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Abstract

Let Γ(x0) be a finite rooted tree, for which Γ is the underlying tree and x0

the root. Let T be the Terwilliger algebra of Γ with respect to x0. We study the

structure of the principal T -module. As a result, it is shown that T recognizes

the isomorphism class of Γ(x0).
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1 Introduction

The Terwilliger algebras, which are oringinally called subconstituent algebras, are

introduced in [2] for association schemes, and their representations are deeply studied

for (P and Q)-polynomial association schemes in [3, 4]. In [5], the Terwilliger algebras
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are defined for graphs, and their representations are deeply studied for distance-

regular graphs. This paper treats the Terwilliger algebras of trees and determines the

structure of their principal modules. As a result, it is shown that the isomorphism

classes of rooted trees are recognized by their Terwilliger algebras.

Since there is no literature on Terwilliger algebras of graphs in general except for

[5] which is mainly aimed at distance-regular graphs with the Q-polynomial property,

we begin with sorting out basic concepts about Terwilliger algebras, before going into

details of our motivations (Conjecture 2, Problem 3) and main results (Theorem 4,

Theorem 5). Notations and terminologies throughout the paper will be fixed in the

course of doing so in this section.

1.1 Terwilliger algebras in general as algebras

Let V be a finite-dimensional vector space over the complex number field C, equipped

with a non-degenerate Hermitian form. We are given a decomposition of V into the

direct sum of mutually orthogonal subspaces V ∗

i , 0 ≤ i ≤ D, i.e., V =
D⊕
i=0

V ∗

i , V
∗

i ⊥ V ∗

j

(i 6= j). Let E∗

i be the orthogonal projection from V onto V ∗

i : I = E∗

0+E
∗

1+ · · ·+E∗

D,

E∗

iE
∗

j = δijE
∗

i , where I is the identity map and δii = 1, δij = 0 (i 6= j). We are also

given a normal transformation A of V , i.e., V has an orthonormal basis consisting

of eigenvectors of A. Let T be the subalgebra of the endomorphism algebra End(V )

generated by A,E∗

i , 0 ≤ i ≤ D:

T = 〈A,E∗

i | 0 ≤ i ≤ D〉 ⊆ End(V ). (1)

The algebra T is called a Terwilliger algebra, or simply a T -algebra.

Here we remark that we use the notation of E∗

i , following [2, 5], in which Ei stands

for the orthogonal projection onto the eigenspace Vi of A and E∗

i does not mean the

adjoint of Ei. In this paper, Vi, Ei do not appear anywhere.

Note that T is a semi-simple algebra, since T is generated by normal transforma-

tions of V . V is called the standard module. Note also that T acts on V faithfully. So

the standard module V is a sum of irreducible T -submodules and every irreducible

T -module appears in V up to isomorphism.

Let W be a T -submodule of V . Then the restriction of T to W can be thought

of a Terwilliger algebra for which W is the standard module:

T |W = 〈A|W , E
∗

i |W | 0 ≤ i ≤ D〉 ⊆ End(W ), (2)
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where some E∗

i may vanish on W , i.e. E∗

i |W = 0 for some i’s.

Let T ′ be another Terwilliger algebra generated by a normal transformation A′,

and orthogonal projections E∗

i
′, 0 ≤ i ≤ D′, for which V ′ is the standard module.

The Terwilliger algebra T given in (1) is said to be isomorphic to T ′ if D = D′ and

the correspondence of A to A′, E∗

i to E∗

i
′, 0 ≤ i ≤ D gives an algebra isomorphism

between T and T ′. In this case, we denote T ≃ T ′ and such an algebra isomorphism

is called a T -algebra isomorphism. In the definition of a T -algebra isomorphism, the

orderings of the orthogonal projections E∗

i , E
∗

i
′, 0 ≤ i ≤ D matter, but usually as we

shall see later for the Terwilliger algebra of a graph, there exists a natural ordering

of them, which is implicitly assumed unless particularly stated.

The standard modules V , V ′ for the Terwilliger algebras T , T ′ are said to be

isomorphic if T ≃ T ′ and there exists an isometry ϕ : V → V ′ between the Hermitian

spaces V , V ′ such that ϕ(av) = a′ϕ(v) for all a ∈ T, v ∈ V , where a′ = f(a) with f

the T -algebra isomorphism from T to T ′, i.e., the diagram

V

a

��

ϕ
// V ′

a′

��

V ϕ
// V ′

(3)

commutes for all a ∈ T . In this case, we denote V ≃ V ′.

1.2 Terwilliger algebras for finite connected simple graphs

In this subsection, we define the Terwilliger algebra for a finite connected simple

graph and pose some questions about it that have motivated our present study of the

Terwilliger algebra of a tree.

Let Γ be a finite connected simple graph, i.e., the graph Γ is finite, undirected,

connected and has no loops, no multiple edges. Let X be the vertex set of Γ and x0

a fixed vertex from X . We call x0 the base vertex. The vertex set X is partitioned

according to the distance from the base vertex x0: X =
D⋃
i=0

Xi,

Xi = {x ∈ X | ∂(x0, x) = i}. (4)

where ∂(x0, x) is the length of a shortest path joining x0 and x, andD =max{∂(x0, x) |

x ∈ X}.

Set V = CX , i.e., V is the vector space over C formally spanned by X as a

basis. Regarding X as an orthonormal basis, V is equipped with a non-degenerate
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Hermitian form. The partition X =
D⋃
i=0

Xi gives rise to an orthogonal decomposition

of V : V =
D⋃
i=0

V ∗

i , where V
∗

i = CXi is the subspace of V spanned by Xi.

Let A be the adjacency matrix of Γ, i.e., the (x, y)-entry of A is 1 if (x, y) is an

edge of Γ, 0 otherwise for x, y ∈ X . Then A is a normal matrix, and it is regarded as

a normal transformation of V . Let E∗

i be the orthogonal projection from V onto V ∗

i .

The subalgebra of End(V ) generated by A and E∗

i , 0 ≤ i ≤ D is denoted by T (x0)

and called the Terwilliger algebra of Γ with respect to the base vertex x0. Note that

the orthogonal projections have a natural ordering E∗

0 , E
∗

1 , · · · , E
∗

D according to the

distance of Xi from the base vertex x0. In what follows, we set T = T (x0).

The following proposition is from [5].

Proposition 1 Set W0 = Tx0, the smallest T -submodule of V containing the base

vertex x0. Then W0 is irreducible as a T -module.

This T -submodule W0 = Tx0 is called the principal T -module, or the primary

T -module. The lecture notes [5] are not officially published. We quote a proof of the

proposition from [5]: Since T is a semi-simple algebra, W0 is a sum of irreducible

T -submodules. Apply E∗

0 to each irreducible T -submodule that appears in W0. Then

since E∗

0W0 = V ∗

0 = Cx0, there exists an irreducible T -submodule W of W0 such that

E∗

0W 6= 0. Then W contains x0 and so W ⊇ Tx0 . This implies W = W0.

The following conjecture is due to Jack Koolen and one of the motivations for our

study of Terwilliger algebras of trees.

Conjecture 2 For almost all finite connected simple graphs Γ, the Terwilliger algebra

T = T (x0) of Γ coincides with the endomorphism algebra End(V ) of the standard

module V , regardless of the base vertex x0 : T = End(V ).

In this paper, we precicely determine when T = End(V ) holds for a tree: T =

End(V ) if and only if the tree does not have a symmetry with respect to the base

vertex (see Theorem 4).

Another motivation of our study is the theme of the spectral graph theory: we

shift from the adjacency algebra 〈A〉 of a graph Γ to the Terwilliger algebra T =

〈A,E∗

i | 0 ≤ i ≤ D〉, and ask how much the standard T -module V determines the

graph structure of Γ. Particularly we ask:

Problem 3 Let Γ, Γ′ be finite connected simple graphs and T , T ′ their Terwilliger

algebras with V , V ′ the standard modules, respectively. When does V ≃ V ′ as T -

modules imply Γ ≃ Γ′ as graphs?

4



If V ≃ V ′ implies Γ ≃ Γ′, we say that the T -module V recognizes the graph Γ.

When V , V ′ are the standard T -modules, we simply say T recognizes Γ. In this paper,

we show that the Terwilliger algebra recognizes the tree (see Theorem 5). Note that

the adjacency algebra does not recognize the tree [1].

1.3 Terwilliger algebras of trees

In this subsection, we summarize our main results about the Terwilliger algebra of a

tree. In this paper, a tree means a finite tree.

Let Γ be a tree and X the vertex set of Γ. Fix a base vertex x0 ∈ X and form the

Terwilliger algebra T = T (x0) with respect to x0, in the way we explained in Section

1.2.

Let V = CX be the standard module. By Γ(x0) we denote the rooted tree Γ with

x0 the root. Let H be the automorphism group of Γ(x0): H = Aut(Γ(x0)). So H is

the stabilizer of x0 in the automorphism group of Γ: G = Aut(Γ), H = Gx0. Note

that the generators of T commute with the action of H on V . So we have

T ⊆ HomH(V, V ), (5)

where HomH(V, V ) is the centralizer algebra of H , i.e., the subalgebra of End(V )

consisting of all the linear transformations of V that commute with the action of H

on V .

Suppose T = End(V ) holds in Conjecture 1. Then we have HomH (V ,V )=End(V )

by (5) and so H = 1, since H 6= 1 implies HomH(V, V ) $ End(V ). We prove the

converse holds in the case of trees, i.e., T = End(V ) if H = 1. Actually we show a

stronger result as we see in the following theorem. For a subset Y of X , we denote

by Y the sum of elements of Y : Y =
∑
y∈Y

y ∈ V . Let W0 = Tx0 be the principal

T -module. Then we have:

Theorem 4 W0 is linearly spanned by Y , Y ∈ Orb(H,X), where Orb(H,X) is the

set of H-orbits on X:

W0 = Span{Y | Y ∈ Orb(H,X)}.

Suppose H = 1, then W0 = V by this theorem. So by Proposition 1, the standard

module V is irreducible as a T -module. If T $ End(V ), V can not be an irreducible

T -module by Burnside’s Theorem. Therefore H = 1 implies T = End(V ).
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As for Problem 3, we also show a stronger result, i.e., we show that the principal

T -module W0 recognizes the tree. Note that if the principal T -module W0 recognizes

the tree, so does the standard T -module V .

Suppose we are given a finite connected simple graph Γ′ besides the tree Γ. Let

T , T ′ be the Terwilliger algebras of Γ, Γ′ and W0, W0
′ the principal T -modules of Γ,

Γ′, respectively. Recall that T |W0, T
′|W0

′ become Terwilliger algebras with standard

modules W0, W0
′, respectively, and that there is a natural ordering for the generators

of T |W0, T
′|W0

′ , respectively.

Theorem 5 If W0 ≃W0
′ as T -modules, then Γ′ is a tree. Moreover we have Γ(x0) ≃

Γ′(x0
′)
as rooted trees, where x0, x0

′ are the base vertices of Γ, Γ′, respectively.

Theorem 4 and Theorem 5 will be proved in Section 3 and Section 4.

2 The key lemma

We keep the notations in Section 1.3.

Let Γ be a finite tree and X the vertex set of Γ. Fix a base vertex x0 ∈ X . Then

we have the partition X =
D⋃
i=0

Xi given by (4). For x ∈ Xi, set

Γ(x) = {y ∈ X | ∂(x0, y) = ∂(x0, x) + ∂(x, y)}, (6)

where ∂ stands for the distance function of Γ as in (4). Allowing abuse of the notation,

we regard Γ(x) as the rooted tree with x the root that is induced on the subset Γ(x)

of X .

We introduce an equivalence relation ∼ on Xi by defining x ∼ x′ for x, x′ ∈ Xi

if and only if Γ(x) and Γ(x′) are isomorphic as rooted trees. Let Xi(α), α ∈ Λi be the

equivalence classes on Xi:

Xi =
⋃

α∈Λi

Xi(α). (7)

Accordingly we have a decomposition of the subspace V ∗

i = CXi into the direct sum

of mutually orthogonal subspaces V ∗

i (α) = CXi(α), α ∈ Λi:

V ∗

i =
⊕

α∈Λi

V ∗

i (α). (8)
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Let E∗

i (α) be the orthogonal projection from V = CX onto V ∗

i (α). Then we have

E∗

i =
∑

α∈Λi

E∗

i (α) (9)

with E∗

i (α)E
∗

i (β) = δαβE
∗

i (α), where δαβ = 1 if α = β, 0 otherwise. Note that we

have I =
D∑
i=0

∑
α∈Λi

E∗

i (α) with E
∗

i (α)E
∗

j (β) = δijδαβE
∗

i (α), where I is the identity map.

The following lemma is the key to our proofs of Theorem 4 and Theorem 5. Recall

that A is the adjacency matrix of the tree Γ and the Terwilliger algebra T = T (x0)

of Γ is the subalgebra of End(V ) generated by A, E∗

i , 0 ≤ i ≤ D.

Lemma 6 For 0 ≤ i ≤ D− 1, the subalgebra of End(V ) generated by E∗

i (α), α ∈ Λi

coincides with that generated by E∗

iAE
∗

i+1(β)AE
∗

i , β ∈ Λi+1:

〈E∗

i (α) | α ∈ Λi〉 = 〈E∗

iAE
∗

i+1(β)AE
∗

i | β ∈ Λi+1〉. (10)

In particular, the Terwilliger algebra T contains every E∗

i (α):

E∗

i (α) ∈ T, 0 ≤ i ≤ D, α ∈ Λi. (11)

Proof. For x ∈ Xi and β ∈ Λi+1, let nβ(x) denote the number of vertices in Xi+1(β)

that are adjacent to x:

nβ(x) = ♯{y ∈ Xi+1(β) | x and y are adjacent in Γ}. (12)

Observe that each x in Xi is an eigenvector of E∗

i AE
∗

i+1(β)AE
∗

i and it belongs to the

eigenvalue nβ(x):

E∗

iAE
∗

i+1(β)AE
∗

i x = nβ(x)x. (13)

Therefore V ∗

i = CXi is decomposed into the direct sum of maximal common eigensp-

aces of E∗

iAE
∗

i+1(β)AE
∗

i , β ∈ Λi+1, each of which has a basis consisting of some

elements from Xi.

For x, x′ ∈ Xi, it holds that Γ(x) and Γ(x′) are isomorphic as rooted trees if and

only if nβ(x) = nβ(x
′) for all β ∈ Λi+1. Therefore x, x

′ ∈ Xi belong to the same Xi(α)

for some α ∈ Λi if and only if they belong to the same maximal common eigenspaces

of E∗

i AE
∗

i+1(β)AE
∗

i , β ∈ Λi+1, i.e., V
∗

i (α) = CXi(α), α ∈ Λi are the maximal common

eigenspaces of E∗

i AE
∗

i+1(β)AE
∗

i , β ∈ Λi+1. Since E
∗

i (α) is the projection from V onto

V ∗

i (α), we have (10).

Observe |ΛD| = 1 and so E∗

D(α) = E∗

D, i.e., (11) holds for i = D. By induction on

i, we may assume the right hand side of (10) is contained in T . Then the left hand

side is contained in T , i.e., (11) holds for all i.
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3 The structure of the principal T -module of a

tree: Proof of Theorem 4

In this section, we prove Theorem 4, which gives the structure of the principal T -

module of a tree.

Recall that H is the automorphism group of the rooted tree Γ(x0). Let Irr(H,X)

denote the set of irreducible characters of H that appear in the permutation repre-

sentation of H acting on the vertex set X of Γ(x0). So the standard module V = CX
affords the permutation character of H . For χ ∈ Irr(H,X), let Vχ denote the sum of

irreducible H-submodules of V that afford χ. Then we have the homogeneous compo-

nent decomposition of the H-module V , i.e., V is the direct sum of Vχ, χ ∈ Irr(H,X):

V =
⊕

χ∈Irr(H ,X )

Vχ. (14)

Let χ0 = 1H , the trivial character of H . Then we have

Vχ0 = Span{Y | Y ∈ Orb(H,X)}, (15)

where Orb(H,X) is the set of H-orbits on X and Y =
∑
y∈Y

y ∈ V for Y ∈ Orb(H,X).

Recall that HomH(V, V ) is the centralizer algebra of the H-module V. Set S =

HomH(V, V ). For the centralizer algebra S of a finite group H, it is well-known in

general that S is a semi-simple algebra and that the homogeneous component decom-

position of the S-module V is also given by (14), i.e., any irreducible S-submodule of

V is contained in some Vχ, and irreducible S-submodules of V are isomorphic if and

only if they belong to the same Vχ. It is also well-known that Vχ0 is irreducible as an

S-module.

The root x0 of the tree Γ is fixed by H and so it is contained in Vχ0 by (15). Since

Vχ0 is irreducible as an S-module, we have Vχ0 = Sx0. On the other hand, we have

T ⊆ S by (5). This implies that the principal T -module W0 = Tx0 is contained in

Vχ0 = Sx0: W0 ⊆ Vχ0 . We want to show W0 ⊇ Vχ0. By (15), it is enough to show

W0 ∋ Y for all Y ∈ Orb(H,X). We may assume Y ⊆ Xi(α) for some i, α: observe

that if x, x′ belong to the same H-orbit, then ∂(x0, x) = ∂(x0, x
′), and Γ(x), Γ(x′) are

isomorphic as rooted trees.

Since Γ is a tree, we have the adjacency mapping from the set Xi given in (4) to

the set Xi−1:

ψ : Xi → Xi−1, x 7→ ψ(x),

8



where ψ(x) is the unique element of Xi−1 that is adjacent to x ∈ Xi. It is obvious that

if x, x′ ∈ Xi belong to the same H-orbit, then so do ψ(x), ψ(x′) ∈ Xi−1. Conversely

suppose ψ(x), ψ(x′) ∈ Xi−1 belong to the same H-orbit. Then x, x′ ∈ Xi belong to

the same H-orbit if and only if there exists α ∈ Λi such that x, x′ ∈ Xi(α), i.e., Γ
(x)

and Γ(x′) are isomorphic as rooted trees.

Let Y be a H-orbit in Xi(α). Set Z = ψ(Y ), where ψ(Y ) = {ψ(y) | y ∈ Y }. Then

by the argument in the previous paragraph, Z is a H-orbit in Xi−1, and E
∗

i (α)ψ
−1(Z)

is a H-orbit in Xi(α), where ψ
−1(Z) = {x ∈ Xi | ψ(x) ∈ Z} and E∗

i (α)ψ
−1(Z) =

{E∗

i (α)x | x ∈ ψ−1(Z)} = Xi(α)
⋂
ψ−1(Z). We have Y = E∗

i (α)ψ
−1(Z), since Y is

contained in E∗

i (α)ψ
−1(Z) and both Y and E∗

i (α)ψ
−1(Z) are a H-orbit. Note that

for z ∈ Z, E∗

i Az is the sum of elements in the set ψ−1(z) = {x ∈ Xi | ψ(x) = z}:

E∗

iAz = ψ−1(z) =
∑

x∈ψ−1(z)

x. Thus we have

Y = E∗

i (α)AZ (16)

for a H-orbit Y in Xi(α), where Z = ψ(Y ). Note that Z = ψ(Y ) is a H-orbit in

Xi−1. For i = 0, Y = x0 is contained in W0 = Tx0. By induction on i, Y is contained

in W0 for all i by (16), since E∗

i (α) ∈ T by Lemma 6. This completes the proof of

Theorem 4.

4 The principal T -module recognizes the tree: Proof

of Theorem 5

In this section, we prove Theorem 5, which states that the principal T -module recog-

nizes the tree.

We firstly prove that Γ′ is a tree if the principal T ′-module W0
′ of Γ′ is isomorphic

to the principal T -module W0 of the tree Γ. Since Γ is a tree, we have

E∗

0A
iE∗

i A
iE∗

0x0 = ‖E∗

i A
iE∗

0x0‖
2
x0, (17)

E∗

0A
iE∗

i AE
∗

iA
iE∗

0x0 = 0 (18)

for 0 ≤ i ≤ D, where ‖w‖ is the norm of w ∈ W0. Since W0 ≃ W0
′, we have D = D′

and (17), (18) hold for x0
′, E∗

0
′, A′, E∗

i
′ in place of x0, E

∗

0 , A, E
∗

i . This means that

Γ′ does not have any cycles, i.e., Γ′ is a tree.

Next we prove that Γ(x0) and Γ′(x0
′) are isomorphic as rooted trees if W0 ≃ W0

′

as T -modules. Note that Lemma 6 holds for the principal T -module W0 (and for the

9



principal T ′-module W0
′), i.e., (10) and (11) hold for E∗

i (α)|W0, E
∗

i+1(β)|W0, E
∗

i |W0,

A|W0 in place of E∗

i (α), E
∗

i+1(β), E
∗

i , A. Note that E
∗

i (α)|W0 6= 0, 0 ≤ i ≤ D, α ∈ Λi,

since Xi(α) is invariant under the action of H and so Y ∈ W0 for Y ∈ Orb(H,Xi(α))

by Theorem 4. Since T |W0 ≃ T ′|W0
′ as T -algebras, it follows from Lemma 6 by

induction on D − i that we can identify Λi and Λi
′, 0 ≤ i ≤ D = D′ and E∗

i (α)|W0

corresponds to E∗

i
′(α)|W0

′, 0 ≤ i ≤ D, α ∈ Λi under the T -algebra isomorphism

between T |W0 and T ′|W0
′ .

For x ∈ X1(α), α ∈ Λ1, we consider the Terwilliger algebra of the rooted tree Γ(x).

Set V̂ =
⊕
y∈X1

CΓ(y) =
D⊕
i=1

V ∗

i and let T̂ denote the subalgebra of End(V̂ ) generated by

E∗

i , 1 ≤ i ≤ D and Â, where

Â = (

D∑

j=1

E∗

j )A(

D∑

i=1

E∗

i ). (19)

Then T̂ is a Terwilliger algebra with V̂ the standard module, in the sense of Section

1.1. The Terwilliger algebra of Γ(x) for x ∈ X1(α) is T̂ |CΓ(x), the restriction of T̂ to

the standard module CΓ(x) of Γ(x), and T̂ x is the principal module of Γ(x). For x,

x′ ∈ X1(α), we have T̂ x ≃ T̂ x′ as T̂ -modules since Γ(x) and Γ(x′) are isomorphic as

rooted trees. Set X1(α) =
∑

x′∈X1(α)

x′. Then for any x ∈ X1(α), we have

T̂X1(α) ≃ T̂ x (20)

as T̂ -modules with the natural correspondence of aX1(α) to ax for a ∈ T̂ . Note

that X1(α) = E∗

1(α)Ax0 and so T̂X1(α) is contained in W0 = Tx0 by Lemma 6.

Therefore by (20), the principal module T̂ x of Γ(x) for x ∈ X1(α) is determined up to

isomorphism by the principal module W0 = Tx0 of Γ(x0), as T̂ is a sualgebra of T .

Recall it follows from T |W0 ≃ T ′|W0
′ that Λi and Λi

′ are identified and E∗

i (α)|W0

corresponds to E∗

i
′(α)|W0

′ (α ∈ Λi) under the T -algebra isomorphism between T |W0

and T ′|W0
′. Hence by (20), the principal module of Γ(x) is isomorphic to that of Γ′(x

′)

for x ∈ X1(α), x
′ ∈ X1

′(α), α ∈ Λ1, i.e., T̂ x ≃ T̂ ′x′, because T̂X1(α) ≃ T̂ ′X ′

1(α).

By induction on D, Γ(x) is isomorphic to Γ′(x
′) as rooted trees for x ∈ X1(α), x

′ ∈

X1
′(α), α ∈ Λ1, i.e., Γ

(x) ≃ Γ′(x
′), since the D of Γ(x) is smaller than that of Γ(x0).

The isomorphism class of the rooted tree Γ(x0) is determined by {Γ(x) | x ∈ X1}

regarded as a multi-set of isomorphism classes of rooted trees. Let {Γ(α) | α ∈ Λ1}

be a complete set of representatives for the isomorphism classes of the rooted trees

Γ(x), x ∈ X1. Then {Γ(x) | x ∈ X1} = {|X1(α)|Γ
(α) | α ∈ Λ1} as multi-sets and the
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isomorphism class of the rooted tree Γ(x0) is determined by {|X1(α)| | α ∈ Λ1} and

{Γ(α) | α ∈ Λ1}.

We have already shown that W0 ≃W0
′ implies Λ1 = Λ1

′ and Γ(α) = Γ′(α), α ∈ Λ1.

Since X1(α) = E∗

1(α)Ax0 and |X1(α)| coincides with the norm of X1(α), W0 ≃ W0
′

implies |X1(α)| = |X1
′(α)|, α ∈ Λ1. This completes the proof of Theorem 5.
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