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AN ANALOGUE OF RUZSA’S CONJECTURE FOR
POLYNOMIALS OVER FINITE FIELDS

JASON P. BELL AND KHOA D. NGUYEN

ABSTRACT. In 1971, Ruzsa conjectured that if f : N — Z with f(n+k) = f(n)
mod k for every n,k € N and f(n) = O(0™) with 0 < e then f is a polynomial.
In this paper, we investigate the analogous problem for the ring of polynomials
over a finite field.

1. INTRODUCTION

Let N denote the set of positive integers and let Ng = NU{0}. A strong form of
a conjecture by Ruzsa is the following assertion. Suppose that f: Ny — Z satisfies
the following 2 properties:

(P1) f(n+p) = f(n) mod p for every prime p and every n € Ny;

(P2) limsup log| f(n)] <e

n—00 n

Then f is necessarily a polynomial. The original form allows the version of (P1)
in which p is not necessarily a prime. Hall [Hal71h] gave an example constructed
by Woodall showing that the upper bound e in (P2) is optimal. The reasoning
behind this upper bound as well as the Hall-Woodall example is the (equivalent
version of the) Prime Number Theorem stating that the product of primes up to
n is et and the fact that the residue class of f(n) modulo this product is
determined uniquely by f(0),..., f(n — 1) thanks to (P1). In 1971, Hall [Hal71a]
and Ruzsa [Ruz71] independently proved the following result.

Theorem 1.1 (Hall-Ruzsa, 1971). Suppose that f : Ng — Z satisfies (P1) and

lim sup
n—oo

oglfml _, _,
n

then f is a polynomial.

The best upper bound was obtained in 1996 by Zannier [Zan96] by extending
earlier work of Perelli and Zannier [Zan82) [PZ84):

Theorem 1.2 (Zannier, 1996). Suppose that f : Ng — Z satisfies (P1) and

log | f(n)]

lim sup < el

n—oo

then f is a polynomial.
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In fact, the author remarked [Zan96l, pp. 400-401] that the explicit upper bound
€% was chosen to avoid cumbersome formulas and it was possible to increase it
slightly. The method of [Zan96] uses the fact that the generating series > f(n)z"™
is D-finite over Q (i.e. it satisfies a linear differential equation with coefficients in
Q(z)) [PZ84, Theorem 1.B] then applies deep results on the arithmetic of linear
differential equations [CC85, [DGS94].

This paper is motivated by our recent work on D-finite series [BNZ|] and a re-
view of Ruzsa’s conjecture. From now on, let F be the finite field of order ¢
and characteristic p, let A = F[t], and let £ = F(¢). We have the usual de-
gree map deg : A — NoU{—o00}. Amap f: A — Ais called a polynomial
map if it is given by values on A of an element of K[X]. For every n € Ny,
let A, = {A € A: deg(A) = n}, Ac, = {4 € A : deg(4) < n}, and
A<y, = {4 € A: deg(A) < n}. Let P C A be the set of irreducible polyno-
mials; the sets P, P<y, and P<,, are defined similarly. The superscript + is used
to denote the subset consisting of all the monic polynomials, for example A, A},
PZ, ., etc. From the well-known identity [Ros01 pp. 8]:

ITII P=t" -¢
dln pepf

we have

(1) " <deg| [] P|<2¢"
pPePt,

for every n € N. In view of the reasoning behind Ruzsa’s conjecture, it is natural
to ask the following:

Question 1.3. Let f: A — A satisfy the following 2 properties:
(P3) f(A+ BP) = f(A) mod P for every A,B € A and P € P;
(P4) limsup log deg(f(4))

deg(A)—o0 deg(A)

Is it true that f is a polynomial map?

<q

Note that (P3) should be the appropriate analogue of (P1): over the natural
numbers, iterating (P1) yields f(n+bp) = f(n) mod p for every n,b € Ny and prime
p. On the other hand, over A, due to the presence of characteristic p, iterating the
congruence condition f(A+ P) = f(A) mod P for A € A and P € P is not enough
to yield (P3). By the following example that is similar to the one by Hall-Woodall,
we have that the upper bound ¢ in (P4) cannot be increased. Fix a total order
< on A such that A < B whenever deg(A) < deg(B). We define g : A — A
inductively. First, we assign arbitrary values of g at the constant polynomials. Let
n € N, B € A,,, and assume that we have defined g(A) for every A € A with A < B
such that:

g(A) = g(A1) mod P for every A, A1 < B and prime P | (A — 4y).

For every P € P% . let Rp € A with deg(Rp) < deg(P) such that B = Rp
mod P. By the Chinese Remainder Theorem, there exists a unique R € A with
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deg(R) < deg H P | such that R = f(Rp) mod P for every P € PZ . Then
pePt, -
we define B
gB):=RrR+ [[ P.
pePlt,

It is not hard to prove that g satisfies Property (P3) (with g in place of f) and for
every n € N, B € A, we have deg(g(B)) € [¢",2¢") by ([@). This latter property
implies that g cannot be a polynomial map.

Our main result implies the affirmative answer to Question [[.3} in fact we can re-

place (P4) by the much weaker condition that deg(f(A)) is not too small compared
deg(A)
q .

to 7deg(A) :

Theorem 1.4. Let f : A — A such that f satisfies Property (P3) in Question[.3
and

(2) deg(f(A)) < —27‘2 TeaA]

Then f is a polynomial map.

deg(A)
when deg(A) is sufficiently large.

There is nothing special about the constant 1/(27¢) in (2) and one can certainly
improve it by optimizing the estimates in the proof. It is much more interesting
to know if the function ¢°8(4) / deg(A) in (@) can be replaced by a larger function
(see Section Hl). There are significant differences between Ruzsa’s conjecture and
Question despite the apparent similarities at first sight. Indeed none of the
key techniques in the papers [PZ84, [Zan96] seem to be applicable in our situation.
Obviously, the crucial result used in [Zan96] that the generating series > f(n)z™ is
D-finite has no counterpart here. The proof of the main result of [PZ84] relies on a
nontrivial linear recurrence relation of the form cgf(n+d)+...+cof(n) = 0. Over
the integers, such a relation will allow one to determine f(n) for every n > d once
one knows f(0),..., f(n —1). On the other hand, for Question [[.3] while it seems
possible to imitate the arguments in [PZ84] to obtain a recurrence relation of the
form cgf(A+Bg)+...+cof(A+By) =0 for A € Awithd € Nand By,...,Bg € A,
such a relation does not seem as helpful: when deg(A) is large, one cannot use the
relation to relate f(A) to the values of f at smaller degree polynomials. Finally, the
technical trick of using the given congruence condition to obtain the vanishing on
[2My, (2 + €) Mp] from the vanishing on [0, M| (see [PZ84, pp. 11-12] and [Zan96,
pp. 396-397]) does not seem applicable here.

The proof of Theorem [[.4] consists of 2 steps. The first step is to show that
the points (4, f(A4)) for A € A belong to an algebraic plane curve over K, then
it follows that deg(f(A)) can be bounded above by a linear function in deg(A).
The second step, which might be of independent interest, treats the more general
problem in which f satisfies (P3) and there exists a special sequence (A, )nen, in A
such that deg(f(Ay)) is bounded above by a linear function in deg(A,,). Both steps
rely on the construction of certain auxiliary polynomials; such a construction has
played a fundamental role in diophantine approximation, transcendental number
theory, and combinatorics. For examples in number theory, the readers are referred
to [BG06, Mas16] and the references therein. In combinatorics, the method of
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constructing polynomials vanishing at certain points has recently been called the
Polynomial Method and is the subject of the book [Gutl6]. This method has
produced surprisingly short and elegant solutions of certain combinatorial problems
over finite fields [Dvi09, [CLP17, [EG17].

Acknowledgments. We wish to thank Professor Umberto Zannier for useful
discussions. J. B is partially supported by an NSERC Discovery Grant. K. N. is
partially supported by an NSERC Discovery Grant, a start-up grant at UCalgary,
and a CRC tier-2 research stipend.

2. A NONTRIVIAL ALGEBRAIC RELATION
We start with the following simple lemma:

Lemma 2.1. Let g: A — A and assume that there exists C1 € Ngy such that the
following 8 properties hold:

(a) g(A+ BP) = g(A) mod P for every A,B € A and P € P.

(b) deg(g(A)) < q2°8) — 1 for every A € A with deg(A) > C.

(c) g(A) =0 for every A € A<c,.
Then g is identically 0.
Proof. Otherwise, assume there is A € A of smallest degree such that g(A) # 0.
We have D := deg(A) > C;. Since g(B) = 0 for every B € A.p and since for

every monic irreducible polynomial P of degree at most D there is some C such
that A — C'P has degree strictly less than D, we have

g(A) = 0 mod H P.

PePt,

Since deg H P | > ¢” and deg(g(A)) < ¢, we must have g(A) = 0, a
pePi,
contradiction. 0

Proposition 2.2. Let f: A — A be as in Theorem[1.4 Then there exists a non-
zero polynomial Q(X,Y) € A[X,Y] such that Q(A, f(A)) =0 for every A € A.

Proof. Let N € N such that deg(f(A A
. t that —_
roof. Le € N such that deg(f(4)) < Y7qdea(A)

deg(A) > N. Let M > N be a large positive integers that will be specified later.
Consider Q(X,Y) € A[X,Y] of the form:

Q(X7 Y) = Z Z Z CijktinYk

0<i<qM /30<j<qM /(3M) 0<k<9gM

for every A € A with

where c¢;;; € Fy. The number of unknowns c¢;;j, is greater than g?MHL,

Put g(A) = Q(A4, f(A)) for A € A then g satisfies the congruence condition:
(3) g(A+ BP) = g(A) mod P for every A,B € Aand P € P.

We prove that with a sufficiently large choice of M, we have deg(g(A)) < ¢ for
every A € A with deg(A) < M. Suppose deg(A) € [N, M] then we have:
" | qMdeg(4) = 9gMglED

deg(g(A)) < L <
eglg(A) < -+ 3/ 27qdeg(A) 4
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since the function ¢®/x is increasing on [2,00). Now let Co be a positive number
that is at least the maximum of deg(f(A)) for A € A.y. Hence for every A € Ay,

we have " u
q Nq
d AN< -4 21 M
eg(g(A)) < 5t g T 90 <M

when M is sufficiently large.

Note that |A<ps| = ¢ 1. Therefore the condition g(A) = 0 for every A with
deg(A) < M is equivalent to the condition that the c;;i’s satisfy a linear system
of at most ¢*M*! equations. Since the number of unknowns c;;; is greater than
the number of equations, there exist ¢;j; not all zero such that g(A) = 0 for every
A € A with deg(A4) < M.

Finally, if A € A with D := deg(A) > M, we have

" D"  Mg"

des(o() < T+ Ty + 5 <

since the function ¢*/z is increasing on [M,o00). Therefore the map g : A — A
satisfies all the conditions of Lemma 2] with C; = M, we have that g(A) = 0 for
every A € A and this finishes the proof. O

Corollary 2.3. Let f: A— A be as in Theorem[I.J] Then there exist C3,Csy >0
depending only on q and f such that

deg(f(A)) < Cszdeg(A) + Cy for every A € A\ {0}.

Proof. By Proposition 2.2 there exist n > 0 and polynomials Py(X), ..., P,(X) €
A[X] with P, # 0 such that:

Po(A)f(A)" + Paa(A)f(A)" ™ 4.+ Ro(A) =

for every A € R. We must have n > 0 since otherwise Po( ) = 0 for every A would
force Py = 0 as well. Let C3 = maxo<i<n deg(P;) and let C4 be the maximum of
the degrees of the coefficients of the P;’s so that deg(P;(A)) < Csdeg(A) + Cy for
every A € A\{0}. If deg(f(A)) > C3deg(A)+C4 then deg(P,,(A)f(A)") is greater
than deg(P,—1(A)f(A)" ! + ...+ Py(A)), contradiction. O

3. A RESULT UNDER A LINEAR BOUND

In this section, we consider a related result in which the inequality (2] is replaced
by a much stronger linear bound on deg(f(A,)) where (A,,)n>0 is a special sequence
in A. Moreover, the next theorem together with Corollary 23] yield Theorem [T.4

Theorem 3.1. Let f: A — A satisfy the congruence condition
f(A+ BP) = f(A) mod P for every A,B€ A and P € P.

Assume there exist U € A with U' # 0 (i.e. U is not the p-th power of an element
of F[t]) and positive integers Cs and Cg such that deg(f(U™)) < Csn+ Cs for every
n € Ng. Then f is a polynomial map.

For every non-constant A € A, let rad(A) denote the product of the distinct
monic irreducible factors of A. For integers 0 < m < n and non-constant U € A,
let Ay v = (UP=1) (U1 =1)... (U™ —1) and let dp, . v = deg(rad(Ap, nv)).
We start with the following:

Lemma 3.2. Let U(t) € A such that U’ # 0. Write § = deg(U).
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(a) Let M,e > 0. There exists a positive constant C7(e, M,p,U) depending
only on €, M, p, and U such that for every n > 1:
dm,n,U Z 5M7’L27€ - C17(67 Mv p)

(b) Let 0 < m < n be integers. There exist positive constants Cs(p,U) de-
pending only on p and U and Co(m,p,U) depending only on m, p, and U
such that:

1 1 1
I <1 =+ 5 - —3) mn — Cs(p,U)n — Cy(m,p,U).
p p p
Proof. Since U’ # 0, it has only finitely many roots. For o € F that is not the
value of U at any of those roots, we have |U~!(a)| = 6.
For part (a), dn—1.n,v is at least the number of the preimages under U of the
roots of unity (in F*) whose order is at most n. For each ¢ with p { ¢, there are
exactly o(¢) roots of unity of order £. Since p(¢) dominates 1=, this proves part

(a).
For part (b), dm. n,v is at least the number of the preimages under U of the roots
of unity whose order divides n — i for some 0 < ¢ < m. Define:

T={0<i<m: n—i;éOmodp2}
A ={¢CeF*: (""" =1} foreachi € T.
We have:

Ay >0 | Ail +00(1) =6 | D 1Al = D AN Al | +0u().

€T i€T §,jET,i<]
Note that |4;| = np—ki where p* || n —i. Let:
0<i<m
Si= Y -1 _ /el + (- m)/pD(L;/pJ —[(=m)/pl +1)

0<i<m,p|n—i

So= > (n—i)

0<i<m,p?|n—i

_ W/ 4 [0 = m)/pPN)(ln/p?] — [(n = m)/p*] + 1)

2
We have:
1 111
> Al =S - S+ ;(sl —Sy)=(1- St s mnt Op(1)n 4 O p(1).
€T

Fori < jin T, we have A;NA; C {¢: ¢/=% =1} hence |A; N A;| < m. Overall, we

have
1 1 1
dmnu >0 (1 5 + 2 Z?) mn + Op y(1)n 4 O, p (1)

and this finishes the proof. O

We will need the following result on S-unit equations over characteristic p:
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Proposition 3.3. Let I' C K* be a finitely generated subgroup of rank r and
consider the equation x +y = 1 with (z,y) € T x I'. Then there exists a fi-
nite subset 2~ of IC* x K* of cardinality at most p*" — 1 such that every solution

(z,y) € (T xT)\ (F x F) has the form xz = ng and y = ygk for some (zo,y0) € Z
and k € Ng.
Proof. This is well-known; see [Vol98] or [BN18, Proposition 2.6]. O

Proof of Theorem [3l. Recall that we are given deg(f(U™)) < Csn + Cs. Let § =
deg(U). Let N, Dy, and Dy be large positive integers that will be specified later.
Consider the auxiliary function:

9(A) = P(A)f(A) + Q(A)

where Q(X) € A[X] (respectively P(X) € A[X]) has degree at most D1/ (respec-
tively (D — C5)/d) and each of its coefficients is an element of A with degree at
most Dy (respectively Dy —Cg). There are at least ¢P1P2/8¢(P1=C5)(D2=Cs)/9
choices for the pair (P, Q). Note that g satisfies the congruence condition:

g(A+ BC) = g(A) mod C for every A,B € Aand C € P.

We have deg(g(U™)) < Din + Dy for every n. Hence there are at most

N
H qD1n+D2+l _ q(DlN(N-i-l)/2)+D2(N+1)+N+1

many

n=0

possibilities for the tuple (g(1),g(U),...,g(U")). Fix a small positive € that will
be specified later. Now we choose a large D1, then let:

N+1= ?Dl and Dy = 2N(N + 1),
€
so that
DiN(N +1 1
% + DZ(N + 1) + N + 1= g ((€D1D2/2) + (2 - €)D1D2 + (2 - E)Dl)

< % (D1Dy + (D1 — C5)(Dg — Cg))

By the pigeonhole principle, there exist two distinct choices of (P, Q) giving rise
to the same tuple (g(1),...,g(U")). Taking the difference, we conclude that there
exist such P and @ so that g(U") = P(UY)f(U") + Q(U") = 0 for 0 < i < N.
For every n > N, we have g(U™) = 0 mod rad(An,,v). Recall the constants

1 1 1 1
Cs(p,U) and Co(N,p,U) from LemmaB.2l Since 1 ——+— —— > 2 by choosing
p p p
a sufficiently large Dy (which implies that N is sufficiently large) and sufficiently
small €, we have:
1 1 1 C U N+1
l— -4 — — — — 8(p7 )> + .
p p* p? ON (2—¢€)N

This implies that for all sufficiently large n, we have:

1 1 1 0
5<1—1—7—|—F—F>Nn—C8(p,U)n—C'9(N,p,U)> 2_6(N+1)H+D2

= Dln + D2.
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Since the right-hand side of the preceding inequality is at least deg(g(U™)) while
the left-hand side is at most deg(An ) by Lemma[3.2] we have g(U™) = 0 for all
sufficiently large n. Let N7 be such that g(U™) = 0 for every n > Nj.

Now consider an arbitrary A € A\ {0} then fix an integer M > deg(g(A)). We
claim that there exists n > Nj such that A — U™ has an irreducible factor T' of
degree at least M; once this is done we have that g(A4) = ¢g(U™) = 0 (mod T'), and
this forces g(A) = 0, since the degree of T is strictly larger than the degree of g(A).
To see why there exists such an irreducible factor T, let I" denote the subgroup
of K* generated by U, A, and all the irreducible polynomials of degree less than
M. Since U is not the p-th power of an element in F[t], there exists an irreducible
polynomial in A whose exponent in the unique factorization of U is not divisible
by p, i.e. v(U) #Z 0 mod p where v is the associated discrete valuation. Therefore
the set .7 := {n > Ny : nv(U) — v(A) # 0 mod p} is infinite and for every n € .7,
we have U™ /A is not the p-th power of an element in K. Let r denote the rank of
I". Whenever A — U™ = B has only irreducible factors of degree less than M, we
have that (U™/A, B/A) is a solution of the equation z +y = 1 with (z,y) € ' x I.
By Proposition B3] there can be at most p?” — 1 elements n € .% such that A — U™
has only irreducible factors of degree less than M and this proves our claim.

Hence g(A) = 0 for every A € A\ {0} and the congruence condition on g gives
g(A) = 0 for every A € A. Hence P(A)f(A) + Q(A) = 0 for every A € A. We
must have P(X) # 0; since otherwise P(X) = Q(X) = 0. For all A € A except
the finitely many A such that P(A) = 0, we have Q(A)/P(A) = —f(A) € A. This
implies that P(X) | Q(X) in K[X], hence f is a polynomial map, as desired. =~ O

4. A FURTHER QUESTION

As mentioned in the introduction, it is an interesting problem to strengthen [[4]
by replacing the function ¢%°&(4) / deg(A) in @) by a larger function. Let

d,=deg| [] P
pePt,

which is the degree of the product of all monic irreducible polynomials of degree at
most n. It seems reasonable to ask the following:

Question 4.1. Suppose f: A — A such that f(A+ BP) = f(A) mod P for every
A, B € A and P € P and there exists € € (0,1) such that for all sufficiently large
n, for all A € A of degree n, we have

deg(f(A)) < (1 - €)dn.

Is it true that f is a polynomial map?
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