď p1 ă p2 ă . . . ă pn ď n ` k.

(1) The graph Tp

n,k is obtained from Tn,k by attaching vertical edges to the vertices in posi-
tions p1, p2, . . . , pn at the bottom, where the bottommost vertices are numbered from left
to right with 1, 2, . . . , n ` k.

(2) The weighted graph Tp

n,kpx1, . . . , xnq is obtained from Tp

n,k as follows: Each edge of type
“ ”(that is SW-NE edges) in row i of zig-zag lines (counted from the top) carries
the weight xi, while all other edges have weight 1.

See Figure 2(b) for the graph T1,4,7,8,11,14
6,8 . The weights are also indicated in this figure, where

xi is abbreviated as i, and, by our convention, edges have weight 1 if no weight is indicated.

1That is fillings of the Young diagram of shape λ which are weakly increasing along rows and strictly increasing
along columns.
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As usual, the weight of a matching is the product of the weights of all edges that are contained
in the matching, and the matching generating function is the sum of all matching weights. In
general, the matching generating function is denoted by MpGq, where G is an edge-weighted
graph, and MpGq denotes the set of all matchings of G.

We are now in a position to state the different interpretation of sλpx1, . . . , xnq as a generating
function. As noted above, the Schur polynomial is zero unless λ has at most n parts. For
partitions with less than n parts, it is convenient to fill up λ with zero parts so that it has
precisely n parts.

Theorem 2.3. For a partition λ “ pλ1, . . . , λnq, we have

sλpx1, . . . , xnq “ MpTλn`1,λn´1`2,...,λ1`n

n,λ1
px1, . . . , xnqq. (2.2)

This relation between semistandard tableaux and matchings of the trapezoidal honeycomb
graph is not new. We illustrate it now with the help of an example where n “ 6. We consider
the following semistandard tableau T of shape p8, 6, 4, 4, 2, 0q.

1 1 1 2 2 5 5 6

2 2 3 3 5 6

3 4 4 4

5 5 6 6

6 6

(2.3)

By using a standard procedure [14, p. 313ff.], we transform the semistandard tableau into
a Gelfand-Tsetlin pattern with n rows as follows: Row i of the Gelfand-Tsetlin pattern is
essentially the shape of the entries less than or equal to i in T , written in reverse order and
filled up with zeros if necessary so that it has length i. For the semistandard tableau in (2.3),
we obtain the following pattern.

3
2 5

1 4 5
0 4 4 5

0 2 4 5 7
0 2 4 4 6 8

(2.4)

The weight of a Gelfand-Tsetlin pattern with n rows is
śn

i“1 x
ri´ri´1

i , where ri is the sum of
the entries in the i-th row and r0 “ 0. Now we add i to the i-th Õ-diagonal, where we count
the diagonals from left to right.

4
3 7

2 6 8
1 6 7 9

1 4 7 9 12
1 4 7 8 11 14

(2.5)

We translate this pattern into a matching of T1,4,7,8,11,14
6,8 ; see also [7, Proposition 2.1]. First note

that the positions of the vertical edges added at the bottom of the graph are just λ6 ` 1, λ5 `
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Figure 3. The matching corresponding to the semistandard tableau in (2.3).

2, . . . , λ1 ` 6 and that is also the bottom row of the pattern. In general, row i of the pattern
lists the positions of the vertical matching edges in row i of T6,8p1, 4, 7, 8, 11, 14q, counting from
the left starting with 1. All other matching edges are forced then. The matching corresponding
to our running example in (2.3) is given in Figure 3. It is also not difficult to see that the
bijection is weight-preserving. (See the proof of Lemma 2.12 for a case where we show in detail
that a similar bijection is weight-preserving.)

2.2. The symplectic group. As for the other classical groups dealt with in this paper, we
rely on variants of Gelfand-Tsetlin patterns [10, 11, 13] . Our patterns are half-turn rotated
versions of his, but the labelling of the rows and the inequalities are exactly the same.

To define Gelfand-Tsetlin patterns for the symplectic groups as well as the orthogonal groups,
we need the notion of a half pattern.

Definition 2.4 (Half patterns). Let n be a positive integer. An n-half (Gelfand-Tsetlin) pattern
P is an array of n rows of integers or half-integers of lengths 1, 1, 2, 2, . . . , rn{2s aligned as
follows (for n “ 6)

P1,1

P2,1

P3,1 P3,2

P4,1 P4,2

P5,1 P5,2 P5,3

P6,1 P6,2 P6,3

, (2.6)

such that the entries are weakly increasing along Õ-diagonals and Œ-diagonals. The first
entries in the odd rows are called odd starters.

We now define the patterns underlying symplectic characters and their weights.

Definition 2.5 (Symplectic patterns). Let n be a positive integer. A p2nq-symplectic (Gelfand-
Tsetlin) pattern P “ pPi,jq is a p2nq-half pattern whose entries are all non-negative integers.
The weight wsppP q of a p2nq-symplectic pattern P is given by

wsppP q “
nź

i“1

x
r2i´2r2i´1`r2i´2

i , (2.7)

where ri “
ř

j Pi,j is the sum of entries in row i for 1 ď i ď 2n and r0 “ 0.
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1 1

2 2 2

3 3 3

4 4 4 4

5 5 5 5

6 6 6 6 6

Figure 4. The half-trapezoidal honeycomb graph HT–2,3,56,2 px1, . . . , x6q.

For a partition λ “ pλ1, . . . , λnq, denote the set of all p2nq-symplectic patterns with bottom
row λ in increasing order as SPλ. A combinatorial interpretation of symplectic characters in
the form of a generating function is provided next.

Theorem 2.6 ([13, Theorem 4.2]). Let λ be a partition with n parts. Then

spλpx1, . . . , xnq “
ÿ

PPSPλ

wsppP q. (2.8)

Example 2.7. Let n “ 2 and λ “ p1, 0q. Then the four 4-symplectic patterns contributing to
spp1,0qpx1, x2q and their weights are as follows.

1
1

0 1
0 1

0
1

0 1
0 1

0
0

0 1
0 1

0
0

0 0
0 1

x̄1 x1 x̄2 x2

(2.9)

Analogous to the case of Schur polynomials, we express the symplectic characters as a match-
ing generating function of certain weighted graphs. Let HT–2n,k denote the half-trapezoidal
honeycomb graph consisting of 2n ´ 1 left-justified rows of consecutive hexagons of lengths
k, k, k ` 1, k ` 1, . . . , k ` n ´ 2, k ` n ´ 2, k ` n ´ 1, with one edge added incident with the
bottom vertex of the rightmost vertical edge; see Figure 4 for an example. Note that the odd
and even rows are vertically aligned separately, and we fix the convention that the odd rows
are shifted by half a hexagon to the left of the even rows. Just like Tn,k, the bipartite graph
HT–2n,k does not have a perfect matching as it has n more vertices in one vertex class than
in the other. We attach vertical edges to n of the n ` k bottommost vertices at positions
p1 ă ¨ ¨ ¨ ă pn (numbered 1, . . . , n ` k from left to right) to form the graph HT–p2n,k. We also

consider an edge-weighted version: The graph HT–p2n,kpx1, . . . , x2nq is formed by weighting each
edge of type “ ”in row i by xi. All other edges are weighted 1.

Theorem 2.8. For a partition λ “ pλ1, . . . , λnq, we have

spλpx1, . . . , xnq “ MpHT–
λn`1,λn´1`2,...,λ1`n

2n,λ1
px1, x̄1, . . . , xn, x̄nqq. (2.10)

In Figure 5, we illustrate Theorem 2.8 with an example where the underlying graph is the
one in Figure 4.

Proof. Similar to the case of Schur polynomials, we construct a weight-preserving bijection
between the sets corresponding to the two sides of the equation.
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1 1

1̄1̄1̄

2 2 2

2̄2̄2̄2̄

3̄

3 3 3 3

3̄ 3̄ 3̄ 3̄

1 2 3 4 5

3
3

2 3
2 4

1 3 4
2 3 5

0
0

0 0
0 1

0 1 1
1 1 2

(a) (b) (c)

Figure 5. (a) A matching of the half-trapezoidal honeycomb graph
HT–2,3,56,2 px1, x2, x3, x̄1, x̄2, x̄3q corresponding to the partition λ “ p2, 1, 1q with
weight x2x3. The numbering of the vertical edges is indicated below. (b) The
positions of the vertical edges in rows 1 through 6 arranged in the shape of a
6-half pattern. (c) A 6-symplectic pattern with bottom row λ having the same
weight as the matching on the left.

First of all, note that a matching in HT–p1,...,pn2n,k is completely determined by the positions of
the vertical edges in each row. Further, the number of vertical edges in the i-th row can be
seen to be r i

2
s. Let the positions of the vertical edges in row i be labelled starting from the left

with n ` 1 ´ r i
2
s.

Arranging the positions of these vertical edges in the form of a p2nq-half pattern, we see that
the Õ-diagonals are strictly increasing, and the Œ-diagonals are weakly increasing. Therefore,
decreasing the j-th Œ-diagonal (counted from the left, starting with 1) by j, we obtain a p2nq-
symplectic pattern according to Definition 2.5. This construction is illustrated in Figure 5.

The proof that this map is weight-preserving is very similar to that for the general linear
group. (We give more details on this in a similar situation in the proof of Lemma 2.12.) �

2.3. The even orthogonal group. We now define Gelfand-Tsetlin patterns for the even
orthogonal groups. For an n-half pattern P “ pPi,jq as described in Definition 2.4, the absolute

row sum of the i-th row is given by r`
i “

ř
j |Pi,j|. Let sgnpxq “

#
1 x ě 0,

´1 x ă 0.

Definition 2.9 (Orthogonal patterns). Let n be a positive integer. A p2n ´ 1q-orthogonal
(Gelfand-Tsetlin) pattern P is a p2n ´ 1q-half pattern whose entries are either all integers or
all half-integers, and which satisfy the following conditions:

‚ All entries except the odd starters are non-negative.
‚ The odd starters satisfy |P2i´1,1| ď minpP2i´2,1, P2i,1q (with P0,1, P2n,1 “ `8).

The weight weven
o pP q of a p2n ´ 1q-orthogonal pattern P is given by

weven
o pP q “

nź

i“1

x
sgnpP2i´1,1q sgnpP2i´3,1qpr`

2i´1
´2r`

2i´2
`r`

2i´3
q

i , (2.11)

where we set r`
0 “ r`

´1 “ 0 and P´1,1 “ 0.
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For an integer partition or a half-integer partition λ “ pλ1, . . . , λnq, we set λ´ “ pλ1, . . . , λn´1,

´λnq. Denote the set of all p2n´1q-orthogonal patterns with bottom row λ or λ´ in increasing
order as OPλ or OPλ´ , respectively.

Theorem 2.10 ([13, First part of Theorem 7.3]). Let λ “ pλ1, . . . , λnq be either an integer
partition or a half-integer partition. Then

oevenλ px1, . . . , xnq “
ÿ

PPOPλ YOP
λ´

weven
o pP q. (2.12)

Example 2.11. Let n “ 2 and λ “ p1, 1q. Then the six 3-orthogonal patterns contributing to
oevenp1,1qpx1, x2q and their weights are as follows.

´1
1

1 1

0
1

1 1

1
1

1 1

´1
1

´1 1

0
1

´1 1

1
1

´1 1
x̄1x̄2 1 x1x2 x̄1x2 1 x1x̄2

(2.13)

Again we aim to relate the even orthogonal characters to the matching generating functions
of certain honeycomb graphs. This relation is not as straightforward as in the case of symplectic
characters in Theorem 2.8. Let HT`2n,k be a half-trapezoidal honeycomb graph consisting of
2n´1 right-justified rows of consecutive hexagons of length k, k`1, k`1, . . . , k`n´1, k`n´1
with three extra edges (see Figure 6 for an example): one at the end of the top zig-zag row,
and two at the beginning and end of the bottom zig-zag row. Again, the odd and even rows
are aligned separately, and we fix the even rows to be aligned half a hexagon to the right of the
odd rows.

We attach n vertical edges to vertices in the bottom row at positions p1 ă ¨ ¨ ¨ ă pn numbered
0, 1, . . . , n ` k from right to left to form the graph HT`p

2n,k. In the edge-weighted variant

HT`p

2n,kpx1, . . . , xnq, each edge of type “ ”in row i is weighted xi and rightmost vertical

edges are weighted by 1
2
. The version where the rightmost vertical edge are weighted by 1 is

denoted by zHT`
p

2n,kpx1, . . . , xnq.2

1 1

2 2 2

3 3 3

4 4 4 4

5 5 5 5

6 6 6 6 6

5

3

1

Figure 6. The half-trapezoidal honeycomb graph HT`2,3,5
6,2 px1, . . . , x6q. The

blue edges on the right are weighted 1
2
.

To prove the main result of this section, we need a preliminary identity involving a subset
of orthogonal patterns. We say that an orthogonal pattern is non-negative if all its entries are
non-negative.

2Note that combining HT`
p1,...,pn

2n,k
with HT–q1,...,qn

2n,k
by adding one edge to each of the 2n leftmost vertices of

the latter graph, we obtain the trapezoidal graph T
n`k`1´pn,n`k`1´pn´1,...,n`k`1´p1,n`k`1`q1,...,n`k`1`qn
2n,2k`1

.
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Lemma 2.12. For a partition λ “ pλ1, . . . , λnq, we have
ÿ

PPOPλ
P non-negative

weven
o pP q “ Mp zHT`

λn,λn´1`1,...,λ1`n´1

2n,λ1´1 px1, x̄1, . . . , xn, x̄nqq. (2.14)

We illustrate Lemma 2.12 with an example in Figure 7 where the underlying graph is the
one given in Figure 6.

1 1

1̄

2

2̄

3

3̄

1

1̄ 1̄

2 2 2

2̄ 2̄ 2̄

3 3 3 3

3̄ 3̄ 3̄ 3̄

12345 0

3
3

1 4
3 5

2 3 5

1
1

0 2
2 3

2 2 3

(a) (b) (c)

Figure 7. (a) A matching of the half-trapezoidal honeycomb graph
HT`2,3,5

6,2 px1, x̄1, x2, x̄2, x3, x̄3q corresponding to the partition λ “ p3, 2, 2q with
weight px1x2x̄3q{2. The positions of the vertical edges are marked below. (b)
The positions of the vertical edges in rows 2 through 6 arranged in the shape of
a 5-half pattern. (c) The corresponding 5-orthogonal pattern with bottom row λ

is displayed which is obtained by subtracting i from the i-th Œ-diagonal, where
diagonals are counted from the left starting with 0.

Proof. We construct a weight-preserving bijection between p2n ´ 1q-orthogonal patterns with

all odd starters being non-negative and Mp zHT`
λn,λn´1`1,...,λ1`n´1

2n,λ1´1 px1, x̄1, . . . , xn, x̄nqq. This
proceeds similar to the proof of Theorem 2.8.

As usual, each matching is uniquely determined by the positions of the vertical edges in each
row, with there being t i

2
u matching edges in the i-th row. (Note that the edges in the top

zig-zag row are forced because of the jutting edge “/” on the right, and, therefore, there are
no vertical matching edges in the top row.) Label the positions of the vertical edges starting
from the left in each row with n ` k and decreasing to the right, and construct an array that
has the form of a p2n´ 1q-half pattern by listing the positions of the vertical edges in each row
in increasing order.

We then see that the Õ-diagonals are strictly increasing, while the Œ-diagonals are weakly
increasing. Subtract i from the i-th Œ-diagonal, counting from the left starting with 0. The
odd starters are non-negative by construction.

We now show that this bijection is weight-preserving. The formula for the weight of the
pattern in (2.11) simplifies since r`

i “ ri for each i and the signs are all 1. In the graphical
model, let the positions of the vertical matching edges in the i-th row in increasing order (i.e.
right to left) be Ti,1, . . . , Ti,ti{2u for i “ 1, 2, . . . , 2n (see the middle column of Figure 7). The
corresponding row of the orthogonal pattern P is given by Pi´1,1, . . . , Pi´1,ti{2u, where

Pi´1,j “ Ti,j ´ pn ´ ti{2u ` j ´ 1q. (2.15)
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To compare the exponents of xi, we need to consider the matching edges of type “ ”in rows
2i ´ 1 and 2i of zig-zags. To this end, we need consider the vertically matching edges in rows
2i´ 2, 2i´ 1 and 2i. These are given by the tuples pT2i´2,1, . . . , T2i´2,i´1q, pT2i´1,1, . . . , T2i´1,i´1q
and pT2i,1, . . . , T2i,iq. The number of matching edges of type “ ”in row 2i ´ 1 is

pT2i´2,1´pn´i`1qq`pT2i´2,2´T2i´1,1´1q`¨ ¨ ¨`pT2i´2,i´1´T2i´1,i´2´1q`pn`λ1´1´T2i´1,i´1q

“
i´1ÿ

j“1

pT2i´2,j ´ T2i´1,jq ` λ1. (2.16)

Similarly, the number of matching edges of type “/” in row 2i is

pT2i´1,1 ´ T2i,1 ´ 1q ` ¨ ¨ ¨ ` pT2i´1,i´1 ´ T2i,i´1 ´ 1q ` pn ` λ1 ´ 1 ´ T2i,iq

“
i´1ÿ

j“1

T2i´1,j ´
iÿ

j“1

T2i,j ´ i ` n ` λ1. (2.17)

Therefore, the total exponent of xi is the difference of these expressions, which is

i´1ÿ

j“1

T2i´2,j ´ 2
i´1ÿ

j“1

T2i´1,j `
iÿ

j“1

T2i,j ´ n ` i. (2.18)

Using (2.15), this can be shown to be equal to r2i´1 ´ 2r2i´2 ` r2i´3, as desired. �

We need to consider the following operation on orthogonal patterns. This is a variation of
the Bender-Knuth involution [4].

Proposition 2.13. Let λ “ pλ1, . . . , λnq be a partition. Define the map Ji on orthogonal
patterns OPλ for 2 ď i ď n as follows. For P P OPλ, JipP q leaves all the rows of P , except
for row 2i ´ 2 unchanged, and

pJipP qq2i´2,j “ maxp|P2i´3,j|, |P2i´1,j |q ` minpP2i´3,j`1, P2i´1,j`1q ´ P2i´2,j , 1 ď j ď i ´ 1,
(2.19)

where we fix P2i´3,i “ `8. Then the following properties hold for Ji.

‚ JipP q P OPλ.
‚ Ji is an involution.
‚ If either of the odd starters in rows 2i ´ 3 or 2i ´ 1 is 0, then the exponent of xi in
weven

o pJipP qq is the negative of the exponent of xi in weven
o pP q.

We will only apply the operation Ji to orthogonal patterns such that either of the odd starters
in rows 2i ´ 3 or 2i ´ 1 is 0. The proof of Proposition 2.13 is a routine calculation and left to
the interested reader.

We denote by In the set of permutations of tx1, x̄1, x2, x̄2, . . . , xn, x̄nu that are generated by
the transpositions px1, x̄1q, px2, x̄2q, . . . , pxn, x̄nq. This group is isomorphic to Zn

2 . For σ P In,
σ HT`p1,...,pn

2n,k px1, x̄1, . . . , xn, x̄nq denotes the edge weighted graph HT`p1,...,pn
2n,k whose row-weights

are permuted according to σ.

Theorem 2.14. For a partition λ “ pλ1, . . . , λnq, we have

oevenλ px1, . . . , xnq “
ÿ

σPIn

Mpσ HT`
λn,λn´1`1,...,λ1`n´1

2n,λ1´1 px1, x̄1, . . . , xn, x̄nqq. (2.20)
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Proof. We use Theorem 2.10 to interpret the left-hand side. To be more precise, we need
to refine this interpretation in the following sense: each orthogonal pattern P appearing on
the left-hand side that has precisely k odd starters equal to 0 is replaced by 2k copies of P ,
the weight of each copy being 1

2k
weven

o pP q, and we accompany each copy with a (different)
t0, 1u-sequence of length k to remedy this modification.

Fix a pair pm, σq, where m is a matching of HT`
λn,λn´1`1,...,λ1`n´1

2n,λ1´1 and σ P In. We give a
weight-preserving bijection between such pairs (where the weight is the weight of the matching

in σ HT`λn,λn´1`1,...,λ1`n´1

2n,λ1´1 ) and objects from the left-hand side as described in the previous
paragraph.

First, let P be the orthogonal non-negative pattern corresponding to m by Lemma 2.12. Now
we change inductively, for each i P t1, 2, . . . , nu, the odd starter P2i´1 (by changing the sign) or
row 2i ´ 2 of P (by applying Ji) according to σ such that the map is weight-preserving. Here
the crucial observation is that the weight of a matching in

pxi, x̄iqσ HT`λn,λn´1`1,...,λ1`n´1

2n,λ1´1 px1, x̄1, . . . , xn, x̄nq (2.21)

is obtained from its weight in

σ HT`λn,λn´1`1,...,λ1`n´1

2n,λ1´1 px1, x̄1, . . . , xn, x̄nq (2.22)

by replacing xi with x̄i.
Let σ “ px1, x̄1q

ǫ1 . . . pxn, x̄nqǫn for appropriately chosen ǫi P t0, 1u. For i “ 1, we do the
following: If P1,1 ą 0, we change the sign of P1,1 iff ǫ1 “ 1; if P1,1 “ 0, we leave P unchanged
and the corresponding position in the accompanying t0, 1u-sequence is ǫ1.

Now suppose we have reached i ą 1. First assume P2i´1,1 ą 0. If ǫi “ 0, we give P2i´1,1 the
appropriate sign so that it has the same sign as P2i´3,1, otherwise so that it has the opposite
sign. If, however, P2i´1,1 “ 0 we apply Ji to P if and only if either ǫi “ 1 and P2i´3,1 ě 0, or
ǫi “ 0 and P2i´3,1 ă 0. If we have applied Ji, we record 1 in the appropriate position of the
accompanying t0, 1u-sequence and 0 otherwise.

To give an example, we consider the matching in Figure 7 and σ “ px1, x̄1qpx3, x̄3q to it.
The weight is then px̄1x2x3q{2. Applying the procedure just described, we obtain the following
5-orthogonal pattern with the same weight

´1
2

0 2
2 2

2 2 3

(2.23)

and the accompanying t0, 1u-sequence of length 1 is p1q. �

We now consider the case when the bottom row of the p2n ´ 1q-orthogonal pattern consists
of half-integers. For this purpose, the following variation of Lemma 2.12 is helpful.

Lemma 2.15. For a half-integer partition λ “ pλ1, . . . , λnq, we have

ÿ

PPOPλ
P non-negative

weven
o pP q “

nź

i“1

x
1{2
i Mp zHT`

pλn´ 1

2
q,pλn´1´ 1

2
q`1,...,pλ1´ 1

2
q`n´1

2n,pλ1´ 1

2
q´1

px1, x̄1, . . . , xn, x̄nqq.

(2.24)
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Proof. This follows from

ÿ

PPOPλ
P non-negative

weven
o pP q “

nź

i“1

x
1{2
i

ÿ

PPOP
λ´ 1

2

P non-negative

weven
o pP q (2.25)

and Lemma 2.12. �

We obtain the following combinatorial interpretation for even orthogonal characters for half-
integer partitions.

Theorem 2.16. For a half-integer partition λ “ pλ1, . . . , λnq, we have

oevenλ px1, . . . , xnq “
ÿ

σPIn

«
σ

nź

i“1

x
1{2
i

ff
¨Mpσ zHT`

pλn´ 1

2
q,pλn´1´ 1

2
q`1,...,pλ1´ 1

2
q`n´1

2n,pλ1´ 1

2
q´1

px1, x̄1, . . . , xn, x̄nqq,

(2.26)

where σ
nś

i“1

x
1{2
i is obtained from

nś
i“1

x
1{2
i by replacing xi with x̄i iff pxi, x̄iq appears in σ.

Proof. The proof is similar to the proof of Theorem 2.14, but considerably simpler because
there are no starters equal to 0. In particular, the maps Ji defined in Proposition 2.13 are not
needed. �

2.4. The odd orthogonal groups.

Definition 2.17 (Split orthogonal patterns). Let n be a positive integer. A p2nq-split orthog-
onal (Gelfand-Tsetlin) pattern P is a p2nq-half pattern in which the entries, except for the odd
starters, are either all non-negative integers or all non-negative half-integers; each starter is
independently either a non-negative integer or a non-negative half-integer. The weight wsopP q
of a p2nq-split pattern P is given by

wsopP q “
nź

i“1

x
r2i´2r2i´1`r2i´2

i , (2.27)

where we set r0 “ 0.

Denote the set of all p2nq-split orthogonal patterns with bottom row λ in increasing order as
SOPλ.

Theorem 2.18 ([13, First part of Theorem 7.1]). Let λ be a partition with n parts. Then

sooddλ px1, . . . , xnq “
ÿ

PPSOPλ

wsopP q. (2.28)

Example 2.19. Let n “ 2 and λ “ p1, 0q. Then the five 4-split orthogonal patterns contributing
to sooddp1,0qpx1, x2q and their weights are

1
1

0 1
0 1

1{2
1

0 1
0 1

0
1

0 1
0 1

0
0

0 1
0 1

0
0

0 0
0 1

x̄1 1 x1 x̄2 x2

(2.29)
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Let zHT–p1,...,pn2n,k px1, . . . , x2nq denote the weighted graph obtained from HT–p1,...,pn2n,k px1, . . . , x2nq
by adding 1 to the weight of the first edge in the even rows of zigzags (which is always an edge
of type “ ”), so that this edge in row 2i then has weight x2i ` 1. Similarly to Theorem 2.8,
one can show the following.

Theorem 2.20. For a partition λ “ pλ1, . . . , λnq, we have

sooddλ px1, . . . , xnq “ MpzHT–λn`1,λn´1`2,...,λ1`n

2n,λ1
px1, x̄1, . . . , xn, x̄nqq. (2.30)

Proof. For a p2nq-split orthogonal pattern, we add 1
2
to the odd starters that are half-integers

to obtain a p2nq-symplectic pattern. Using Theorem 2.8, we then obtain the corresponding
matching of

HT–
λn`1,λn´1`2,...,λ1`n

2n,λ1
px1, x̄1, . . . , xn, x̄nq. (2.31)

This is clearly a 2r-to-1 mapping, where r is the number of non-zero odd starters. The weight
x̄i ` 1 of the first edge of type “ ”in row 2i of

zHT–λn`1,λn´1`2,...,λ1`n

2n,λ1
px1, x̄1, . . . , xn, x̄nq (2.32)

remedies this for the following reason. This edge is in the matching if and only if the starter
in row 2i ´ 1 is non-zero. The weight of a p2nq-split orthogonal pattern where the odd starter
in row 2i ´ 1 is a half integer is obtained from the weight of the pattern with this odd starter
rounded up by multiplying with xi. �

3. Symmetrizing the weights

Now that we have combinatorial realizations of all the quantities in Theorem 1.1, we can
proceed with our combinatorial proof. The proof consists of two major steps. The purpose
of this section is to provide necessary ingredients for the first step. The second step is then
the application of Ciucu’s factorization theorem for graphs with reflective symmetry [5]. The
unweighted graphs Tp

n,k that are relevant for Theorem 1.1 are indeed already endowed with

such a reflective symmetry. However, the edge weights of Tp

n,kpx1, . . . , xnq are not symmetric
and Ciucu’s theorem is only applicable if they are. In this section, we show how, in the context
of the first part of Theorem 1.1, it is possible to reduce the problem to graphs where the edge
weights are also symmetric. (Later we will see that the underlying procedure is also useful for
proving the second part of Theorem 1.1.) For this purpose, it is necessary to introduce the
following different edge weights of Tp

n,k.

Definition 3.1 (STp

n,k,jpx1, . . . , xnq). Let ℓj denote the vertical line that contains the j-th

vertex in the top row, counted from the left, of Tp1,...,pn
n,k . To the left of ℓj, the weights of

STp

n,k,jpx1, . . . , xnq coincide with the weights of Tp

n,k,jpx1, . . . , xnq, and to the right of ℓj the
edges of type “ ”are assigned the weight xi in row i, while all other edges are assigned the
weight 1.

See Figure 8 for ST1,4,7,8,11,14
6,8,4 px1, . . . , x6q.

In the following, it is convenient to use a concept which we call randomized bijection: Suppose
A and B are two finite sets, then a randomized map from A to B is a randomized algorithm
that assigns to each element a P A an element b P B with some probability pa,b such that

ÿ

bPB

pa,b “ 1 (3.1)
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PSfrag replacements

111111 1 1 1

222222 2 2 2

333333333 3 3

44444444444

5555555555555
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Figure 8. The graph ST1,4,7,8,11,14
6,8,4 px1 . . . , x6q.

for all a P A. We say that a randomized map is a randomized bijection, if there exists a
randomized map from B to A such that the corresponding randomized algorithm sends b P B

to a P A with probability pa,b (which implies then also
ř

aPA pa,b “ 1 for all b P B). A randomized
bijection can only exist if A and B have the same cardinality, as

|A| “
ÿ

aPA

1 “
ÿ

aPA

ÿ

bPB

pa,b “
ÿ

bPB

ÿ

aPA

pa,b “
ÿ

bPB

1 “ |B|. (3.2)

This concept can also be used to show that the generating functions of two sets A and B are
the same: if a randomized bijection from A and B is weight-preserving (that is pa,b “ 0 unless
wpaq “ wpbq), then it is a randomized bijection between the subset of elements of A that have
a prescribed weight w and the subset of elements of B that have the same weight w, for every
possible weight w.

Lemma 3.2. Let 1 ď j ď k. Then the matching generating function

MpTp

2n,kpx1, x̄1, . . . , xn, x̄nqq (3.3)

is equal to
1

2n

ÿ

σPIn

Mpσ STp

2n,k,jpx1, x̄1, . . . , xn, x̄nqq. (3.4)

Proof. By Theorem 2.3 and the symmetry of the Schur polynomial,

Mpσ Tp

2n,kpx1, x̄1, . . . , xn, x̄nqq “ MpTp

2n,kpx1, x̄1, . . . , xn, x̄nqq (3.5)

for any σ P In. It follows that

MpTp

2n,kpx1, x̄1, . . . , xn, x̄nqq “
1

2n

ÿ

σPIn

Mpσ Tp

2n,kpx1, x̄1, . . . , xn, x̄nqq (3.6)

and therefore it suffices to showÿ

σPIn

Mpσ Tp

2n,kpx1, x̄1, . . . , xn, x̄nqq “
ÿ

σPIn

Mpσ STp

2n,k,jpx1, x̄1, . . . , xn, x̄nqq. (3.7)

We construct a weight-preserving randomized bijection from
ď

σPIn

Mpσ Tp

2n,kpx1, x̄1, . . . , xn, x̄nqq (3.8)
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Figure 9. The running example in the proof of Lemma 3.2: a matching of
T1,2,5,7,10,11

6,5 px̄1, x1, x2, x̄2, x̄3, x3q

to ď

σPIn

Mpσ STp

2n,k,jpx1, x̄1, . . . , xn, x̄nqq. (3.9)

Note that each element in the two unions consists essentially of a pair of a matching of Tp

2n,k

and a certain weighting of the edges of the graph which is prescribed by σ.
We explain the weight-preserving randomized bijection also with the help of the example

given in Figure 9. The first modification is already indicated in blue there: with the exception
of the top row and the bottom row, each row of hexagons has precisely two vertices of degree
2 (top and bottom row have more vertices of degree two); corresponding vertices of degree
2 also exist in the top and bottom row. We add paths of length 2 at these vertices in rows
1, 3, . . . , 2n ´ 1 and extend the matching accordingly.

We consider the subgraph R2i´1 that consists of a fixed odd row 2i ´ 1 of hexagons together
with the edges just added so that R2i´1 has a half hexagon on the left side and a half hexagon
on the right side. Further we consider the following subdivision of R2i´1 into sections that
start and end with half hexagons: The dividing lines are the vertical lines that go through two
vertices of R2i´1, where at least one of them is matched to a vertex not contained in R2i´1.
In Figure 9, these dividing lines are indicated in green for row 3. In principle, there are three
types of sections as indicated in Figure 10.

We now perform certain operations to the rows 1, 3, . . . , 2n´ 1. More specifically, we choose
for each of these rows either the part left of the line ℓj or the part right of the line ℓj to which
we apply the operations then. The side is fixed if the two vertices of the row that lie on the
line ℓj are matched to vertices that lie in the row and on the same side of ℓj ; in that case we
choose the other side. Otherwise the two sides are chosen with equal probability 1

2
. The line

ℓj serves then also as a dividing line of the sections of R2i´1 (possibly in addition to the lines
that were already identified).

For each odd row 2i ´ 1 and each section of type 1 that is situated on the chosen side of
that particular row, we now perform the following operation; see also Figure 11. If the section
contains t vertical edges and the unique vertical matching edge is in position s, counted from
the left, then we transform this section into another section of type 1, where the unique vertical
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Figure 10. The three types of sections of rows: the first type has precisely
one vertical matching edge, in the second type the matching edges are precisely
those of type “ ”, while in the third type the matching edges are precisely
those of type “ ”.
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Figure 11. Reflecting the matching edges vertically and the edge weights
horizontally leaves the total weight of x̄2

i unchanged.

matching edge is in position t ` 1 ´ s. This surely changes the weight, however, this can be
compensated by changing the weights in this section, more specifically we simply interchange
weights xi with x̄i. We can change the weights accordingly in sections of type 2 and 3 on the
chosen side, as the weight is 1 for both choices in these sections.

Finally, we modify the weights on the right side of the line ℓj in such a way that the matching
generating function is unchanged; see Figure 12 for an illustration. The modification is based
on the following simple observation: Suppose G is an edge-weighted graph and v is a vertex
of V . Let G1 be the edge-weighted graph obtained from G by multiplying the weights of all
edges incident with v with w. Then we have the following relation between the two matching
generating functions:

MpG1q “ wMpGq. (3.10)

Now consider all vertical edges e that are (fully) contained in row R2i´1 and located right of
the line ℓj. Let a and b be the two endpoints of e. Both vertices have precisely two incident
edges with weight 1 (one of them is e), while the third edge has weight xi for one vertex and
weight x̄i for the other vertex (these edges are both of type “ ”). We assume without loss
of generality that there is an edge incident with a that has weight xi. Now we multiply the
weights of each edge incident with a by x̄i and the weights of each edge incident with b by xi.
Now a has precisely one vertex incident with it that has weight x̄i, while b has precisely one
vertex incident with it that has weight xi. These edges are both of type “ ”, and we have
reached an element of ď

σPIn

Mpσ STp

2n,k,jpx1, x̄1, . . . , xn, x̄nqq. (3.11)
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Figure 12. Modification of edge weights on the right leaves the weights unchanged.

Each step of the procedure is obviously invertible and thus this establishes a randomized
bijection. The probabilities for transforming one element of the domain of the bijection into
an element of the codomain is 1

2m
or 0, where m is the number of odd rows such that one of

its vertices on the line ℓj is matched to the left while the other is matched to the right. It is
crucial that the procedure of the matching does not change this number m. �

Remark 3.3. The randomized bijection can be transformed into a classical bijection from

t0, 1un ˆ
ď

σPIn

Mpσ Tp

2n,kpx1, x̄1, . . . , xn, x̄nqq (3.12)

to

t0, 1un ˆ
ď

σPIn

Mpσ STp

2n,k,jpx1, x̄1, . . . , xn, x̄nqq, (3.13)

where the i-th letter of the t0, 1u-sequence in t0, 1un encodes which side of ℓj we choose in row
2i ´ 1, 1 ď i ď n, whenever there is actually a choice. When there is no choice in row 2i ´ 1,
then the i-th letter of the word has no effect. The t0, 1u-sequence itself is unchanged in the
procedure.

4. Application of Ciucu’s factorization theorem and a combinatorial proof
of Theorem 1.1(1)

4.1. Ciucu’s theorem. For convenience, we recall Ciucu’s factorization theorem for graphs
with reflective symmetry [5]. We assume that the edge-weighted graph G has the following
properties:

‚ It is planar, bipartite and connected.
‚ It exhibits symmetry with respect to a vertical symmetry axis ℓ (including that the
edge-weights are symmetric).

‚ Removing the vertices on ℓ disconnects the graph.

Without loss of generality, we assume that there are an even number of vertices on the symmetry
axis. If not, G has an odd number of vertices by symmetry and thus no perfect matching. We
denote by npGq half of the number of vertices on the symmetry axis and by a1, b1, . . . , anpGq, bnpGq

the vertices on ℓ as they appear from top to bottom. We refer to the vertices in one vertex
class of G as the positive vertices, while we refer to the vertices in the other vertex class as the
negative vertices.

For a vertex v on ℓ, we define two cutting operations: “Cutting left of v” means that we delete
all incident edges left of ℓ, while “cutting right of v” means that we delete all incident edges
right of ℓ. Now we define two subgraphs of G as follows: We perform the cutting operation
right of all positive ai’s and negative bi’s, and left of all negative ai’s and positive bi’s. Reduce
the weights of the edges on ℓ by half and leave all other weights unchanged. We obtain two
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Figure 13. The graph ST1,4,6,9
4,5,3 px1, x̄1, x2, x̄2q.

disconnected graphs, and denote by G` the left graph and by G´ the right graph. We are now
able to state Ciucu’s factorization theorem.

Theorem 4.1. [5, Theorem 1.2] With the notations introduced above, we have

MpGq “ 2npGq MpG`qMpG´q. (4.1)

4.2. Proof of Theorem 1.1(1). We now apply the gathered information to our problem.
Recall that we consider the following specialization of the Schur function spλpx1, x̄1, . . . , xn, x̄nq
for

pλ “ pλ1 ` 1, λ2 ` 1, . . . , λn ` 1,´λn,´λn´1, . . . ,´λ1q ` λ1. (4.2)

Using Theorem 2.3, this is equal to the following matching generating function.

MpTp

2n,2λ1`1px1, x̄1, . . . , xn, x̄nqq (4.3)

with

p “ p1 ´ λ1, 2 ´ λ2, . . . , n ´ λn, n ` 2 ` λn, n ` 3 ` λn´1, . . . , 2n ` 1 ` λ1q ` λ1. (4.4)

Now we observe that with this particular choice of parameters, Tp

2n,2λ1`1 is symmetric with
respect to the axis lλ1`1. However, the weights are not symmetric. To remedy this issue, we
apply Lemma 3.2 to see that (4.3) is equal to

1

2n

ÿ

σPIn

Mpσ STp

2n,2λ1`1,λ1`1px1, x̄1, . . . , xn, x̄nqq. (4.5)

Now the weighted graphs σ STp

2n,2λ1`1,λ1`1px1, x̄1, . . . , xn, x̄nq have symmetric edge weights
and we may apply Ciucu’s factorization theorem. For n “ 2 and λ “ p2, 0q, we have p “
p1, 4, 6, 9q and the graph ST1,4,6,9

4,5,3 px1, x̄1, x2, x̄2q is displayed in Figure 13.
We fix the top vertex on the symmetry axis to be a positive vertex (which is a1 in the setting

of the factorization theorem). The positive vertices alternate with the negative vertices on the
symmetry axis. By Ciucu’s construction, we cut right of all the vertices on the symmetry axis.
It follows that G` is HT`λn`1,λn´1`2,...,λ1`n

2n,λ1
, while G´ is HT–

λn`1,λn´1`2,...,λ1`n

2n,λ1
. Thus we obtain

2nMpσ HT`λn`1,λn´1`2,...,λ1`n

2n,λ1
px1, x̄1, . . . , xn, x̄nqqMpσ HT–

λn`1,λn´1`2,...,λ1`n

2n,λ1
px1, x̄1, . . . , xn, x̄nqq

(4.6)
for the summand of σ P In in (4.5).

As for MpHT–
λn`1,λn´1`2,...,λ1`n

2n,λ1
px1, x̄1, . . . , xnqq, we know from Theorem 2.8 that it is equal

to spλpx1, . . . , xnq. Now it is crucial that spλpx1, . . . , xnq is invariant under replacing xi by x̄i for
any i. This follows easily, for instance, from the determinantal expression of spλpx1, . . . , xnq,
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but can also be seen from the combinatorial interpretations provided in this paper: Using
Theorem 2.6, one has to employ an operation analogous to Ji as defined in Proposition 2.13 for
odd rows, or, alternatively, relying on Theorem 2.8, one has to employ an operation analogous to
one from Lemma 3.2. Now, since MpσHT–

λn`1,λn´1`2,...,λ1`n

2n,λ1
px1, x̄1, . . . , xnqq is obtained from

MpHT–λn`1,λn´1`2,...,λ1`n

2n,λ1
px1, x̄1, . . . , xn, x̄nqq by replacing xi by x̄i for all i such that pxi, x̄iq

“appears” in σ, it follows that

spλpx1, . . . , xnq “ MpσHT–
λn`1,λn´1`2,...,λ1`n

2n,λ1
px1, x̄1, . . . , xn, x̄nqq (4.7)

for all σ. We can conclude that (4.5) is equal to

spλpx1, . . . , xnq
ÿ

σPIn

Mpσ HT`λn`1,λn´1`2,...,λ1`n

2n,λ1
px1, x̄1, . . . , xn, x̄nqq. (4.8)

The first part of Theorem 1.1 now follows from Theorem 2.14.

5. “Doubling” the graph and a combinatorial proof of Theorem 1.1(2)

As for the second part of Theorem 1.1, the largest part of the partition pλ is even, and therefore
we need to work with a graph Tp

n,k where there are an even number k of hexagons in the top

row (since k is just the largest part of pλ by Theorem 2.3). Therefore Lemma 3.2 cannot be
applied directly to achieve symmetric edge weights, since the symmetry axis of the unweighted
graph is not a line ℓj as described in the statement of Lemma 3.2. Instead it will turn out to
be useful to apply the operations provided in the following lemma, simultaneously at various
places, with the effect that the graph is (almost) doubled.

Lemma 5.1. The following replacement rule in a weighted graph leaves the matching generating
function invariant, where in the replacement the degree of the black vertices does not change and
the red vertices are the connecting points. In the drawings, the label next to the edge indicates
the weight and we assume a1 ¨ a2 “ a, b1 ¨ b2 “ b, y1 ¨ y2 “ y and z1 ¨ z2 “ z.

PSfrag replacements a

b

a1

b1

a2

b2

y

z

t

y1 y2

z1 z2

t
a1z1`b2y2

t
a1z1`b2y2

Proof. The proof proceeds by considering the various (not necessarily perfect) matchings of the
subgraphs that cover all black vertices. �

We will apply the rules in Lemma 5.1 to the graph Tp

n,kpx1, . . . , xnq at various places. If we
say that we apply the rule to a particular vertical edge then we mean that the vertical edge
on the left side of the rule corresponds to this chosen vertical edge. By DTp

n,kpx1, . . . , xnq we

denote the graph that is obtained from Tp

n,kpx1, . . . , xnq by applying the rules from Lemma 5.1
to the vertical edges in all odd rows 1, 3, 5, . . .. In row 2i´ 1, we specify the weights as follows:

a1 “ x
1{2
2i´1, b1 “ b2 “ x

1{2
2i , y2 “ 1, z1 “ z2 “ 1, t “ 1, and a2 P t0, x

1{2
2i´1u and y1 P t0, 1u, where

we choose y1 “ 0 if we are on the left boundary and a2 “ 0 if we are on the right boundary.
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Figure 14. The graph DT1,3,6,8
4,4 px1, x2, x3, x4q. The vertical edges in row 1

carry the weight
´
x
1{2
1 ` x

1{2
2

¯´1

, while the vertical edges in row 3 carry the

weight
´
x
1{2
3 ` x

1{2
4

¯´1

, and pi stands for x1{2
i .

The graph DT1,3,6,8
4,4 is displayed in Figure 14. Lemma 5.1 implies

MpTp

n,kpx1, . . . , xnqq “ MpDTp

n,kpx1, . . . , xnqq. (5.1)

Again we consider also different edge weights of DTp

n,kpx1, . . . , xnq: Let ℓj denote the vertical
line that contains the j-th vertex in the top row (counted from the left). Left of ℓj, the weights

are unchanged, but right of ℓj the edges of type “ ”are assigned the weight x
1{2
i in row i, while

edges of type “ ”are assigned the weight 1; the weights of the vertical edges do not change.
This edge-weighted graph is denoted by SDTp

n,k,jpx1, . . . , xnq. Now, a slight modification3 and
of Lemma 3.2 shows that

M
`
DTp

2n,kpx1, x̄1, . . . , xn, x̄nq
˘

“
1

2n

ÿ

σPIn

M
`
σ SDTp

2n,k,jpx1, x̄1, . . . , xn, x̄nq
˘
. (5.2)

In the second part of Theorem 1.1, we consider the specialization of the Schur polynomial

spλpx1, x̄1, . . . , xn, x̄nq, (5.3)

where
pλ “ pλ1, . . . , λn,´λn, . . . ,´λ1q ` λ1. (5.4)

By Theorem 2.3, this is equal to the matching generating function

MpTp

2n,2λ1
px1, x̄1, . . . , xn, x̄nq, (5.5)

with

p “ p1 ´ λ1, 2 ´ λ2, . . . , n ´ λn, n ` 1 ` λn, . . . , 2n ` λ1q ` λ1. (5.6)

Using (5.1) and (5.2), this is equal to

1

2n

ÿ

σPIn

M
`
σ SDTp

2n,2λ1,2λ1`1px1, x̄1, . . . , xn, x̄nq
˘
. (5.7)

Note that SDTp

2n,2λ1,2λ1`1px1, x̄1, . . . , xn, x̄nq has 4λ1`1 hexagons in the top row and thus ℓ2λ1`1

is its symmetry axis.
Now we apply Ciucu’s factorization theorem to each summand in (5.7). We declare the top

vertex a1 on the symmetry axis to be a positive vertex (in the context of Ciucu’s theorem).

3Only the graphs differ insofar as some edges that are irrelevant for the procedure have been deleted, since
they only appear in even rows. Also the edge weights of the vertical edges do not cause any difficulties as they
are constant on rows.
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Figure 15. (a) The graph G` of SDT1,3,6,8
4,4,5 px1, x̄1, x2, x̄2q. The vertical edge-

weights in odd rows are as in Figure 14. (b) The graph G` after application of
Lemma 5.1 in reverse direction.

It follows that all vertices ai on the symmetry axis are positive, while all vertices bi on the
symmetry axis are negative. Thus we need to cut right of all vertices on the symmetry axis.

We first consider the left graphs G`. The vertices on the former symmetry axis are all of
degree 1. We delete the incident edges as well as all edges adjacent to these edges to obtain
a new graph whose matching generating function differs from the original by a multiplicative
factor of

σ

nź

i“1

x
1{2
i , (5.8)

which needs to be multiplied to the generating function of the reduced graph to obtain the
generating function of the former graph. For our example, the graph is displayed in Figure 15(a)
for σ “ Id. Next we apply Lemma 5.1 in the reverse direction, i.e., we shrink hexagons to vertical
edges. To be more precise, we shrink the hexagons in the odd rows that are in odd positions,
if counted from the left. We obviously obtain the graph

σ zHT`
λn,λn´1`1,...,λ1`n´1

2n,λ1´1 px1, x̄1, . . . , xn, x̄nq (5.9)

in Figure 15(b) and so the matching generating function of G` is

«
σ

nź

i“1

x
1{2
i

ff
M

´
σ zHT`

λn,λn´1`1,...,λ1`n´1

2n,λ1´1 px1, x̄1, . . . , xn, x̄nq
¯
. (5.10)

We now consider the right graphs G´. For our example, the graph is displayed in Figure 16
when σ “ Id. Again we apply Lemma 5.1 in reverse direction to every other hexagon in odd
rows, more precisely to the hexagons in odd positions if counted from the right. The weights of
the vertical edges are then 1 again, except for the leftmost vertical edges of the odd rows which

still carry the weight x
1{2
i ` x

´1{2
i in row 2i ´ 1. We multiply the weights of the edges incident

with the vertices along the left horizontal line in positions 2i, 1 ď i ď n, counted from the top

with x
1{2
i ` x

´1{2
i . We obtain the graph

σ zHT–λn`1,λn´1`2,...,λ1`n

2n,λ1
px1, x̄1, . . . , xn, x̄nq. (5.11)
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Figure 16. (a) The graph G´ of SDT1,3,6,8
4,4,5 px1, x̄1, x2, x̄2q. The vertical edge-

weights in odd rows are as in Figure 14. (b) The graph G´ after application of
Lemma 5.1 in reverse direction. Here we denote the number 1 by I.

Using Theorem 2.20, the matching generating function is equal to σsooddλ px1, . . . , xnq and thus
independent of σ as sooddλ px1, . . . , xnq is invariant under replacing xi with x̄i. In total, we obtain

nź

i“1

´
x
1{2
i ` x

´1{2
i

¯´1

sooddλ px1, . . . , xnq

ˆ
ÿ

σPIn

«
σ

nź

i“1

x
1{2
i

ff
M

´
σ zHT`

λn,λn´1`1,...,λ1`n´1

2n,λ1´1 px1, x̄1, . . . , xn, x̄nq
¯
. (5.12)

Theorem 1.1(2) now follows from Theorem 2.16.

6. The skew case: Proof of Theorem 1.2

Our bijective proof of Theorem 1.1 actually reveals that the theorem can be generalized to
skew Schur polynomials, provided that also the inner shape of the skew shape satisfies a certain
symmetry property as laid down in Theorem 1.2. This follows merely from the observation
that edges can also stick out at the top of the trapezoidal graph Tn,k, just as they stick out at
the bottom according to the outer shape. These top edges encode the inner shape of the skew
shape. The symmetry property of the inner shape has to guarantee that also the distribution
of the top edges is symmetric with respect to the vertical symmetry axis of the graph so that
Ciucu’s factorization theorem can be applied. Phrased differently, this can also be seen as a
refinement of Theorem 1.1, where we fix in a certain fixed row, say, m of the graph Tn,k the
vertical matching edges. (In the associated semistandard tableaux this corresponds to fixing
the shape of the entries that are less than or equal to m.) From this point of view, the skew
case concerns the subgraph of Tn,k consisting of what is below this fixed row and adding edges
sticking out at the (new) top according to the fixed matching in (the old) row m. Since our
“procedures” (in a sense) do not mix between different rows of Tn,k (especially those used in
the proof of Lemma 3.2), the proofs of the straight cases generalize easily to the skew cases.
The only additional effort is in finding the correct skew generalizations of the objects such as
patterns and honeycomb graphs, which is also straightforward as we only need to chop off the
appropriate number of top rows. This considerably increases the notational complexity because
we also need to involve the positions of the extra edges sticking out at the top of the honeycomb
graphs. A detailed proof of Theorem 1.2 will only obscure the main ideas. We therefore chose
to give a detailed proof in the straight case and highlight a few major steps of the skew case in
this section.
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Figure 17. The graph 2,6T1,2,4,5,9,10,12,13
6,7 px1, x2, x3, x4, x5, x6q

6.1. Graphical model of skew Schur polynomials. Theorem 2.3 can be extended to skew
Schur polynomials. For this purpose, we only need to generalize Tp

n,kpx1, . . . , xnq so that we
allow also additional vertical edges attached to the vertices in the topmost row. Let n, k be a
positive integer and m be a non-negative integers with m ă n and m ď k, and consider Tn´m,k.
Adding n vertical edges to a selection of the n ´ m ` k vertices in the bottommost row, while
adding m vertical edges to a selection of the k vertices in the topmost row results in a bipartite
graph that has the same number of vertices in each vertex class, and may as such possess a
perfect matching. Let p “ pp1, . . . , pnq, 1 ď p1 ă p2 ă . . . ă pn ď n´m ` k, be these positions
at the bottom, and, q “ pq1, . . . , qmq, 1 ď q1 ă q2 ă . . . ă qm ď k, be these positions at the
top, then q Tp

n´m,k denotes the corresponding (unweighted) graph, while q Tp

n´m,kpx1, . . . , xn´mq
denotes the corresponding weighted graph. An example is given in Figure 17. Recall that for
two partitions µ, λ such that the Young diagram of µ is contained in the Young diagram of λ,
the skew Schur polynomial sλ{µpx1, . . . , xn´mq is the generating function of semistandard fillings
of the Young diagram of shape λ{µ with respect to the weight in (2.1) (replacing n by n ´ m

there). The generalization of Theorem 2.3 is as follows.

Theorem 6.1. Let m,n be non-negative integers with m ă n. Let λ “ pλ1, . . . , λnq and
µ “ pµ1, . . . , µmq be partitions such that µ is contained in λ. Then

sλ{µpx1, . . . , xn´mq “ Mpµm`1,µm´1`2,...,µ1`mT
λn`1,λn´1`2,...,λ1`n

n´m,λ1`m px1, . . . , xn´mqq. (6.1)

Note that there is the following ambiguity: Since we can add any number of zeros to µ and
λ, there is of course an infinite family of graphs that can be used for a particular skew Schur
polynomial. However, adding a zero to both µ and λ means that we add a Õ-diagonal of
hexagons left of the graph and we have an edge sticking out at the first position of the top row
as well as at the first position of the bottom row. By forcing, the leftmost vertical edge of each
row is a matching edge, thus the leftmost Õ-diagonal can be deleted again without changing
the matching generating function.

6.2. Combinatorial definitions of skew characters of other classical groups. Here we
first define skew versions of the characters of symplectic groups and of the orthogonal groups
as they are suggested by our combinatorial proof, thereby clarifying the right-hand sides of
the identities in Theorem 1.2. More specifically, we need to generalize the patterns provided
in Definitions 2.5, 2.9, 2.17 and their weights. The skew characters are then the generating
functions of these patterns with respect to the weights. The general principle is very simple as
laid down in the introductory paragraph of this section: In all cases, a pattern associated with
the parameters m,n (m,n are as usual the number of parts of µ, λ, respectively) is obtained by
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deleting at the top of a pattern of “order” n a pattern of order m, except for the bottom row
of the pattern of order m which remains and corresponds to the inner shape. The generalized
patterns are then obviously of trapezoidal shape.

We then also give references to appearances of these skew characters in representation the-
ory, where they show up when restricting the straight characters to a certain subgroup and
combinatorial interpretations are given in terms of various skew tableaux by Koike and Ter-
ada [12]. Using standard arguments, these tableaux representations can be transformed into
pattern representations, thereby establishing the connection to the patterns appearing in our
proof of Theorem 1.2. To unify the relationship between our graphical models, patterns and
tableaux, we will use notations that will differ from theirs and we will point to the difference
in each case separately. It is worth noting that Hamel [9] has given determinantal formulas for
skew symplectic and skew odd orthogonal characters.

6.2.1. Skew symplectic characters. In this section, we assume m ă n to be non-negative inte-
gers, and µ, λ to be partitions with m and n parts, respectively, where we allow (as usual) also
zero parts. The proof of Theorem 1.2 suggests the following definition, which is a generalization
of Definition 2.5.

Definition 6.2 (Trapezoidal symplectic patterns). Let m,n, µ, λ be as above.

(1) A p2nq{p2mq-symplectic pattern has the shape of a p2nq-symplectic pattern with a p2mq-
symplectic pattern deleted from the top, except for the bottom row of the p2mq-symplectic
pattern that remains, such that the entries are non-negative integers and weakly increase
along Õ-diagonals and Œ-diagonals.

(2) The rows are indexed from 0 to 2n ´ 2m, starting with the top row, and ri is the sum
of entries in row i. The weight of the pattern P is then

wsppP q “
n´mź

i“1

x
r2i´2r2i´1`r2i´2

i . (6.2)

(3) Denote the set of all p2nq{p2mq-symplectic patterns with top row µ and bottom row λ,
both written in increasing order, as SPλ{µ.

Note that our definitions are consistent with the straight case, which is obtained by setting
m “ 0. In this case, the 0-indexed row is empty, which is consistent with setting r0 “ 0 in
Definition 2.5. The skew symplectic character spλ{µpx1, . . . , xn´mq appearing in Theorem 1.2 is
the generating function ÿ

PPSPλ{µ

wsppP q, (6.3)

as can be seen when generalizing our combinatorial proof of Theorem 1.1 to skew shapes. By
Proposition 6.6, this combinatorially motivated definition coincides with the representation
theoretic definition.

Remark 6.3. Since only now we have clarified the right-hand side of (1.13), let us point out
the following subtlety: letting m “ 2, n “ 3, µ “ p1, 1q, λ “ p3, 2, 2q, the shape pµ is not contained

in pλ, so the left-hand side of (1.13) is zero. However, this is also true for the right-hand side,
because SPλ{µ is empty in this case.
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In representation theory, the skew symplectic character spλ{µpx1, . . . , xn´mq appears when
restricting the (straight) symplectic character to a certain subgroup. In [12, Proposition 4.1],
Koike and Terada provide a combinatorial interpretation of this skew symplectic character in
terms of the generating function of the following skew tableaux. The barred and unbarred
symbols are interchanged in our convention.

Definition 6.4. Let m,n, µ, λ be as above and assume µ Ď λ. A skew symplectic semistandard
tableau T of λ{µ with entries

1 ă 1 ă 2 ă 2 ă ¨ ¨ ¨ ă n ´ m ă n ´ m (6.4)

is a filling of the shape with these entries satisfying the following conditions:

‚ the entries increase weakly along rows,
‚ the entries increase strictly along columns,
‚ the entries in the pi ` mq-th row must be greater than or equal to i.

For α being any of the entries above, let nαpT q be the number of occurrences of α in T . Then
the weight of such a tableau is given by

wsppT q “
n´mź

i“1

x
nipT q´nipT q
i . (6.5)

Let SPT λ{µ be the set of skew symplectic semistandard tableau of shape λ{µ filled with

entries 1, 1, . . . , n ´ m,n ´ m. For example, choosing n “ 5, m “ 3, µ “ p3, 2, 1q and λ “
p5, 4, 4, 2, 2q, then

1 1

1 1

1 2 2

1 2

2 2

(6.6)

is a skew symplectic tableau of shape λ{µ with weight x2
1x2.

Theorem 6.5 ([12, Proposition 4.1]). Let m,n, µ, λ be as above and assume µ Ď λ. The skew
symplectic character of shape λ{µ is given by

spλ{µpx1, . . . , xn´mq “
ÿ

TPSPT λ{µ

wsppT q. (6.7)

The following result generalizes Theorem 2.6 and should be well-known although we could
not find an explicit reference.

Proposition 6.6. Let m,n, µ, λ be as above.

spλ{µpx1, . . . , xn´mq “
ÿ

PPSPλ{µ

wsppP q. (6.8)

Proof. Using Theorem 6.5, it suffices to find a a weight preserving bijection between skew
symplectic tableaux and trapezoidal symplectic patterns. The strategy of proof is standard,
using the general principle used to transform a semistandard tableau into a Gelfand-Tsetlin
pattern as explained after Proposition 2.3 with appropriate modifications as follows. Recall
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that the usual semistandard tableau of shape λ{µ is in natural bijection with a sequence of
partitions

µ “ λ0 Ď λ1 Ď ¨ ¨ ¨ Ď λn “ λ, (6.9)

such that λi{λi´1 is a horizontal strip for each 1 ď i ď n. The entries in the shape λi{λi´1

are precisely those filled by i in the tableau. For skew sympectic semistandard tableau, the
only difference is that the entries in the shape λi{λi´1 are filled by pi ` 1q{2 if i is odd and i{2
if i is even. We now arrange each λi in increasing order to form the rows of the trapezoidal
symplectic pattern. For the example of the skew symplectic pattern in (6.6), we obtain the
pattern

1 2 3
1 1 2 4

1 2 4 5
1 2 2 4 5

2 2 4 4 5

. (6.10)

The weights also match, completing the proof. �

6.2.2. Skew even orthogonal characters. In this section, we assume m ă n to be non-negative
integers, and µ, λ to be partitions or half-integer partitions with m and n parts, respectively.
The proof of Theorem 1.2 suggests the following definition, which is a generalization of Defini-
tion 2.9.

Definition 6.7 (Trapezoidal orthogonal patterns). Let m,n, µ, λ be as above.

(1) A p2n ´ 1q{p2m ´ 1q-orthogonal pattern has the shape of a p2n ´ 1q-orthogonal pattern
with a p2m ´ 1q-orthogonal pattern deleted from the top, except for the bottom row of
the p2m ´ 1q-orthogonal pattern that remains, such that the following conditions are
satisfied:

‚ the entries are either all integers or all half-integers,
‚ all entries except for the odd starters are non-negative,
‚ the absolute values of the entries are weakly increasing along Õ-diagonals and Œ-
diagonals.

(2) The rows are indexed from ´1 to 2n´ 2m´ 1, starting at the top, and r`
i is the sum of

the absolute values of the entries in row i. The weight of the pattern P “ pPi,jq is then

weven
o pP q “

n´mź

i“1

x
sgnpP2i´1,1q sgnpP2i´3,1qpr`

2i´1
´2r`

2i´2
`r`

2i´3
q

i . (6.11)

(3) Denote the set of p2n´1q{p2m´1q-orthogonal patterns with top row µ or µ´ and bottom
row λ or λ´, both written in increasing order, as OPλ{µ.

The even orthogonal character oevenλ{µ px1, . . . , xn´mq appearing in Theorem 1.2 is the the gen-
erating function ÿ

PPOPλ{µ

weven
o pP q. (6.12)

By Proposition 6.12, the combinatorially motivated definition coincides with the representation
theoretic definition.
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Remark 6.8. Continuing the theme of Remark 6.3, observe that for m “ 2, n “ 3, µ “
p1, 1q, λ “ p3, 2, 2q, the right-hand side of (1.13) is also zero because OPpλ`1q{pµ`1q is empty in
this case.

Assuming µ, λ to be integer partitions, Koike and Terada [12, Proposition 4.3] show that
the representation theoretical skew even orthogonal characters oevenλ{µ px1, . . . , xn´mq, which ap-

pear when restricting the (straight) even orthogonal characters to a certain subgroup, have a
combinatorial interpretation in terms of the generating function of the following skew tableaux.
Their symbols \i, Zi, i, i correspond to our symbols î, ǐ, i, i respectively.

Definition 6.9. Let m,n, λ, µ be as above such that µ, λ are integer partitions and µ Ď λ. A
skew even orthogonal semistandard tableau T of shape λ{µ with entries

1̂ ă 1̌ ă 1 ă 1 ă 2̂ ă 2̌ ă 2 ă 2 ă ¨ ¨ ¨ ă {n ´ m ă ­n ´ m ă n ´ m ă n ´ m, (6.13)

is a filling of the shape with these entries satisfying the following conditions:

‚ the entries increase weakly along rows,
‚ the entries increase strictly along columns,
‚ the entries in the pi ` mq-th row must be greater than or equal to ǐ,

‚ the entry î can only appear in the first column of row i ` m ´ 1, and ǐ can only appear
in the first column of row i ` m, and either of them only appears if the other does,

‚ if i appears in the first column of row i ` m and also i appear in that row, then there is
an i immediately above this i.

The weight of such a tableau is given by

weven
o pT q “

n´mź

i“1

x
nipT q´nipT q
i . (6.14)

The set of skew even orthogonal semistandard tableau of shape λ{µ filled with entries 1̂, . . . , n´m

is denoted by EOT λ{µ.

Example 6.10. Let n “ 3 and m “ 1 and consider the skew shape p1, 1, 1q{p1q. Then we have
the following tableaux in EOT p1,1,1q{p1q with entries in t1̂, 1̌, 1, 1, 2̂, 2̌, 2, 2u:

H

1

2

H

1

2

H

1

2

H

1

2

H

2

2

H

2̂

2̌

(6.15)

Here H means that the cell is unoccupied. It follows that oevenp1,1,1q{p1qpx1, x2q “ 2 ` x1x2 ` x1x̄2 `
x̄1x2 ` x̄1x̄2.

Theorem 6.11 ([12, Proposition 4.3]). Let m,n, λ, µ be as above such that µ and λ are integer
partitions and µ Ď λ. The skew even orthogonal character of the shape λ{µ is given by

oevenλ{µ px1, . . . , xn´mq “
ÿ

TPEOT λ{µ

weven
o pT q. (6.16)

This theorem implies the following. Although this should be well-known as well, we again
sketch the proof because we were unable to find an explicit reference.
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Proposition 6.12. Let m,n, λ, µ be as above and µ Ď λ. Then

oevenλ{µ px1, . . . , xn´mq “
ÿ

PPOPλ{µ

weven
o pP q. (6.17)

Proof. As in the proof of Proposition 6.6, we prove this by constructing a weight-preserving
bijection φ : OPλ{µ Ñ EOT λ{µ. Let P P OPλ{µ and let λi be the i-th row of P , written in
decreasing order. For all 1 ď i ď n ´ m:

‚ If sgnpP2i´3,1q sgnpP2i´1,1q ą 0, fill the cells of λ2i´2{λ2i´3 by i and those of λ2i´1{λ2i´2

by i.
‚ If sgnpP2i´3,1q sgnpP2i´1,1q ă 0, fill the cells of λ2i´2{λ2i´3 by i and those of λ2i´1{λ2i´2

by i. Suppose, at this stage, i occurs below i, in column c. Then i should be replaced
by î and i, by ǐ, if c “ 1, and these two entries should be interchanged if c ą 1.

We now claim that φpP q satisfies all the conditions in Definition 6.9. The first, second and
fourth conditions are not difficult to prove. The entries i and i are filled in φpP q only while
parsing rows 2i´2 and 2i´1 of P . The lengths of these rows arem`i´1 andm`i respectively.
Therefore, these entries cannot occur after row m ` i. This proves the third condition. Now,
suppose φpP qi`m,1 “ i, then sgnpP2i´3,1q sgnpP2i´1,1q ă 0 and cell pi ` m, 1q is contained in
λ2i´1{λ2i´2. If, moreover, φpP qi`m,j “ i for some j ą 1, and φpP qi`m´1,j ‰ i, that means cell
pi ` m, jq is contained in λ2i´2{λ2i´3, which is clearly impossible. Hence, the fifth condition
holds. It is not difficult to construct the inverse map. �

We illustrate Proposition 6.12 with the following example.

Example 6.13. The bijection φ maps the 9{3-orthogonal pattern on the left onto the skew even
orthogonal tableau on the right:

1 2
1 3

´1 2 3
1 2 4

0 1 3 4
1 2 4 4

´1 1 2 4 4

φ
ÝÑ

1 2

1 2 3

1 3

3̂

3̌

(6.18)

6.2.3. Skew odd orthogonal characters. In this section, we assume m ă n to be non-negative
integers, and µ, λ to be integer partitions or half-integer partitions with m and n parts, respec-
tively. The proof of Theorem 1.2 suggests the following definition, which is a generalization of
Definition 2.17.

Definition 6.14 (Trapezoidal split orthogonal patterns). Let m,n, µ, λ be as above.

(1) A p2nq{p2mq-split orthogonal pattern has the shape of a p2nq-split orthogonal pattern
with a 2m-split orthogonal pattern deleted from the top, except for the bottom row of the
2m-split orthogonal pattern that remains, such that the following conditions are satisfied:

‚ the entries except for the odd starters are either all integers are all half-integers,
‚ the entries are non-negative,
‚ the entries weakly increase along Õ-diagonals and Œ-diagonals.
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(2) The rows are indexed from 0 to 2n ´ 2m, starting with the top, and ri is the sum of
entries in row i. The weight of a pattern is then

wsopP q “
n´mź

i“1

x
r2i´2r2i´1`r2i´2

i . (6.19)

(3) Denote the set of p2nq{p2mq-split orthogonal patterns with top row µ and bottom row λ,
both written in increasing order, as SOPλ{µ.

For integer partitions λ, µ, the odd orthogonal character sooddλ{µpx1, . . . , xn´mq appearing in
Theorem 1.2 is the generating function

ÿ

PPSOPλ{µ

wsopP q. (6.20)

The symbols Zi, i, i in [12] correspond to our symbols î, i, i respectively.

Definition 6.15. Let m,n, λ, µ be as above and µ Ď λ. A skew odd orthogonal semistandard
tableau T of shape λ{µ with entries

1̂ ă 1 ă 1 ă 2̂ ă 2 ă 2 ă ¨ ¨ ¨ ă {n ´ m ă n ´ m ă n ´ m, (6.21)

is a filling of λ{µ with these entries satisfying the following conditions:

‚ the entries increase weakly along rows,
‚ the entries increase strictly along columns,
‚ the entries in the pi ` mq-th row must be greater than or equal to pi,
‚ î can only appear in the first column of row i ` m.

The weight of such a tableau is given by

wsopT q “
n´mź

i“1

x
nipT q´n

i
pT q

i . (6.22)

Let OOT λ{µ be the set of skew odd orthogonal semistandard tableau of shape λ{µ filled with

entries 1̂, . . . , n ´ m.

Example 6.16. Let n “ 3 and m “ 1 and consider the skew shape p1, 1, 1q{p1q. Then we have
the following tableaux in OOT p1,1,1q{p1q with entries in t1̂, 1, 1, 2̂, 2, 2u:

H

p1
p2

H

p1
2

H

p1
2

H

1

p2

H

1

2

H

1

2

H

1

p2

H

1

2

H

1

2

H

2

2

(6.23)

Here, H means that the cell is unoccupied. It follows that

sooddp1,1,1q{p1qpx1, x2q “ p1 ` x̄1 ` x1q p1 ` x̄2 ` x2q ` 1. (6.24)

Theorem 6.17 ([12, Proposition 4.2]). Let m,n, λ, µ be as above such µ, λ are integer partitions
and µ Ď λ. The skew odd orthogonal character of the shape λ{µ is given by

sooddλ{µpx1, . . . , xn´mq “
ÿ

TPOOT λ{µ

wsopT q. (6.25)
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Proposition 6.18. Let m,n, λ, µ be as above such µ, λ are integer partitions and µ Ď λ. Then

sooddλ{µpx1, . . . , xn´mq “
ÿ

PPSOPλ{µ

wsopP q. (6.26)

Proof. We construct a weight-preserving bijection φ : SOPλ{µ Ñ OOT λ{µ. The strategy is
very similar to the proof of Proposition 6.6.

Let P P SOPλ{µ. The i-th row of P , when sorted in weakly decreasing order is a partition
λi, where odd starters are rounded up. The interlacing conditions ensure that λi´1 Ď λi, with
λ0 “ µ and λ2n´2m “ λ. We now construct a tableau T of shape λ{µ as follows:

‚ Fill the entries of λ2i´1{λ2i´2 by i for 1 ď i ď n ´ m. If the starter in row 2i ´ 1 is a

half-integer, replace the first entry in row m ` i by pi.
‚ Fill the entries of λ2i{λ2i´1 by i for 1 ď i ď n ´ m.

See Example 6.19 for an example of this map. It is easily seen that the map is weight-
preserving and the inverse map is easily constructed as well, establishing the result. �

Example 6.19. The bijection φ of Proposition 6.18 maps the 10{4-split orthogonal pattern on
the left onto the skew odd orthogonal tableau on the right:

1 2
0 2 2

2 2 3
3
2

2 3 3
2 2 3 4

1 2 2 3 4
2 2 2 3 4

φ
ÝÑ

1 2

1 2

1 1

2̂ 2

3 3

(6.27)

with weight x2
1x̄

1
2x

0
3.
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