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AN ANALOGUE OF RUZSA’S CONJECTURE FOR

POLYNOMIALS OVER FINITE FIELDS

JASON P. BELL AND KHOA D. NGUYEN

Abstract. In 1971, Ruzsa conjectured that if f : N → Z with f(n+k) ≡ f(n)
mod k for every n, k ∈ N and f(n) = O(θn) with θ < e then f is a polynomial.

In this paper, we investigate the analogous problem for the ring of polynomials
over a finite field.

1. Introduction

Let N denote the set of positive integers and let N0 = N∪ {0}. A strong form of
a conjecture by Ruzsa is the following assertion. Suppose that f : N0 → Z satisfies
the following 2 properties:

(P1) f(n+ p) ≡ f(n) mod p for every prime p and every n ∈ N0;

(P2) lim sup
n→∞

log |f(n)|

n
< e.

Then f is necessarily a polynomial. The original form allows the version of (P1)
in which p is not necessarily a prime. Hall [Hal71b] gave an example constructed
by Woodall showing that the upper bound e in (P2) is optimal. The reasoning
behind this upper bound as well as the Hall-Woodall example is the (equivalent
version of the) Prime Number Theorem stating that the product of primes up to
n is en+o(n) and the fact that the residue class of f(n) modulo this product is
determined uniquely by f(0), . . . , f(n − 1) thanks to (P1). In 1971, Hall [Hal71a]
and Ruzsa [Ruz71] independently proved the following result.

Theorem 1.1 (Hall-Ruzsa, 1971). Suppose that f : N0 → Z satisfies (P1) and

lim sup
n→∞

log |f(n)|

n
< e− 1

then f is a polynomial.

The best upper bound was obtained in 1996 by Zannier [Zan96] by extending
earlier work of Perelli and Zannier [Zan82, PZ84]:

Theorem 1.2 (Zannier, 1996). Suppose that f : N0 → Z satisfies (P1) and

lim sup
n→∞

log |f(n)|

n
< e0.75

then f is a polynomial.
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In fact, the author remarked [Zan96, pp. 400–401] that the explicit upper bound
e0.75 was chosen to avoid cumbersome formulas and it was possible to increase it
slightly. The method of [Zan96] uses the fact that the generating series

∑

f(n)xn

is D-finite over Q (i.e. it satisfies a linear differential equation with coefficients in
Q(x)) [PZ84, Theorem 1.B] then applies deep results on the arithmetic of linear
differential equations [CC85, DGS94].

This paper is motivated by our recent work on D-finite series [BNZ] and a re-
view of Ruzsa’s conjecture. From now on, let F be the finite field of order q
and characteristic p, let A = F[t], and let K = F(t). We have the usual de-
gree map deg : A → N0 ∪ {−∞}. A map f : A → A is called a polynomial
map if it is given by values on A of an element of K[X ]. For every n ∈ N0,
let An = {A ∈ A : deg(A) = n}, A<n = {A ∈ A : deg(A) < n}, and
A≤n = {A ∈ A : deg(A) ≤ n}. Let P ⊂ A be the set of irreducible polyno-
mials; the sets Pn, P<n, and P≤n are defined similarly. The superscript + is used
to denote the subset consisting of all the monic polynomials, for example A+, A+

n ,
P+
≤n, etc. From the well-known identity [Ros01, pp. 8]:

∏

d|n

∏

P∈P+

d

P = tq
n

− t

we have

(1) qn ≤ deg







∏

P∈P+

≤n

P






< 2qn

for every n ∈ N. In view of the reasoning behind Ruzsa’s conjecture, it is natural
to ask the following:

Question 1.3. Let f : A → A satisfy the following 2 properties:

(P3) f(A+BP ) ≡ f(A) mod P for every A,B ∈ A and P ∈ P;

(P4) lim sup
deg(A)→∞

log deg(f(A))

deg(A)
< q.

Is it true that f is a polynomial map?

Note that (P3) should be the appropriate analogue of (P1): over the natural
numbers, iterating (P1) yields f(n+bp) ≡ f(n) mod p for every n, b ∈ N0 and prime
p. On the other hand, over A, due to the presence of characteristic p, iterating the
congruence condition f(A+P ) ≡ f(A) mod P for A ∈ A and P ∈ P is not enough
to yield (P3). By the following example that is similar to the one by Hall-Woodall,
we have that the upper bound q in (P4) cannot be increased. Fix a total order
≺ on A such that A ≺ B whenever deg(A) < deg(B). We define g : A → A
inductively. First, we assign arbitrary values of g at the constant polynomials. Let
n ∈ N, B ∈ An, and assume that we have defined g(A) for every A ∈ A with A ≺ B
such that:

g(A) ≡ g(A1) mod P for every A,A1 ≺ B and prime P | (A−A1).

For every P ∈ P+
≤n, let RP ∈ A with deg(RP ) < deg(P ) such that B ≡ RP

mod P . By the Chinese Remainder Theorem, there exists a unique R ∈ A with
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deg(R) < deg







∏

P∈P+

≤n

P






such that R ≡ f(RP ) mod P for every P ∈ P+

≤n. Then

we define

g(B) := R+
∏

P∈P+

≤n

P.

It is not hard to prove that g satisfies Property (P3) (with g in place of f) and for
every n ∈ N, B ∈ An, we have deg(g(B)) ∈ [qn, 2qn) by (1). This latter property
implies that g cannot be a polynomial map.

Our main result implies the affirmative answer to Question 1.3; in fact we can re-
place (P4) by the much weaker condition that deg(f(A)) is not too small compared

to
qdeg(A)

deg(A)
:

Theorem 1.4. Let f : A → A such that f satisfies Property (P3) in Question 1.3
and

(2) deg(f(A)) <
qdeg(A)

27q deg(A)
when deg(A) is sufficiently large.

Then f is a polynomial map.

There is nothing special about the constant 1/(27q) in (2) and one can certainly
improve it by optimizing the estimates in the proof. It is much more interesting
to know if the function qdeg(A)/ deg(A) in (2) can be replaced by a larger function
(see Section 4). There are significant differences between Ruzsa’s conjecture and
Question 1.3 despite the apparent similarities at first sight. Indeed none of the
key techniques in the papers [PZ84, Zan96] seem to be applicable in our situation.
Obviously, the crucial result used in [Zan96] that the generating series

∑

f(n)xn is
D-finite has no counterpart here. The proof of the main result of [PZ84] relies on a
nontrivial linear recurrence relation of the form cdf(n+d)+ . . .+ c0f(n) = 0. Over
the integers, such a relation will allow one to determine f(n) for every n ≥ d once
one knows f(0), . . . , f(n− 1). On the other hand, for Question 1.3, while it seems
possible to imitate the arguments in [PZ84] to obtain a recurrence relation of the
form cdf(A+Bd)+. . .+c0f(A+B0) = 0 for A ∈ A with d ∈ N and B0, . . . , Bd ∈ A,
such a relation does not seem as helpful: when deg(A) is large, one cannot use the
relation to relate f(A) to the values of f at smaller degree polynomials. Finally, the
technical trick of using the given congruence condition to obtain the vanishing on
[2M0, (2 + ǫ)M0] from the vanishing on [0,M0] (see [PZ84, pp. 11–12] and [Zan96,
pp. 396–397]) does not seem applicable here.

The proof of Theorem 1.4 consists of 2 steps. The first step is to show that
the points (A, f(A)) for A ∈ A belong to an algebraic plane curve over K, then
it follows that deg(f(A)) can be bounded above by a linear function in deg(A).
The second step, which might be of independent interest, treats the more general
problem in which f satisfies (P3) and there exists a special sequence (An)n∈N0

in A
such that deg(f(An)) is bounded above by a linear function in deg(An). Both steps
rely on the construction of certain auxiliary polynomials; such a construction has
played a fundamental role in diophantine approximation, transcendental number
theory, and combinatorics. For examples in number theory, the readers are referred
to [BG06, Mas16] and the references therein. In combinatorics, the method of
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constructing polynomials vanishing at certain points has recently been called the
Polynomial Method and is the subject of the book [Gut16]. This method has
produced surprisingly short and elegant solutions of certain combinatorial problems
over finite fields [Dvi09, CLP17, EG17].

Acknowledgments. We wish to thank Professor Umberto Zannier for useful
discussions. J. B is partially supported by an NSERC Discovery Grant. K. N. is
partially supported by an NSERC Discovery Grant, a start-up grant at UCalgary,
and a CRC tier-2 research stipend.

2. A nontrivial algebraic relation

We start with the following simple lemma:

Lemma 2.1. Let g : A → A and assume that there exists C1 ∈ N0 such that the
following 3 properties hold:

(a) g(A+BP ) ≡ g(A) mod P for every A,B ∈ A and P ∈ P.
(b) deg(g(A)) ≤ qdeg(A) − 1 for every A ∈ A with deg(A) > C1.
(c) g(A) = 0 for every A ∈ A≤C1

.

Then g is identically 0.

Proof. Otherwise, assume there is A ∈ A of smallest degree such that g(A) 6= 0.
We have D := deg(A) > C1. Since g(B) = 0 for every B ∈ A<D and since for
every monic irreducible polynomial P of degree at most D there is some C such
that A− CP has degree strictly less than D, we have

g(A) ≡ 0 mod
∏

P∈P+

≤D

P.

Since deg







∏

P∈P+

≤D

P






≥ qD and deg(g(A)) < qD, we must have g(A) = 0, a

contradiction. �

Proposition 2.2. Let f : A → A be as in Theorem 1.4. Then there exists a non-
zero polynomial Q(X,Y ) ∈ A[X,Y ] such that Q(A, f(A)) = 0 for every A ∈ A.

Proof. Let N ∈ N such that deg(f(A)) <
qdeg(A)

27q deg(A)
for every A ∈ A with

deg(A) ≥ N . Let M ≥ N be a large positive integers that will be specified later.
Consider Q(X,Y ) ∈ A[X,Y ] of the form:

Q(X,Y ) =
∑

0≤i≤qM/3

∑

0≤j≤qM/(3M)

∑

0≤k≤9qM

cijkt
iXjY k

where cijk ∈ Fq. The number of unknowns cijk is greater than q2M+1.
Put g(A) = Q(A, f(A)) for A ∈ A then g satisfies the congruence condition:

(3) g(A+BP ) ≡ g(A) mod P for every A,B ∈ A and P ∈ P .

We prove that with a sufficiently large choice of M , we have deg(g(A)) < qM for
every A ∈ A with deg(A) ≤ M . Suppose deg(A) ∈ [N,M ] then we have:

deg(g(A)) <
qM

3
+

qM deg(A)

3M
+

9qMqdeg(A)

27q deg(A)
≤ qM
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since the function qx/x is increasing on [2,∞). Now let C2 be a positive number
that is at least the maximum of deg(f(A)) for A ∈ A<N . Hence for every A ∈ A<N ,
we have

deg(g(A)) ≤
qM

3
+

NqM

3M
+ 9C2qM < qM

when M is sufficiently large.
Note that |A≤M | = qM+1. Therefore the condition g(A) = 0 for every A with

deg(A) ≤ M is equivalent to the condition that the cijk’s satisfy a linear system
of at most q2M+1 equations. Since the number of unknowns cijk is greater than
the number of equations, there exist cijk not all zero such that g(A) = 0 for every
A ∈ A with deg(A) < M .

Finally, if A ∈ A with D := deg(A) > M , we have

deg(g(A)) ≤
qM

3
+

DqM

3M
+

MqD

3D
< qD

since the function qx/x is increasing on [M,∞). Therefore the map g : A → A
satisfies all the conditions of Lemma 2.1 with C1 = M , we have that g(A) = 0 for
every A ∈ A and this finishes the proof. �

Corollary 2.3. Let f : A → A be as in Theorem 1.4. Then there exist C3, C4 > 0
depending only on q and f such that

deg(f(A)) ≤ C3 deg(A) + C4 for every A ∈ A \ {0}.

Proof. By Proposition 2.2, there exist n ≥ 0 and polynomials P0(X), . . . , Pn(X) ∈
A[X ] with Pn 6= 0 such that:

Pn(A)f(A)
n + Pn−1(A)f(A)

n−1 + . . .+ P0(A) = 0

for every A ∈ R. We must have n > 0 since otherwise P0(A) = 0 for every A would
force P0 = 0 as well. Let C3 = max0≤i≤n deg(Pi) and let C4 be the maximum of
the degrees of the coefficients of the Pi’s so that deg(Pi(A)) ≤ C3 deg(A) + C4 for
every A ∈ A\{0}. If deg(f(A)) > C3 deg(A)+C4 then deg(Pn(A)f(A)

n) is greater
than deg(Pn−1(A)f(A)

n−1 + . . .+ P0(A)), contradiction. �

3. A result under a linear bound

In this section, we consider a related result in which the inequality (2) is replaced
by a much stronger linear bound on deg(f(An)) where (An)n≥0 is a special sequence
in A. Moreover, the next theorem together with Corollary 2.3 yield Theorem 1.4.

Theorem 3.1. Let f : A → A satisfy the congruence condition

f(A+BP ) ≡ f(A) mod P for every A,B ∈ A and P ∈ P .

Assume there exist U ∈ A with U ′ 6= 0 (i.e. U is not the p-th power of an element
of F̄[t]) and positive integers C5 and C6 such that deg(f(Un)) ≤ C5n+C6 for every
n ∈ N0. Then f is a polynomial map.

For every non-constant A ∈ A, let rad(A) denote the product of the distinct
monic irreducible factors of A. For integers 0 ≤ m < n and non-constant U ∈ A,
let ∆m,n,U = (Un−1)(Un−1−1) . . . (Un−m−1) and let dm,n,U = deg(rad(∆m,n,U )).
We start with the following:

Lemma 3.2. Let U(t) ∈ A such that U ′ 6= 0. Write δ = deg(U).
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(a) Let M, ǫ > 0. There exists a positive constant C7(ǫ,M, p, U) depending
only on ǫ, M , p, and U such that for every n ≥ 1:

dm,n,U ≥ δMn2−ǫ − C7(ǫ,M, p).

(b) Let 0 ≤ m < n be integers. There exist positive constants C8(p, U) de-
pending only on p and U and C9(m, p, U) depending only on m, p, and U
such that:

dm,n,U ≥ δ

(

1−
1

p
+

1

p2
−

1

p3

)

mn− C8(p, U)n− C9(m, p, U).

Proof. Since U ′ 6= 0, it has only finitely many roots. For α ∈ F̄ that is not the
value of U at any of those roots, we have |U−1(α)| = δ.

For part (a), dn−1,n,U is at least the number of the preimages under U of the
roots of unity (in F̄∗) whose order is at most n. For each ℓ with p ∤ ℓ, there are
exactly ϕ(ℓ) roots of unity of order ℓ. Since ϕ(ℓ) dominates ℓ1−ǫ, this proves part
(a).

For part (b), dm,n,U is at least the number of the preimages under U of the roots
of unity whose order divides n− i for some 0 ≤ i ≤ m. Define:

T = {0 ≤ i ≤ m : n− i 6≡ 0 mod p2}

Ai = {ζ ∈ F̄∗ : ζn−i = 1} for each i ∈ T .

We have:

dm,n,U ≥ δ|
⋃

i∈T

Ai|+OU (1) ≥ δ





∑

i∈T

|Ai| −
∑

i,j∈T,i<j

|Ai ∩ Aj |



+OU (1).

Note that |Ai| =
n− i

pk
where pk ‖ n− i. Let:

S0 =
∑

0≤i≤m

(n− i) =
(2n−m)(m+ 1)

2
,

S1 =
∑

0≤i≤m,p|n−i

(n− i) = p
(⌊n/p⌋+ ⌈(n−m)/p⌉)(⌊n/p⌋ − ⌈(n−m)/p⌉+ 1)

2
,

S2 =
∑

0≤i≤m,p2|n−i

(n− i)

= p2
(⌊n/p2⌋+ ⌈(n−m)/p2⌉)(⌊n/p2⌋ − ⌈(n−m)/p2⌉+ 1)

2
.

We have:
∑

i∈T

|Ai| = S0 − S1 +
1

p
(S1 − S2) =

(

1−
1

p
+

1

p2
−

1

p3

)

mn+Op(1)n+Om,p(1).

For i < j in T , we have Ai ∩Aj ⊆ {ζ : ζj−i = 1} hence |Ai ∩Aj | ≤ m. Overall, we
have

dm,n,U ≥ δ

(

1−
1

p
+

1

p2
−

1

p3

)

mn+Op,U (1)n+Om,p,U (1)

and this finishes the proof. �

We will need the following result on S-unit equations over characteristic p:
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Proposition 3.3. Let Γ ⊂ K∗ be a finitely generated subgroup of rank r and
consider the equation x + y = 1 with (x, y) ∈ Γ × Γ. Then there exists a fi-
nite subset X of K∗ × K∗ of cardinality at most p2r − 1 such that every solution

(x, y) ∈ (Γ× Γ) \ (F̄× F̄) has the form x = xpk

0 and y = yp
k

0 for some (x0, y0) ∈ X

and k ∈ N0.

Proof. This is well-known; see [Vol98] or [BN18, Proposition 2.6]. �

Proof of Theorem 3.1. Recall that we are given deg(f(Un)) ≤ C5n+ C6. Let δ =
deg(U). Let N , D1, and D2 be large positive integers that will be specified later.
Consider the auxiliary function:

g(A) = P (A)f(A) +Q(A)

where Q(X) ∈ A[X ] (respectively P (X) ∈ A[X ]) has degree at most D1/δ (respec-
tively (D1 − C5)/δ) and each of its coefficients is an element of A with degree at
most D2 (respectively D2−C6). There are at least q

D1D2/δq(D1−C5)(D2−C6)/δ many
choices for the pair (P,Q). Note that g satisfies the congruence condition:

g(A+BC) ≡ g(A) mod C for every A,B ∈ A and C ∈ P .

We have deg(g(Un)) ≤ D1n+D2 for every n. Hence there are at most

N
∏

n=0

qD1n+D2+1 = q(D1N(N+1)/2)+D2(N+1)+N+1

possibilities for the tuple (g(1), g(U), . . . , g(UN )). Fix a small positive ǫ that will
be specified later. Now we choose a large D1, then let:

N + 1 =
2− ǫ

δ
D1 and D2 =

δ

ǫ
N(N + 1),

so that

D1N(N + 1)

2
+D2(N + 1) +N + 1 =

1

δ
((ǫD1D2/2) + (2 − ǫ)D1D2 + (2− ǫ)D1)

<
1

δ
(D1D2 + (D1 − C5)(D2 − C6)) .

By the pigeonhole principle, there exist two distinct choices of (P,Q) giving rise
to the same tuple (g(1), . . . , g(UN )). Taking the difference, we conclude that there
exist such P and Q so that g(U i) = P (U i)f(U i) + Q(U i) = 0 for 0 ≤ i ≤ N .
For every n > N , we have g(Un) ≡ 0 mod rad(∆N,n,U ). Recall the constants

C8(p, U) and C9(N, p, U) from Lemma 3.2. Since 1−
1

p
+

1

p2
−

1

p3
>

1

2
, by choosing

a sufficiently large D1 (which implies that N is sufficiently large) and sufficiently
small ǫ, we have:

1−
1

p
+

1

p2
−

1

p3
−

C8(p, U)

δN
>

N + 1

(2− ǫ)N
.

This implies that for all sufficiently large n, we have:

δ

(

1−
1

p
+

1

p2
−

1

p3

)

Nn− C8(p, U)n− C9(N, p, U) >
δ

2− ǫ
(N + 1)n+D2

= D1n+D2.
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Since the right-hand side of the preceding inequality is at least deg(g(Un)) while
the left-hand side is at most deg(∆N,n,U ) by Lemma 3.2, we have g(Un) = 0 for all
sufficiently large n. Let N1 be such that g(Un) = 0 for every n ≥ N1.

Now consider an arbitrary A ∈ A \ {0} then fix an integer M > deg(g(A)). We
claim that there exists n ≥ N1 such that A − Un has an irreducible factor T of
degree at least M ; once this is done we have that g(A) ≡ g(Un) = 0 (mod T ), and
this forces g(A) = 0, since the degree of T is strictly larger than the degree of g(A).
To see why there exists such an irreducible factor T , let Γ denote the subgroup
of K∗ generated by U , A, and all the irreducible polynomials of degree less than
M . Since U is not the p-th power of an element in F̄[t], there exists an irreducible
polynomial in A whose exponent in the unique factorization of U is not divisible
by p, i.e. v(U) 6≡ 0 mod p where v is the associated discrete valuation. Therefore
the set S := {n ≥ N1 : nv(U)− v(A) 6≡ 0 mod p} is infinite and for every n ∈ S ,
we have Un/A is not the p-th power of an element in K. Let r denote the rank of
Γ. Whenever A − Un = B has only irreducible factors of degree less than M , we
have that (Un/A,B/A) is a solution of the equation x+ y = 1 with (x, y) ∈ Γ× Γ.
By Proposition 3.3, there can be at most p2r − 1 elements n ∈ S such that A−Un

has only irreducible factors of degree less than M and this proves our claim.
Hence g(A) = 0 for every A ∈ A \ {0} and the congruence condition on g gives

g(A) = 0 for every A ∈ A. Hence P (A)f(A) + Q(A) = 0 for every A ∈ A. We
must have P (X) 6= 0; since otherwise P (X) = Q(X) = 0. For all A ∈ A except
the finitely many A such that P (A) = 0, we have Q(A)/P (A) = −f(A) ∈ A. This
implies that P (X) | Q(X) in K[X ], hence f is a polynomial map, as desired. �

4. A further question

As mentioned in the introduction, it is an interesting problem to strengthen 1.4
by replacing the function qdeg(A)/ deg(A) in (2) by a larger function. Let

dn := deg







∏

P∈P+

≤n

P







which is the degree of the product of all monic irreducible polynomials of degree at
most n. It seems reasonable to ask the following:

Question 4.1. Suppose f : A → A such that f(A+BP ) ≡ f(A) mod P for every
A,B ∈ A and P ∈ P and there exists ǫ ∈ (0, 1) such that for all sufficiently large
n, for all A ∈ A of degree n, we have

deg(f(A)) ≤ (1 − ǫ)dn.

Is it true that f is a polynomial map?
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