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A family of hemisystems on the parabolic quadrics

Jesse Lansdown and Alice C. Niemeyer

Abstract. We constuct a family of hemisystems of the parabolic quadric Q(2d, q), for all
ranks d > 2 and all odd prime powers q, that admit Ω3(q) ∼= PSL2(q). This yields the first
known construction for d > 4.

1. Introduction

Let S = (P,M, I) be an incidence structure with points P and maximals M. We say that
S has order (s, t) if there are s + 1 points incident with every maximal, and t + 1 maximals
incident with every point. A hemisystem is a subset H of M such that every point is incident
with t+1

2
maximals of H (thus requiring that t is odd). A hemisystem H is said to “admit” a

group B if B is isomorphic to a subgroup of the stabiliser of H in the automorphism group of
S.

Hemisystems have connections to other objects in geometry, graph theory, and coding the-
ory. In particular, they often induce new objects such as partial quadrangles, strongly regular
or distance regular graphs, and association schemes [5, 15].

A parabolic quadric of rank d is constructed by taking the totally singular subspaces of a
(2d+ 1)-dimensional vector space over Fq under a quadratic form, and is denoted by Q(2d, q).
The parabolic quadrics will be defined more explicitly along with their connections to the
orthogonal group in Section 2.

Vanhove showed that an s+1
2
-ovoid of certain dual polar spaces yield new distance regu-

lar graphs with classical parameters [16], and in [3] it was shown that the only m-ovoids of
DQ(2d, q), DH(2d−1, q2), and DW(2d−1, q), for d > 3, are s+1

2
-ovoids. Moreover, an s+1

2
-ovoid

in DQ(2d, q), DH(2d− 1, q2), or DW(2d− 1, q) is a hemisystem of Q(2d, q), H(2d− 1, q2), or
W(2d−1, q), respectively. Recently, Cossidente and Pavese found an infinite family of hemisys-
tems of Q(6, q), q odd, admitting PSL2(q

2) [8]. This is currently the only known family of
hemisystems of the parabolic quadrics, for d > 3. For d = 2, hemisystem constructions have
been found by Feng et al. [11] as well as by Cossidente et al. [7]. Hence prior to Theorem 1.1
of this paper no families of hemisystems of Q(2d, q) were known for d > 4.

In this paper we construct a new infinite family of hemisystems of Q(2d, q) for d ≥ 2 and q
odd.

Theorem 1.1. There exist 2n hemisystems of Q(2d, q) admitting Ω3(q) ∼= PSL2(q) for all
odd prime powers q and all d > 2, where n is the number of orbits of Ω3(q) on the maximals.
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Hemisystems were first defined by Segre on Hermitian varieties, where he demonstrated the
existence of a hemisystem inH(3, 32), and raised the question whether they exist inH(2d−1, q2)
for d > 2, q > 3 [13]. For a long time no new examples were found, and it was thought that
Segre’s example might be the only example, with Thas even conjecturing that there were
no hemisystems of H(3, q2), for q > 3 [14]. This conjecture was disproved, however, when
Cossidente and Penttila constructed infinite families for H(3, q2) [9] and H(5, q2) [10], q odd.
In his PhD thesis, Luke Bayens constructed hemisystems of H(2d− 1, q), d > 2, q odd [4], thus
answering Segre’s question. His construction introduced the so-called “AB-Lemma”, which is
also utilised by the construction in this paper, and is elaborated upon in Section 2.4.

Hemisystems have also been generalised beyond Hermitian varieties. Cameron, Goethals,
and Seidel extended the definition of a hemisystem to a generalised quadrangle of order (q, q2),
for q odd, and showed that the collinearity graph of such a hemisystem is strongly regular
[5, 6].

Vanhove extended the concept of a hemisystem to regular near polygons, in particular
showing that in the dual hermitian space DH(2d− 1, q2), for q odd and d > 3, the existence of
a hemisystem would induce new distance regular graphs with classical parameters [16].

Bamberg, Guidici, and Royle showed that every flock generalized quadrangle of order (s2, s),
s odd, contains a hemisystem [2], and van Dam, Martin, and Muzychuk showed that hemisys-
tems of generalised quadrangles of order (s2, s) give rise to 4-class cometric association schemes
[15].

A common approach to the construction of geometric objects is to consider a subgroup of the
automorphism group, and to stitch together its orbits on the elements of the geometry. Since
elements of one type interact with an element of another type in the same manner within an
orbit, far fewer elements need then be considered. This approach lends itself to large subgroups
of the automorphism group, since this means there are fewer orbits, making it is easier to
consider the interplay between them. By contrast, the hemisystems in the family presented
in this paper admit a small group relative to the full automorphism group of the parabolic
quadric. In fact, the admitted group is dependent only on q and is constant regardless of the
rank of the quadric. We construct the hemisystems by considering a parabolic plane in the
ambient projective space and consider how the points and maximals of the parabolic quadric
meet this plane.

2. Background

In this section we cover the necessary background theory required to prove Theorem 1.1.
Most are standard definitions and results in the subject, and can be found in, for example,
[1, 12].

2.1. Vector spaces with a quadratic form. Let V be an n-dimensional vector space
over Fq. With respect to a basis {e1, e2, . . . , en}, the Gram matrix J of a bilinear form β is the
n× n matrix with entries

Jij = β(ei, ej).

The Gram matrix describes the bilinear form with respect to the given basis, where

β(v, w) = vJwT .

A quadratic form on V is a map κ : V → Fq such that for all v ∈ V and all λ ∈ Fq

κ(λv) = λ2κ(v)

and β(u, v) := κ(u+v)−κ(u)−κ(v) defines a bilinear form β on V , called the associated bilinear
form. Note that κ(v) = β(v, v)/2, so the bilinear form uniquely determines κ when Fq is of
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odd characteristic; that is, when q is an odd prime power. In this paper we are concerned only
with q odd, so we may work with the bilinear and quadratic forms interchangeably, depending
on which better suits the task at hand.

A bilinear form β is degenerate if there exists some v ∈ V \{0} such that β(u, v) = 0 for all
u ∈ V , and nondegenerate otherwise. A quadratic form is degenerate if its associated bilinear
form is degenerate. A subspace U ≤ V is totally singular if κ(u) = 0 for all u ∈ U , and
anisotropic if κ(u) 6= 0 for all non-zero vectors in U . The Witt index of a vector space equipped
with a quadratic form is the dimension of the largest totally singular subspace. The perp of a
subspace U is defined as U⊥ := {v ∈ V | β(u, v) = 0, ∀u ∈ U}. If U is nondegenerate, then so
too is U⊥. If u, v ∈ V are two vectors such that β(u, v) = 1 and β(u, u) = β(v, v) = 0, then
(u, v) is called a hyperbolic pair.

Up to equivalence, there are just three types of vector spaces with nondegenerate quadratic
forms: parabolic, hyperbolic, and elliptic. The parabolic case occurs when n is odd, while
hyperbolic and elliptic cases occur for n even. Moreover, V has an orthogonal decomposition
V = H1⊕H2⊕ . . .⊕Hd⊕X , where each Hi is the span of a hyperbolic pair, X is an anisotropic
subspace with dim(X) = 0 in the hyperbolic case, dim(X) = 1 in the parabolic case, and
dim(X) = 2 in the elliptic case. The Witt index is given by d in the previous decomposition,
and hence the Witt index of a parabolic space is 1

2
(n−1), the Witt index of a hyperbolic space

is n
2
, and the Witt index of an elliptic space is n

2
− 1.

Hyperbolic forms are often referred to as “+” type, while elliptic forms are referred to as
“−” type, providing an easy notation to distinguish between the two cases in even dimension.
Since there is only one parabolic form in odd dimension it is unnecessary to indicate its type,
however we may refer to it as “◦” type for consistency, or to identify it when the dimension is
not explicitly stated.

2.2. The quadrics. Let V be an n-dimensional vector space over Fq equipped with a
nondegenerate quadratic form κ. Taking the totally singular subspaces of V we obtain a
parabolic quadricQ(2d, q), a hyperbolic quadric Q+(2d−1, q), or an elliptic quadric Q−(2d+1, q),
corresponding to the type of the form on V . Here d is the Witt index and 2d, 2d − 1, and
2d + 1 each give n − 1, which is the projective dimension. The totally singular 1-spaces are
called points, while the largest totally singular subspaces are called maximals. Incidence is
then defined as inclusion of subspaces. The rank of the quadric is given by the Witt index and
corresponds to the number of different types of elements in the geometry.

Recall that the order of an incidence structure is (s, t) where there are s+1 points on each
maximal, and t+ 1 maximals on every point. Thus a hemisystem may exist only when t+ 1 is
even. In the case of Q(2d, q),

s+ 1 =
qd − 1

q − 1
, and t+ 1 =

d−1
∏

i=1

(qi + 1).

Hence we may limit ourselves to the case where q is odd, since t+1 above is even precisely when
q is odd. Moreover, a hemisystem contains half of the set of maximals, and the complement of
a hemisystem is also a hemisystem.

The automorphism group of the quadric is the group which preserves the totally singu-
lar subspaces, PΓOǫ

n(q). We elaborate on groups preserving quadratic forms in the following
section.

2.3. Groups preserving the quadratic form. Let V be a n-dimensional vector space
over Fq equipped with a nondegenerate quadratic form κ. Let q be an odd prime power
throughout.
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The subgroup of GL(V ) preserving the form is called the orthogonal group, denoted O(V ).
The special orthogonal group, SO(V ), is the subgroup of O(V ) consisting of the elements with
determinant one, and the derived subgroup of O(V ) is denoted by Ω(V ). Each group is an
index two subgroup of the previous group, that is, |O(V ) : SO(V )| = |SO(V ) : Ω(V )| = 2 [12,
Table 2.1.C].

Moreover, since the nondegenerate quadratic forms are unique up to a change of basis, we
may write Oǫ

n(q), SO
ǫ
n(q), and Ωǫ

n(q), where ǫ ∈ {+, ◦,−} corresponds to the type of the form,
n is the dimension of the vector space, and q is the order of the field. We will often still write
O(V ), SO(V ), or Ω(V ), to emphasise the vector space V . In particular, we adapt the notation
to apply to a subspace of V to mean the image of the projection of the group onto the subspace.
Formally, let X be O, SO, or Ω, and let W be a nondegenerate subspace of dimension m in V ,
where κ|W is the restriction of κ to W , then

(1) X(W ) := {g ⊕ 1W⊥ | g ∈ Xǫ′

m(q) with respect to κ|W},

for some ǫ′ ∈ {+, ◦,−}. Note that the restriction of κ to W need not have the same type as κ
itself, and hence ǫ is not necessarily equal to ǫ′, for X(V ) ∼= Xǫ

n(q). Moreover, X(W ) need not
be a subgroup of X .

There also exist projective versions of each of these groups,

PX(V ) := X(V )/(X(V ) ∩ Z(GL(V ))),

for X = O, SO, or Ω. For a vector space over a field, Z(GL(V )) is simply all the non-zero
scalar matrices, and so the projective versions of the groups are the original groups modulo the
corresponding scalar matrices. As a result the projective versions of the groups act naturally
on one dimensional subspaces rather than on vectors.

More on the classical groups can be found in Kleidman and Liebeck [12]. A few results
which form part of more general results in Kleidman and Liebeck are collected here. Recall
that q is assumed to be odd.

Lemma 2.1. [12, 2.9.1] There exist the following isomorphisms:

(1) PSL2(q) ∼= Ω3(q),
(2) O±

2 (q)
∼= D2(q∓1),

(3) SO±
2 (q)

∼= Zq∓1,
(4) Ω±

2 (q)
∼= Z(q∓1)/2.

The vectors of V can be partitioned according to their value under the quadratic form κ,
so for α ∈ F we define

(2) Vα := {v ∈ V \{0} | κ(v) = α}.

We have the following orbit results on Vα.

Lemma 2.2. [12, 2.10.5]

(1) Oǫ
n(q) is transitive on Vα, for all n, α, and ǫ.

(2) Ω◦
3(q) has two orbits on V0 of size 1

2
(q2 − 1) and is transitive on Vα for α 6= 0.

(3) Ω+
2 (q) has 4 orbits on V0, and Ω±

2 (q) has 2 orbits on Vα for α 6= 0.

We denote the stabiliser in H 6 O(V ) of a subspace W or a vector v, by HW or Hv,
respectively. For a subgroup H fixing a subspace W , the subgroup H induces upon W is
denoted by HW .

The following lemma describes how the orthogonal group interacts with the stabilisers of
a nondegenerate subspace and its perp. It holds in more generality, but for our purposes we
restrict it to O(V ).
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Lemma 2.3. [12, 4.1.1] Assume that V = U ⊥ W , where U is nondegenerate, and X =
O, SO, or Ω. Then:

(1) O(V )U = O(U)×O(W ),
(2) Ω(V )U ≥ Ω(U) × Ω(W ),
(3) X(U) ∩ Ω(V ) = Ω(U) and X(W ) ∩ Ω(V ) = Ω(W ),
(4) Ω(V )UU = O(U),
(5) Ω(V )WU = O(W ), unless dim(U) = 1.

When considering the subspace spanned by a hyperbolic pair, it is easy to describe the
elements of the orthogonal group explicitly. Since the special orthogonal group consists of the
determinant one elements of the orthogonal group and the derived subgroup has index two in
the special orthogonal group, the elements of these groups are also easily describable.

Lemma 2.4. Given the quadratic form κ(x1, x2) = x1x2 for a two dimensional vector space
over Fq,

O+
2 (q) =

{

(

γ 0

0 γ−1

)

,

(

0 γ

γ−1 0

)

: γ ∈ F
∗
q

}

.

Moreover, SO+
2 (q) consists only of the diagonal elements, and Ω+

2 (q) consists of those elements
with squares on the diagonal.

We summarise some of the core information relating to a vector space V equipped with a
quadratic form κ in Table 1 below.

Type n = dim(V ) ǫ d = Witt Index O(V )

Parabolic Odd ◦ 1
2
(n− 1) O◦

n(q)

Hyperbolic Even + n
2

O+
n (q)

Elliptic Even − n
2
− 1 O−

n (q)

Table 1. Vector spaces with quadratic forms

2.4. The AB-Lemma. The following lemma, often referred to as the “AB-Lemma”, was
first stated in Luke Bayens’ dissertation [4]. Given an incidence geometry whose automor-
phism group contains subgroups with certain properties, the lemma helps prove the existence
of hemisystems without the need to construct the tactical configuration.

Lemma 2.5 (The AB-Lemma [4, 4.4.1]). Let S = (P,M, I) be an incidence structure with
two types, called points P and maximals M. Let A and B be two subgroups of the automorphism
group of S such that

(1) B is a normal subgroup of A,
(2) A and B have the same orbits on P,
(3) each A-orbit on M splits into two B-orbits.

Then there are 2m hemisystems admitting B, where m is the number of A-orbits on the maxi-
mals.

Moreover, a hemisystem can be constructed by taking a representative from each of the
A-orbits and then taking the union of the orbits of these representatives under the action of B.

The following section is dedicated to the proof of the main theorem. We construct two
subgroups of the orthogonal group and show that they satisfy the conditions of the AB-Lemma.
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3. Main result

This section is dedicated to proving Theorem 1.1 by applying the AB-Lemma to a suitable
construction of the parabolic quadric.

Let V be a (2d+ 1)-dimensional vector space over Fq, for q odd, d > 2, with a basis

B = {z, e0, f0, x, y, e1, f1, e2, f2 . . . , ed−2, fd−2}.

Let β be a nondegenerate bilinear form defined on V such that

V = 〈z〉 ⊥ 〈e0, f0〉 ⊥ 〈x, y〉 ⊥ 〈e1, f1〉 . . . 〈ed−2, fd−2〉

where (ei, fi) for i ∈ {0, . . . , d − 2} are hyperbolic pairs and 〈z〉 and 〈x, y〉 are anisotropic
subspaces. In particular let β(ei, fi) = 1, β(ei, ei) = β(fi, fi) = 0, and β(z, z) = 1. Let κ be the
associated quadratic form with β, defined by κ(v) = β(v, v)/2.

We distinguish two subspaces W = 〈z, e0, f0〉 and U = W⊥ = 〈x, y, e1, f1, . . . , ed−2, fd−2〉.
The construction makes it clear that W is a 3-dimensional parabolic subspace of V , while U is
a (2d− 2)-dimensional elliptic subspace of V .

The automorphism group ofQ(2d, q) is PΓO2d+1(q), however it is sufficient for us to consider
the matrix group O2d+1(q) as its action on subspaces is the same as that of PO2d+1(q) 6

PΓO2d+1(q). Thus we let G = O2d+1(q).
Let B = Ω(W ), where we recall Ω(W ) is defined as in (1). Moreover, take τ ∈ G, where

(3) τ =











−1

1 0

1

0 I2d−2











,

and I2d−2 is the identity matrix. And lastly let

A = 〈B, τ〉.

We observe that Ω(W ) 6 A 6 O(W ) and so every element of A (and also of B) has the
form

(

g 0

0 I2d−2

)

for some g ∈ O◦
3(q) with respect to κ|W . Since each element of A (and therefore of B) contains

this identity block, the subgroups A and B are unchanged modulo scalar matrices: A/(A∩Z) ∼=
A.

We make the following observation,

Remark 3.1. B ∼= PSL2(q), since B ∼= Ω◦
3(q)

∼= PSL2(q) by Lemma 2.1(1).

We now give a few technical lemmas to aid in later proofs.

Lemma 3.2. Let T be a 3-dimensional vector space. Let v be a non-singular vector of T ,
and let T1 = 〈v〉, T2 = 〈v〉⊥ such that T = T1 ⊥ T2, then

Ω(T2) 6 Ω(T )T1
= Ω(T )T2

6 O(T1)×O(T2)

and

Ω(T )v ∼= Ω(T2).
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Proof. Since v is non-singular, T1 and T2 are nondegenerate, thus by Lemma 2.3(2) and
(1), Ω(T1) × Ω(T2) 6 Ω(T )T2

6 O(T )T2
= O(T1) × O(T2). Since dim(T1) = 1, O(T1) = {±1}

and SO(T1) = Ω(T1) = 1. Fixing T2 means also fixing T1, so Ω(T )T1
= Ω(T )T2

, and the first
part follows. If in addition, v is fixed, then Ω(T )T1

v = 1, and so Ω(T2) 6 Ω(T )v 6 O(T2). Now
by Lemma 2.3(3), it follows that O(T2) ∩ Ω(T ) = Ω(T2), so the second part follows. �

Note that T2 in Lemma 3.2 is a nondegenerate two dimensional subspace and hence O(T2)
and Ω(T2) could be of either + or − type, depending on T2 itself.

Observe that W is a 3-dimensional subspace of V with the same properties as T in Lemma
3.2. In particular, the stabiliser in Ω(W ) of a nonsingular vector v is isomorphic to Ω±

2 (q).
Hence it is useful to know exactly how subgroups of O±

2 (q) act. Recall the definition of Vα in
(2).

Lemma 3.3. Let ∆1 and ∆2 be the two orbits of Ωǫ
2(q) on Vα, for α 6= 0, and let g ∈

Oǫ
2(q)\SO

ǫ
2(q). Then ∆g

i = ∆i precisely when g fixes a point of Vα, and ∆g
i = ∆j otherwise,

for i ∈ {1, 2}, j ∈ {1, 2}\{i}.

Proof. By Lemma 2.1, O±
2 (q) is dihedral of order 2(q ∓ 1), while SO±

2 (q) and Ω±
2 (q) are

cyclic. Moreover, by Lemma 2.2, O±
2 (q) is transitive on Vα, while Ω±

2 (q) has two orbits, for
α 6= 0. Now, |O±

2 (q) : SO
±
2 (q)| = 2 and |SO±

2 (q) : Ω
±
2 (q)| = 2, and so O±

2 (q) has the following
subgroup structure

O±
2 (q) = 〈s, t : |s| = q ∓ 1, |t| = 2, tst = s−1〉

SO±
2 (q) = 〈s〉 〈s2, t〉 〈s2, st〉

Ω±
2 (q) = 〈s2〉

Note that the action of O±
2 (q) on Vα is permutation isomorphic to the action ofD2(q∓1) on the

vertices of a regular (q∓1)-gon (which has an even number of vertices for q odd), and moreover
D2(q∓1) has two conjugacy classes of reflections: reflections in an axis through opposite vertices
and reflections in an axis through opposite midpoints. The first type fix exactly two points and
we shall call such reflections “hyperbolic”, while the second fix no points and shall be called
“elliptic”. Considering the action of the dihedral group, it is clear that a hyperbolic reflection
preserves the orbits of the cyclic subgroup 〈s2〉 which rotates the vertices, while an elliptic
reflection interchanges the orbits. Since SO±

2 (q) is cyclic, an element σ ∈ O±
2 (q)\SO

±
2 (q) must

be a reflection. The existence of a fixed point on Vα determines if σ is hyperbolic or elliptic,
and hence determines its action on the orbits of Ω±

2 (q) on Vα. �

A key observation arising from the previous lemma is that althoughO±
2 (q) is permutationally

isomorphic toD2(q∓1), a specific reflection σ may be hyperbolic in its action upon Vα, but elliptic
in its action upon Vα′, for α 6= α′ and α, α′ 6= 0.

Lemma 3.4. B is a proper normal subgroup of A.

Proof. Note that the derived subgroup of a group is a normal, hence B = Ω(W ) E O(W ),
and thus B E A. Moreover, det(τ) = −1, so τ 6∈ B and B < A. It then follows that B ⊳A. �

We now consider the action of the two subgroups A and B on the points and maximals of
Q(2d, q). We recall that the elements of Q(2d, q) are totally singular subspaces, and that A
and B act on vectors of W (not just subspaces). Note that V = W ⊥ U , hence every v ∈ V
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can be expressed as v = w+u for some w ∈ W and u ∈ U . Moreover, A and B fix every vector
in U , so it is sufficient to consider the action of A and B on w to investigate their action on v.
We recall the definition of τ in (3).

Lemma 3.5. Let P be a point of Q(2d, q). Then there exists some g ∈ B such that P g = P τ .

Proof. P = 〈p〉 for some p ∈ V , such that p = w + u for w ∈ W and u ∈ U . Now,
pτ = wτ + u, since A fixes u, and hence we require g ∈ B such that wg = wτ .

Let w = γ1z + γ2e0 + γ3f0. If γ1 = 0 then w1G = wτ , where 1G ∈ B is the identity element.
If γ1 6= 0, then without loss of generality we may take γ1 = 1, since P = 〈p〉 = 〈γ−1

1 p〉.
Consider now γ1 = 1 and κ|W (w) = α. If α 6= 0 then by Lemma 2.2(2) there exists some

g ∈ B such that wg = wτ , and hence pg = pτ and P g = P τ .
Consider instead α = 0, then by Lemma 2.2(2), there are two orbits on Wα under B. Set

v = γ2e0+γ3f0 and v′ = γ2e0−γ3f0. Then τ fixes v, and by Lemma 3.2, the stabiliser of v in B
is Ω(〈v〉⊥) = Ω±

2 (q). Observe that τ fixes v′ in 〈v〉⊥, but not z. Note that p = z + v, κ(p) = 0,
and κ(z) = 1

2
imply that κ(v) = γ2γ3 = −1

2
, which in turn implies that κ(v′) = −γ2γ3 = 1

2
.

Now v′, z ∈ 〈v〉⊥ and v′ is fixed by τ , hence by Lemma 3.3 there exists some g ∈ Ω±
2 (q) 6 B

such that wg = wτ and hence pg = pτ and P g = P τ . �

Corollary 3.6. The orbits of A and B on the points are the same.

Note that we are not forced to fix v in the previous proof, it simply proved convenient in
demonstrating the existence of an appropriate group element g in B. However, in forthcoming
proofs we will seek to show that τ is unique in its action on maximals, and it will be necessary
to fix certain subspaces according to the action of τ .

Lemma 3.7. Let M be a maximal totally singular subspace in V , and let M ′ be a maximally
totally singular subspace in 〈z〉⊥. Then M projects nontrivially onto 〈z〉 and M ′ projects non-
trivially onto 〈e0, f0〉.

Proof. Consider 〈z〉⊥ = 〈e0, f0〉 ⊥ 〈x, y〉 ⊥ 〈e1, f1〉 . . . 〈ed−1, fd−1〉. Since 〈ei, fi〉 are hy-
perbolic planes, and 〈x, y〉 is an anisotropic subspace, 〈z〉⊥ is an elliptic subspace under the
form β|〈z〉⊥. Since 〈z〉⊥ has dimension 2d it has Witt index d − 1. However a maximal M

in V has dimension d, so M cannot be entirely contained in 〈z〉⊥. Thus there is a nonempty
projection of M onto 〈z〉. Similarly, U is an elliptic subspace of dimension 2d − 2, with Witt
index d− 2. Hence M ′ is not completely contained in U and must have a nonempty projection
onto 〈e0, f0〉. �

Lemma 3.8. Let M be a maximal. There exists a basis b1, b2, b3, . . . , bd of M such that

b1 = z + u1, b2 = e0 + u2, b3 = f0 + u3, bi = ui for i ∈ {4, . . . , d},

or
b1 = z + λf0 + u1, b2 = e0 + µf0 + u2, bi = ui for i ∈ {3, . . . , d},

or
b1 = z + λe0 + u1, b2 = f0 + u2, bi = ui for i ∈ {3, . . . , d},

where in each case ui ∈ U for i ∈ {1, . . . d}.

Proof. Let b1, b2, . . . , bd be a basis of M . By Lemma 3.7 M projects onto 〈z〉, and so
without loss of generality, we may take b1 to project non-trivially onto 〈z〉. Since dim(〈z〉) = 1,
there exists a basis b1, b

′
2, b

′
3, . . . , b

′
d of M , where each b′i projects trivially onto 〈z〉 for i ∈

{2, . . . , d}. Such a basis can be obtained by taking linear combinations of b1 from bi.
Now consider M ′ = 〈b′2, . . . , b

′
d}, a (d−1)-dimensional totally isotropic subspace of 〈z〉⊥. By

Lemma 3.7 again, M ′ projects non-trivially onto 〈e0, f0〉. Without loss of generality, we may
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assume b′2 has a non-empty projection to 〈e0, f0〉. Since dim(〈e0, f0〉) = 2, we then have two
cases: either there is some other basis vector, which we may take to be b′3, such that b′3 projects
non-trivially onto 〈e0, f0〉 and the projections of b′2 and b′3 onto 〈e0, f0〉 are linearly independent,
or else b′2 is the only such vector. By taking linear combinations we may then manipulate the
bases into the desired form. �

Lemma 3.9. Let M be a maximal. There does not exist g ∈ B such that Mg = M τ .

Proof. Let {b1, b2, . . . , bd} be a basis for the totally singular subspace M . Without loss of
generality, we need only consider the first two bases of Lemma 3.8, since the argument for the
third basis is identical to that of the second. Now, τ fixes each basis vector other than b1, and
for any g in B, g fixes each vector in U . Hence Mg = M τ if and only if 〈b1, b2, b3〉

g = 〈bτ1, b2, b3〉
in the first case, or 〈b1, b2〉

g = 〈bτ1 , b2〉 in the second case. Throughout, we recall that κ(bi) = 0
and β(bi, bj) = 0, since M is totally singular. We now consider each case.

Case 1: Consider M with first three basis vectors

b1 = z + u1, b2 = e0 + u2, b3 = f0 + u3

for u1, u2, u3 ∈ U .
Observe that κ(b1) = 0, κ(b3) = 0, and β(b1, b3) = 0 imply that β(u1, u1) = −1, κ(u3) = 0,

and β(u1, u3) = 0, respectively.
We first show that u2 6∈ 〈u1, u3〉. Consider for a contradiction that u2 = γ1u1 + γ2u3. Then

2κ(u2) = β(γ1u1 + γ2u3, γ1u1 + γ2u3) = −γ2
1 . However κ(b2) = 0 implies that κ(u2) = 0, and

thus γ1 = 0 and u2 = γ2u3. Now, from β(b2, b3) = 0 it follows that β(u2, u3) = −1 and therefore
β(γ2u3, u3) = 2γ2κ(u3) = −1. However κ(u3) = 0, a contradiction. So u2 6∈ 〈u1, u3〉.

Moreover, since κ(u1) = −1
2
and κ(u3) = 0, it follows that u1 6= γu3. Hence u1, u2, and u3

are linearly independent.
Let g ∈ B such that bg1, b

g
2, b

g
3 ∈ 〈bτ1, b2, b3〉. Then

bg1 = zg + ug
1 = zg + u1,

and

bg1 = γ1b
τ
1 + γ2b2 + γ3b3

= −γ1z + γ1u1 + γ2e0 + γ2u2 + γ3f0 + γ3u3.

However, since u1, u2, and u3 are linearly independent, γ2 = γ3 = 0 and γ1 = 1. Hence
bg1 = −z + u1 = bτ1. Moreover, bg2 = b2 and bg3 = b3 by the same argument. Thus

zg = −z, eg0 = e0, f g
0 = f0.

From this it follows that g = τ . However τ 6∈ B, so there is no such element g ∈ B such that
Mg = M τ .

Case 2: Consider M with first two basis vectors

b1 = z + λf0 + u1, b2 = e0 + µf0 + u2.

Recall that b3 ∈ U . From κ(b1) = 0 if follows that κ(u1) = −1
2
, and since κ(b3) = 0 it follows

that u1 and b3 are linearly independent vectors in U . Consider now u1 = γu2. Since u1 and b3
are linearly independent, so too must u2 and b3 be linearly independent. Thus we may take a
basis b′1, b2, b3, . . . , bd of M , where b′1 = b1 + b3 = z + λf0 + u′

1 and u′
1 = u1 + b3. We now have

u′
1 is linearly independent of u2, so without loss of generality, we may assume u1 6= γu2.
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Let g ∈ B such that bg1, b
g
2 ∈ 〈bτ1 , b2〉. Then

bg1 = zg + λf g
0 + ug

1 = zg + λf g
0 + u1,

bg2 = eg0 + µf g
0 + ug

2 = eg0 + µf g
0 + u2,

and

bg1 = γ1b
τ
1 + γ2b2 = γ1(−z + λf0 + u1) + γ2(e0 + µf0 + u2),

bg2 = γ3b
τ
1 + γ4b2 = γ3(−z + λf0 + u1) + γ4(e0 + µf0 + u2).

Since u1 and u2 are linearly independent, it follows that γ1 = γ4 = 1 and γ2 = γ3 = 0. That is,
bg2 = b2 and bg1 = bτ1 . From this it follows, that,

(z + λf0)
g = −z + λf0, (e0 + µf0)

g = e0 + µf0.

Here we have three subcases: µ = 0, 2µ ∈ �\{0}, and 2µ 6∈ �, where � is the set of squares
of Fq.

Case 2a: Consider µ = 0. Then κ(b2) = 0 implies κ(u2) = 0. Moreover, β(u2, bi) = 0 for
3 6 i 6 d. Observe, b3, . . . , bd are linearly independent, since they are basis vectors, and they
are all contained in U . Since U is of elliptic type, it has Witt index d−2, and hence u2 is either
a linear combination of b3, . . . , bd or u2 = 0. In either case, β(u1, u2) = 0, since β(u1, bi) = 0 for
3 6 i 6 d and β(u1, 0) = 0. However, β(b1, b2) = 0 and so β(u1, u2) = −λ, thus λ = 0.

Now, we require g such that zg = −z and eg0 = e0. It follows then that g fixes 〈z〉 and hence
g ∈ B〈z〉, where 1 × Ω+

2 (q) 6 B〈z〉 6 O◦
1(q)×O+

2 (q) by Lemma 3.2, since κ(z) 6= 0 and 〈e0, f0〉
is of hyperbolic type. Moreover, g = (−1, h), where h ∈ O+

2 (q), since zg = −z. However,
g ∈ Ω◦

3(q) 6 SO◦
3(q), and hence det(g) = 1, meaning det(h) = −1. By Lemma 2.4, h must then

be an element of the form
(

0 γ

γ−1 0

)

,

however no such element fixes e0. Thus there is no such g ∈ B.

In the remaining two subcases where µ 6= 0, let v = e0 + µf0, and C = {v, z, e0 − µf0} be
a basis for W . Further let W1 = 〈v〉 and W2 = 〈z, e0 − µf0〉. Expressed with respect to C,
z+λf0 = z− λ

2µ
(e0−µf0)+

λ
2µ
v. However vg = v, and so (z− λ

2µ
(e0−µf0))

g = −z− λ
2µ
(e0−µf0).

Note g fixes v, hence g ∈ Bv. Moreover κ(v) = µ 6= 0, so by Lemma 3.2, Bv = Ω(W2) ∼= Ωǫ
2(q).

Case 2b: Consider 2µ ∈ �\{0}. Then there exists γ 6= 0 such that γ2 = 2µ. Let
w = γz + (e0 − µf0). Then κ(w) = 0 and hence W2 is hyperbolic, meaning Bv

∼= O+
2 (q).

Thus we require g = (1, h), where h ∈ O+
2 (q), such that (z− λ

2µ
(e0−µf0))

h = −z− λ
2µ
(e0−µf0).

By Lemma 2.4 h has the form Diag(ζ2, ζ−2). Now, − λ
2µ
(e0 − µf0)

h = − λ
2µ
(e0 − µf0) implies

h = Diag(1, 1). However, zh = −z implies h = Diag(−1,−1), a contradiction. Thus there is no
such g ∈ B which replicates the action of τ on M .

Case 2c: Consider 2µ 6∈ �. Recall that Oǫ
2(q) is dihedral and Ωǫ

2(q) is cyclic, by Lemma
2.1. With respect to C, τ remains unchanged, and induces the element τW2

= Diag(−1, 1) ∈
O(W2) ∼= Oǫ

2(q) when restricted to W2. Clearly det(τW2
) = −1 and hence τW2

6∈ Ω(W2) = Bv.
Note that the determinant is unaffected by a change of basis of W2. Moreover τW2

is not
an element of SO(W2) and is thus a reflection in the dihedral group O(W2). Observe that
τW2

fixes only elements of the form γ(e0 − µf0). Now, κ(γ(e0 − µf0)) = −µγ2, and so τW2

fixes an element of Vα for α ∈ −µ� and is fixed-point-free otherwise. Moreover λ2 6= 2µ,



A FAMILY OF HEMISYSTEMS ON THE PARABOLIC QUADRICS 11

hence κ(z − λ
2µ
(e0 − µf0)) 6= 0 and so z − λ

2µ
(e0 − µf0) 6∈ V0. Thus if κ(z − λ

2µ
(e0 − µf0)) =

1
2
+( λ

2µ
)2(−µ) 6∈ −µ�, then by Lemma 3.3, τW2

interchanges the orbits of Ω(W2) on V 1

2
+( λ

2µ
)2(−µ),

meaning z − λ
2µ
(e0 − µf0) and −z − λ

2µ
(e0 − µf0) lie in different orbits of Ω(W2) = Bv.

We claim that indeed κ(z − λ
2µ
(e0 − µf0)) 6∈ −µ�. To prove the claim, observe that

1
2
+( λ

2µ
)2(−µ) 6∈ −µ� if and only if λ2−2µ 6∈ �. Consider for a contradiction that λ2−2µ ∈ �.

Then there exists γ such that κ(γu1+u2) = 0, since κ(γu1+u2) = γ2κ(u1)+γβ(u1, u2)+κ(u2) =

−γ2

2
− γλ− µ has discriminant λ2 − 2µ. Hence 〈γu1 + u2, u3, . . . , ud〉 is a totally isotropic sub-

space in U of dimension d−1. However, as U is elliptic, its Witt index is d−2, a contradiction,
thus proving the claim. It follows then that there is no such g ∈ B which acts on M the same
way as τ .

After considering each case, we see that there is no element g ∈ B such that Mg = M τ . �

As a result of Lemma 3.9 the image of τ on each element in an orbit of B on maximals is
outside of the orbit, and since B is index 2 in A, this results in B doubling each orbit of A.
This gives the immediate corollary:

Corollary 3.10. Each orbit of A on maximals splits into two orbits of B on maximals.

The proof of Theorem 1.1 follows directly from Lemma 3.4, Lemma 3.5, Corollary 3.10 and
the application of the AB-Lemma, Lemma 2.5.

4. Concluding Remarks

In [8, Remark 2.12], a sporadic example of a hemisystem of Q(6, 3) is given which bares
similarities to the construction in this paper. The authors provide a similar decomposition of
the ambient space into a conic and its perp (of elliptic type). A subgroup isomorphic to A5 is
then found by computer in the pointwise stabiliser of the conic which fixes a hemisystem. It is
not known if the construction in [8] generalises to all q, or to greater rank, and so the authors
describe it as sporadic. Our construction instead finds a subgroup in the pointwise stabiliser
of the perp of the conic which is isomorphic to Ω3(3) ∼= A4, in the case q = 3, and generalises
to Ω3(q) for all odd q and rank at least 2.

We conclude with a more geometric description of the construction given in this paper. Let
p be a point of PG(2d, q) such that p⊥ is of elliptic type. Then τ is the unique involution which
fixes p⊥ point-wise. Let ℓ be any line of p⊥ of hyperbolic type. Then B is the derived subgroup
of the point-wise stabiliser of 〈p, ℓ〉⊥. It is clear that 〈p, ℓ〉 as a vector subspace corresponds to
W in Section 3.
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