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THE CONSTRUCTION OF MULTIPERMUTATION SOLUTIONS OF THE

YANG-BAXTER EQUATION OF LEVEL 2

PŘEMYSL JEDLIČKA, AGATA PILITOWSKA, AND ANNA ZAMOJSKA-DZIENIO

Abstract. We study involutive set-theoretic solutions of the Yang-Baxter equation of multipermu-
tation level 2. These solutions happen to fall into two classes – distributive ones and non-distributive
ones. The distributive ones can be effectively constructed using a set of abelian groups and a matrix
of constants. Using this construction, we enumerate all distributive involutive solutions up to size
14. The non-distributive solutions can be also easily constructed, using a distributive solution and
a permutation.

1. Introduction

The Yang-Baxter equation is a fundamental equation occurring in integrable models in statistical
mechanics and quantum field theory [22]. Let V be a vector space. A solution of the Yang–Baxter
equation is a linear mapping r : V ⊗ V → V ⊗ V such that

(id⊗ r)(r ⊗ id)(id ⊗ r) = (r ⊗ id)(id ⊗ r)(r ⊗ id).

Description of all possible solutions seems to be extremely difficult and therefore there were some
simplifications introduced (see e.g. [8]).

Let X be a basis of the space V and let σ : X2 → X and τ : X2 → X be two mappings. We
say that (X,σ, τ) is a set-theoretic solution of the Yang–Baxter equation if the mapping x ⊗ y 7→
σ(x, y) ⊗ τ(x, y) extends to a solution of the Yang–Baxter equation. It means that r : X2 → X2,
where r = (σ, τ) satisfies the braid relation:

(1.1) (id× r)(r × id)(id × r) = (r × id)(id × r)(r × id).

A solution is called non-degenerate if the mappings σ(x, ) and τ( , y) are bijections, for all
x, y ∈ X. A solution (X,σ, τ) is involutive if r2 = idX2 , and it is square free if r(x, x) = (x, x), for
every x ∈ X.

Convention 1.1. All solutions, we study in this paper, are set-theoretic, non-degenerate and
involutive so we will call them simply solutions. The set X can be of arbitrary cardinality.

It is known (see e.g. [37, 17, 7]) that there is a one-to-one correspondence between solutions of
the Yang-Baxter equation and involutive biracks (X, ◦, \◦, •, /•) – algebras which have a structure
of two one-sided quasigroups (X, ◦, \◦) and (X, •, /•) and satisfy some additional identities (5.1)–
(5.5). This fact allows one to characterize solutions of the Yang-Baxter equation applying universal
algebra tools.

In [10, Section 3.2] Etingof, Schedler and Soloviev introduced, for each solution (X,σ, τ), the
equivalence relation ∼ on the set X: for each x, y ∈ X
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x ∼ y ⇔ τ( , x) = τ( , y).

They showed that the quotient setX/∼ can be again endowed with a structure of a solution and they
call such a solution the retraction of the solution X and denote it by Ret(X). A solution X is said to
be a multipermutation solution of level k, if k is the smallest integer such that |Retk(X)| = 1. Since
then many results appeared that study multipermutation solutions, often of a small level, e.g. [15,
Section 8] or [18] which focused on the quantum spaces of (finite) solutions with multipermutation
level 2. Square-free multipermutation solutions are always decomposable [35] and several authors
gave descriptions of some of these solutions either as a generalized twisted union [10, 13, 5] or a
strong twisted union [15, 17]. We have to say, however, that this approach brings decompositions
only and does not offer a direct way how to construct such solutions. In our work we bring a
simple-to-use way how to construct multipermutation solutions of level 2 using abelian groups
only. Moreover, our approach works for all such solutions, not only for square-free ones.

It was proved by Gateva-Ivanova and Cameron [15, Proposition 8.2] that, for a square-free
solution (X,σ, τ), we have σx = σ(x, ) ∈ Aut(X), for all x ∈ X, if and only if the solution X is
a multipermutation solution of level 2. In the language of identities this is equivalent to (X, ◦, \◦)
being left distributive. It turns out, that this property can be characterized by several different
identities and the equivalence of these identities holds in more general structures. This is why we in
Section 2 study left quasigroups and we establish connections between several identities of binary
algebras.

Given a square-free solution of a multipermutation level 2 and the associated birack (X, ◦, \◦, •, /•),
the algebra (X, ◦, \◦) turns out to be a medial quandle (see Lemma 3.3). The structure of medial
quandles was studied in [19] and one of the main results was a construction of medial quandles
based on a set of abelian groups, a matrix of homomorphisms and a matrix of constants. In Sec-
tion 3, we adapt the construction to the current context (the matrix of homomorphisms is actually
not needed here anymore) and we generalize it so that it may include all distributive solutions, not
only those square-free ones.

If a solution (X,σ, τ) is a multipermutation solution of level 2 and e ∈ X, then (X,σ′, τ ′), where
σ′(x, y) = σ(x, σ−1

e (y)) and τ ′(x, y) = σe(τ(x, σ−1
e (y))), is a distributive solution [Theorem 7.12].

This phenomenon is a special case of something called an isotope. In Section 4 we study these
special isotopes on the level of left quasigroups.

In Section 5 we finally get to biracks and we show what results from Section 2 and Section 3
tell us in the world of distributive involutive biracks. Some of these results generalize the latest
results by Gateva-Ivanova [14]. We then translate the results into the language of solutions of
the Yang-Baxter equation in Section 7. We prove that a solution is of multipermutation level 2 if
and only if it is medial [Theorem 7.6] and we show equivalent properties for distributive solutions
of multipermutation level 2 [Theorem 7.7]. We also rephrase how to construct any solution of
multipermutation level 2. Additionally, we present a short direct proof that each abelian group (of
arbitrary order) is an IYB group (Theorem 7.11).

In Section 6 we focus on non-distributive biracks associated to solutions of multipermutation
level 2 and the isotopy that transforms them into distributive ones. This way we can effectively
construct all solutions of multipermutation level 2, which is used in Section 8 to enumerate small
biracks. Distributive biracks are enumerated up to size 14, for the others of multipermutation
level 2 we give an upper bound only since we lack an easy-to-use isomorphism criterion.

2. Left quasigroups

In this preliminary section we introduce some identities that we shall use throughout the text
and we show a few examples of left quasigroups with such properties.
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Definition 2.1. A left quasigroup is an algebra (X, ◦, \◦) with two binary operations: the left mul-
tiplication and the left division respectively, satisfying for every x, y ∈ X the following conditions:

(2.1) x ◦ (x\◦y) = y = x\◦(x ◦ y).

A right quasigroup is defined analogously as an algebra (X, •, /•) with two binary operations of
right multiplication and the right division satisfying for every x, y ∈ X the conditions:

(2.2) (y/•x) • x = y = (y • x)/•x.

Condition (2.1) simply means that all left translations Lx : X → X by x

Lx(a) = x ◦ a,

are bijections, with L−1
x (a) = x\◦a. Equivalently, that for every x, y ∈ X, the equation x ◦ u = y

has the unique solution u = L−1
x (y) in X. Similarly, Condition (2.2) gives that all right translations

Rx : X → X by x; Rx(a) = a • x, are bijections with R
−1
x (a) = a/•x.

It is obvious that if (X, ◦, \◦) is a left quasigroup then (X, \◦, ◦) is also a left quasigroup.

The left multiplication group of a left quasigroup (X, ◦, \◦) is the permutation group generated
by left translations, i.e. the group LMlt(X) = 〈Lx : x ∈ X〉.

Definition 2.2. Let m ∈ N. A left quasigroup (X, ◦, \◦) is called:

• left distributive, if for every x, y, z ∈ X:

x ◦ (y ◦ z) = (x ◦ y) ◦ (x ◦ z) ⇔ LxLy = Lx◦yLx(2.3)

• m-reductive, if for every x0, x1, x2, . . . , xm ∈ X:

(. . . ((x0 ◦ x1) ◦ x2) . . .) ◦ xm = (. . . ((x1 ◦ x2) ◦ x3) . . .) ◦ xm(2.4)

• m-permutational, if for every x, y, x1, x2, . . . , xm ∈ X:

(. . . ((x ◦ x1) ◦ x2) . . .) ◦ xm = (. . . ((y ◦ x1) ◦ x2) . . .) ◦ xm(2.5)

• medial, if for every x, y, z, t ∈ X:

(x ◦ y) ◦ (z ◦ t) = (x ◦ z) ◦ (y ◦ t) ⇔ Lx◦yLz = Lx◦zLy(2.6)

• right cyclic, if it satisfies the right cyclic law, i.e. for every x, y, z ∈ X:

(2.7) (x\◦y)\◦(x\◦z) = (y\◦x)\◦(y\◦z) ⇔ L−1
x\◦y

L−1
x = L−1

y\◦x
L−1
y ⇔ LxLx\◦y = LyLy\◦x

• non-degenerate, if the mapping

(2.8) T : X → X; x 7→ x\◦x,

is a bijection
• idempotent, if for every x ∈ X

x ◦ x = x ⇔ Lx(x) = x ⇔ L−1
x (x) = x.(2.9)

A left distributive left quasigroup is a rack. Idempotent racks are called quandles.

The condition of left distributivity is well established in the literature. It appeared in a natural
way in such areas as low-dimensional topology – in knot [3] and braid [6] invariants or in the theory
of symmetric spaces [24]. Probably at first it was introduced already at the end of 19th century
in papers of Peirce [29] and Schröder [36]. Recently, Lebed and Vendramin [23] considered the
condition in the context of solutions of the Yang-Baxter equation.

The property of mediality was first investigated as a generalization of the associative law for
quasigroups (see Murdoch [26] and Sushkievich [38]). It appears also in the characterization of
mean value functions [1]. The first systematic approach to medial groupoids was undertaken by

3



Ježek and Kepka in [21]. Idempotency in the theory of the Yang-Baxter solutions is called square-
freeness. Idempotent and medial quasigroups are investigated since the middle of 20th century. In
the wider context, two monographs [34, 33] of Romanowska and Smith are devoted to idempotent
and medial algebras called modes which are present in different branches of mathematics and find
applications in computer science, economics, physics, and biology.

2-reductive groupoids were considered by P lonka as a special case of cyclic groupoids [30]. The
more general m-reductive modes were investigated in [31] and [32]. In [19] and [20] m-reductive
quandles were characterized.

Right cyclic quasigroups (under the name cycle sets) were introduced by Rump in [35]. He showed
that there is a correspondence between solutions of the Yang-Baxter equation and non-degenerate
cycle sets (see Theorem 5.3).

Finally, Condition (2.5) was defined by Gateva-Ivanova in [14, Remark 4.6] to describe multiper-
mutation solutions of the Yang-Baxter equation (see Theorem 7.3). Earlier, Gateva-Ivanova and
Cameron used Condition (2.4) (see [15, Theorem 5.15]). They did not name these properties.

Observation 2.3. Each m-reductive left quasigroup is m-permutational and each m-permutational,
idempotent left quasigroup is m-reductive.

For a solution of the Yang-Baxter equation, Gateva-Ivanova considered in [14, Definition 4.3]
Condition (∗) which in the language of left quasigroups (X, ◦, \◦) means that

∀x ∈ X ∃a ∈ X a ◦ x = x.(∗)

It is evident, that each idempotent left quasigroup satisfies Condition (∗).
By Observation 2.3 we have that each idempotentm-permutational left quasigroup ism-reductive,

for arbitrary m ∈ N. The same is also true for m-permutational left quasigroups which satisfy Con-
dition (∗) (see also [14, Proposition 4.7]).

Lemma 2.4. Let (X, ◦, \◦) be a left quasigroup which satisfies Condition (∗) and m ∈ N. Then
(X, ◦, \◦) is m-permutational if and only if it is m-reductive.

Proof. We have only to prove that each m-permutational left quasigroup which satisfies Condition
(∗) is m-reductive. But it is evident. By Condition (∗) for each x ∈ X there exists ax ∈ X such
that ax ◦ x = x. Then for every x0, x1, x2, . . . , xm ∈ X we have:

(. . . ((x0 ◦ x1) ◦ x2) . . .) ◦ xm
(2.5)
= (. . . ((ax1

◦ x1) ◦ x2) . . .) ◦ xm = (. . . ((x1 ◦ x2) ◦ x3) . . .) ◦ xm,

which completes the proof. �

In this paper we are mainly interested in 2-reductive and 2-permutational left quasigroups. In
particular, a left quasigroup (X, ◦, \◦) is 2-reductive if, for every x, y, z ∈ X:

(x ◦ y) ◦ z = y ◦ z ⇔ Lx◦y = Ly,(2.10)

and it is 2-permutational if for every x, y, z, t ∈ X:

(z ◦ x) ◦ y = (t ◦ x) ◦ y ⇔ Lz◦x = Lt◦x.(2.11)

Example 2.5. The left quasigroup ({0, 1, 2, 3}, ◦, \◦) with the following left multiplication:

◦ 0 1 2 3
0 0 1 2 3
1 2 3 0 1
2 0 1 2 3
3 2 3 0 1

is a 2-reductive rack and, according to Lemma 3.3, it is medial. In this case L0 = L2 = id and
L1 = L3 = (02)(13).

4



Example 2.6. Let ({0, 1, 2, 3}, ◦, \◦) be a left quasigroup with the following left multiplication:

◦ 0 1 2 3
0 1 0 3 2
1 3 2 1 0
2 1 0 3 2
3 3 2 1 0

.

Clearly, L0 = L2 = (01)(23) and L1 = L3 = (03)(12). One can check that ({0, 1, 2, 3}, ◦, \◦ ) is
both right cyclic and 2-permutational but neither left distributive nor 2-reductive. Additionally,
by Corollary 6.4, ({0, 1, 2, 3}, ◦, \◦) is medial.

For a left quasigroup (X, ◦, \◦), Condition (2.3) means that all left translations for every x ∈ X,
are automorphisms of (X, ◦), i.e. for every x, y, z ∈ X

Lx(y ◦ z) = Lx(y) ◦ Lx(z).(2.12)

Lemma 2.7. Let (X, ◦, \◦) be a left quasigroup. Then

• (X, ◦, \◦) is left distributive if and only if (X, \◦, ◦) is left distributive.
• (X, ◦, \◦) is 2-reductive if and only if (X, \◦, ◦) is 2-reductive.
• (X, ◦, \◦) is medial if and only if (X, \◦, ◦) is medial.
• (X, ◦, \◦) is idempotent if and only if (X, \◦, ◦) is idempotent.

Proof. If Lx is an automorphism, then L−1
x is clearly an automorphism as well, giving Property

(2.12). Furthermore, for every x, y, z ∈ X:

(x ◦ y) ◦ z = y ◦ z
y 7→x\◦y

=⇒ (x ◦ (x\◦y)) ◦ z = (x\◦y) ◦ z
(2.1)
⇐⇒ y ◦ z = (x\◦y) ◦ z ⇔

Lx\◦y(z) = Ly(z) ⇔ L−1
x\◦y

(z) = L−1
y (z) ⇔ (x\◦y)\◦z = y\◦z

y 7→x◦y
=⇒

(x\◦(x ◦ y))\◦z = (x ◦ y)\◦z
(2.1)
⇐⇒ y\◦z = (x ◦ y)\◦z ⇔

L−1
y (z) = L−1

x◦y(z) ⇔ Ly(z) = Lx◦y(z) ⇔ (x ◦ y) ◦ z = y ◦ z.

Similarly, we can show that for every x, y, z, t ∈ X (see also [33, Exercise 8.6H])

(x ◦ y) ◦ (z ◦ t) = (x ◦ z) ◦ (y ◦ t) ⇔ (x\◦y)\◦(z\◦t) = (x\◦z)\◦(y\◦t). �

Next examples show that, for right cyclic or 2-permutational left quasigroup (X, ◦, \◦), the left
quasigroup (X, \◦, ◦) does not have to be right cyclic or 2-permutational.

Example 2.8. Let ({0, 1, 2}, ◦, \◦) be a left quasigroup with the following left multiplication and
left division:

◦ 0 1 2
0 1 0 2
1 2 0 1
2 2 0 1

\◦ 0 1 2
0 1 0 2
1 1 2 0
2 1 2 0

,

or equivalently, L0 = (01) = L−1
0 , L1 = L2 = (021) and L−1

1 = L−1
2 = (012). This left quasigroup

is 2-permutational, but

0 = 0\◦1 = (0\◦1)\◦1 6= (1\◦1)\◦1 = 2\◦1 = 2.
5



Example 2.9. Let ({0, 1, 2, 3}, ◦, \◦ ) be a left quasigroup with the following left multiplication and
left division:

◦ 0 1 2 3
0 0 1 3 2
1 2 3 1 0
2 3 2 0 1
3 1 0 2 3

\◦ 0 1 2 3
0 0 1 3 2
1 3 2 0 1
2 2 3 1 0
3 1 0 2 3

,

i.e. L0 = (23) = L−1
0 , L1 = (0213) = L−1

2 , L2 = (0312) = L−1
1 and L3 = (01)(23) = L−1

3 . In this
case the left quasigroup is right cyclic, but

2 = 1 ◦ 0 = (0 ◦ 1) ◦ (0 ◦ 0) 6= (1 ◦ 0) ◦ (1 ◦ 0) = 2 ◦ 2 = 0.

Directly from (2.3) and Lemma 2.7 we obtain that the left distributivity implies, for every
x, y ∈ X,

Lx◦y = LxLyL
−1
x and Lx\◦y = L−1

x LyLx.(2.13)

Note also that, for an arbitrary automorphism α of (X, ◦), we have

Lα(x)(y) = α(x) ◦ y = α(x ◦ α−1(y)) = αLxα
−1(y).

3. 2-reductive racks

It is known [15, Theorem 5.15] that a square-free multipermutation solutions of level 2 is 2-
reductive. It turns out that 2-reductivity has connections to other identities presented in Section 2.
We study all these connections on the class of racks which are, after all, an interesting class itself,
having many applications, e.g. in knot theory [12], [9, Chapter 5]. Moreover, we can apply existing
tools, like a construction using affine meshes which is presented in the second half of this section.

Lemma 3.1. Let (X, ◦, \◦) be a rack. The following conditions are equivalent:

(1) (X, ◦, \◦) is right cyclic;
(2) the group LMlt(X) is abelian;
(3) (X, \◦, ◦) is right cyclic;
(4) (X, ◦, \◦) is 2-reductive.

Proof. In a rack, by (2.13), the conditions (2) and (4) are equivalent:

Ly = Lx◦y = LxLyL
−1
x ⇔ LyLx = LxLy.

Furthermore, by (2.13) and (2.7) for every x, y, z ∈ X we have:

(x\◦y)\◦(x\◦z) = (y\◦x)\◦(y\◦z) ⇔ L−1
x\◦y

L−1
x = L−1

y\◦x
L−1
y ⇔ LxLx\◦y = LyLy\◦x

⇔ LxL
−1
x LyLx = LyL

−1
y LxLy ⇔ LxLy = LyLx ⇔ LxLyL

−1
x Lx = LyLxL

−1
y Ly

⇔ Lx◦yLx = Ly◦xLy ⇔ (x ◦ y) ◦ (x ◦ z) = (y ◦ x) ◦ (y ◦ z),

which completes the proof. �

Corollary 3.2. Let (X, ◦, \◦) be a right cyclic left quasigroup. Then the following conditions are
equivalent:

(1) (X, ◦, \◦) is a rack;
(2) (X, ◦, \◦) is 2-reductive.

Proof. If (X, ◦, \◦) is a rack then by Lemma 3.1 it is 2-reductive.
Conversely, by 2-reductivity of the right cyclic left quasigroup (X, ◦, \◦) we have

LxLx\◦y = LyLy\◦x ⇒ LxLy = LyLx = Lx◦yLx,

which shows that (X, ◦, \◦) is left distributive. �
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Lemma 3.3. Let (X, ◦, \◦) be a 2-reductive left quasigroup. Then the following conditions are
equivalent:

(1) (X, ◦, \◦) is left distributive;
(2) the group LMlt(X) is abelian;
(3) (X, ◦, \◦) is right cyclic;
(4) (X, \◦, ◦) is right cyclic;
(5) (X, ◦, \◦) is medial.

Proof. Let (X, ◦, \◦) be a 2-reductive left quasigroup. The implications: (1) ⇒ (2), (1) ⇒ (3) and
(1) ⇒ (4) directly follow by Lemma 3.1.

If the group LMlt(X) is abelian then

Lx◦yLx = LyLx = LxLy,

which gives (2) ⇒ (1).
If (X, ◦, \◦) is right cyclic then

Lx◦yLx = LyLx = LyLy\◦x = LxLx\◦y = LxLy,

and similarly, if (X, \◦, ◦) is right cyclic then

Lx◦yLx = Ly◦xLy = LxLy,

so (3) ⇒ (1) and (4) ⇒ (1) are proved.
Finally,

Lx◦yLz = Lx◦zLy ⇔ LyLz = LzLy ⇔ Lz◦yLz = LzLy,

which shows that (1) ⇔ (5) and completes the proof. �

In [19, Theorem 3.14] David Stanovský and the authors of this paper presented a general con-
struction of medial quandles. It turned out [19, Theorem 6.9] that the case of 2-reductive quandles
is actually much less complicated because 2-reductive quandles are rather combinatorial than alge-
braic structures. Moreover, the construction of 2-reductive quandles can be easily generalized for
2-reductive racks, as we shall see below.

Definition 3.4. A trivial affine mesh over a non-empty set I is the pair

A = ((Ai)i∈I , (ci,j)i,j∈I),

where Ai are abelian groups and ci,j ∈ Aj constants such that Aj = 〈{ci,j | i ∈ I}〉, for every j ∈ I.

If I is a finite set we will usually display a trivial affine mesh as a pair ((Ai)i∈I , C), where
C = (ci,j)i,j∈I is an |I| × |I| matrix.

Definition 3.5. The sum of a trivial affine mesh A = ((Ai)i∈I , (ci,j)i,j∈I) over a set I is an algebra
(
⋃

i∈I
Ai, ◦, \◦) defined on the disjoint union of the sets Ai, with two operations

a ◦ b = b+ ci,j,

a\◦b = b− ci,j,

for every a ∈ Ai and b ∈ Aj .

Theorem 3.6. An algebra (X, ◦, \◦) is a 2-reductive rack if and only if it is the sum of some trivial
affine mesh. The orbits of the action of LMlt(X) then coincide with the groups of the mesh.
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Proof. At first we show that the sum of a trivial affine mesh is a 2-reductive rack with orbits Ai,
i ∈ I.

Let a ∈ Ai, b ∈ Aj, c ∈ Ak. Obviously the equation a ◦ x = x + ci,j = b has a unique solution
x = b− ci,j ∈ Aj . Furthermore,

(a ◦ b) ◦ c = (b+ ci,j) ◦ c = c+ cj,k = b ◦ c,

and

a ◦ (b ◦ c) = a ◦ (c+ cj,k) = (c+ cj,k) + ci,k = (c+ ci,k) + cj,k =

(b+ ci,j) ◦ (c+ ci,k) = (a ◦ b) ◦ (a ◦ c).

For x ∈ Aj and a ∈ Ak we have

La(x) = a ◦ x = x+ ck,j ∈ Aj .

Thus the group LMlt(X) acts transitively on Aj if and only if the elements ck,j, k ∈ I, generate
the group Aj .

Now let (X, ◦, \◦) be a 2-reductive rack, and choose a transversal E to the orbit decomposition.
By Lemma 3.3, the group LMlt(X) is abelian. Hence for every e ∈ E, the orbit Xe = {α(e) | α ∈
LMlt(X)} is an abelian group (Xe,+,−, e) with α(e) + β(e) = αβ(e) and −α(e) = α−1(e), for
α, β ∈ LMlt(X).

Let for every e, f ∈ E

ce,f := e ◦ f = Le(f) ∈ Xf.

Since LMlt(X) is abelian, and each α ∈ LMlt(X) is an automorphism of (X, ◦), we have α(e)◦f =
Lα(e)(f) = αLeα

−1(f) = Le(f) = e ◦ f . This implies that the set

{ce,f | e ∈ E} = {e ◦ f | e ∈ E} = {α(e) ◦ f | α ∈ LMlt(X), e ∈ E} = {La(f) | a ∈ X}

generates the group (Xf,+,−, f). This shows that (X, ◦, \◦) is the sum of the trivial affine mesh
((Xe)e∈E , (ce,f )e,f∈E) over the set E.

Finally, let a = α(e) ∈ Xe and b = β(f) ∈ Xf with α, β ∈ LMlt(X). Therefore we obtain

a ◦ b = La(b) = Lα(e)β(f) = Leβ(f) = Le(f) + β(f) = ce,f + b.

So we verified that the sum of ((Xe)e∈E , (ce,f )e,f∈E) yields the original rack (X, ◦, \◦). �

Note that the sum of such trivial affine mesh is idempotent if and only if ci,i = 0, for each i ∈ I.

Theorem 3.7. Let A = ((Ai)i∈I , (ai,j)i,j∈I) and B = ((Bi)i∈I , (bi,j)i,j∈I) be two trivial affine
meshes, over the same index set I. Then the sums of A and B are isomorphic 2-reductive racks
if and only if there is a bijection π of the set I and group isomorphisms ψi : Ai → Bπ(i) such that
ψj(ai,j) = bπ(i),π(j), for every i, j ∈ I.

Proof. The proof goes in the same way as the proof of [19, Theorem 4.2] for medial quandles in the
case of 2-reductive ones. �

Example 3.8. Up to isomorphism, there are exactly five 2-reductive racks of size 3. They are the
sums of the following trivial affine meshes:

• One orbit: ((Z3), (1)).
• Two orbits: ((Z2,Z1), ( 1 0

0 0 )), ((Z2,Z1), ( 0 0
1 0 )) and ((Z2,Z1), ( 1 0

1 0 )).

• Three orbits: ((Z1,Z1,Z1),
(

0 0 0
0 0 0
0 0 0

)

).

Theorems 3.6 and 3.7 allow us to enumerate 2-reductive racks, up to isomorphism. The numbers
are presented in Table 1 in Section 8.
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4. 2-permutational left quasigroups

Our goal in this paper is to study multipermutation solutions of level 2. In the language of
identities they are 2-permutational, see Theorem 7.3. This is why we focus on 2-permutational left
quasigroups. In particular, we link them via a permutation to 2-reductive left quasigroups studied
in the previous section. We start with a few auxiliary lemmas.

Lemma 4.1. Let (X, ◦, \◦) be a 2-permutational left quasigroup. Then for every x, y, z ∈ X

LLyL
−1
z (x) = Lx.(4.1)

Proof. By (2.11) and (2.1), we have

LLyL
−1
z (x)(t) = (y ◦ (z\◦x)) ◦ t = (z ◦ (z\◦x)) ◦ t = x ◦ t = Lx(t). �

Lemma 4.2. Let (X, ◦, \◦) be a medial left quasigroup. Then for every x, y, z ∈ X

(1) Lz◦x = Lz◦zLxL
−1
z ;

(2) Lz\◦x = L−1
z◦zLxLz;

(3) LxL
−1
z Ly = LyL

−1
z Lx.

Proof. Directly by mediality we have

Lz◦xLz = Lz◦zLx and Lz◦zLz\◦x = Lz◦(z\◦x)Lz = LxLz.

Further, by (2.6)

Lz◦zLxL
−1
z Ly = Lz◦xLy = Lz◦yLx = Lz◦yLzL

−1
z Lx = Lz◦zLyL

−1
z Lx,

which implies
LxL

−1
z Ly = LyL

−1
z Lx. �

As we noticed in Examples 2.8 and 2.9, for right cyclic or 2-permutational left quasigroups
(X, ◦, \◦), the left quasigroup (X, \◦, ◦) need not be right cyclic nor 2-permutational. But under
some additional assumptions, they are.

Lemma 4.3. Let (X, ◦, \◦) be a 2-permutational medial left quasigroup. Then both left quasigroups
(X, ◦, \◦) and (X, \◦, ◦) are right cyclic.

Proof. Let x, y ∈ X. Then

LxLx\◦y
(2.1)
= Ly◦(y\◦x)Lx\◦y

(2.6)
= Ly◦(x\◦y)Ly\◦x

(2.11)
= Lx◦(x\◦y)Ly\◦x

(2.1)
= LyLy\◦x and

Lx◦yLx
(2.1)
= Lx◦yLy\◦(y◦x)

(2.6)
= Lx◦(y\◦(y◦x))Ly

(2.11)
= Ly◦(y\◦(y◦x))Ly

(2.1)
= Ly◦xLy. �

Lemma 4.4. Let (X, ◦, \◦) be a right cyclic medial left quasigroup. Then both (X, ◦, \◦) and
(X, \◦, ◦) are 2-permutational.

Proof. We prove the claim first for (X, \◦, ◦) using Lemma 2.7. Note that Condition (2.6) for
(X, \◦, ◦) means that for x, y, z ∈ X

L−1
x\◦y

L−1
z = L−1

x\◦z
L−1
y ⇔ L−1

x\◦y
L−1
z Ly = L−1

x\◦z
.(4.2)

Hence,

L−1
y\◦x

(2.7)
= L−1

x\◦y
L−1
x Ly

(4.2)
= L−1

x\◦x

and the right-hand side does not depend on y. Now, for (X, ◦, \◦), we notice that substituting
y 7→ x\◦y in (2.6) we get Lx◦z = LyLzL

−1
x\◦y

which we use in

Lx◦y
(2.6)
= Lx◦zLyL

−1
z = LyLzL

−1
x\◦y

LyL
−1
z = LyLzL

−1
y\◦y

LyL
−1
z ,
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where the last equality follows from (X, \◦, ◦) being 2-permutational. Again, the right-hand side
does not depend on x, which finishes the proof. �

In the theory of quasigroups (see e.g. [28, Section II.2]), there is a standard method, called
isotopy, how to derive a quasigroup from another quasigroup. We do not need this notion in the
full generality, we shall present here a special case only.

Definition 4.5. Let (X, ◦, \◦) be a left quasigroup and π be a bijection of the set X. Define on
the set X new binary operations:

x ∗ y := x ◦ π(y) = Lxπ(y) and(4.3)

x\∗y := π−1(x\◦y) = π−1L−1
x (y).(4.4)

The algebra (X, ∗, \∗) is called the π-isotope of (X, ◦, \◦).

Remark 4.6. It is easy to note that

x ∗ (x\∗y) = Lxππ
−1L−1

x (y) = y and

x\∗(x ∗ y) = π−1L−1
x Lxπ(y) = y.

Therefore (X, ∗, \∗) is also a left quasigroup. To obtain the multiplication table of ∗ for a π-isotope
of a finite left quasigroup (X, ◦, \◦), one should permute all columns of the multiplication table of
◦ using the permutation π.

Remark 4.7. Let (X, ◦, \◦) be a non-degenerate left quasigroup. It means that the mapping

T : X → X; x 7→ L−1
x (x) = x\◦x,

is a bijection. If π is a bijection of the set X then the mapping

Tπ : X → X; x 7→ π−1L−1
x (x) = x\∗x,

is a bijection, too. This proves that the left quasigroup (X, ∗, \∗), being the π-isotope of (X, ◦, \◦),
is non-degenerate.

Lemma 4.8. Let (X, ◦, \◦) be a left quasigroup and π be a bijection of the set X. Then the π-isotope
of (X, ◦, \◦) is

(1) 2-reductive if and only if, for every x, y ∈ X,

LLxπ(y) = Ly,(4.5)

(2) 2-permutational if and only if, for every x, y, z ∈ X,

LLxπ(z) = LLyπ(z),(4.6)

(3) left distributive if and only if, for every x, y, z ∈ X,

LLxπ(y)πLx = LxπLy.(4.7)

Proof. Let (X, ∗, \∗) be the π-isotope of (X, ◦, \◦). Hence for every x, y, z ∈ X

(x ∗ y) ∗ z = y ∗ z ⇔ LLxπ(y)π(z) = Lyπ(z),

(x ∗ z) ∗ t = (y ∗ z) ∗ t ⇔ LLxπ(z)π(t) = LLyπ(z)π(t),

(x ∗ y) ∗ (x ∗ z) = x ∗ (y ∗ z) ⇔ Lx∗yπLxπ(z) = LLxπ(y)πLxπ(z) = LxπLyπ(z).

�

Corollary 4.9. Let (X, ◦, \◦) be a left quasigroup and π be a bijection of the set X. Then (X, ◦, \◦)
is 2-permutational if and only if the π-isotope of (X, ◦, \◦) is 2-permutational.
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Proof. Clearly, Condition (2.11) implies Condition (4.6), for each permutation π of the set X.
Further, by Lemma 4.8(2) it is sufficient to show that left quasigroup (X, ◦, \◦) which satisfies
Condition (4.6) is 2-permutational. Indeed, for every x, y, z ∈ X we have

LLxπ(z) = LLyπ(z)
z 7→π−1(z)

⇒ LLx(z) = LLy(z).

�

Corollary 4.10. Let (X, ◦, \◦) be a 2-reductive left quasigroup and ̺ be a bijection on the set X.
Then the ̺-isotope of (X, ◦, \◦) is a 2-permutational left quasigroup.

In general π-isotope of 2-reductive left quasigroup does not have to be 2-reductive. The left
quasigroup from Example 2.6 is the (01)(23)-isotope of the 2-reductive left quasigroup from Example
2.5 but it is not 2-reductive.

The idea of the next theorem is the following: we already know how to construct 2-reductive
racks, using the construction from Section 3. Now, according to Corollary 4.10, ̺-isotopes of these
2-reductive racks are 2-permutational. And we want these ̺-isotopes to be right cyclic.

Theorem 4.11. Let (X, ◦, \◦) be a 2-reductive left quasigroup and ̺ be a bijection on the set X
such that for every x, y ∈ X

L̺(y)̺Lx = L̺(x)̺Ly ⇔ ∀z ∈ X ̺(y) ◦ ̺(x ◦ z) = ̺(x) ◦ ̺(y ◦ z).(4.8)

Then the ̺-isotope of (X, ◦, \◦) is a 2-permutational right cyclic left quasigroup.

Proof. Let (X, ∗, \∗) be the ̺-isotope of (X, ◦, \◦). By Corollary 4.10, (X, ∗, \∗) is 2-permutational.
Further, Condition (4.8) is equivalent to the following one:

L−1
x ̺−1L−1

̺(y) = L−1
y ̺−1L−1

̺(x).(4.9)

Substituting x by ̺−1(x) and y by ̺−1(y) in (4.9) we obtain:

L−1
̺−1(x)

̺−1L−1
y = L−1

̺−1(y)
̺−1L−1

x .(4.10)

Together with Lemma 2.7 this implies that for x, y, z ∈ X

(x\∗y)\∗(x\∗z) = ̺−1L−1
x (y)\∗̺

−1L−1
x (z) = ̺−1L−1

̺−1L−1
x (y)

̺−1L−1
x (z)

(4.10)
=

̺−1L−1
̺−1(x)

̺−1L−1
L−1
x (y)

(z)
(2.10)

= ̺−1L−1
̺−1(x)

̺−1L−1
y (z)

(4.10)
= ̺−1L−1

̺−1(y)
̺−1L−1

x (z)
(2.10)

=

̺−1L−1
̺−1(y)

̺−1L−1
L−1
y (x)

(z)
(4.10)

= ̺−1L−1
̺−1L−1

y (x)
̺−1L−1

y (z) = ̺−1L−1
y (x)\∗̺

−1L−1
y (z) =

(y\∗x)\∗(y\∗z),

which shows that the left quasigroup (X, ∗, \∗) is right cyclic. �

Example 4.12. By Lemma 3.1, Condition (4.8) is satisfied by every automorphism ̺ of a 2-
reductive rack, since for x, y ∈ X

L̺(y)̺Lx = ̺Ly̺
−1̺Lx = ̺LyLx = ̺LxLy = ̺Lx̺

−1̺Ly = L̺(x)̺Ly.

On the other hand, each 2-permutational medial left quasigroup has as an isotope that is a
2-reductive rack.

Theorem 4.13. Let (X, ◦, \◦) be a left quasigroup and π be a bijection on the set X which satisfies
Condition (4.5) and such that for each x, y ∈ X

LxπLy = LyπLx.(4.11)

Then the π-isotope of (X, ◦, \◦) is a 2-reductive rack.
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Proof. Let (X, ∗, \∗) be the π-isotope of (X, ◦, \◦). By Lemma 4.8(1), (X, ∗, \∗) is 2-reductive.
Moreover, for x, y ∈ X we have

LLxπ(y)πLx
(4.5)
= LyπLx

(4.11)
= LxπLy.

By Lemma 4.8(3) the left quasigroup (X, ∗, \∗) is left distributive, and in consequence 2-reductive
rack. �

Corollary 4.14. Let (X, ◦, \◦) be a 2-permutational medial left quasigroup and e ∈ X. Then the
L−1
e -isotope of (X, ◦, \◦) is a 2-reductive rack.

Proof. By Lemmas 4.1 and 4.2, for each x, y ∈ X

LLxL
−1
e (y) = Ly and LxL

−1
e Ly = LyL

−1
e Lx,

which shows that Conditions (4.5) and (4.11) are satisfied for π = L−1
e . Corollary follows by

Theorem 4.13. �

Example 4.15. Let (X, ◦, \◦) be the 2-permutational medial left quasigroup from Example 2.6
and let e = 0. Then (X, ∗, \∗), with x ∗ y = x ◦ L−1

0 (y) and x\∗y = L0(x\◦y), is a 2-reductive rack
with the ∗-multiplication table presented in Example 2.5.

The next example shows that the assumption of mediality in Corollary 4.14 is not always needed.

Example 4.16. Let ({0, 1, 2}, ◦, \◦) be a left quasigroup with the following left multiplication:

◦ 0 1 2
0 0 2 1
1 0 2 1
2 1 2 0

,

i.e. L0 = L1 = (12) and L2 = (012). This left quasigroup is 2-permutational, but not medial

0 = 0 ◦ 0 = (0 ◦ 0) ◦ (1 ◦ 0) 6= (0 ◦ 1) ◦ (0 ◦ 0) = 2 ◦ 0 = 1.

But for π = L−1
0 = (12) Condition (4.11) is satisfied and the π-isotope of ({0, 1, 2}, ◦, \◦)

∗ 0 1 2
0 0 1 2
1 0 1 2
2 1 0 2

is 2-reductive rack ((Z2,Z1), ( 0 0
1 0 )).

It is worth emphasizing that all results from Sections 2 – 4 established for left quasigroups are
also true for right quasigroups, when using their dual versions.

5. Left distributive involutive biracks

In the previous three sections we prepared tools that we shall be now using on biracks – universal
algebraic incarnations of set-theoretic solutions of the Yang-Baxter equation. Originally, biracks
are algebras studied in low-dimensional topology [11, 9]. The equational definition of a birack we
use here was given first in [37]. (Note that Stanovský considered two left quasigroups there.)

Definition 5.1. An algebra (X, ◦, \◦, •, /•) with four binary operations is called a birack, if (X, ◦, \◦)
is a left quasigroup, (X, •, /•) is a right quasigroup and the following holds for any x, y, z ∈ X:

x ◦ (y ◦ z) = (x ◦ y) ◦ ((x • y) ◦ z),(5.1)

(x ◦ y) • ((x • y) ◦ z) = (x • (y ◦ z)) ◦ (y • z),(5.2)

(x • y) • z = (x • (y ◦ z)) • (y • z).(5.3)
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We will say that a birack (X, ◦, \◦, •, /•) is left distributive, if (X, ◦, \◦) is a rack, is right dis-
tributive, if for every x, y, z ∈ X

(y • z) • x = (y • x) • (z • x),

i.e. the right quasigroup (X, •, /•) is right distributive. The birack is distributive if it is left and
right distributive. It is evident that all properties of left distributive biracks stay true in its dual
form for right distributive ones.

Example 5.2. Let X be a non-empty set and let f, g : X → X be two bijections with fg = gf .
An algebra (X, ◦, \◦, •, /•) such that for every x, y ∈ X,

x ◦ y = f(y), x\◦y = f−1(y),

x • y = g(x), x/•y = g−1(x)

is a birack called 1-permutational (since both quasigroups are 1-permutational). If f, g = id, 1-
permutational birack is called a projection birack.

Each 1-permutational birack is left distributive, since for every x, y, z ∈ X

x ◦ (y ◦ z) = LxLy(z) = f2(z) = Lx◦yLx(z) = (x ◦ y) ◦ (x ◦ z).

A birack is idempotent if both one-sided quasigroups (X, ◦, \◦) and (X, •, /•) are idempotent.
And a birack is involutive if it additionally satisfies, for every x, y ∈ X:

(x ◦ y) ◦ (x • y) = x,(5.4)

(x ◦ y) • (x • y) = y.(5.5)

Note that Conditions (5.4) and (5.5) give, for every x, y ∈ X,

x • y = L−1
x◦y(x) = (x ◦ y)\◦x and x ◦ y = R

−1
x•y(y) = y/•(x • y).(5.6)

It follows then, that an involutive birack is idempotent if (X, ◦, \◦) or (X, •, /•) is idempotent.
We shall see (Corollary 5.8) that an involutive birack is left distributive if and only if it is right
distributive.

The next, well known result (see [35, Proposition 1], [7, Proposition 1.5], [20, Section 4.2]) is
crucial for our considerations.

Theorem 5.3. An algebra (X, ◦, \◦, •, /•) is an involutive birack if and only if (X, ◦, \◦) is a non-
degenerate right cyclic left quasigroup.

Recall, if (X, ◦, \◦) is a non-degenerate right cyclic left quasigroup then defining for every x, y ∈
X, x • y = Ry(x) = (x ◦ y)\◦x, and x/•y = R

−1
y (x), the algebra (X, ◦, \◦, •, /•) is an involutive

birack.

Remark 5.4. Conditions (5.1) – (5.3) and (5.4) – (5.5) are dual with respect to operations ◦ and
•. Thus Theorem 5.3 immediately implies (see [7], [35] or [20, Section 4.2]) that in an involutive
birack (X, ◦, \◦, •, /•), the right quasigroup (X, •, /•) is non-degenerate and left cyclic i.e. for every
x, y, z ∈ X

(z/•x)/•(y/•x) = (z/•y)/•(x/•y),

and the mapping

S : X → X; x 7→ x/•x

is a bijection.
Moreover (see [35] and [20, Section 2]), operations \◦ and /• are connected by

(x\◦x)/•(x\◦x) = x and (x/•x)\◦(x/•x) = x,
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which is equivalent to the fact that the mappings S and T : X → X;x 7→ x\◦x are mutually inverse.
It simply means that each involutive birack is a biquandle (see [37]).

An involutive birack (X, ◦, \◦, •, /•) is 2-reductive if the left quasigroup (X, ◦, \◦) is 2-reductive.
By Theorem 5.3 and Corollary 3.2 we directly obtain the following.

Corollary 5.5. An involutive birack is left distributive if and only if it is 2-reductive.

From now on, we will use both terms: a (left) distributive involutive birack and a 2-reductive
involutive birack, interchangeably.

In some cases in a birack (X, ◦, \◦, •, /•), the left multiplication ◦ and the right multiplication •
are mutually inverse, i.e. for every x, y ∈ X, the following condition is satisfied:

(5.7) (x ◦ y) • x = y = x ◦ (y • x) ⇔ Lx = R
−1
x .

Condition (5.7) is called lri (see [17, Definition 2.18]).
For example, Condition lri is satisfied in idempotent involutive biracks [17, Corollary 2.33].

Moreover, Gateva-Ivanova showed that also 2-reductive involutive biracks satisfy this condition.
Below we present a shorter alternative proof of this fact.

Lemma 5.6. [14, Lemma 7.1] An involutive 2-reductive birack satisfies Condition lri.

Proof. Let (X, ◦, \◦, •, /•) be an involutive 2-reductive birack. Then, for each x, y ∈ X we obtain

x ◦ (y • x)
(5.6)
= x ◦ L−1

y◦x(y)
(2.10)

= x ◦ L−1
x (y) = x ◦ (x\◦y)

(2.1)
= y

and

(x ◦ y) • x
(5.6)
= L−1

(x◦y)◦x(x ◦ y)
(2.10)

= L−1
x Lx(y) = y. �

The converse statement to Lemma 5.6 is not true even for the idempotent case.

Example 5.7. Let (X = {0, 1, 2, 3, 4}, ◦, \◦ , •, /•) be the following idempotent involutive birack:
L0 = L3 = R0 = R3 = (24), L1 = R1 = (02)(34), L2 = L4 = R2 = R4 = (03). The birack satisfies
Condition lri, but it is not 2-reductive, since L4 = LL1(3) 6= L3.

As a result of Lemma 5.6, one obtains that an involutive left (or right) distributive birack is
distributive.

Corollary 5.8. An involutive birack (X, ◦, \◦, •, /•) is left distributive if and only if it is right
distributive.

Proof. By Corollary 5.5, an involutive left distributive birack is 2-reductive and by Lemma 5.6 it
satisfies Condition lri. Hence, for every x, y ∈ X, we have x • y = y\◦x. By Lemma 2.7 (X, \◦, ◦)
is left distributive, and straightforward calculations show that (X, •, /•) is right distributive.

The proof in the opposite direction follows by the fact that a right distributive right quasigroup
satisfies dual 2-reductive law, and in consequence it also satisfies Condition lri. �

Moreover, if (X, ◦, \◦, •, /•) is an involutive distributive birack then the left quasigroup (X, ◦, \◦)
and the right quasigroup (X, •, /•) are mutually orthogonal, i.e. for every a, b ∈ X, the pair of
equations

a = x ◦ y and b = x • y

has a unique solution: x = a ◦ b and y = b\◦a. Indeed, by Corollary 5.5
the left quasigroup (X, ◦, \◦) is 2-reductive. Therefore, we have

x ◦ y = (a ◦ b) ◦ (b\◦a) = La◦bL
−1
b (a)

(2.10)
= LbL

−1
b (a) = a.
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Further, by Lemma 5.6, x • y = y\◦x and x/•y = y ◦ x. Hence,

x • y = (a ◦ b) • (b\◦a) = (b\◦a)\◦(a ◦ b) = L−1
b\◦a

La(b)
(2.10)

= L−1
a La(b) = b.

Since by Corollary 5.5, for an involutive distributive birack (X, ◦, \◦, •, /•), the left quasigroup
(X, ◦, \◦) is 2-reductive, Theorem 3.6 immediately implies

Theorem 5.9. Each involutive distributive birack (X, ◦, \◦, •, /•) is a disjoint union, over a set I,
of abelian groups Aj = 〈{ai,j | i ∈ I}〉, for every j ∈ I, with operations:

x ◦ y = y + ai,j and x\◦y = y − ai,j,

x • y = y\◦x = x− aj,i and x/•y = x+ aj,i,

for x ∈ Ai and y ∈ Aj.

Taking the notion from 2-reductive racks, we will shortly say that the birack (X, ◦, \◦, •, /•) is
the sum of a trivial affine mesh A = ((Ai)i∈I , (ai,j)i,j∈I) over a set I. Note that each orbit is a
1-permutational birack.

Recall Condition (∗) discussed in Section 2. Involutive distributive biracks without fixed points
are examples of biracks which do not satisfy the condition. The representation of involutive dis-
tributive birack as the sum of a trivial affine mesh allows one to verify quickly Condition (∗).

Remark 5.10. Let (X, ◦, \◦, •, /•) be an involutive distributive birack. By Theorem 5.9, the
birack (X, ◦, \◦, •, /•) is the sum of a trivial affine mesh ((Ai)i∈I , (ci,j)i,j∈I) over a set I. Then
(X, ◦, \◦, •, /•) satisfies Condition (∗) if and only if

∀i ∈ I ∀x ∈ Ai ∃j ∈ I ∃a ∈ Aj a ◦ x = x+ cj,i = x ⇔ ∀i ∈ I ∃j ∈ I cj,i = 0.

Remark 5.10 says that an involutive distributive birack satisfies Condition (∗) if and only if in
each column in the matrix of constants there is at least one 0.

Example 5.11. Let a birack (X, ◦, \◦, •, /•) be the sum of the trivial affine mesh ((Z4,Z4), ( 1 2
2 1 )).

Then (X, ◦, \◦, •, /•) is distributive but does not satisfy Condition (∗). This birack is also not
1-permutational.

Let (X, ◦, \◦, •, /•) be a birack. Etingof, Schedler and Soloviev defined in [10] the relation

a ∼ b ⇔ La = Lb ⇔ ∀x ∈ X a ◦ x = b ◦ x.(5.8)

By their results, the relation ∼ is a congruence of involutive biracks, i.e. an equivalence relation
on the set X preserving all four operations in a birack (X, ◦, \◦, •, /•).

Example 5.12. Let (X, ◦, \◦, •, /•) be an involutive distributive birack. By Theorem 5.9, the
birack (X, ◦, \◦, •, /•) is the sum of a trivial affine mesh ((Ai)i∈I , (ci,j)i,j∈I) over a set I. For a ∈ Ai

and b ∈ Aj

a ∼ b ⇔ ∀k ∈ I ∀x ∈ Ak x+ ci,k = a ◦ x = b ◦ x = x+ cj,k ⇔ ∀k ∈ I ci,k = cj,k.

Lemma 5.13. Let (X, ◦, \◦, •, /•) be an involutive distributive birack. Then the quotient birack
(X/∼, ◦, \◦, •, /•) is a projection one.

Proof. By Corollary 5.5, (X, ◦, \◦, •, /•) is 2-reductive. In consequence, x◦y ∼ y. Since the relation
∼ is a congruence of (X, ◦, \◦, •, /•), x ∼ x and (x ◦ y) • x ∼ y • x. By Lemma 5.6, (x ◦ y) • x = y
which gives y ∼ y • x. �

15



6. 2-permutational involutive biracks

Lemma 5.13 shows that, for each involutive distributive birack, its quotient by the relation (5.8)
is a projection birack. There are also not distributive involutive biracks such that the quotient is a
1-permutational birack.

Example 6.1. Let (X = {0, 1, 2, 3}, ◦, \◦ , •, /•) be the following involutive birack:

◦ 0 1 2 3
0 1 0 3 2
1 3 2 1 0
2 1 0 3 2
3 3 2 1 0

• 0 1 2 3
0 3 1 3 1
1 2 0 2 0
2 1 3 1 3
3 0 2 0 2

,

i.e. L0 = L2 = R1 = R3 = (01)(23) and L1 = L3 = R0 = R2 = (03)(12). Example 2.6
shows that the birack (X, ◦, \◦, •, /•) is not left distributive, but the left quasigroup (X, ◦, \◦) is
2-permutational. Clearly, the quotient (X/∼, ◦, \◦, •, /•)

◦ 0/∼ 1/∼
0/∼ 1/∼ 0/∼
1/∼ 1/∼ 0/∼

• 0/∼ 1/∼
0/∼ 1/∼ 1/∼
1/∼ 0/∼ 0/∼

.

is a 1-permutational, but not a projection birack.

Definition 6.2. An involutive birack (X, ◦, \◦, •, /•) is 2-permutational (medial) if the left quasi-
group (X, ◦, \◦) is 2-permutational (medial).

Proposition 6.3. An involutive birack is 2-permutational if and only if it is medial.

Proof. Let (X, ◦, \◦, •, /•) be an involutive 2-permutational birack. Since the relation (5.8) is a
congruence of an involutive birack then by (2.1) and (2.11) for every x, y, z ∈ X we have:

z\◦y = z\◦(x ◦ (x\◦y)) ∼ z\◦(z ◦ (x\◦y)) = x\◦y,

which implies

Lx\◦y = Lz\◦y.

By Theorem 5.3, the left quasigroup (X, ◦, \◦) is right cyclic. Hence for x, y, a, b ∈ X we obtain

LxLa\◦y = LxLx\◦y
(2.7)
= LyLy\◦x = LyLb\◦x.

Substitution of x by b ◦ x and y by a ◦ y gives that the birack (X, ◦, \◦, •, /•) is medial

Lb◦xLy = La◦yLx
(2.11)

= Lb◦yLx.

Lemma 4.4 completes the proof. �

Rump showed in [35, Theorem 2] that each finite right cyclic left quasigroup is non-degenerate
(see also [20, Proposition 4.7]). Therefore, directly by Theorem 5.3 and Proposition 6.3, we obtain

Corollary 6.4. Each finite 2-permutational right cyclic left quasigroup is medial.

But the following question is still open.

Question 6.5. Is it true that every infinite 2-permutational right cyclic left quasigroup is medial?

Corollary 6.6. An involutive 2-permutational birack (X, ◦, \◦, •, /•) is distributive if and only if
the quotient (X/∼, ◦, \◦, •, /•) is idempotent.
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Proof. By Proposition 6.3 the birack (X, ◦, \◦, •, /•) is medial. Let (X/∼, ◦, \◦, •, /•) be idempotent.
This implies that for each x ∈ X, x ∼ x ◦ x. Therefore, by Lemma 4.2, for every e, x ∈ X,

Le◦x = Le◦eLxL
−1
e = LeLxL

−1
e .

Lemma 5.13 completes the proof. �

Using Condition lri it is easy to recognize distributive biracks among 2-permutational involutive
ones.

Lemma 6.7. Let (X, ◦, \◦, •, /•) be a 2-permutational involutive birack. Then (X, ◦, \◦, •, /•) is
distributive if and only if it satisfies Condition lri.

Proof. Let (X, ◦, \◦, •, /•) be 2-permutational and let it satisfy lri. Then

(x ◦ y) ◦ z
lri
= (x ◦ y) ◦ ((y ◦ z) • y)

(2.11)
= ((y ◦ z) ◦ y) ◦ ((y ◦ z) • y)

(5.4)
= y ◦ z.

The converse follows by Lemma 5.6. �

The condition of 2-permutationality in Lemma 6.7 cannot be weakened, even in the idempotent
case, as we see on the next example (see also Example 5.7).

Example 6.8. Let (X = {0, 1, 2, 3}, ◦, \◦ , •, /•) be the following involutive birack: L0 = R0 = (02),
L1 = L3 = R1 = R3 = id, L2 = R2 = (02)(13). Clearly, the birack satisfies Condition lri, but it is
not 2-permutational, since L2 = LL1(2) 6= LL0(2) = L0.

In Section 4 we presented the notion of a π-isotope. This construction allows us to tie distributive
and 2-permutational biracks.

Let (X, ◦, \◦, •, /•) be an involutive birack. By Theorem 5.3, (X, ◦, \◦) is a right-cyclic, non-
degenerate left quasigroup. Let π be a bijection of a set X such that the π-isotope (X, ∗, \∗) of
(X, ◦, \◦) is right cyclic. Then, by Remark 4.7 and Theorem 5.3, one can define uniquely the
involutive birack (X, ∗, \∗, ⋄, /⋄). We will call the birack obtained in this way the π-isotope of
(X, ◦, \◦, •, /•). Note that then

x ∗ y := Lxπ(y) and,

x ⋄ y = (x ∗ y)\∗x = π−1L−1
Lxπ(y)

(x) = π−1(x • π(y)).

Remark 6.9. Let (X, ◦, \◦, •, /•) be an involutive birack and let π be a bijection on the set X which
satisfies Conditions (4.5) and (4.11). By Theorem 4.13, the π-isotope (X, ∗, \∗) of (X, ◦, \◦) is a
2-reductive rack and by Lemma 3.3 it is right cyclic. The π-isotope (X, ∗, \∗, ⋄, /⋄) of (X, ◦, \◦, •, /•)
is a distributive involutive birack. Moreover, by Lemma 5.6, (X, ∗, \∗, ⋄, /⋄) satisfies Condition lri,
i.e. x ⋄ y = y\∗x = π−1L−1

y (x) and x/⋄y = y ∗ x = Lyπ(x). This can be also obtained by direct
calculations with use of Condition (4.5).

Let (X, ∗, \∗, ⋄, /⋄) be the π-isotope of a finite involutive birack (X, ◦, \◦, •, /•) and let (X, ∗, \∗, ⋄, /⋄)
satisfy Condition lri. Then the multiplication table of ∗ is obtained by a permuting columns of the
multiplication table of ◦ and the multiplication table of ⋄ is obtained by a permuting rows of the
multiplication table of •.

Remark 6.10. Let (X, ◦, \◦, •, /•) be an involutive distributive birack and let π be a bijection on the
set X which satisfies Condition (4.8). By Corollary 5.5 and Theorem 4.11, the π-isotope (X, ∗, \∗)
of (X, ◦, \◦) is a 2-permutational right cyclic left quasigroup. Then the π-isotope (X, ∗, \∗, ⋄, /⋄) of
(X, ◦, \◦, •, /•) is a 2-permutational involutive birack.

Note that by Lemmas 4.1 and 4.2 for a 2-permutational involutive birack (X, ◦, \◦, •, /•) it is
always possible to construct its non-trivial π-isotope, taking π = L−1

e 6= id, for any e ∈ X.
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Lemma 6.11. Let (X, ◦, \◦, •, /•) be a 2-permutational involutive birack and let e ∈ X. The
L−1
e -isotope of (X, ◦, \◦, •, /•) is an involutive distributive birack.

Proof. By Proposition 6.3, the birack (X, ◦, \◦, •, /•) is medial. By Corollary 4.14 the L−1
e -isotope

(X, ∗, \∗) of (X, ◦, \◦) is a 2-reductive rack. Then the L−1
e -isotope (X, ∗, \∗, ⋄, /⋄) of (X, ◦, \◦, •, /•)

is a distributive involutive birack. �

Theorem below shows that each 2-permutational involutive birack originates from an involutive
distributive birack.

Theorem 6.12. Each 2-permutational involutive birack is a π-isotope of a distributive one, for
some bijection π.

Proof. Let (X, ◦, \◦, •, /•) be a 2-permutational involutive birack and let e ∈ X. By Lemma 6.11
the L−1

e -isotope (X, ∗, \∗, ⋄, /⋄) of (X, ◦, \◦, •, /•) is a distributive involutive birack.
Let ̺ = Le. By Lemma 4.2(3) we have for each x, y, z ∈ X

̺(y) ∗ ̺(x ∗ z) = LLe(y)L
−1
e LeLxL

−1
e (z) = LLe(y)LxL

−1
e (z) = LLe(e)LyL

−1
e LxL

−1
e (z) =

LLe(e)LxL
−1
e LyL

−1
e (z) = LLe(x)LyL

−1
e (z) = LLe(x)L

−1
e LeLyL

−1
e (z) = ̺(x) ∗ ̺(y ∗ z),

which shows that the left quasigroup (X, ∗, \∗) satisfies Condition (4.8), for ̺ = Le.
Moreover, for each x, y ∈ X

x ∗ ̺(y) = LxL
−1
e Le(y) = x ◦ y and ̺−1(x\∗y) = L−1

e LeL
−1
x (y) = x\◦y,

which shows that (X, ◦, \◦, •, /•) is the Le-isotope of the involutive distributive birack (X, ∗, \∗, ⋄, /⋄).
�

Now we collect some useful facts about bijections satisfying Conditions (4.5) and (4.8).

Remark 6.13. Let (X, ◦, \◦, •, /•) be an involutive birack and let ̺ be a bijection on the set X
which satisfies Condition (4.8). Then, for every x, y ∈ X,

x ∼ y ⇔ ̺(x) ∼ ̺(y).

Indeed, by Definition 5.8 we have

x ∼ y ⇔ Lx = Ly ⇒ L̺(y)̺Lx
(4.8)
= L̺(x)̺Ly = L̺(x)̺Lx ⇒ L̺(x) = L̺(y) ⇔ ̺(x) ∼ ̺(y).

On the other hand,

̺(x) ∼ ̺(y) ⇔ L̺(x) = L̺(y) ⇒ L̺(y)̺Lx
(4.8)
= L̺(x)̺Ly = L̺(y)̺Ly ⇒ Lx = Ly ⇔ x ∼ y.

Remark 6.14. Let (X, ◦, \◦, •, /•) be an involutive birack which satisfies Condition lri. Con-
sider the π-isotope (X, ∗, \∗, ⋄, /⋄) of (X, ◦, \◦, •, /•) for some bijection π of the set X. Then
(X, ∗, \∗, ⋄, /⋄) satisfies Condition lri if and only if for every x ∈ X

Lπ(x) = Lx.

Indeed, for every x, y ∈ X

x ⋄ y = y\∗x ⇔ π−1(x • π(y)) = π−1(x • y) ⇔ Rπ(y) = Ry ⇔ L−1
π(y) = L−1

y .

If π happens to be an automorphism of the left quasigroup (X, ◦, \◦), then

Lx = Lπ(x) = πLxπ
−1 ⇔ πLx = Lxπ.

Hence, in this case the π-isotope of (X, ◦, \◦, •, /•) satisfies then Condition lri if and only if the
automorphism π commutes with each left translation. In particular, the π-isotope of an involutive
2-reductive birack is 2-reductive for any choice π = Le or π = L−1

e , with e ∈ X.
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Example 6.15. Let ({0, 1, 2, 3}, ◦, \◦ , •, /•) be the 2-permutational involutive birack with its left
quasigroup ({0, 1, 2, 3}, ◦, \◦ ) from Example 2.6. Then the L−1

0 -isotope ({0, 1, 2, 3}, ∗, \∗ , ⋄, /⋄), with

x ∗ y = x ◦ L−1
0 (y), x\∗y = 0 ◦ L−1

x (y), x ⋄ y = 0 ◦ L−1
y (x) and x/⋄y := y ◦ L−1

0 (x) is an involutive
distributive birack with the ∗-table presented in Example 2.5.

Example 6.16. Let ({0, 1, 2, 3}, ◦, \◦ , •, /•) be the distributive involutive birack with the left
quasigroup ({0, 1, 2, 3}, ◦, \◦ ) defined in Example 2.5. Note that the permutation π = (01)(23)
satisfies Condition (4.8). Then constructing the π-isotope of ({0, 1, 2, 3}, ◦, \◦ , •, /•) we obtain the
2-permutational involutive birack ({0, 1, 2, 3}, ∗, \∗ , ⋄, /⋄) with the ∗-table presented in Example 2.6.
The ⋄-table is the following

⋄ 0 1 2 3
0 3 1 3 1
1 2 0 2 0
2 1 3 1 3
3 0 2 0 2

.

Since L0 = L2 = R1 = R3 = (01)(23) and L1 = L3 = R0 = R2 = (03)(12), the birack
({0, 1, 2, 3}, ∗, \∗ , ⋄, /⋄) does not satisfy Condition lri.

Note that different choices of a bijection in the construction of the isotope may give non isomor-
phic biracks.

Example 6.17. Let ({0, 1, 2, 3, 4}, ◦, \◦ , •, /•) be the 2-permutational involutive birack with mul-
tiplication ◦

◦ 0 1 2 3 4
0 0 2 1 4 3
1 3 2 1 0 4
2 4 2 1 3 0
3 0 2 1 4 3
4 0 2 1 4 3

,

i.e. L0 = L3 = L4 = (12)(34), L1 = (03)(12) and L2 = (04)(12). Then L−1
i -isotopes, for i ∈ {0, 1},

of ({0, 1, 2, 3, 4}, ◦, \◦ , •, /•) have the following multiplication tables of ∗i

∗0 0 1 2 3 4
0 0 1 2 3 4
1 3 1 2 4 0
2 4 1 2 0 3
3 0 1 2 3 4
4 0 1 2 3 4

and

∗1 0 1 2 3 4
0 4 1 2 0 3
1 0 1 2 3 4
2 3 1 2 4 0
3 4 1 2 0 3
4 4 1 2 0 3

.

Both isotopes are distributive. It is clear that these two biracks are not isomorphic, as the L−1
0 -

isotope is idempotent, whereas the L−1
1 -isotope is not.

Example 6.18. In Example 6.16 we showed that the birack ({0, 1, 2, 3}, ∗, \∗ , ⋄, /⋄) with the ∗-table
presented in Example 2.6 is the π-isotope, for π = (01)(23), of the distributive birack (X, ◦, \◦, •, /•)
with the left quasigroup (X, ◦, \◦) defined in Example 2.5. Nevertheless, there is another choice
of a permutation that yields another birack. If we take γ = (0123) then this γ satisfies Condition
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(4.8) as well and we obtain the involutive 2-permutational birack with multiplication ∗1:

∗1 0 1 2 3
0 1 2 3 0
1 3 0 1 2
2 1 2 3 0
3 3 0 1 2

or in other words
L0 = L2 = R0 = R2 = (0123)
L1 = L3 = R1 = R3 = (3210)

which is clearly not isomorphic to the birack ({0, 1, 2, 3}, ∗, \∗ , ⋄, /⋄). Note that both permutations
π and γ are actually automorphisms of the birack (X, ◦, \◦, •, /•) but neither the π-isotope nor the
γ-isotope is isomorphic to (X, ◦, \◦, •, /•).

For an involutive birack (X, ◦, \◦, •, /•), a bijection h on the set X is an isomorphism between
the α-isotope and the β-isotope of (X, ◦, \◦, •, /•) if and only if

hLxα(y) = h(x ◦ α(y)) = h(x) ◦ βh(y) = Lh(x)βh(y).(6.1)

Hence, we obtain the following observation.

Remark 6.19. Let (X, ◦, \◦, •, /•) be an involutive birack. An automorphism h of (X, ◦, \◦) is an
isomorphism between the α-isotope and the β-isotope of (X, ◦, \◦, •, /•) if and only if

α = h−1βh.

7. Solutions

As it was written in Section 1, each solution (X,σ, τ) of the Yang-Baxter equation yields an
involutive birack (X, ◦, \◦, •, /•). And conversely, if (X, ◦, \◦, •, /•) is an involutive birack, then
defining

r(x, y) = (σ(x, y), τ(x, y)) = (x ◦ y, x • y) = (Lx(y),Ry(x)),

we obtain a solution (X,L,R) of the Yang-Baxter equation.
Such an equivalence allows us to treat each solution as an involutive birack and formulate results

from Sections 5 and 6 in the language of solutions. In particular, 1-permutational birack corresponds
to a permutation solution and the projection birack corresponds to the trivial solution.

Etingof et al. reasoned that the quotient set X/∼, by the relation (5.8), has a structure of a
solution (X/∼, σ, τ) with σ(x/∼, y/∼) = σ(x, y)/∼ and τ(x/∼, y/∼) = τ(x, y)/∼ for x/∼, y/∼ ∈
X/∼ and x ∈ x/∼, y ∈ y/∼. They called such solution the retraction of (X,σ, τ) and denoted it
by Ret(X,σ, τ). The birack corresponding to the retraction solution Ret(X,σ, τ) is the quotient
birack (X/∼, ◦, \◦, •, /•).

Among solutions, an important role is played by multipermutation solutions, see e.g. [5, 15, 39].
Let (X,σ, τ) be a solution. One defines iterated retraction in the following way: Ret0(X,σ, τ) :=
(X,σ, τ) and Retk(X,σ, τ) := Ret(Retk−1(X,σ, τ)), for any natural number k > 1. A solution
(X,σ, τ) is called a multipermutation solution of level m if m is the least nonnegative integer such
that

|Retm(X,σ, τ)| = 1.

In the language of an involutive birack (X, ◦, \◦, •, /•) this means that applying m times the
congruence ∼ to the subsequent quotient biracks, one obtains the one-element birack.

Let us consider (X/∼, ◦, \◦, •, /•), the quotient birack of (X, ◦, \◦, •, /•) and denote it by Ret(X, ◦, •).
Let Ret0(X, ◦, •) := (X, ◦, •) and Retk(X, ◦, •) := Ret(Retk−1(X, ◦, •)), for any natural number
k > 1.
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Definition 7.1. An involutive birack is a multipermutation birack if there exists a positive integer
m such that Retm−1(X, ◦, •) is a 1-permutational birack. A birack of (X, ◦, \◦, •, /•) is called a
multipermutation birack of level m if m is the least nonnegative integer m such that

|Retm(X, ◦, •)| = 1.

A birack (X, ◦, \◦, •, /•) is irretractable if Ret(X, ◦, •) := (X, ◦, •), i.e. ∼ is the trivial relation.

Observation 7.2. [16, Section 3] Let |X| ≥ 2. A square-free solution (X,σ, τ) is a multipermuta-
tion solution of level m if and only if Retm−1(X,σ, τ) is a trivial solution.

Theorem 7.3. [14, Proposition 4.7] Let (X,σ, τ) be a solution and |X| ≥ 2. (X,σ, τ) is a mul-
tipermutation solution of level 0 ≤ m if and only if Condition (2.5) holds for the corresponding
birack (X, ◦, \◦, •, /•).

Definition 7.4. A solution is distributive (2-reductive, 2-permutational, medial, respectively), if it
corresponds to a distributive (2-reductive, 2-permutational, medial, respectively) involutive birack.

Fact 7.5. [15, Proposition 8.2], [14, Proposition 4.7] A square-free solution (X,σ, τ) is multiper-
mutation of level 2 if and only if it is distributive. In this case it has an abelian permutation group
〈σx : x ∈ X〉. More generally, if a solution satisfies Condition (∗) then it is a multipermutation
solution of level 2 if and only if it is 2-reductive.

By Corollary 5.5, Proposition 6.3, Corollary 6.6 and Theorem 7.3, we can generalize some results
given in [17, 15, 14].

Theorem 7.6. Let (X,σ, τ) be a solution. Then

(1) (X,σ, τ) is a multipermutation solution of level 2 if and only if it is medial.
(2) If (X,σ, τ) is distributive then it is a multipermutation solution of level 2.

Theorem 7.7. Let (X,σ, τ) be a multipermutation solution of level 2. The following conditions
are equivalent:

(1) (X,σ, τ) is distributive,
(2) (X,σ, τ) is 2-reductive,
(3) (X,σ, τ) satisfies Condition lri, i.e. ∀x ∈ X τx = σ−1

x ,
(4) Ret(X,σ, τ) is the trivial solution.

By Theorem 5.9 we can completely describe all distributive solutions.

Theorem 7.8. Each distributive solution (X,σ, τ) is a disjoint union, over a set I, of abelian
groups Aj = 〈{ai,j | i ∈ I}〉, for every j ∈ I, with

(7.1) σx(y) = y + ai,j and τy(x) = x− aj,i,

where x ∈ Ai and y ∈ Aj .

By Corollary 5.8 each distributive solution satisfies Condition stu, introduced in [17, Definition
5.1], which means that it is trivially a strong twisted union of abelian groups Aj .

Example 7.9. Let I be a (finite or infinite) index set and let Ai, for i ∈ I, be cyclic groups. Let
(ai,j)i,j∈I be constants such that ai,j ∈ Aj , for all i, j ∈ I, and, for each j ∈ I, there exists at least
one i ∈ I, such that ai,j is a generator of the group Aj . Then (

⋃

Ai, σ, τ), with σ and τ defined in
(7.1), is a distributive solution.

We can construct all distributive solutions of size n using the following algorithm:

Algorithm 7.10. Outputs all distributive solutions of size n:

(1) For all partitionings n = n1 + n2 + · · · + nk do (2)–(4).
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(2) For all abelian groups A1, . . . ,Ak of size |Ai| = ni do (3)–(4).
(3) For all constants ai,j ∈ Aj do (4).
(4) If, for all 1 ≤ j ≤ k, we have Aj = 〈{ai,j | i ∈ I}〉 then construct a solution (

⋃

Ai, σ, τ)
using (7.1).

When all solutions are constructed, we can get rid of isomorphic copies using Theorem 3.7.

In [4] the permutation group 〈σx : x ∈ X〉 of a finite solution (X,σ, τ) was called the involutive
Yang-Baxter group (IYB group) associated to the solution (X,σ, τ). In particular, Cedo et al.
showed in [4, Corollary 3.11] that each finite nilpotent group of class 2 (and thus each finite abelian
group) is an IYB group. Here, using the construction of the sum of a trivial affine mesh, we present
short direct proof of this fact for an abelian group of an arbitrary cardinality.

Theorem 7.11. Let A be an abelian group. Then there exists a solution (X,σ, τ) with its permu-
tation group isomorphic to A.

Proof. Let A be generated by a (finite or infinite) set {gi : i ∈ I}. We construct the solution (X,σ, τ)
as the sum of the trivial affine mesh ((Ai)i∈I , (ci,j)i,j∈I) over I, with Ai = A and ci,j = gi, for
all i, j ∈ I.

By construction, La(b) = b+ ci,j = b+ gi, for all a ∈ Ai and b ∈ Aj. Therefore the permutation
group consists solely of mappings bj 7→ bj + c, for each j ∈ I and some c ∈ A. This means that the
group 〈σx : x ∈ X〉 naturally embeds into A. Moreover, the permutation group is generated by La,
for a ∈ A, and hence it is isomorphic to A. �

By Corollary 4.14 and Lemma 6.11 each multipermutation solution of level 2 defines a distributive
one.

Theorem 7.12. Let (X,σ, τ) be a multipermutation solution of level 2 and e ∈ X. Then (X,σ′, τ ′),
where σ′x = σxσ

−1
e and τ ′y = σeτσ−1

e (y), for x, y ∈ X, is a distributive solution.

On the other side, Theorem 6.12 shows that each multipermutation solution of level 2 originates
from a distributive solution. We have even more. The theorem gives a procedure how to obtain all
multipermutation solutions of level 2 from distributive ones.

We have to take all distributive solutions (X,σ, τ) such that there exists a ∈ X with La = id and,
for each of them, all permutations π of the set X which satisfy Condition (4.8) i.e. for x, y ∈ X

σπ(y)πσx = σπ(x)πσy.

Then (X,σ′, τ ′), where σ′x = σxπ and τ ′y = π−1τπ(y), will be multipermutation solutions of level 2.

By Lemma 6.7 and Remark 6.13 we can construct all non-distributive solutions of multipermu-
tation level 2 of size n.

Algorithm 7.13. Outputs all non-distributive solutions of multipermutation level 2 of size n:

(1) For every distributive solution (X,σ, τ) of size n do (2)–(7).
(2) If there exist no x ∈ X such that σx = id return to (1).
(3) For every permutation π ∈ SX do (4)–(6).
(4) If σ−1

x = τπ(x), return to (3).
(5) If π does not send classes of ∼ onto classes of ∼, return to (3).
(6) If π does not satisfy (4.8), return to (3).
(7) Construct the solution (X,σ′, τ ′), where σ′(x, y) = σ(x, π(y)) and τ ′(x, y) = π−1(τ(x, π(y))).

Unlike in the case of distributive solutions, we do not have any efficient criterion to test isomor-
phisms. As Example 6.17 shows, the same solutions can be obtained from different distributive
solutions.
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8. Enumeration

In this section we enumerate solutions of multipermutation level 2 for small sizes and we estimate,
for all sizes, how many racks and solutions are there, up to isomorphism.

Using the characterization by sums of trivial affine meshes we can straightforwardly describe all
solutions of small sizes. The size 4 can be done manually.

Example 8.1. By results of [10], there are 23 solutions of size 4, up to isomorphism. Two of them
are irretractable. Exactly 17 of them are distributive. They are the sums of the following trivial
affine meshes:

• One orbit: ((Z4), (1)).
• Two orbits: ((Z3,Z1), ( 0 0

1 0 )), ((Z3,Z1), ( 1 0
0 0 )), ((Z3,Z1), ( 1 0

1 0 )), ((Z3,Z1), ( 2 0
1 0 )),

((Z2,Z2), ( 0 0
1 1 )), ((Z2,Z2), ( 1 1

1 0 )), ((Z2,Z2), ( 1 0
1 1 )), ((Z2,Z2), ( 1 0

0 1 )),
((Z2,Z2), ( 0 1

1 0 )), ((Z2,Z2), ( 1 1
1 1 )).

• Three orbits: ((Z2,Z1,Z1),
(

1 0 0
0 0 0
0 0 0

)

), ((Z2,Z1,Z1),
(

0 0 0
0 0 0
1 0 0

)

), ((Z2,Z1,Z1),
(

0 0 0
1 0 0
1 0 0

)

),

((Z2,Z1,Z1),
(

1 0 0
0 0 0
1 0 0

)

), ((Z2,Z1,Z1),
(

1 0 0
1 0 0
1 0 0

)

).

• Four orbits: ((Z1,Z1,Z1,Z1),

(

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)

).

There remain four multipermutation solutions of size 4 that are not distributive. Two of them are
of level 2, both of them described in Example 6.18. Two of them are of level 3 - the corresponding
biracks have the following tables of ◦-multiplication:

◦ 0 1 2 3
0 0 1 2 3
1 0 1 2 3
2 0 1 3 2
3 1 0 3 2

and

◦ 0 1 2 3
0 1 0 2 3
1 1 0 2 3
2 0 1 3 2
3 1 0 3 2

.

They are not isomorphic since the first one has two idempotent elements, whereas the other one
has none.

The same way as we did it for size 4, we can compute other small sizes, on a computer of course.
We start with the numbers of small racks. In Table 1, we compare the numbers of isomorphism
classes of all racks (see OEIS sequence A181770 [27]) and 2-reductive racks. Computing 2-reductive
racks directly using Theorems 3.6 and 3.7 is hopeless for larger numbers. Hence the numbers of
2-reductive racks were computed using Burnside’s lemma, see [19] for more details.

As we can see, the numbers of 2-reductive racks grow really fast, actually, according to Black-

burn [2], there are at least 2n
2/4−O(n logn) 2-reductive racks of size n. We can also give an upper

bound, which is not far from the lower bound. The proof is exactly the same as the proof of [19,
Theorem 8.2].

Theorem 8.2. There are at most 2(1/4+o(1))n2

2-reductive racks of size n, up to isomorphism.

The numbers in Table 1 suggest that the vast majority of all racks are 2-reductive. However, we
do not have any proof of this fact. Hence we can only conjecture that:

Conjecture 8.3. There are 2(1/4+o(1))n2

racks of size n, up to isomorphism.

In Table 2, we can see the numbers of solutions. The total numbers of solutions is taken from [10],
the numbers of 2-reductive solutions are the same as the numbers of 2-reductive racks. The numbers
of 2-permutational solutions (i.e. multipermutation solutions of level 2) that are not 2-reductive
were computed by a brute force search algorithm using the Mace4 software [25].
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n 1 2 3 4 5 6 7 8 9 10 11
racks 1 2 6 19 74 353 2080 16023

2-reductive 1 2 5 17 65 323 1960 15421 155889 2064688 35982357

n 12 13 14
racks

2-reductive racks 832698007 25731050861 1067863092309

Table 1. The number of racks and 2-reductive racks of size n, up to isomorphism.

n 1 2 3 4 5 6 7 8
involutive solutions 1 2 5 23 88 595 3456 34528

multipermutation of level 2 1 2 5 19 70 359 2095 16332
2-reductive 1 2 5 17 65 323 1960 15421

2-permutational, not 2-reductive 0 0 0 2 5 36 135 911

Table 2. The number of involutive solutions of size n, up to isomorphism.

Theorem 8.4. There are at most 2(1/4+o(1))n2

multipermutation solutions of level 2 of size n, up
to isomorphism.

Proof. As was shown in Theorem 7.12, every multipermutation solution of level 2 can be obtained
as an isotope of a 2-reductive solution using a permutation. Hence, using Theorem 8.2, the number

of 2-permutational solutions is less than 2(1/4+o(1))n2

· n! = 2(1/4+o(1))n2

. �

In the case of solutions, Table 2 suggests that the numbers of all solutions grow faster than the
numbers of multipermutation solutions of level 2 but not much faster. We can therefore conjecture:

Conjecture 8.5. There are 2O(n2) solutions of size n, up to isomorphism.
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