# On the isomorphism of certain primitive $Q$-polynomial not $P$-polynomial association schemes 

Giusy Monzillo*<br>giusy.monzillo@unibas.it<br>Alessandro Siciliano<br>alessandro.siciliano@unibas.it<br>Dipartimento di Matematica, Informatica ed Economia<br>Università degli Studi della Basilicata<br>Viale dell'Ateneo Lucano 10-85100 Potenza (Italy) Potenza, Italy


#### Abstract

In 2011, Penttila and Williford constructed an infinite new family of primitive $Q$-polynomial 3-class association schemes, not arising from distance regular graphs, by exploring the geometry of the lines of the unitary polar space $H\left(3, q^{2}\right), q$ even, with respect to a symplectic polar space $W(3, q)$ embedded in it.

In a private communication to Penttila and Williford, H. Tanaka pointed out that these schemes have the same parameters as the 3-class schemes found by Hollmann and Xiang in 2006 by considering the action of $\operatorname{PGL}\left(2, q^{2}\right), q$ even, on a non-degenerate conic of $\mathrm{PG}\left(2, q^{2}\right)$ extended in $\mathrm{PG}\left(2, q^{4}\right)$. Therefore, the question arises whether the above association schemes are isomorphic. In this paper we provide the positive answer. As by product, we get an isomorphism of strongly regular graphs.


Keywords: Association scheme, Finite geometry, Hemisystem
Math. Subj. Class.: 05E30, 51E20

[^0]
## 1 Introduction

Let $\mathfrak{X}=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq d}\right)$ be a (symmetric) association scheme with $d$ classes. For $0 \leq i \leq d$, let $A_{i}$ be the adjacency matrix of the relation $R_{i}$, and $E_{i}$ the $i$-th primitive idempotent of the Bose-Mesner algebra of $\mathfrak{X}$ which projects on the $i$-th maximal common eigenspace of $A_{0}, \ldots, A_{d}$. The matrices $P$ and $Q$ defined by

$$
\left(A_{0} A_{1} \ldots A_{d}\right)=\left(E_{0} E_{1} \ldots E_{d}\right) P
$$

and

$$
\left(E_{0} E_{1} \ldots E_{d}\right)=|X|^{-1}\left(A_{0} A_{1} \ldots A_{d}\right) Q
$$

are the first and the second eigenmatrix of $\mathfrak{X}$, respectively.
An association scheme is said to be $P$-polynomial, or metric, if, after a reordering of the relations, there are polynomials $p_{i}$ of degree $i$ such that $A_{i}=p_{i}\left(A_{1}\right)$; an association scheme is called $Q$-polynomial, or cometric, if, after a reordering of the eigenspaces, there are polynomials $q_{i}$ of degree $i$ such that $E_{i}=q_{i}\left(E_{1}\right)$, where multiplication is done entrywise. The reader is referred to [1, 3] for further information on association schemes.

Two association schemes $\mathfrak{X}=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq d}\right)$ and $\mathfrak{X}^{\prime}=\left(X^{\prime},\left\{R_{i}^{\prime}\right\}_{0 \leq i \leq d}\right)$ are isomorphic if there exists a bijection $\varphi$ from $X$ to $X^{\prime}$ such that for each $i \in\{0, \ldots, d\}$ there exists $j \in\{0, \ldots, d\}$ satisfying $\left\{(\varphi(x), \varphi(y)):(x, y) \in R_{i}\right\}=R_{j}^{\prime}$; the mapping $\varphi$ is called an isomorphism from $\mathfrak{X}$ to $\mathfrak{X}^{\prime}$.

The idea of $P$-polynomial and $Q$-polynomial schemes was introduced by Delsarte in [9], who observed a formal duality between the two notions. Delsarte also noted that $\mathfrak{X}$ is $P$-polynomial if and only if, after a proper re-ordering of the relations, $\left(X, R_{1}\right)$ is a distance-regular graph [9, Theorems 5.6 and 5.16]. On the other hand, $Q$-polynomial schemes which are neither $P$-polynomial nor duals of $P$-polynomial schemes seem to be quite rare. In [7] van Dam, Martin and Muzychuk constructed an infinite family of such schemes from hemisystems of the unitary polar space $H\left(3, q^{2}\right)$ provided in [16]. In 2011, Penttila and Williford [14] constructed another infinite family of $Q$-polynomial 3 -class association schemes, not $P$-polynomial nor the dual of a $P$-polynomial, by considering a relative hemisystem of $H\left(3, q^{2}\right), q$ even, with respect to a symplectic polar space $W(3, q)$ embedded in it. These schemes differ from all those previously known, they being primitive. The known examples of $Q$-polynomial schemes which are not $P$-polynomial are listed in [13, 16].

We underline that the Penttila-Williford 3-class schemes are obtained by applying [14, Theorem 2] which provides primitive $Q$-polynomial subschemes of $Q$-polynomial $Q$-bipartite schemes defined on certain generalized quadrangles. This result can be
viewed as a reversal of the so-called "extended $Q$-bipartite double" construction given in [13]. On the other hand, looking at the Krein array of the generic PenttilaWilliford scheme, we may note that it comes from a strongly regular graph after splitting one of its relations in two.

In a private communication to the authors of [14, H. Tanaka pointed out that their 3 -class schemes have the same parameters as the 3 -class schemes provided by Hollmann and Xiang in [11. The latter, which were previously not noticed to be $Q$-polynomial, are obtained as fusion of association schemes constructed from the action of the projective group $\operatorname{PGL}\left(2, q^{2}\right), q$ even, on a non-degenerate conic in the Desarguesian projective plane $\operatorname{PG}\left(2, q^{2}\right)$ extended in $\operatorname{PG}\left(2, q^{4}\right)$.
Therefore the question arises whether there exists an isomorphism that takes the Pentilla-Williford association schemes to the Hollmann-Xiang fusion schemes. In this paper, we provide the answer by proving the following result:

Main Theorem. The Penttila-Williford 3-class association schemes and the HollmannXiang fusion association schemes are isomorphic.

The proof essentially uses geometric arguments. We start off with an explicit description of the Penttila-Williford relative hemisystems in terms of coordinates in the projective space $\mathrm{PG}\left(3, q^{2}\right)$. Via the Klein correspondence from the lines of $\operatorname{PG}\left(3, q^{2}\right)$ to the points of the Klein quadric of $\operatorname{PG}\left(5, q^{2}\right)$, we obtain a geometric representation of the Penttila-Williford association schemes in the orthogonal polar space $Q^{-}(5, q)$ whose points are the image of the lines in $H\left(3, q^{2}\right)$ [10]. Thanks to this representation we are able to find a desired isomorphism.
In [11] it was pointed out that a further fusion scheme of the 3-class HollmannXiang scheme produces a strongly regular graph with parameters $v=q^{2}\left(q^{2}-1\right) / 2$, $k=\left(q^{2}+1\right)(q-1), \lambda=q^{2}+q-2, \nu=2\left(q^{2}-q\right)$. These graphs have the same parameters of the ones found by R. Metz [8], which can be also constructed from a fusion of the Penttila-Williford schemes; see also [4, p.189]. These graphs are denoted by $\mathrm{NO}^{-}(5, q)$ in Brouwer's table of strongly regular graphs [2].

The paper [11] announced an alleged isomorphism between the above graphs in a forthcoming paper. To the best of our knowledge, such a paper appears to have never been published. Anyway, the Main Theorem confirms the conjectured isomorphism.
The paper is structured as follows: in Section 2 we recall the construction of the Hollmann-Xiang and Penttila-Williford association schemes. In Sections 3 we give a coordinatization of the relative hemisystems of Penttila and Williford together with their representation in $Q^{-}(5, q)$. Finally, Section 4 contains the proof of the Main Theorem.

## 2 Preliminaries

For any given $n$-dimensional vector space $V=V(n, F)$ over a field $F$, the projective geometry defined by $V$ is the partially ordered set of all subspaces of $V$, and it will be denoted by $\mathrm{PG}(V)$. If $F$ is the finite field $\mathbb{F}_{q}$ with $q$ elements, then we may write $V=V(n, q)$ and $\mathrm{PG}(n-1, q)$ instead of $\mathrm{PG}(V)$. The 1-dimensional subspaces are called points, the 2-dimensional subspaces are called lines, and the $(n-1)$ dimensional subspaces are called hyperplanes of $\mathrm{PG}(V)$. For a nonzero $v \in V,\langle v\rangle$ will denote the point of $\mathrm{PG}(V)$ spanned by $v$. In order to simplify notation, for each subspace $U$ of $V$, that is an element of $\operatorname{PG}(V)$, we will use the same letter for the projective geometry defined by $U$. If $V$ is endowed with a non-degenerate alternating, quadratic or hermitian form of Witt index $m$, the set $\mathcal{P}$ of totally isotropic (or singular, in the case of quadratic form) subspaces of $V$ is a polar space of rank $m$ of $\mathrm{PG}(V)$, which is called symplectic, orthogonal or unitary, respectively. Our principal reference on projective geometries and polar spaces is [15].

### 2.1 The Hollmann-Xiang association schemes

A non-degenerate conic $\mathcal{C}$ of $\operatorname{PG}\left(2, q^{2}\right)$ is an orthogonal polar space (of rank 1 ) arising from a non-degenerate quadratic form $Q$ on $V\left(3, q^{2}\right)$. A line $\ell$ of $\operatorname{PG}\left(2, q^{2}\right)$ is called a passant, tangent or secant of $\mathcal{C}$ according as $|\ell \cap \mathcal{C}|=0,1$ or 2 .

Embed PG(2, $\left.q^{2}\right)$ in $\operatorname{PG}\left(2, q^{4}\right)$. Concretely this can be done by extending the scalars in $V\left(3, q^{2}\right)$. It follows that each point of $\mathrm{PG}\left(2, q^{2}\right)$ extends to a point of $\operatorname{PG}\left(2, q^{4}\right)$. Similarly, each line $\ell$ of $\operatorname{PG}\left(2, q^{2}\right)$ extends to a line $\bar{\ell}$ of $\operatorname{PG}\left(2, q^{4}\right)$. The extension $\bar{Q}$ of $Q$ in $V\left(3, q^{4}\right)$ is a non-degenerate quadratic form, and it defines a (non-degenerate) conic $\overline{\mathcal{C}}$ in $\operatorname{PG}\left(2, q^{4}\right)$. While the extension $\bar{\ell}$ of a tangent (or secant) line $\ell$ of $\mathcal{C}$ is a tangent (or secant) of $\overline{\mathcal{C}}$, the extension of a passant line of $\mathcal{C}$ is a secant of $\overline{\mathcal{C}}$. Such a line is called an elliptic line of $\overline{\mathcal{C}}$, and we will denote by $\mathcal{E}$ the set of these lines. Note that $\mathcal{E}$ has size $\left(q^{4}-q^{2}\right) / 2$.
Since all non-degenerate quadratic forms on $V\left(3, q^{2}\right)$ are equivalent, we may assume

$$
\begin{array}{cccc}
\bar{Q}: & V\left(3, q^{4}\right) & \rightarrow \mathbb{F}_{q^{4}} \\
& (x, y, z) & \mapsto y^{2}-x z .
\end{array}
$$

Therefore,

$$
\overline{\mathcal{C}}=\left\{\left\langle\left(1, t, t^{2}\right)\right\rangle: t \in \mathbb{F}_{q^{4}}\right\} \cup\{\langle(0,0,1)\rangle\}
$$

and

$$
\mathcal{C}=\left\{\left\langle\left(1, t, t^{2}\right)\right\rangle: t \in \mathbb{F}_{q^{2}}\right\} \cup\{\langle(0,0,1)\rangle\}
$$

Therefore, for every elliptic line $\bar{\ell}$ of $\overline{\mathcal{C}}$ we have $\bar{\ell} \cap \overline{\mathcal{C}}=\left\{\left\langle\left(1, t, t^{2}\right)\right\rangle,\left\langle\left(1, t^{q^{2}}, t^{2 q^{2}}\right)\right\rangle\right\}$, for some $t \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}$. The reader is referred to [11] for more details.

Under the identification of $\mathbb{F}_{q^{4}} \cup\{\infty\}$ with $\overline{\mathcal{C}}$ given by

$$
\begin{equation*}
\xi: \quad t \leftrightarrow\left\langle\left(1, t, t^{2}\right)\right\rangle, \quad \infty \leftrightarrow\langle(0,0,1)\rangle, \tag{1}
\end{equation*}
$$

the pair $\mathbf{t}=\left\{t, t^{q^{2}}\right\}$, with $t \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}$, may be associated with the elliptic line intersecting $\overline{\mathcal{C}}$ at $\left\{\left\langle\left(1, t, t^{2}\right)\right\rangle,\left\langle\left(1, t^{q^{2}}, t^{2 q^{2}}\right)\right\rangle\right\}$. We will use $\bar{\ell}_{\mathbf{t}}$ to denote this line.

We assume $q$ is even. For any given pair of distinct elliptic lines $\bar{\ell}_{\mathbf{s}}, \bar{\ell}_{\mathrm{t}}$, let

$$
\begin{equation*}
\widehat{\rho}\left(\bar{\ell}_{\mathbf{s}}, \bar{\ell}_{\mathbf{t}}\right)=\widehat{\rho}(\mathbf{s}, \mathbf{t})=\frac{1}{\rho(s, t)+\rho(s, t)^{-1}} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho(s, t)=\frac{(s+t)\left(s^{q^{2}}+t^{q^{2}}\right)}{\left(s+t^{q^{2}}\right)\left(s^{q^{2}}+t\right)} . \tag{3}
\end{equation*}
$$

It is evident that $\operatorname{Im} \hat{\rho}$ is a subset of $\mathbb{F}_{q^{2}}$. The following result is straigtforward.
Lemma 2.1. [11, Lemma 5.1]

$$
\widehat{\rho}(\mathbf{s}, \mathbf{t})=\frac{(s+t)\left(s^{q^{2}}+t^{q^{2}}\right)\left(s+t^{q^{2}}\right)\left(s^{q^{2}}+t\right)}{\left(s+s^{q^{2}}\right)^{2}\left(t+t^{q^{2}}\right)^{2}}=\left(\frac{1}{\rho(s, t)+1}\right)^{2}+\left(\frac{1}{\rho(s, t)+1}\right) .
$$

Set $q=2^{h}$. For $r \in\{1,2\}$, let $\mathbf{T}_{0}\left(q^{r}\right)$ be the set of elements of $\mathbb{F}_{q^{r}}$ with absolute trace zero:

$$
\mathbf{T}_{0}\left(q^{r}\right)=\left\{x \in \mathbb{F}_{q^{r}}: \sum_{i=0}^{r h-1} x^{2^{i}}=0\right\}
$$

In [11] Hollmann and Xiang consider the following sets to construct a 3-class association scheme:

$$
\mathbf{T}_{0}=\mathbf{T}_{0}\left(q^{2}\right), \quad \mathbf{S}_{0}^{*}=\mathbf{T}_{0}(q) \backslash\{0\}, \quad \mathbf{S}_{1}=\mathbb{F}_{q} \backslash \mathbf{S}_{0}
$$

Note that $\mathbf{T}_{0}=\left\{\alpha+\alpha^{2}: \alpha \in \mathbb{F}_{q^{2}}\right\}$ as $q$ is even. By Lemma 2.1, $\operatorname{Im} \hat{\rho}$ is contained in $\mathbf{T}_{0}$.

Theorem 2.2. 11] On the set of the elliptic lines $\mathcal{E}$ define the following relations:

$$
\begin{aligned}
& R_{1}:\left(\bar{\ell}_{\mathbf{s}}, \bar{\ell}_{\mathbf{t}}\right) \in R_{1} \text { if and only } \widehat{\rho}\left(\bar{\ell}_{\mathbf{s}}, \bar{\ell}_{\mathbf{t}}\right) \in \mathbf{S}_{0}^{*} ; \\
& R_{2}:\left(\bar{\ell}_{\mathbf{s}}, \bar{\ell}_{\mathbf{t}}\right) \in R_{2} \text { if and only } \widehat{\rho}\left(\bar{\ell}_{\mathbf{s}}, \bar{\ell}_{\mathbf{t}}\right) \in \mathbf{S}_{1}
\end{aligned}
$$

$$
R_{3}:\left(\bar{\ell}_{\mathbf{s}}, \bar{\ell}_{\mathbf{t}}\right) \in R_{3} \text { if and only } \widehat{\rho}\left(\bar{\ell}_{\mathbf{s}}, \bar{\ell}_{\mathbf{t}}\right) \in \mathbf{T}_{0} \backslash \mathbb{F}_{q} .
$$

Then the pair $\left(\mathcal{E},\left\{R_{i}\right\}_{i=0}^{3}\right)$, where $R_{0}$ is the identity relation, is a 3-class association scheme.

The first eigen-matrix of the scheme is

$$
P=\left(\begin{array}{cccc}
1 & (q-2)\left(q^{2}+1\right) / 2 & q\left(q^{2}+1\right) / 2 & q(q-2)\left(q^{2}+1\right) / 2  \tag{4}\\
1 & -(q-1)(q-2) / 2 & -q(q-1) / 2 & q(q-2) \\
1 & -\left(q^{2}-q+2\right) / 2 & q(q+1) / 2 & -q \\
1 & q-1 & 0 & -q
\end{array}\right)
$$

see [11, Section 7].
Remark 2.3. By identification (11), the set $\mathcal{E}$ may be replaced by the set $\mathcal{X}=\{\mathbf{t}=$ $\left.\left\{t, t^{q^{2}}\right\}: t \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}\right\}$ and the relations $R_{i}, i=1,2,3$, replaced by

$$
\begin{aligned}
& R_{1}^{\prime}:(\mathbf{s}, \mathbf{t}) \in R_{1}^{\prime} \text { if and only } \widehat{\rho}(\mathbf{s}, \mathbf{t}) \in \mathbf{S}_{0}^{*} ; \\
& R_{2}^{\prime}:(\mathbf{s}, \mathbf{t}) \in R_{2}^{\prime} \text { if and only } \widehat{\rho}(\mathbf{s}, \mathbf{t}) \in \mathbf{S}_{1} ; \\
& R_{3}^{\prime}:(\mathbf{s}, \mathbf{t}) \in R_{3}^{\prime} \text { if and only } \widehat{\rho}(\mathbf{s}, \mathbf{t}) \in \mathbf{T}_{0} \backslash \mathbb{F}_{q} ;
\end{aligned}
$$

here $\widehat{\rho}(\mathbf{s}, \mathbf{t})$ is the quantity defined in (2). Hence, $\left(\mathcal{X},\left\{R_{i}^{\prime}\right\}_{i=0}^{3}\right)$ is an association scheme isomorphic to $\left(\mathcal{E},\left\{R_{i}\right\}_{i=0}^{3}\right)$.

Remark 2.4. Actually, the scheme $\left(\mathcal{X},\left\{R_{i}^{\prime}\right\}_{i=0}^{3}\right)$ arises as a fusion of the one given by the following result [11].

Theorem. Under the identification $\xi$, the action of $\mathrm{PGL}\left(2, q^{2}\right)$ on $\mathcal{E} \times \mathcal{E}$ gives rise to an association scheme on $\mathcal{X}$ with $q^{2} / 2-1$ classes $R_{\left\{\lambda, \lambda^{-1}\right\}}, \lambda \in \mathbb{F}_{q^{2}} \backslash\{0,1\}$, where $(\mathbf{s}, \mathbf{t}) \in R_{\left\{\lambda, \lambda^{-1}\right\}}$ if and only if $\left\{\rho(s, t), \rho(s, t)^{-1}\right\}=\left\{\lambda, \lambda^{-1}\right\}$.

### 2.2 The Penttila-Williford association schemes

Up to isometries, the vector space $V\left(4, q^{2}\right)$ has precisely one non-degenerate hermitian form, and its Witt index is 2. As usual, $H\left(3, q^{2}\right)$ denotes the unitary polar space of rank 2 defined by it. A point (resp. line) of $H\left(3, q^{2}\right)$ is a 1-dimensional (resp. 2-dimensional) subspace in $H\left(3, q^{2}\right)$.

Assume $q$ even for the rest of the current section. In $V\left(4, q^{2}\right)$ there is a 4 dimensional $\mathbb{F}_{q}$-vector space $\widehat{V}$ such that the restriction of the hermitian form on
it induces a non-degenerate alternating form $\widehat{b}$ which defines a symplectic polar space $W(3, q)$ of rank 2 of $\operatorname{PG}(\widehat{V})$ [5]. In addition, $\widehat{b}$ is the polar of a non-degenerate quadratic form $\widehat{Q}$ of Witt index 1 , whose set of singular point is denoted by $Q^{-}(3, q)$. By $\widehat{\mathcal{W}}$ (resp. $\widehat{\mathcal{Q}}$ ) we denote the set of all the totally isotropic (resp. singular) subspaces of $W(3, q)$ (resp. $\left.Q^{-}(3, q)\right)$ extended over $\mathbb{F}_{q^{2}}$. As a consequence, for every point of $H\left(3, q^{2}\right)$ not in $\widehat{\mathcal{W}}$ there are exactly $q$ lines of $H\left(3, q^{2}\right)$ disjoint from $\widehat{\mathcal{W}}$ and one in $\widehat{\mathcal{W}}$. Note that $\widehat{\mathcal{W}}$ is an embedding of $W(3, q)$ in $H\left(3, q^{2}\right)$.

The following definition was introduced in [14]. A relative hemisystem of $H\left(3, q^{2}\right)$ with respect to $W(3, q)$ is a set $\mathcal{H}$ of lines of $H\left(3, q^{2}\right)$ disjoint from $\widehat{\mathcal{W}}$ such that every point of $H\left(3, q^{2}\right)$ not in $\widehat{\mathcal{W}}$ lies on exactly $q / 2$ lines of $\mathcal{H}$. For any given line $l$ of $H\left(3, q^{2}\right)$ disjoint from $\widehat{\mathcal{W}}$, let $\mathcal{S}_{l}$ denote the set of lines of $H\left(3, q^{2}\right)$ which meet both $l$ and $\widehat{\mathcal{W}}$. We stress the fact that $\mathcal{S}_{l}$ consists of the lines of $\widehat{\mathcal{W}}$ that extend elements of a regular spread of $W(3, q) \sqrt{1}$, and refer to $\mathcal{S}_{l}$ as the spread subtended by $l$.

Theorem 2.5. [14, Theorem 4] Let $\mathcal{H}$ be a relative hemisystem of $H\left(3, q^{2}\right)$ with respect to $W(3, q)$. Then a primitive $Q$-polynomial 3-class association scheme can be constructed on $\mathcal{H}$ by the defining the following relations:

$$
\begin{aligned}
& \widetilde{R}_{1}:(l, m) \in \widetilde{R}_{1} \text { if and only }|l \cap m|=1 ; \\
& \widetilde{R}_{2}:(l, m) \in \widetilde{R}_{2} \text { if and only } l \cap m=\emptyset \text { and }\left|\mathcal{S}_{l} \cap \mathcal{S}_{m}\right|=1 ; \\
& \widetilde{R}_{3}:(l, m) \in \widetilde{R}_{3} \text { if and only } l \cap m=\emptyset \text { are }\left|\mathcal{S}_{l} \cap \mathcal{S}_{m}\right|=q+1 .
\end{aligned}
$$

Let $\mathrm{PO}^{-}(\widehat{V})$ be the stabilizer of $\widehat{\mathcal{Q}}$ in the projective unitary group $\operatorname{PGU}\left(4, q^{2}\right)$. By looking at the action of the commutator subgroup $\mathrm{P}^{-}(\widehat{V})$ of $\mathrm{PO}^{-}(\widehat{V})$ on the lines of $H\left(3, q^{2}\right)$, the following result was proved in [14].

Theorem 2.6. $\mathrm{P} \Omega^{-}(\widehat{V})$ has two orbits on the lines of $H\left(3, q^{2}\right)$ disjoint from $\widehat{\mathcal{W}}$, and each orbit is a relative hemisystem with respect to $W(3, q)$.

We consider an association scheme $\left(\mathcal{H},\left\{\widetilde{R}_{i}\right\}_{i=0}^{3}\right)$ as in Theorem 2.5 by using the hemisystems from Theorem 2.6. As expected, the first eigen-matrix of the scheme is precisely the matrix in (4).

[^1]
## 3 The explicit construction of the relative hemisystem of Penttila-Williford

Let $G$ and $H$ be groups acting on the sets $\Omega$ and $\Delta$, respectively. The two actions are said to be permutationally isomorphic if there exist a bijection $\theta: \Omega \rightarrow \Delta$ and an isomorphism $\chi: G \rightarrow H$ such that the following diagram commutes:


Here $\phi$ and $\tilde{\phi}$ are the maps defining the action of $G$ and $H$ on $\Omega$ and $\Delta$, respectively.
Let $Q^{-}(3, q)$ be the orthogonal polar space (of rank 1 ) defined by $\widehat{Q}$ on the 4 dimensional $\mathbb{F}_{q}$-vector space $\widehat{V}$ introduced in Section 2.2,
It is known that $\left(\operatorname{PSL}\left(2, q^{2}\right), \operatorname{PG}\left(1, q^{2}\right)\right)$ and $\left(\mathrm{P}^{-}(\widehat{V}), Q^{-}(3, q)\right)$ are permutationally isomorphic for all prime powers $q$. For sake of completeness, we give an explicit description of the above isomorphism which is more suitable for our computation.
In $V\left(4, q^{2}\right)=\left\{\left(X_{1}, X_{2}, X_{3}, X_{4}\right): X_{i} \in \mathbb{F}_{q^{2}}\right\}$, let $\widehat{V}$ be the set of all vectors $v=$ $\left(\alpha, x^{q}, x, \beta\right)$ with $\alpha, \beta \in \mathbb{F}_{q}, x \in \mathbb{F}_{q^{2}}$. With the usual sum and multiplication by scalars from $\mathbb{F}_{q}, \widehat{V}$ is a 4-dimensional vector space over $\mathbb{F}_{q}$.

As usual we identify $\operatorname{PG}\left(1, q^{2}\right)$ with $\mathbb{F}_{q^{2}} \cup\{\infty\}$ and we consider the following injective map:

$$
\begin{array}{ccc}
\theta: \mathbb{F}_{q^{2}} \cup\{\infty\} & \longrightarrow & \mathrm{PG}(\widehat{V}) \\
t & \mapsto & \left\langle\left(1, t^{q}, t, t^{q+1}\right)\right\rangle  \tag{5}\\
\infty & \mapsto & \langle(0,0,0,1)\rangle
\end{array} .
$$

Proposition 3.1. [6] The image of $\theta$ is an orthogonal polar space of rank 1 of $\operatorname{PG}(\widehat{V})$.

Proof. Let $Q$ be the quadratic form on $V\left(4, q^{2}\right)$ defined by

$$
Q(\mathbf{X})=X_{1} X_{4}-X_{2} X_{3}
$$

which has $b(\mathbf{X}, \mathbf{Y})=X_{1} Y_{4}+X_{4} Y_{1}-X_{2} Y_{3}-X_{3} Y_{2}$ as the associated non-degenerate bilinear form. The restriction $\widehat{Q}=\left.Q\right|_{\widehat{V}}$ is the quadratic form given by

$$
\widehat{Q}(v)=\alpha \beta-x^{q+1}
$$

which has

$$
\begin{equation*}
\widehat{b}\left(v, v^{\prime}\right)=\alpha \beta^{\prime}+\beta \alpha^{\prime}-x x^{\prime q}-x^{q} x^{\prime} \tag{6}
\end{equation*}
$$

as the associated bilinear form. Let $v=\left(\alpha, x^{q}, x, \beta\right) \in \operatorname{Rad}(\widehat{V})$, that is $\widehat{b}\left(v, v^{\prime}\right)=0$, for all $v^{\prime} \in \widehat{V}$. If $\alpha^{\prime}=\beta^{\prime}=0$, a necessary condition for $v \in \operatorname{Rad}(\widehat{V})$ is

$$
x^{q} x^{\prime}+x x^{\prime q}=0,
$$

for all $x^{\prime} \in \mathbb{F}_{q^{2}}$. This shows that the polynomial in $x^{\prime}$ of degree $q$ on the left hand side has at least $q^{2}$ roots. Therefore, it must be the zero polynomial, and $x=0$. We repeat the above argument for $\alpha^{\prime}=x^{\prime}=0$ and for $x^{\prime}=\beta^{\prime}=0$ to show that $v=0$. This yields that $\widehat{b}$, and hence $\widehat{Q}$, is non-degenerate. Let $u$ be a singular vector for $\widehat{Q}$. Without loss of generality we may take $u=(1,0,0,0)$. Therefore, the subspace $U=\{v \in \widehat{V}: \widehat{b}(v, u)=0\}$ coincides with $\left\{\left(\alpha, x^{q}, x, 0\right): \beta \in \mathbb{F}_{q}, x \in \mathbb{F}_{q^{2}}\right\}$. It is easily seen that $U \cap \operatorname{ker} \widehat{Q}=\left\{\alpha u: \alpha \in \mathbb{F}_{q}\right\}$. Thus, $\widehat{Q}$ is a quadratic form of Witt index 1 giving rise to the orthogonal polar space

$$
Q^{-}(3, q)=\left\{\left\langle\left(1, t^{q}, t, t^{q+1}\right)\right\rangle: t \in \mathbb{F}_{q^{2}}\right\} \cup\{\langle(0,0,0,1)\rangle\},
$$

which is precisely $\operatorname{Im} \theta$.
Let $\chi$ be the monomorphism defined by

$$
\begin{array}{clc}
\chi: \mathrm{SL}\left(2, q^{2}\right) & \longrightarrow & \mathrm{SL}\left(4, q^{2}\right) \\
g & \mapsto & g \otimes g^{q}
\end{array},
$$

where $\otimes$ is the Kronecker product and $g^{q}$ denotes the matrix $g$ with its entries raised to the $q$-th power. It is straightforward to check that $\chi(g)$ is a $\widehat{Q}$-isometry, for every $g \in \operatorname{SL}\left(2, q^{2}\right)$. Therefore, $\chi$ can be regarded as a monomorphism from $\operatorname{PSL}\left(2, q^{2}\right)$ to $\mathrm{PO}^{-}(\widehat{V})$. It is actually an isomorphism from $\operatorname{PSL}\left(2, q^{2}\right)$ to $\mathrm{P} \Omega^{-}(\widehat{V})$, as it will be shown below.
Let $t_{a}$ be the transvection in $\operatorname{SL}\left(2, q^{2}\right)$ with matrix $\left(\begin{array}{ll}1 & 0 \\ a & 1\end{array}\right)$, for some $a \in \mathbb{F}_{q^{2}}^{*}$. The isometry $\chi\left(t_{a}\right)$ maps $\left(\alpha, x^{q}, x, \beta\right)$ to $\left(\alpha, a^{q} \alpha+x^{q}, a \alpha+x, a^{q+1} \alpha+a x^{q}+a^{q} x+\beta\right)$. Its restriction on the hyperplane of all $\widehat{b}$-orthogonal vectors to $u=(0,0,0,1)$ is the map

$$
\eta_{u, y}(w)=w+\widehat{b}(w, y) u
$$

where $y=\left(0,-a^{q},-a, 0\right)$. This yields that $\chi\left(t_{a}\right)$ is actually the unique Siegel transformation $\rho_{u, y}$ which extends $\eta_{u, y}$ [15, Theorem 11.18]. By using [15, Theorem 11.19 (ii)] it is possible to show that as $a$ varies in $\mathbb{F}_{q^{2}}^{*}, \rho_{u, y}$ describes all the Siegel transformations centered at $u$.

Every transvection $g$ is conjugate in $\mathrm{SL}\left(2, q^{2}\right)$ to a transvection of type $t_{a}$. This implies that $\chi(g)$ is also a Siegel transformation [15, Theorem 11.19 (iii)]. Therefore, $\chi$ gives rise to a bijection from the set of all transvections in $\operatorname{SL}\left(2, q^{2}\right)$ to all Siegel transformations of $\widehat{V}$. Since transvections generate $\operatorname{SL}\left(2, q^{2}\right)$, and Siegel transformations generate $\Omega^{-}(\widehat{V})$, we achieve $\chi\left(\operatorname{PSL}\left(2, q^{2}\right)\right) \leq \mathrm{P} \Omega^{-}(\widehat{V})$. As $\left|\operatorname{PSL}\left(2, q^{2}\right)\right|=\left|\mathrm{P} \Omega^{-}(\widehat{V})\right|$, $\chi$ is actually the desired isomorphism. It is a matter of fact that the diagram

commutes.
For the rest of this section, assume $q$ is even. The bilinear form $\hat{b}$ defined by (6) is a (non-degenerate) alternating form on $\widehat{V}$. Let $h$ be the non-degenerate hermitian form on $V\left(4, q^{2}\right)$ given by

$$
h(\mathbf{X}, \mathbf{Y})=X_{1} Y_{4}^{q}+X_{2} Y_{2}^{q}+X_{3} Y_{3}^{q}+X_{4} Y_{1}^{q}
$$

with associated unitary polar space $H\left(3, q^{2}\right)$. It is evident that $\left.h\right|_{\widehat{V}}=\widehat{b}$. Therefore, the symplectic polar space $W(3, q)$ defined by $\widehat{b}$, as well as the orthogonal polar space $Q^{-}(3, q)$, can be embedded in $H\left(3, q^{2}\right)$ by extending the scalars, so getting $\widehat{\mathcal{W}}$ and $\widehat{\mathcal{Q}}$ introduced in Section 2.2. This also implies that $\mathrm{P} \Omega^{-}(\widehat{V})$ is a subgroup of the projective symplectic group $\operatorname{PSp}(\widehat{V})$ which is in turn a subgroup of the projective unitary group $\operatorname{PGU}\left(4, q^{2}\right)$.

The semilinear involutorial transformation $\tau$ of $V\left(4, q^{2}\right)$ given by

$$
\begin{array}{cccc}
\tau: & V\left(4, q^{2}\right) & \longrightarrow & V\left(4, q^{2}\right) \\
& \left(X_{1}, X_{2}, X_{3}, X_{4}\right) & \mapsto & \left(X_{1}^{q}, X_{3}^{q}, X_{2}^{q}, X_{4}^{q}\right) .
\end{array}
$$

fixes $H\left(3, q^{2}\right)$ and acts as the identity on $\widehat{\mathcal{W}}$.
If we embed $V\left(4, q^{2}\right)$ in $V\left(4, q^{4}\right)$ by extending the scalars, then $\operatorname{PG}\left(3, q^{4}\right)$ embeds $\operatorname{PG}(\widehat{V})$. Therefore, $\theta$ defined by (5) can be naturally thought as the restriction of the following map:

$$
\begin{aligned}
\theta: \mathbb{F}_{q^{4}} \cup\{\infty\} & \longrightarrow \mathrm{PG}\left(3, q^{4}\right) \\
t & \longmapsto\left\langle\left(1, t^{q}, t, t^{q+1}\right)\right\rangle \\
\infty & \longmapsto\langle(0,0,0,1)\rangle .
\end{aligned}
$$

Note that, for any $t \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}, \theta(t)$ is not the span of a vector of $V\left(4, q^{2}\right)$. Moreover,

$$
\theta\left(t^{q^{2}}\right)=\left\langle\left(1, t^{q^{3}}, t^{q^{2}}, t^{q^{3}+q^{2}}\right)\right\rangle=\theta(t)^{\tau^{2}} \neq \theta(t)
$$

For each $t \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}$, we associate the pair $\mathbf{t}=\left\{t, t^{q^{2}}\right\}$ with the line $M_{\mathbf{t}}$ of $\operatorname{PG}\left(3, q^{4}\right)$ spanned by $\theta(t)$ and $\theta\left(t^{q^{2}}\right)$, which is distinct from $M_{\mathbf{t}}^{\tau}$.

Lemma 3.2. For each pair $\mathbf{t}, M_{\mathbf{t}} \cap V\left(4, q^{2}\right)$ is a line of $H\left(3, q^{2}\right)$, say $m_{\mathbf{t}}$, which is disjoint from $\widehat{\mathcal{W}}$.

Proof. A straightforward computation shows that the vectors in $M_{\mathbf{t}} \cap V\left(4, q^{2}\right)$ are precisely $\mathbf{X}_{\lambda}=\left(\lambda+\lambda^{q^{2}}, \lambda t^{q}+\lambda^{q^{2}} t^{q^{3}}, \lambda t+\lambda^{q^{2}} t^{q^{2}}, \lambda t^{q+1}+\lambda^{q^{2}} t^{q^{3}+q^{2}}\right)$, for all $\lambda \in \mathbb{F}_{q^{4}}$, and they form a line $m_{\mathbf{t}}$ of $\operatorname{PG}\left(3, q^{2}\right)$. Since $h\left(\mathbf{X}_{\lambda}, \mathbf{X}_{\lambda}\right)=0$ for all $\lambda \in \mathbb{F}_{q^{4}}, m_{\mathbf{t}}$ is a line of $H\left(3, q^{2}\right)$. Finally, in order to prove that $m_{\mathbf{t}}$ is disjoint from $\widehat{\mathcal{W}}$, consider the following system:

$$
\begin{align*}
& a \alpha=\lambda+\lambda^{q^{2}} \\
& a x^{q}=\lambda t^{q}+\lambda^{q^{2}} t^{q^{3}} \\
& a x=\lambda t+\lambda^{q^{2}} t^{q^{2}}  \tag{7}\\
& a \beta=\lambda t^{q+1}+\lambda^{q^{2}} t^{q^{3}+q^{2}},
\end{align*}
$$

with $\alpha, \beta \in \mathbb{F}_{q}, x, a \in \mathbb{F}_{q^{2}}, \lambda \in \mathbb{F}_{q^{4}}, t \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}$. The existence of a solution for (7), or rather the existence of $a \in \mathbb{F}_{q^{2}}$, makes the system inconsistent. This concludes the proof.

Proposition 3.3. The sets $\left\{m_{\mathbf{t}}: t \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}\right\}$ and $\left\{m_{\mathbf{t}}^{\tau}: t \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}\right\}$ are precisely the two orbits of $\mathrm{P} \Omega^{-}(\widehat{V})$ on the lines of $H\left(3, q^{2}\right)$ disjoint from $\widehat{\mathcal{W}}$.

Proof. From the proof of [14, Theorem 5], $\mathrm{P} \Omega^{-}(\widehat{V})$ has two orbits on the lines of $H\left(3, q^{2}\right)$ disjoint from $\widehat{\mathcal{W}}$, and these two orbits are interchanged by $\tau$. We recall that $m_{\mathbf{t}}$ is uniquely defined by the line $M_{\mathbf{t}}$ of $\mathrm{PG}\left(3, q^{4}\right)$, which is spanned by $\theta(t)$ and $\theta\left(t^{q^{2}}\right)$. Hence, it suffices to prove that $\left\{M_{\mathbf{t}}: t \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}\right\}$ is an orbit of $\mathrm{P} \Omega^{-}(\widehat{V})$.
Let $\omega \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}$ such that $\omega^{q^{2}}=\omega+1$ and $\omega^{2}+\omega=\delta$, with $\delta \in \mathbb{F}_{q^{2}} \backslash \mathbf{T}_{0}, \delta \neq 1$. For all $t \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}$, write $t=x+y \omega$, with $x, y \in \mathbb{F}_{q^{2}}, y \neq 0$.
As a group acting on the projective line $\operatorname{PG}\left(1, q^{2}\right)$ assimilated to the set $\mathbb{F}_{q^{2}} \cup\{\infty\}$, $\operatorname{PSL}\left(2, q^{2}\right)$ may be identified with the group of linear fractional transformations

$$
z \mapsto \frac{a z+b}{c z+d},
$$

where $a d-b c$ is a non-zero square in $\mathbb{F}_{q^{2}}[15]$. For any given $t=x+y \omega \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}$, let $g \in \operatorname{PSL}\left(2, q^{2}\right)$ with matrix $[1,0 ; x, y]$. Then, $\chi(g)=g \otimes g^{q} \operatorname{maps}\left(\theta(\omega), \theta\left(\omega^{q^{2}}\right)\right)$ to $\left(\theta(t), \theta\left(t^{q^{2}}\right)\right)$ by taking into account $\omega^{q^{2}}=\omega+1$. This implies that $\chi(g) \in \mathrm{P} \Omega(\widehat{V})$ maps the line $M_{\left\{\omega, \omega q^{2}\right\}}$ to $M_{\mathbf{t}}$.
Corollary 3.4. The sets $\left\{m_{\mathbf{t}}: t \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}\right\}$ and $\left\{m_{\mathbf{t}}^{\tau}: t \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}\right\}$ are the Penttila-Williford relative hemisystems.

## 4 The proof of the Main Theorem

Define $T=\left\{\left\{t, t^{q^{2}}\right\}: t \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}\right\}$, and put $\mathcal{X}=T$. By Remark 2.3, we need to find a bijection between the set $\mathcal{X}$ and the relative hemisystem $\mathcal{H}=\left\{m_{\mathbf{t}}: \mathbf{t} \in T\right\}$ preserving the relations defined on them.

From the arguments in Section 3, we may associate the pair $\mathbf{t}=\left\{t, t^{q^{2}}\right\} \in \mathcal{X}$ with the line $m_{\mathbf{t}} \in \mathcal{H}$. Moreover, Corollary 3.4 gives $|\mathcal{H}|=\left(q^{4}-q^{2}\right) / 2=|\mathcal{X}|$, and this contributes to make the mapping $\varphi: \mathcal{X} \rightarrow \mathcal{H}, \mathbf{t} \mapsto m_{\mathbf{t}}$ a bijection. In order to show that $\varphi$, in fact, preserves the relations, we will move into a different geometric setting. More precisely, we will use the following dual representation of $H\left(3, q^{2}\right)$. Via the Klein correspondence $\kappa$, the lines of $\mathrm{PG}\left(3, q^{2}\right)$ are mapped to the points of an orthogonal polar space $Q^{+}\left(5, q^{2}\right)$ of rank 3 of $\operatorname{PG}\left(5, q^{2}\right)$, which is the so-called the Klein quadric. In particular, the lines of $H\left(3, q^{2}\right)$ are mapped to the points of an orthogonal polar space $Q^{-}(5, q)$ of rank 2 in a $\operatorname{PG}(5, q)$ embedded in $\operatorname{PG}\left(5, q^{2}\right)$. When $q$ is even, $\kappa$ maps the lines of any symplectic polar space of rank 2 embedded in $H\left(3, q^{2}\right)$ to the points of an orthogonal polar space of rank 2, which is the intersection of $Q^{-}(5, q)$ with a hyperplane of $\operatorname{PG}(5, q)$. The reader is referred to [10] for more details on the Klein correspondence.
Assume $q$ even. In $V\left(\underset{\widetilde{V}}{6}, q^{2}\right)$ consider the 6 -dimensional $\mathbb{F}_{q^{-}}$-subspace $\widetilde{V}=\left\{\left(x, x^{q}, y, y^{q}, z, z^{q}\right)\right.$ : $\left.x, y, z \in \mathbb{F}_{q^{2}}\right\}$. Let $\operatorname{PG}(\widetilde{V})$ be the projective geometry defined by $\widetilde{V}$.
We consider the Klein quadric $Q^{+}\left(5, q^{2}\right)$ defined by the (non-degenerate) quadratic form $Q(\mathbf{X})=X_{1} X_{6}+X_{2} X_{5}+X_{3} X_{4}$ on $V\left(6, q^{2}\right)$. For any given $w=\left(x, x^{q}, y, y^{q}, z, z^{q}\right) \in$ $\widetilde{V}$,

$$
\widetilde{Q}(w)=\left.Q\right|_{\widetilde{V}}(w)=x z^{q}+x^{q} z+y^{q+1} .
$$

From [12, Proposition 2.4], $\widetilde{Q}$ is a non-degenerate quadratic form of Witt index 2 on $\widetilde{V}$ with associated alternating form

$$
\widetilde{b}\left(w, w^{\prime}\right)=x z^{\prime q}+x^{q} z^{\prime}+y y^{\prime q}+y^{q} y^{\prime}+z x^{\prime q}+z^{q} x^{\prime}
$$

Therefore, $\widetilde{Q}$ gives rise to an orthogonal polar space $Q^{-}(5, q)$ of $\operatorname{PG}(\widetilde{V})$ embedded in $Q^{+}\left(5, q^{2}\right)$.

For any subspace $X$ of $\widetilde{V}$, set

$$
X^{\perp}=\{w \in \widetilde{V}: \widetilde{b}(w, u)=0, \text { for all } u \in X\}
$$

Let $Q(4, q)$ be the polar space whose points are the $\kappa$-image of the lines of $\widehat{\mathcal{W}}$, and $\Gamma$ be the hyperplane of $\operatorname{PG}(\widetilde{V})$ containing $Q(4, q)$. For a complete description of $\Gamma$ observe that the pairs

$$
\left\{(1,0,0,0),\left(0, x, x^{q}, 0\right)\right\}, \quad\left\{(0,0,0,1),\left(0, x, x^{q}, 0\right)\right\}, \quad\left\{(1,1,1,1),\left(x+x^{q}, x, x^{q}, 0\right)\right\}
$$

with $x \in \mathbb{F}_{q^{2}}$, span lines of $\widehat{\mathcal{W}}$ which give three skew lines of $Q(4, q)$ under $\kappa$ generating $\Gamma$. It follows that $\Gamma=\left\{\left(x, x^{q}, c, c, z, z^{q}\right): x, z \in \mathbb{F}_{q^{2}}, c \in \mathbb{F}_{q}\right\}$.

Under $\kappa$, the line $m_{\mathbf{t}}$ of $\mathcal{H}$ is mapped to the point $P_{\mathbf{t}}=\left\langle w_{\mathbf{t}}\right\rangle$ of $\operatorname{PG}(\widetilde{V})$, where

$$
w_{\mathbf{t}}=\left(t^{q}+t^{q^{3}}, t+t^{q^{2}}, t^{1+q}+t^{q^{2}+q^{3}}, t^{1+q^{3}}+t^{q+q^{2}}, t^{1+q+q^{3}}+t^{q+q^{2}+q^{3}}, t^{1+q+q^{2}}+t^{1+q^{2}+q^{3}}\right) .
$$

Note that $P_{\mathbf{t}}$ is in $Q^{-}(5, q)$, but not in $Q(4, q)$. Let $P_{\mathbf{t}}^{\prime}=\kappa\left(m_{\mathbf{t}}^{\tau}\right)$. Since $m_{\mathbf{t}}$ and $m_{\mathbf{t}}^{\tau}$ are disjoint lines of $H\left(3, q^{2}\right)$, the line $L_{\mathbf{t}}$ spanned by $P_{\mathbf{t}}$ and $P_{\mathbf{t}}^{\prime}$ intersects $Q^{-}(5, q)$ just at $P_{\mathbf{t}}$ and $P_{\mathbf{t}}^{\prime}$. On the other hand, $m_{\mathbf{t}}$ and $m_{\mathbf{t}}^{\tau}$ subtend the same spread $\mathcal{S}_{\mathbf{t}}=\mathcal{S}_{m_{\mathrm{t}}}$ in $\widehat{\mathcal{W}}$. The $\kappa$-image of $\mathcal{S}_{\mathbf{t}}$ is an orthogonal polar space of rank 1 contained in $Q(4, q)$ [10], and it turns out this is precisely $Q(4, q) \cap L_{\mathbf{t}}^{\perp}$. Consequently, $L_{\mathrm{t}}^{\perp}$ is in $\Gamma$ and $\Gamma^{\perp}=\langle(0,0,1,1,0,0)\rangle=\left\langle w_{0}\right\rangle$ is a point of $L_{\mathbf{t}}$, for all $t \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}$. The symbol $\widetilde{\mathcal{O}}_{\mathbf{t}}$ will be used to indicate $Q(4, q) \cap L_{\mathbf{t}}^{\perp}$.

For any given distinct pairs $\mathbf{s}$ and $\mathbf{t}$, let $\Pi_{\mathbf{s}, \mathbf{t}}$ be the plane of $\mathrm{PG}(\widetilde{V})$ spanned by $\Gamma^{\perp}, P_{\mathrm{s}}$ and $P_{\mathbf{t}}$. The restriction of $\widetilde{Q}$ and $\widetilde{b}$ on $\Pi_{\mathrm{s}, \mathbf{t}}$ will be denoted by $\widetilde{Q}_{\mathrm{s}, \mathrm{t}}$ and $\widetilde{b}_{\mathrm{s}, \mathrm{t}}$, respectively. Identifying a triple $(a, b, c) \in \mathbb{F}_{q}^{3}$ with the vector $v=a w_{\mathbf{s}}+b w_{0}+c w_{\mathbf{t}} \in$ $\Pi_{\mathrm{s}, \mathrm{t}}$, we obtain that the action of $\widetilde{b}_{\mathrm{s}, \mathrm{t}}$ induced on $\mathbb{F}_{q}^{3}$ is given by the matrix

$$
B=\left(\begin{array}{ccc}
\widetilde{b}\left(w_{\mathbf{s}}, w_{\mathbf{s}}\right) & \widetilde{b}\left(w_{\mathbf{s}}, w_{0}\right) & \widetilde{b}\left(w_{\mathbf{s}}, w_{\mathbf{t}}\right) \\
\widetilde{b}\left(w_{0}, w_{\mathbf{s}}\right) & \widetilde{b}\left(w_{0}, w_{0}\right) & \widetilde{b}\left(w_{0}, w_{\mathbf{t}}\right) \\
\widetilde{b}\left(w_{\mathbf{t}}, w_{\mathbf{s}}\right) & \widetilde{b}\left(w_{\mathbf{t}}, w_{0}\right) & \widetilde{b}\left(w_{\mathbf{t}}, w_{\mathbf{t}}\right)
\end{array}\right)=\left(\begin{array}{ccc}
0 & \operatorname{Tr}\left(s^{q+1}\right) & \widetilde{b}\left(w_{\mathbf{s}}, w_{\mathbf{t}}\right) \\
\operatorname{Tr}\left(s^{q+1}\right) & 0 & \operatorname{Tr}\left(t^{q+1}\right) \\
\widetilde{b}\left(w_{\mathbf{s}}, w_{\mathbf{t}}\right) & \operatorname{Tr}\left(t^{q+1}\right) & 0
\end{array}\right)
$$

here $\operatorname{Tr}$ is the trace map from $\mathbb{F}_{q^{4}}$ on $\mathbb{F}_{q}$. A straightforward calculation shows that $\Pi_{\mathbf{s}, \mathbf{t}}$ is degenerate as $\operatorname{Rad}\left(\Pi_{\mathbf{s}, \mathbf{t}}\right)=\left\langle v_{\mathbf{s}, \mathbf{t}}\right\rangle$, where

$$
v_{\mathbf{s}, \mathbf{t}}=\operatorname{Tr}\left(t^{q+1}\right) w_{\mathbf{s}}+\widetilde{b}\left(w_{\mathbf{s}}, w_{\mathbf{t}}\right) w_{0}+\operatorname{Tr}\left(s^{q+1}\right) w_{\mathbf{t}}
$$

It is easily seen that

$$
\begin{align*}
\widetilde{Q}_{\mathbf{s}, \mathbf{t}}\left(v_{\mathbf{s}, \mathbf{t}}\right) & =\widetilde{b}\left(w_{\mathbf{s}}, w_{\mathbf{t}}\right)\left(\widetilde{b}\left(w_{\mathbf{s}}, w_{\mathbf{t}}\right)+\operatorname{Tr}\left(s^{q+1}\right) \operatorname{Tr}\left(t^{q+1}\right)\right)  \tag{8}\\
& =\widetilde{b}\left(w_{\mathbf{s}}, w_{\mathbf{t}}\right) \widetilde{b}\left(w_{\mathbf{s}}, w_{\mathbf{t}}^{\prime}\right)
\end{align*}
$$

where
$w_{\mathbf{t}}^{\prime}=\left(t^{q}+t^{q^{3}}, t+t^{q^{2}}, t^{q+q^{2}}+t^{1+q^{3}}, t^{1+q}+t^{q^{2}+q^{3}}, t^{1+q+q^{3}}+t^{q+q^{2}+q^{3}}, t^{1+q+q^{2}}+t^{1+q^{2}+q^{3}}\right)$.
Note that $P_{\mathbf{t}}^{\prime}=\kappa\left(m_{\mathbf{t}}^{\tau}\right)=\left\langle w_{\mathbf{t}}^{\prime}\right\rangle$.
Now two cases are possible according as $v_{\mathrm{s}, \mathrm{t}}$ is singular or not.
If $\widetilde{Q}_{\mathbf{s}, \mathbf{t}}\left(v_{\mathbf{s}, \mathbf{t}}\right)=0$, then $\widetilde{Q}_{\mathbf{s}, \mathbf{t}}$ is degenerate, and $\mathcal{C}_{\mathbf{s}, \mathbf{t}}=\Pi_{\mathbf{s}, \mathbf{t}} \cap Q^{-}(5, q)$ consists of two distinct lines through $\left\langle v_{\mathbf{s}, \mathbf{t}}\right\rangle$, as $P_{\mathbf{s}}, P_{\mathbf{s}}^{\prime}, P_{\mathbf{t}}$ and $P_{\mathbf{t}}^{\prime}$ are distinct points no three of them collinear. This yields that $L_{\mathrm{s}}^{\perp}$ meets $L_{\mathrm{t}}^{\perp}$ in the plane $\Pi_{\mathrm{s}, \mathrm{t}}^{\perp}$ of $\Gamma$, with $\left.\widetilde{Q}\right|_{\Pi_{\mathrm{s}, \mathrm{t}}}$ degenerate, and $\widetilde{\mathcal{O}_{\mathbf{s}}} \cap \widetilde{\mathcal{O}}_{\mathbf{t}}=\Pi_{\mathbf{s}, \mathbf{t}}^{\perp} \cap Q^{-}(5, q)=\left\langle v_{\mathbf{s}, \mathbf{t}}\right\rangle$. By taking into account (8), there are two possibilities of obtaining zero for $\widetilde{Q}_{\mathbf{s}, \mathbf{t}}\left(v_{\mathbf{s}, \mathbf{t}}\right)$ : either $\widetilde{b}\left(w_{\mathbf{s}}, w_{\mathbf{t}}\right)=0$ or $\widetilde{b}\left(w_{\mathbf{s}}, w_{\mathbf{t}}^{\prime}\right)=0$.

If $\widetilde{b}\left(w_{\mathbf{s}}, w_{\mathbf{t}}\right)=0$, then $P_{\mathbf{s}}$ and $P_{\mathbf{t}}$ are collinear in $Q^{-}(5, q)$, or equivalently, the lines $m_{\mathrm{s}}$ and $m_{\mathbf{t}}$ are concurrent, that is $\left(m_{\mathbf{s}}, m_{\mathbf{t}}\right) \in \widetilde{R}_{1}$ (see Theorem 2.5). On the other hand, by taking into account (3),

$$
\begin{aligned}
& 0=\widetilde{b}\left(w_{\mathbf{s}}, w_{\mathbf{t}}\right) \\
& \quad=\left(s^{q^{2}}+s\right)^{q}\left(t^{q^{2}}+t\right)^{q}\left(s+t^{q^{2}}\right)\left(s^{q^{2}}+t\right)+\left(s^{q^{2}}+s\right)\left(t^{q^{2}}+t\right)\left(s+t^{q^{2}}\right)^{q}\left(s^{q^{2}}+t\right)^{q}
\end{aligned}
$$

if and only if

$$
\nu=\frac{1}{\rho(s, t)+1}=\frac{\left(s+t^{q^{2}}\right)\left(s^{q^{2}}+t\right)}{\left(s^{q^{2}}+s\right)\left(t^{q^{2}}+t\right)} \in \mathbb{F}_{q} .
$$

When $\nu \in \mathbb{F}_{q}, \widehat{\rho}(s, t) \in \mathbf{S}_{0}^{*}$ by Lemma 2.1, that is $(\mathbf{s}, \mathbf{t}) \in R_{1}^{\prime}$ (see Remark 2.3). On the other hand, if $\widehat{\rho}(s, t)=\nu^{2}+\nu \in \mathbf{S}_{0}^{*}$, then there exists $z \in \mathbb{F}_{q}$ such that $(z+\nu)^{2}+(z+\nu)=0$, which implies either $z=\nu$ or $z+1=\nu$. In both cases $\nu \in \mathbb{F}_{q}$. Therefore, $\left(m_{\mathbf{s}}, m_{\mathbf{t}}\right) \in \widetilde{R}_{1}$ if and only if $(\mathbf{s}, \mathbf{t}) \in R_{1}^{\prime}$.

If $\widetilde{b}\left(w_{\mathbf{s}}, w_{\mathbf{t}}^{\prime}\right)=0$, then $P_{\mathbf{s}}$ and $P_{\mathbf{t}}^{\prime}$ are collinear in $Q^{-}(5, q)$, and this leads to the non-collinearity of $P_{\mathbf{s}}$ and $P_{\mathbf{t}}$. This means that $\left(m_{\mathbf{s}}, m_{\mathbf{t}}\right) \in \widetilde{R}_{2}$ on one side, and $(\mathbf{s}, \mathbf{t}) \in R_{2}^{\prime}$ on the other one. In fact,

$$
\begin{aligned}
0=\widetilde{b} & \left(w_{\mathbf{s}}, w_{\mathbf{t}}^{\prime}\right) \\
= & \left(s^{q^{2}}+s\right)^{q}\left(t^{q^{2}}+t\right)^{q}\left(s+t^{q^{2}}\right)\left(s^{q^{2}}+t\right)+\left(s^{q^{2}}+s\right)\left(t^{q^{2}}+t\right)\left(s+t^{q^{2}}\right)^{q}\left(s^{q^{2}}+t\right)^{q}+ \\
& +\left(s^{q^{2}}+s\right)^{q+1}\left(t^{q^{2}}+t\right)^{q+1}
\end{aligned}
$$

if and only if

$$
\nu^{q}+\nu=\left(\frac{1}{\rho(s, t)+1}\right)^{q}+\frac{1}{\rho(s, t)+1}=1
$$

When $\nu^{q}+\nu=1$, then $\nu \notin \mathbb{F}_{q}$. This implies that the equation $Z^{2}+Z=\widehat{\rho}(s, t)$ has no solutions in $\mathbb{F}_{q}$, that is $\widehat{\rho}(s, t) \in \mathbf{S}_{1}$, i.e. $(\mathbf{s}, \mathbf{t}) \in R_{2}^{\prime}$. On the other hand, $\widehat{\rho}(s, t)=\nu^{2}+\nu \in \mathbf{S}_{1} \subset \mathbb{F}_{q}$ implies $\nu \notin \mathbb{F}_{q}$. As $\widehat{\rho}(s, t) \in \mathbb{F}_{q}$, then $\left(\nu^{q}+\nu\right)^{2}+\left(\nu^{q}+\nu\right)=0$ holds, whence $\nu^{q}+\nu=1$.

Finally, if $\widetilde{Q}_{\mathbf{s}, \mathbf{t}}\left(v_{\mathrm{s}, \mathrm{t}}\right) \neq 0$, then $\widetilde{Q}_{\mathrm{s}, \mathrm{t}}$ is non-degenerate and $\left\langle v_{\mathrm{s}, \mathrm{t}}\right\rangle$ is the nucleus of the (non-degenerate) conic $\mathcal{C}_{\mathrm{s}, \mathrm{t}}$. Therefore, $\widetilde{\mathcal{O}}_{\mathrm{t}}$ and $\widetilde{\mathcal{O}}_{\mathrm{s}}$ meet in $q+1$ points of $\Pi_{\mathbf{s}, \mathbf{t}}^{\perp} \cap Q(4, q)$. Then, $\mathcal{S}_{m_{\mathrm{t}}}=\kappa^{-1}\left(\widetilde{\mathcal{O}}_{\mathbf{t}}\right)$ and $\mathcal{S}_{m_{\mathbf{s}}}=\kappa^{-1}\left(\widetilde{\mathcal{O}}_{\mathbf{s}}\right)$ meet in exactly $q+1$ lines in $\widehat{\mathcal{W}}$, that is $\left(m_{\mathbf{t}}, m_{\mathbf{s}}\right) \in \widetilde{R}_{3}$. It is clear that $\left(m_{\mathbf{s}}, m_{\mathbf{t}}\right) \in \widetilde{R}_{3}$ if and only if $(\mathbf{s}, \mathbf{t}) \in R_{3}^{\prime}$ by exclusion.
Summing up, for each $i=0, \ldots, 3$, we have

$$
(\mathbf{s}, \mathbf{t}) \in R_{i}^{\prime} \quad \text { if and only if } \quad\left(m_{\mathbf{s}}, m_{\mathbf{t}}\right)=\varphi(\mathbf{s}, \mathbf{t}) \in \widetilde{R}_{i},
$$

i.e. $\varphi$ induces a bijection between $R_{i}^{\prime}$ and $\widetilde{R}_{i}$, thus achieving our aim.

## Acknowledgments

The authors would like to thank the referees for their useful comments, and in particular for pointing us out the isomorphism of the strongly regular graphs which are involved.

## References

[1] E. Bannai, T. Ito, Algebraic Combinatorics I: Association Schemes, BenjaminCummings, Menlo Park, 1984.
[2] A.E. Brouwer, Strongly regular graphs, in: C.J. Colbourn, J.H. Dinitz (Eds.), Handbook of Combinatorial Designs, second ed., in: Discrete Math. Appl. (Boca Raton), Chapman \& Hall/CRC, Boca Raton, FL, 2007, pp. 852-868.
[3] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, SpringerVerlag, Berlin, 1989.
[4] M.R. Brown, Semipartial geometries and generalized quadrangles of order ( $r, r^{2}$ ), Bull. Belg. Math. Soc. Simon Stevin 5 (1998), 187-205.
[5] A. Cossidente, O.H. King, On some maximal subgroups of unitary groups, Comm. Algebra 32 (2004), 989-995.
[6] A. Cossidente and A. Siciliano, The geometry of hermitian matrices of order three, European J. Combin. 22 (2001), 1047-1058.
[7] E. van Dam, W.J. Martin, M. Muzychuk, Uniformity in association schemes and coherent configurations: cometric $Q$-antipodal schemes and linked systems, J. Combin. Theory Ser. A 120 (2013), 1401-1439.
[8] T. Debroey, J.A. Thas, On semipartial geometries, J. Combin. Theory Ser. A 25 (1978), 242-250.
[9] P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Research Reports Supplements 10 (1973).
[10] J.W.P. Hirschfeld, Finite projective spaces of three dimensions. Oxford University Press, New York, 1985.
[11] H.D.L. Hollmann, Q. Xiang, Association schemes from the action of $\operatorname{PGL}(2, q)$ fixing a nonsingular conic in $\operatorname{PG}(2, q)$, J. Algebraic Combin. 24 (2006), 157193.
[12] G. Korchmáros, A. Siciliano, Embedding of Orthogonal Buekenhout-Metz Unitals in the Desarguesian Plane of Order $q^{2}$, Ars Mathematica Contemporanea, 16 (2019), 609-623.
[13] W.J. Martin, M. Muzychuk, J. Williford, Imprimitive cometric association schemes: constructions and analysis, J. Algebraic Combin. 25 (2007) 399-415.
[14] T. Penttila, J. Williford, New families of Q-polynomial association schemes, J. Combin. Theory Ser. A 118 (2011), 502-509.
[15] D.E. Taylor, The geometry of the classical groups, Sigma Series in Pure Mathematics, 9. Heldermann Verlag, Berlin, 1992.
[16] J. Williford, Online tables of feasible 3-, 4- and 5-class Q-polynomial association schemes, http://www.uwyo.edu/jwilliford/


[^0]:    *The research was supported by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA-INdAM).

[^1]:    ${ }^{1}$ A spread of $W(3, q)$ in $\operatorname{PG}(3, q)$ is a set $\mathcal{S}$ of totally isotropic lines which partition the pointset of $\operatorname{PG}(3, q) . \mathcal{S}$ is regular if for any three distinct lines of $\mathcal{S}$ there is a set $R$ of $q+1$ lines of $\mathcal{S}$ containing them, with the following property: any line of $\mathrm{PG}(3, q)$ intersecting three lines in $R$ meets all the lines of $R$.

