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Abstract. This paper concerns the study of a class of clutters called simplicial sub-
clutters. Given a clutter C and its simplicial subclutter D, we compare some algebraic
properties and invariants of the ideals I, J associated to these two clutters, respectively.
We give a formula for computing the (multi)graded Betti numbers of J in terms of those
of I and some combinatorial data about D. As a result, we see that if C admits a sim-
plicial subclutter, then there exists a monomial u /∈ I such that the (multi)graded Betti
numbers of I + (u) can be computed through those of I. It is proved that the Betti
sequence of any graded ideal with linear resolution is the Betti sequence of an ideal as-
sociated to a simplicial subclutter of the complete clutter. These ideals turn out to have
linear quotients. However, they do not form all the equigenerated square-free monomial
ideals with linear quotients. If C admits ∅ as a simplicial subclutter, then I has linear
resolution over all fields. Examples show that the converse is not true.

introduction

Free resolutions have been a central topic in commutative algebra since the work of
David Hilbert and his celebrated theorem “Hilbert Syzygy Theorem”. They are a very
important tool to study the properties of a graded module over finitely generated graded
K-algebras. They, in particular, are used to compute the Castelnuovo–Mumford regular-
ity, projective dimension, depth, Hilbert function, etc. It is, in general very difficult to
determine the whole resolution of a module, even using some computer programming sys-
tems. However, algebraists try to find some tools to investigate the general shape of the
resolution and to compute some numerical data explaining them. An important invariant,
regarding the graded minimal free resolutions, which carries most of the numerical data
about them, is the (multi)graded Betti numbers. For a ∈ Zn and i ∈ Z, the (i,a)-th
Betti number of a finitely generated multigraded module M over a multigraded standard
K-algebra R is given by

βi,a(M) = dimK TorRi (K;M)a.

While it is again too hard to determine the exact value of the (multi)graded Betti num-
bers, one may try to explain them in combinatorial terms for monomial ideals over the
polynomial rings. Indeed, given a monomial ideal I, passing through polarization, one
can obtain a square-free monomial ideal J whereas lots of algebraic properties are pre-
served via this operation. Among all other properties, I and J share same graded Betti
numbers. Hence, in order to study the graded free resolution of monomial ideals, it is fair
enough to concentrate on the square-free ones. On the other hand, there is a bijection
between the class of square-free monomial ideals over a polynomial ring and some classes
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of combinatorial or topological objects. Given a square-free monomial ideal I over the
polynomial ring S = K[x1, . . . , xn] one can associate a simplicial complex ∆I to I such
that F ⊂ [n] = {1, . . . , n} does not belong to ∆I if and only if xF :=

∏
i∈F xi belongs

to I. A more combinatorial approach associates a collection CI of subsets of [n], called a
clutter, to the minimal generating set of I as follows: A subset F ⊂ [n] belongs to CI if
and only if xF is an element in the minimal generating set of I. In case I is equigenerated,
say in degree d, the complement of CI , denoted by C̄I , is defined to be the collection of all
d-subsets of [n] not belonging to CI . Unless otherwise stated, throughout the paper, by the
ideal attached to a clutter C, we mean the ideal whose generators are in correspondence
with the elements of the complement of C.

In this paper, we study a class of clutters, called simplicial subclutters. In order to
define this class, we first introduce, in Section 2, a reduction operation on the uniform
clutters – the clutters whose elements have the same cardinality. This operation on a
clutter C is based on removing an element F which contains a particular subset, called
simplicial element of C. The definition of simplicial element and all other preliminaries
is given in Section 1. A clutter has a simplicial subclutter if and only if it admits a
non-trivial simplicial element. Not all clutters have such elements, see e.g Example 4.5.
In Section 2, we deal with the ideals associated to uniform clutters and their simplicial
subclutters. Given a uniform clutter C and its simplicial subclutter D, we investigate some
algebraic properties of the ideal J attached to D through those of I attached to C. By the
structure of D, we see that J is an extension of I to which shares some properties with
I. In case C admits a simplicial subclutter, it is guaranteed that there exists u /∈ I such
that adding u to I does not change the nonlinear (multi)graded Betti numbers. Note that
for any monomial ideal I generated in degree d and any monomial u with deg(u) = d,
βi,a (I + (u)) = βi,a (I), where a ∈ Zn with |a| > d+ i+r, and where r is the Castelnuovo-
Mumford regularity of the ideal I : u, (c.f. Theorem 1.1). But one can not expect more
for a general case: Example 1.2 shows that the equality does not always hold in some
multidegrees a with |a| = d+ i+ r even in case r = 1 (i.e. I : u is generated by variables).
However, in Theorem 2.4, we present a formula for the multigraded Betti numbers of the
ideal I+(u), with u = xF , in terms of those of I and some numerical data about F , where
I and I + (u) are given respectively by a clutter C and its simplicial subclutter obtained
by removing F . As a result, one can see that the two ideals share the same regularity. In
particular, I has a linear resolution if and only if so does I + (xF ).

The proof of Theorem 2.4 is a direct proof having topological and combinatorial flavor.
However, after presenting this result at the CMS meeting 2017, Huy Tài Hà mentioned
to the first author that the ideal I + (xF ) is splittable, [12]. This fact can be observed by
the choice of F . On the other hand, since splittable ideals are Betti splittable, [15], one
gets the Betti formula of Theorem 2.4 from the Betti splitting formula. This short proof
of Theorem 2.4 is presented as well. The authors would like to thank Huy Tài Hà for this
remark.

The final point in this section is that the ideal I satisfies the subadditivity condition if
and only if so does I + (xF ).

In Section 3, we consider the class of simplicial subclutters of the complete clutter
Cn,d = {F ⊂ [n] : |F | = d}. We call it the class of simplicial clutters. This class is the dual
of a class called chordal clutters [8]. Roughly speaking, a chordal clutter, is a clutter which
can be reduced to ∅ by some reduction operations, while a simplicial clutter is obtained
from Cn,d by some reduction operations. As a consequence of Theorem 2.4, it is seen that
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the ideals attached to the class of chordal clutters have linear resolution over all fields.
This class has been studied in [8]. Later, in [7] a modification of this variation of chordality
was studied for simplicial complexes. Trying to compare the properties of chordal clutters
and simplicial clutters, it turns out that, like chordal clutters, the ideal associated to a
simplicial clutter has linear resolution over all fields and all of its graded Betti numbers
can be identified explicitly (Corollary 3.1). Moreover, these ideals have linear quotients,
while not all ideals of chordal clutters have this property, [8, Example 3.14].

In Theorem 3.2 we see that the square-free stable ideals are examples of ideals associated
to simplicial subclutters. In [6], it is proved that any Betti sequence of an ideal with linear
resolution is the Betti sequence of an ideal associated to a chordal clutter. One of the
the main results of Section 3 improves this result stating that the Betti sequence of any
ideal with linear resolution coincides with the Betti sequence of an ideal associated to a
simplicial clutter (see Theorem 3.4). Hence all the Betti sequences of ideals with linear
resolution are the Betti sequences of ideals with linear quotients.

One may ask if all the square-free equigenerated monomial ideals with linear quotients
are attached to a simplicial clutter. In the last section, Section 4, we give a negative answer
to this question by presenting a simple example. On the other hand, some known classes
of ideals with linear resolution over all fields, such as square-free stable ideals, matroidal
ideals and alexander dual of vertex decomposable ideals, are associated to chordal clutters.
Hence one may ask if all the square-free monomial ideals with linear resolution over all
fields are attached to chordal clutters, [8, Question 1]. We close Section 4 showing by
some examples that, this is not the case. However, to the best of our knowledge, this class
is one of the largest known classes of clutters whose associated ideal has linear resolution
over every field.

1. Preliminaries

Throughout this paper, S = K[x1, . . . , xn] denotes the polynomial ring over the field
K endowed with multigraded standard grading; that is deg(xi) = ei, where eis are the
standard basis of Rn.

1.1. Multigraded Betti numbers. Let I ⊂ S be a monomial ideal in the polynomial
ring S. Then I is a multigraded S-module and so it admits a minimal multigraded free
S-resolution

F : · · · → F2 → F1 → F0 → I → 0,

where Fi =
⊕

a∈Zn S (−a)βi,a(I). The numbers βi,a(I) = dimK TorSi (K, I)a are called the
multigraded Betti numbers of I.

For a = (a1, . . . , an) ∈ Zn, let supp(a) = {i : ai 6= 0} and |a| =
∑

i ai. Define

βi,j(I) =
∑
a∈Zn
|a|=j

βi,a(I).

The numbers βi,j(I) are the graded Betti numbers of I with respect to the standard grading
on S (i.e. deg(xi) = 1). The Castelnuovo-Mumford regularity of I, reg(I), is defined as
follows:

reg(I) = max{j − i : βi,j(I) 6= 0}.
A non-zero homogeneous ideal I ⊂ S is said to have a d-linear resolution if βi,j(I) = 0,
for all i, j with j − i > d. In this case I is generated by homogeneous elements of degree
d = reg(I). A big class of ideals with linear resolution is the class of equigenerated ideals
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which have linear quotients, [18, Proposition 8.2.1]. An ideal I is said to have linear
quotients, if I has an ordered set of minimal generators {u1, . . . , ur} such that the colon
ideals (u1, . . . , ui−1) : ui are generated by linear forms, for i = 2, . . . , r.

In general, adding an arbitrary monomial u to a monomial ideal I changes almost all
of the Betti numbers. However, if deg u equals the degree of the generators of I, then we
have

Theorem 1.1. Let I ⊂ S be a monomial ideal generated by elements in degree d and let
u be a monomial in S of degree d with u 6∈ I. Then

βi,a (I + (u)) = βi,a (I) ,

for all a ∈ Zn with |a| > d+ i+ r, where r = reg(I : u).

Proof. Let u = xα, where α ∈ Zn≥0. The short exact sequence

0→ S

I : u
(−α)

.u−→ S

I
−→ S

I + (u)
→ 0

of graded rings and homomorphisms induces the long exact sequence

· · · → TorSi

(
K,

S

I : u

)
a−α
−→ TorSi

(
K,

S

I

)
a

−→ TorSi

(
K,

S

I + (u)

)
a

−→ TorSi−1

(
K,

S

I : u

)
a−α
→ · · ·

(1)

for arbitrary a ∈ Zn. If |a| > d+ i+ r − 1, then |a−α| > i+ r − 1 and hence

βi−1,a−α

(
S

I : u

)
= 0 = βi,a−α

(
S

I : u

)
,

because reg (S/(I : u)) = reg (I : u)− 1 = r − 1. It follows that

TorSi−1

(
K,

S

I : u

)
a−α

= TorSi

(
K,

S

I : u

)
a−α

= 0,

and from the exact sequence (1), we obtain TorSi (K, S/I)a
∼= TorSi (K, S/(I + (u)))a for

all a ∈ Zn with |a| > d+ i+ r − 1. This implies that

βi,a(
S

I
) = dimK TorSi

(
K,

S

I

)
a

= dimK TorSi

(
K,

S

I + (u)

)
a

= βi,a(
S

I + (u)
),

for all a ∈ Zn with |a| > d+ i+ r − 1. The assertion follows from the fact that βi,a(I) =
βi+1,a(S/I). �

As the following example shows, in order to have the equality of multigraded Betti
numbers in general, the lower bound for |a| in Theorem 1.1 is the best possible, even if
reg(I : (u)) = 1, (i.e. I : (u) is generated by a subset of variables).

Example 1.2. Let I = (x1x4x5, x2x3x5) ⊂ K[x1, . . . , x5]. Let u = x3x4x5. Then I : u =
(x1, x2) and hence reg(I : u) = 1. Let a = (1, 1, 1, 1, 1). We have |a| = 3 + 1 + reg(I : u).
It is seen that I + (u) has a 3-linear resolution (hence β1,a(I + (u)) = 0) while β1,a(I) = 1.
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1.2. Splittable monomial ideals. A class of ideals whose Betti numbers can be com-
puted through those of some of its subideals is the class of splittable ideals. Here we recall
the definition.

For a monomial ideal I ⊂ S, let G(I) denote the (unique) set of minimal generators of
I.

Definition 1.3 ([12]). A monomial ideal J is called splittable if J is the sum of two
non-zero monomial ideals I and K, such that

(a) G(J) is the disjoint union of G(I) and G(K);
(b) there is a splitting function

G(I ∩K)→ G(I)× G(K)

w 7→ (φ(w), ψ(w))

satisfying
(1) for all w ∈ G(I ∩K), w = lcm (φ(w), ψ(w)),
(2) for every subset S ⊆ G(I ∩K), both lcm(φ(S)) and lcm(ψ(S)) strictly divide

lcm(S).

If I and K satisfy the above properties, then we say J = I +K is a splitting of J .

Definition 1.4 ([15]). Let I, J , and K be monomial ideals such that G(J) is the disjoint
union of G(I) and G(K). Then J = I +K is a Betti splitting if

βi,j(J) = βi,j(I) + βi,j(K) + βi−1,j(I ∩K), (2)

for all i ∈ Z and (multi)degrees j.

When J = I + K is a splitting, Eliahou and Kervaire proved in [12, Proposition 3.1]
that J = I +K is also Betti splittable.

Eliahou and Kervaire actually proved (2) for total Betti numbers. Fatabbi [16, Propo-
sition 3.2] extended the argument to the graded case; in fact, her proof works as well if j
is a multidegree [15].

1.3. Simplicial complexes. A simplicial complex ∆ on the vertex set V = {v1, . . . , vn}
is a collection of subsets of V such that {vi} ∈ ∆ for all i and, F ∈ ∆ implies that all
subsets of F are also in ∆. The elements of ∆ are called faces and the maximal faces under
inclusion are called facets of ∆. We denote by F(∆) the set of facets of ∆. We say that
a simplicial complex is pure if all its facets have the same cardinality. The dimension of a
face F is dimF = |F | − 1, where |F | denotes the cardinality of F . A simplicial complex
is called pure if all its facets have the same dimension. The dimension of ∆, dim(∆), is
defined as:

dim(∆) = max{dimF : F ∈ ∆}.
A simplicial complex Γ is called a subcomplex of ∆ if all elements of Γ belong to ∆. If W

is a subset of V , the induced subcomplex of ∆ on W is defined as ∆W = {F ∈ ∆: F ⊆W}.
Let ∆ be a d-dimensional simplicial complex on V . For each 0 ≤ i ≤ d the i-th skeleton

of ∆ is the simplicial complex ∆(i) on V whose faces are those faces F of ∆ with dimF ≤ i.
In addition, we define the pure i-th skeleton of ∆ to be the pure subcomplex ∆[i] of ∆
whose facets are those faces F of ∆ with dimF = i.

Given a simplicial complex ∆ on the vertex set {v1, . . . , vn}. For F ⊆ {v1, . . . , vn} let
xF =

∏
vi∈F xi, and let x∅ = 1. The non-face ideal or the Stanley-Reisner ideal of ∆,

denoted by I∆, is an ideal of S generated by square-free monomials xF , where F 6∈ ∆.



6 M. BIGDELI AND A. A. YAZDAN POUR

Let H̃i (∆;K) denote the i-th reduced homology of the augmented oriented chain com-
plex of a simplicial complex ∆ with coefficients in the field K. If ∆ is a simplicial complex
and ∆1 and ∆2 are subcomplexes of ∆, then there is an exact sequence

· · · → H̃j(∆1 ∩∆2;K)→ H̃j(∆1;K)⊕ H̃j(∆2;K)→ H̃j(∆1 ∪∆2;K)→

→ H̃j−1(∆1 ∩∆2;K)→ · · · (3)

called the reduced Mayer-Vietoris sequence of ∆1 and ∆2 (see [18, Proposition 5.1.8] for
more details). This exact sequence plays a crucial role in the proof of Proposition 2.3 and
Theorem 2.4.

Let ∆1 and ∆2 be simplicial complexes on disjoint vertex sets V and W , respectively.
The join ∆1 ∗∆2 is a simplicial complex on the vertex set V ∪W with faces F ∪G, where
F ∈ ∆1 and G ∈ ∆2. A simplex on the vertex set V 6= ∅ is the join of all vertices in
V and it follows from [27, Proposition 5.2.5] that, if either ∆1 or ∆2 is a simplex, then

H̃j (∆1 ∗∆2;K) = 0 for all j.

1.4. Clutters and their associated ideal. In this section we recall some definitions
about clutters and their associated ideal in the polynomial ring.

Definition 1.5 (Clutter). A clutter C with the vertex set [n] = {1, . . . , n} is a collection
of subsets of [n], called circuits of C, such that if F1 and F2 are distinct circuits, then
F1 * F2. A d-circuit is a circuit consisting of exactly d vertices, and a clutter is called
d-uniform, if every circuit has d vertices.

For a non-empty clutter C on the vertex set [n], we define the ideal I (C) to be

I(C) = (xT : T ∈ C) ,
and we set I(∅) = 0. The ideal I (C) is called the circuit ideal of C.

Let n, d be positive integers and let V be a set consisting n elements. For n ≥ d, by
Cn,d on the vertex set V we mean the clutter

Cn,d = {F ⊂ V : |F | = d} .
This clutter is called the complete d-uniform clutter on V with n vertices. In the case
that n < d, we let Cn,d be some isolated points. It is well-known that for n ≥ d the ideal
I (Cn,d) has a d-linear resolution (see e.g. [22, Example 2.12]).

If C is a d-uniform clutter on [n], we define C̄, the complement of C, to be

C̄ = Cn,d \ C = {F ⊂ [n] : |F | = d, F /∈ C}.
Frequently in this paper, we take a d-uniform clutter C 6= Cn,d with vertex set [n] and

consider the square-free monomial ideal I = I(C̄) in the polynomial ring S = K[x1, . . . , xn].
Let C be a clutter and let e be a subset of [n]. By C \ e we mean the clutter

{F ∈ C : e * F} .
This operation is called the deletion of e from C.

1.5. Chordal clutters. In the following we recall some definitions and concepts from [8].
Let C be a d-uniform clutter on the vertex set [n] and let ∆(C) be the simplicial complex

on the vertex set [n] with I∆(C) = I
(
C̄
)
. The simplicial complex ∆(C) is called the clique

complex of C and a face F ∈ ∆(C) is called a clique in C. It is easily seen that F ⊂ [n] is
a clique in C if and only if either |F | < d or else all d-subsets of F belongs to C (see [24,
Definition 4.2 and Proposition 4.4]).
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Let C be a d-uniform clutter on the vertex set [n]. For any (d− 1)-subset e of [n], let

NC [e] = e ∪ {c ∈ [n] : e ∪ {c} ∈ C}.

We call NC [e] the closed neighborhood of e in C. In the case that NC [e] 6= e (i.e. e ⊂ F
for some F ∈ C), e is called a maximal subcircuit of C. The set of all maximal subcircuits
of C is denoted by SC (C). We say that e is simplicial over C if NC [e] ∈ ∆(C). One may
note that a (d−1)-subset of [n] which is not a maximal subcircuit of C is simplicial over C,
called trivial simplicial elements. If e ∈ SC (C) and e is simplicial over C, then e is called a
simplicial maximal subcircuit of C. Let us denote by Simp (C) the set of all (d−1)-subsets
of [n] which are simplicial over C.

Definition 1.6 ([8, Definition 3.1]). Let C be a d-uniform clutter. We call C a chordal
clutter, if either C = ∅, or C admits a simplicial maximal subcircuit e such that C \ e is
chordal.

Following the notation in [8], we use Cd, to denote the class of all d-uniform chordal
clutters.

Let C be a d-uniform clutter. A sequence e = e1, . . . , et of (d − 1)-subsets of [n],
is called a simplicial sequence in C if e1 is simplicial over C and ei is simplicial over
(((C \ e1) \ e2) \ · · · ) \ ei−1 for all i > 1.

One may rewrite the Definition 1.6 as follows: A d-uniform clutter C is chordal if either
C = ∅, or else there exists a simplicial sequence in C, say e = e1, . . . , et, such that e1 is a
maximal subcircuit over C, ei is a maximal subcircuit over C \ e1 \ · · · \ ei−1 for i > 1, and
(((C \ e1) \ e2) \ · · · ) \ et = ∅. The sequence e is called a simplicial order of C.

In [8, Remark 2] it is mentioned that Definition 1.6 coincides with the graph theoretical
definition of chordal graphs in the case d = 2.

Example 1.7. In Figure 1, the 3-uniform clutter C is chordal, while the 3-uniform clutter
D is not.

C = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 5}, {1, 2, 6}, {1, 5, 6}, {2, 5, 6}}.
D = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}}.

1

2
3

4

5

6

1

23

4

5

Figure 1. The Clutter C on the left and D on the right

Indeed, while the clutter D does not have any simplicial maximal subcircuit, one of the
possible simplicial orders for C is the following:

e1 = {1, 3} e2 = {1, 4} e3 = {2, 4}
e4 = {1, 2} e5 = {2, 6} e6 = {1, 5}



8 M. BIGDELI AND A. A. YAZDAN POUR

2. Simplicial subclutters and their multigraded resolution

In this section, we consider a class of subclutters, called simplicial subclutters, which
have the property that all the (multi)graded Betti numbers of their associated ideals can
be determined via those of the ideal of the original clutter.

Definition 2.1. Let C be a d-uniform clutter on the vertex set [n] and let D ( C. We
say that D is a simplicial subclutter of C if there exists a sequence of (d− 1)-subsets of [n]
(not necessarily distinct), say e = e1, . . . , et, and Ai ⊆ {F ∈ C \A1 \ · · · \Ai−1 : ei ⊂ F},
i = 1, . . . , t, such that

(a) e1 is simplicial over C;
(b) ei is simplicial over C \A1 \ · · · \Ai−1, for i > 1;
(c) D = C \A1 \ · · · \At.

Example 2.2. Let G be the graph illustrated in Figure 2. Let e1 = {1}. We have
NG[e1] = {1, 2, 3, 5}. Any 2-subset of this set forms an edge in G. Hence, NG[e1] ∈ ∆(G)
and so {1} is a simplicial maximal subcircuit of G, called simplicial vertex of G. Let
A1 = {{1, 3}, {1, 5}}, and let G1 = G \A1.

Now let e2 = {6}. Since NG1 [e2] = {5, 6, 7} ∈ ∆(G1), the vertex 6 is a simplicial vertex
of G1. Let A2 = {{5, 6}, {5, 7}} and let G2 = G1 \ A2. Finally, let e3 = {8}. We have
NG2 [e3] = {7, 8} ∈ ∆(G2). So 8 is a simplicial vertex of G2. Let A3 = {{7, 8}} and let
G3 = G2 \ A3. The graph Gi is a simplicial subgraph of Gj for j < i and they all are
simplicial subgraphs of G. All these graphs are shown in Figure 2. One can continue

1

2

3 4

5
7

6

8 9

Graph G

1

2

3 4

5
7

6

8 9

Graph G1

1

2

3 4

5
7

6

8 9

Graph G2

1

2

3 4

5
7

6

8 9

Graph G3

Figure 2. The graph G and three of its simplicial subgraphs

this process by removing some edges containing simplicial vertices in order to have more
simplicial subgraphs of G.

But the subgraph G′ of G shown in Figure 3 is not a simplicial subgraph of G, because G′

is obtained from G by removing the edge {5, 7} while none of the vertices 5, 7 is simplicial.

Remark 1. One may easily check that a simplicial subgraph of a chordal graph is again
a chordal graph. However, it is not known that whether any simplicial subclutter of a
chordal clutter is again chordal.
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1

2

3 4

5
7

6

8 9

Figure 3. The graph G′ which is not a simplicial subgraph of G

2.1. Multigraded minimal free resolutions of simplicial subcluttres. Let D be a
simplicial subclutter of a d-uniform clutter C. It follows from [8, Theorem 2.1] that the
ideals I(C̄) and I(D̄) share the same non-linear strands (i.e. βi,j

(
I(C̄)

)
= βi,j

(
I(D̄)

)
, for

all i, j with j−i > d). Theorem 2.4 describes all the Betti numbers of I(D̄) with respect to
those of I(C̄). Before stating this theorem, we first prove the following proposition which
is a crucial point for the proof of the desired conclusion.

Proposition 2.3 (compare to [7, Proposition 4.2]). Let H be a d-uniform clutter on the
vertex set [n], e ∈ Simp(H) and ∆ = ∆ (H) the clique complex of H.

(a) If ∆? = ∆ \ {G ∈ ∆: e ⊆ G}, then

H̃i (∆;K) ∼= H̃i (∆?;K) , for all i > d− 2.

(b) Let ∆′ be a subcomplex of ∆ defined as follows: ∆′ = ∆ \ {G ∈ ∆: F ⊆ G}, where
F = e ∪ {v} for some v ∈ NH[e] \ e. Set ∆′ = ∆, if there is no such v. Then

H̃i (∆;K) ∼= H̃i

(
∆′;K

)
, for all i 6= d− 2.

(c) the following sequence is exact:

0→ H̃d−2 (∆?;K)→ H̃d−2 (∆;K)→ H̃d−3 (∂e ∗ 〈NH[e] \ e〉;K)→ H̃d−3 (∆?;K)→ 0.

Proof. (a) Note that

(i) ∆ = ∆? ∪ 〈NH[e]〉, and
(ii) ∆? ∩ 〈NH[e]〉 = ∂e ∗ 〈NH[e] \ e〉, where ∂e is the pure (d− 3)-skeleton of 〈e〉.

It follows from (ii) that for all i 6= d− 3

H̃i (∆? ∩ 〈NH[e]〉;K) = 0. (4)

Indeed, if NH[e] \ e = ∅, then ∆? ∩ 〈NH[e] \ e〉 = ∂e which is a pure (d− 3)-skeleton of of
the simplex 〈e〉. Otherwise, ∆? ∩ 〈NH[e]〉 is the join of ∂e with a simplex. Hence all of its
homologies vanish.

Using (4) and the reduced Mayer-Vietoris long exact sequence

· · · → H̃i (∆? ∩ 〈NH[e]〉;K)→ H̃i (∆?;K)⊕ H̃i (〈NH[e]〉;K)→ H̃i (∆;K)

→ H̃i−1 (∆? ∩ 〈NH[e]〉;K)→ · · ·

we conclude that for all i > d− 2,

H̃i (∆;K) ∼= H̃i (∆?;K)⊕ H̃i (〈NH[e]〉;K) .

Since 〈NH[e]〉 is a simplex, H̃i (〈NH[e]〉;K) = 0, for all i. Therefore (a) is obtained.
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(b) If ∆′ = ∆, then we are done. Assume that NH[e] \ e 6= ∅ and v and F are as in

statement (b) above. One may easily check that ∆′ = ∆(H \ {F}). Hence H̃i (∆′;K) =

H̃i (∆;K) = 0 for all i < d− 2 ([24, Proposition 3.1]). On the other hand, we have:

(iii) ∆′ = ∆? ∪ 〈NH[e] \ {v}〉, and
(iv) ∆? ∩ 〈NH[e] \ {v}〉 = ∂e ∗ 〈NH[e] \ F 〉.

One may use the same method as in (a) to obtain H̃i (∆′;K) ∼= H̃i (∆?;K), for all i > d−2.
Now the result follows from (a).

(c) Consider the following Mayer-Vietoris sequence:

· · · → H̃d−2 (∂e ∗ 〈NH[e] \ e〉;K)

→ H̃d−2 (∆?;K)⊕ H̃d−2 (〈NH[e]〉;K)→ H̃d−2 (∆;K)

→ H̃d−3 (∂e ∗ 〈NH[e] \ e〉;K)→ H̃d−3 (∆?;K)⊕ H̃d−3 (〈NH[e]〉;K)

→ H̃d−3 (∆;K)→ · · · .

(5)

One should note that

• H̃d−2 (〈NH[e]〉;K) = H̃d−3 (〈NH[e]〉;K) = 0, since 〈NH[e]〉 is a simplex.

• H̃d−3 (∆;K) = 0, since 〈[n]〉[k] is a subcomplex of ∆ for all k ≤ d− 2.

• H̃d−2 (∂e ∗ 〈NH[e] \ e〉;K) = 0, because
– If 〈NH[e] \ e〉 = ∅, then ∂e ∗ 〈NH[e] \ e〉 = ∂e is a simplicial complex of

dimension d− 3.
– If 〈NH[e] \ e〉 6= ∅, then ∂e ∗ 〈NH[e] \ e〉 is the join of ∂e and a simplex.

By applying the above facts to (5), we obtain the long exact sequence as in (c). �

Now we are ready to prove the main theorem of this section.

Theorem 2.4. Let I = I(C̄), where C is a d-uniform clutter on [n]. Let e ∈ Simp(C) and
let u := xF =

∏
i∈F xi with F ∈ C and e ⊂ F . Then for all i ≥ 0 and all a ∈ Zn one has:

βi,a (I + (u)) = βi,a (I)+

{
1, if |a| = d+ i, F ⊆ supp(a) and (xj : j ∈ supp(a) \ F ) ⊂ (I : xF )

0, otherwise

(6)

Proof. Let F = e∪{v} and D = C \ {F}. For W ⊆ [n], set H = CW and let ∆, ∆′ and ∆?

be as in Proposition 2.3. It is easy to see that ∆(CW ) = ∆(C)W , ∆(CW )′ = ∆(D)W and
∆(CW )? = (∆(C)?)W .

If e 6⊂ W , then ∆(C)W = ∆(D)W and ∆(CW ) = ∆(CW )?. Otherwise, e ∈ Simp(CW )
and by Proposition 2.3 we conclude that

H̃i (∆(C)W ;K) ∼= H̃i (∆(D)W ;K) , for all i > d− 2. (7)

Moreover, by using Proposition 2.3(c), we obtain

dimK H̃d−2 (∆(C)W ;K) = dimK H̃d−2 ((∆(C)?)W ;K)− dimK H̃d−3 ((∆(C)?)W ;K)

+ dimK H̃d−3 (∂e ∗ 〈NCW [e] \ e〉;K) .
(8)
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Assume that a ∈ Zn with W = supp(a). First suppose |a| > d+ i. Using a theorem of
Hochster (see e.g. [18, Theorem 8.1.1]) we have

βi,a
(
I(C̄)

)
= βi,a

(
I∆(C)

)
= dimK Tori(K; I∆(C))a

= dimK H̃|W |−i−2 (∆(C)W ;K)

= dimK H̃|W |−i−2 (∆(D)W ;K) (by (7))

= dimK Tori(K; I∆(D))a

= βi,a
(
I∆(D)

)
= βi,a

(
I(D̄)

)
.

Now suppose that |a| = d + i. If e 6⊂ supp(a), then as mentioned before we have
∆(C)W = ∆(D)W . The same discussion as above shows that βi,a

(
I(C̄)

)
= βi,a

(
I(D̄)

)
.

Suppose e ⊂ supp(a). Using the theorem of Hochster and (8), we have

βi,a
(
I(C̄)

)
= dimK H̃d−2 (∆(C)W ;K)

= dimK H̃d−2 ((∆(C)?)W ;K)− dimK H̃d−3 ((∆(C)?)W ;K)

+ dimK H̃d−3 (∂e ∗ 〈NCW [e] \ e〉;K)

= βi,a
(
I∆(C)?

)
− βi+1,a

(
I∆(C)?

)
+ dimK H̃d−3 (∂e ∗ 〈NCW [e] \ e〉;K) .

Hence for a ∈ Zn with |a| = d+ i and e ⊂ supp(a), and for W = supp(a), one has

βi,a
(
I(C̄)

)
= βi,a

(
I∆(C)?

)
− βi+1,a

(
I∆(C)?

)
+ dimK H̃d−3 (∂e ∗ 〈NCW [e] \ e〉;K) .

Now set H = DW in Proposition 2.3 and let ∆ and ∆? be as defined in that proposition.
Note that if e ⊂ W , then e ∈ simp(DW ). It is seen that ∆(DW )? = (∆(C)?)W , because
D \ e = C \ e. A similar argument as above yields the following:

βi,a
(
I(D̄)

)
= βi,a

(
I∆(C)?

)
− βi+1,a

(
I∆(C)?

)
+ dimK H̃d−3 (∂e ∗ 〈NDW

[e] \ e〉;K) ,

where |a| = d+ i, e ⊂ supp(a), and W = supp(a).
Since NDW

[e] \ e = NCW [e] \ F , for a ∈ Zn with |a| = d+ i, we obtain

βi,a
(
I(D̄)

)
= βi,a

(
I(C̄)

)
+{

0, if e 6⊂W
dimK H̃d−3 (∂e ∗ 〈NCW [e] \ F 〉;K)− dimK H̃d−3 (∂e ∗ 〈NCW [e] \ e〉;K) otherwise.

Note that

dimK H̃d−3 (∂e ∗ 〈NCW [e] \ F 〉;K)− dimK H̃d−3 (∂e ∗ 〈NCW [e] \ e〉;K) =

{
1, if NCW [e] = F

0, otherwise.

Furthermore, NCW [e] = F is equivalent to

F ⊆ supp(a) and (xj : j ∈ supp(a) \ F ) ⊂ (I : xF ) .

This completes the proof. �

Though Theorem 2.4 gives a direct proof for formula (6), one can obtain it showing
that J is Betti splittable. Indeed, the following discussion shows that J = I+(xF ) is even
splittable.

Let I and J and F be as defined in Theroem 2.4 and let K := (xF ). Note that by [18,
Propositions 1.2.1, 1.2.2], we have

I ∩K = (xF )(I : xF )
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It follows from Lemma 2.8(b) that

I ∩K = (xF )(xi : xixe ∈ I).

Now define φ : G(I ∩K) → G(I) and ψ : G(I ∩K) → G(K) to be the functions with
φ(xixF ) = xixe and ψ(xixF ) = xF . It is easy to check that the function G(I ∩ K) →
G(I) × G(K) with w 7→ (φ(w), ψ(w)) is a splitting function. Hence J = I + (xF ) is a
splitting and so J is Betti splittable. That is for a ∈ Zn,

βi,a(J) = βi,,a(I) + βi,,a((xF )) + βi−1,,a(I ∩ (xF )). (9)

Note that

βi,a((xF )) =

{
1, if i = 0, supp(a) = F

0, otherwise.

Since by Lemma 2.8(b), the ideal I : xF is generated by variables, setting deg xi = ei,
where ei is the i-th standard basis vector, the Koszul complex is a multigarded minimal
free resolution of I : xF . Therefore,

βi−1,a(I : xF ) =

{
1, if supp(a) = {j1, . . . , ji}with xjk ∈ I : xF

0, otherwise.

It follows that

βi−1,a(I ∩ (xF )) =

{
1, if supp(a) = F ∪ {j1, . . . , ji} with xjk ∈ I : xF

0, otherwise.

Applying the above formulas in (9) we get (6).

Corollary 2.5. Let C be a d-uniform clutter on the vertex set [n] and let D be a simplicial
subclutter of C. Then

(a) ([8, Theorem 2.1]) βi,j
(
I(C̄)

)
= βi,j

(
I(D̄)

)
, for all i, j with j − i > d.

(b) If C 6= Cn,d, then reg
(
I(C̄)

)
= reg

(
I(D̄)

)
.

(c) I(C̄) has a linear resolution if and only if I(D̄) has a linear resolution.
(d) ([8, Theorem 3.3]) If C 6= Cn,d is a chordal clutter, then I(C̄) has a d-linear resolu-

tion over all fields.
(e) there exists u /∈ I(C̄) such that the non-linear Betti numbers of I(C̄) and I(C̄)+(u)

are the same.

Proof. One may note that

βi,j(I) =
∑
a∈Zn
|a|=j

βi,a(I).

So that (a) follows directly from Theorem 2.4. The statements in (b) and (c) are direct
consequences of (a). Note that if C is a chordal clutter, then ∅ is a simplicial subclutter
of C. Since the ideal I(∅̄) = I(Cn,d) has a d-linear resolution over all fields, we conclude
from (c) that the ideal I(C̄) has a d-linear resolution over all fields. �

Corollary 2.6. Let C be a d-uniform clutter on the vertex set [n] and e ∈ Simp(C).
Suppose that A ⊆ {F ∈ C : e ⊂ F} be a non-empty set. Let D = C \ A, I = I(C̄) and
J = I(D̄) = I + (xF : F ∈ A). Then

βi,i+d(J) = βi,i+d(I) +

|A|−1∑
j=0

(
s+ j

i

)
,



MULTIGRADED RESOLUTION 13

where s is the number of minimal generators of the ideal I : xF for an arbitrary F ∈ A.

Proof. Let F ∈ A. By virtue of Theorem 2.4, we have

βi,i+d(I + (xF )) =
∑
a∈Zn
|a|=i+d

βi,a(I + (xF ))

= βi,i+d(I) +
∑
a

1,

where the sum is taken over all a ∈ Zn with |supp(a)| = i+ d, F ⊆ supp(a) and

(xj : j ∈ supp(a) \ F ) ⊂ (I : xF ) .

Note that the ideal I : xF is generated by a subset of variables, by Lemma 2.8(b). Counting
the number of a ∈ Zn with the above properties, we get

βi,i+d(I + (xF )) = βi,i+d(I) +

(
s

i

)
,

where s is the number of minimal generators of the ideal I : xF . This proves the assertion
in the case that |A| = 1. Let now A = {F1, . . . Fl} with l > 1. Then J = J ′+ (xFl

), where
J ′ = I +

(
xF1 , . . . ,xFl−1

)
. By induction hypothesis on l, we conclude that

βi,i+d(J) = βi,i+d(J
′) +

(
sFl

i

)

= βi,i+d(I) +

|A|−2∑
j=0

(
s+ j

i

)+

(
sFl

i

)
,

where sFl
is the number of minimal generators of J ′ : xFl

and s is the number of minimal
generators of I : xF for an arbitrary element F ∈ A \ {Fl}. Note that sFl

= (l − 1) + s =
(|A| − 1) + s, by Lemma 2.8(b). This implies the desired result. �

Corollary 2.7. Let D be a simplicial subclutter of C obtained by the simplicial sequence
e = e1, . . . , er and the sets A1, . . . , Ar, as defined in Definition 2.1. Let I = I(C̄) and
J = I(D̄). Then

βi,i+d(J) = βi,i+d(I) +
r∑

k=1

|Ak|−1∑
j=0

(
tk + sk + j

i

)
, (10)

where

• for 1 ≤ k ≤ r, sk is the number of minimal generators of the ideal I : xF , where F
is an arbitrary element in Ak.

• t1 = 0, tk = |{F ∈
k−1⋃
j=1

Aj : ek ⊂ F}|, for 2 ≤ k ≤ r.

In particular,

pd(S/J) = max
1≤k≤r

{pd(S/I), tk + sk + |Ak|}.

Proof. We have J = I +
r∑

k=1

(xF : F ∈ Ak). We use induction on r to prove the assertion.

For r = 1, Corollary 2.6 gives the desired formula. Suppose r > 1. Note that we have
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J = J ′ + (xF : F ∈ Ar), where

J ′ = I +
r−1∑
k=1

(xF : F ∈ Ak) .

By Corollary 2.6 and induction hypothesis we get

βi,i+d(J) = βi,i+d(J
′) +

|Ar|−1∑
j=0

(
s′r + j

i

)

= βi,i+d(I) +

r−1∑
k=1

|Ak|−1∑
j=0

(
tk + sk + j

i

)
+

|Ar|−1∑
j=0

(
s′r + j

i

)
,

where sk and tk are as explained in the statement and s′r is the number of minimal gener-
ators of J ′ : xF for an arbitrary element F ∈ Ar. Note that s′r = tr + sr by Lemma 2.8(b).
This completes the proof of the first part.

Now we prove the second part of the statement. A direct consequence of (10) and
Corollary 2.5(a), yields that pd(S/I) ≤ pd(S/J). Moreover, it follows from (10) that
sk + tk + |Ak| ≤ pd(S/J), for all 1 ≤ k ≤ r. Hence pd(S/J) ≤ max1≤k≤r{pd(S/I), tk +
sk + |Ak|}. For the converse inequality, assume that pd(S/I) < pd(S/J). Then, by
virtue of Corollary 2.5(a) we conclude that, βpd(S/J),pd(S/J)+d(S/J) 6= 0. Note that
βpd(S/J),pd(S/J)+d(S/I) = 0, because pd(S/I) < pd(S/J). However, by (10) we know that
βpd(S/J),pd(S/J)+d(S/J) 6= 0 if and only if there exists 1 ≤ k ≤ r such that sk + tk + |Ak| ≥
pd(S/J). This completes the proof. �

In Corollary 2.5(c) we saw that for a simplicial subclutter D of a d-uniform clutter C,
I(C̄) has a linear resolution if and only if so does I(D̄). One may ask if this statement
holds when we replace “linear resolution” with “linear quotients”. In the following we
show that the “only if” direction is true, while the other one is not. First we need the
following lemma.

Lemma 2.8. Let C be a d-uniform clutter on the vertex set [n] and let I = I(C̄). Let e be
a (d− 1)-subset of [n]. Then

(a) e ∈ Simp(C) if and only if for all v ∈ I, there exists i ∈ [n] \NC [e] such that xi|v.
(b) ([4]) If e ∈ Simp(C) and F is a circuit of C which contains e, then I : xF =

(xi : xixe ∈ I).
(c) If I has linear quotients with respect to xF1 , . . . ,xFr , e ∈ Simp(C) and F is a

circuit of C which contains e, then the ideal I
(
C̄
)

+ (xF ) has also linear quotients
with respect to xF1 , . . . ,xFr ,xF .

Corollary 2.9. Let C be a d-uniform clutter such that the ideal I
(
C̄
)

has linear quotients.

If D is a simplicial subclutter of C, then the ideal I
(
D̄
)

has linear quotients and hence
linear resolution.

Proof. We use induction on |D̄| to prove the assertion. Since C̄ ⊆ D̄, the induction base
lies on D = C. In this case, the result follows from our hypothesis. Assume that the results
holds for all simplicial subclutter D′ of C with |D̄′| < |D̄|. Now by Definition 2.1 there
exists a d-uniform clutter D′, e ∈ Simp (D′) and F ∈ D′ containing e, such that

(i) D′ is a simplicial subclutter of C, and
(ii) D = D′ \ {F}.
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Then|D̄′| < |D̄| and so induction hypothesis implies that the ideal I
(
D̄′
)

has linear quo-

tients. Note that I
(
D̄
)

= I
(
D̄′
)

+ (xF ). Lemma 2.8(b) now yields the desired conclu-
sion. �

The following example shows that the converse of Corollary 2.9 is not true in general.

Example 2.10. Let C be a d-uniform chordal clutter such that the ideal I(C̄) does not
have linear quotients; such clutter exists, see for example [8, Example 3.14]. Then ∅ is
a simplicial subclutter of C and I(∅̄) = I(Cn,d) has linear quotients. Consequently, the
circuit ideal of the complement of a simplicial subclutter of a clutter C may have linear
quotients, while the original circuit ideal I(C̄) may not.

2.2. Simplicial subclutters and subadditivity problem. Let S = K[x1, . . . , xn] be
the polynomial ring over a field K endowed with standard grading (i.e. deg(xi) = 1, for
all 1 ≤ i ≤ n). For a homogeneous ideal I ⊂ S, let

ti(I) = max{j : βi,j(S/I) 6= 0}
= max{j : TorSi (K, S/I)j 6= 0}

and ti(I) = −∞, if it happens that TorSi (K, S/I) = 0. Also define

ri(I) = ti(I)− i.
A homogeneous ideal I ⊂ S is said to satisfy the subadditivity condition, if

ti+j (I) ≤ ti (I) + tj (I) , (11)

for all i, j with i+ j ≤ pd(S/I).
Subadditivity problem has been studied in [1, 5, 3, 11, 14, 19, 20, 21, 29]. No coun-

terexample is known for the validity of (11) for monomial ideals, while for arbitrary ho-
mogeneous ideals, (11) is not true in general (c.f. [3, Sec. 6]).

Let D be a simplicial subclutter of a d-uniform clutter C. Let I = I(C̄) and J = I(D̄)
be the corresponding associated ideals. We will show that I satisfies the subadditivity
condition, if and only if so does J . Indeed, we show a stronger result, which states
that the Betti diagram of I has a special shape, if and only if so does J . Here special
shape means the definition as it is stated in [5]. In the following, we recall the required
prerequisite to reach this aim.

Definition 2.11 ([5, Definition 1]). Let I be a graded ideal. The Betti diagram of S/I
with regularity c is said to have a special shape, if

(i) r0(I) ≤ r1(I) ≤ · · · ≤ rg(I) where g is the smallest integer such that rg(I) = c.
(ii) ri+1(I) ≤ ri(I), for g ≤ i ≤ pd(S/I).

As it is mentioned in [5], not all Betti diagrams of monomial ideals have a special shape.
This is not even the case for the edge ideal of a graph. A simplest such example is the edge
ideal of the 5-cycle whose Betti diagram violates condition (i) of Definition 2.11. However,
it is shown in [5, Lemma 1] that any homogenous ideal whose Betti diagram has a special
shape satisfies subadditivity.

Proposition 2.12. Let 0 6= I ⊆ J be homogeneous ideals generated in degree d such that

βi,j(I) = βi,j(J),

for all i, j with j − i > d. Then

(a) I satisfies the subadditivity condition if and only if J does so.
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(b) I has a special Betti diagram if and only if J does so.

Proof. First of all note that βi,i+d(I) ≤ βi,i+d(J), for all i by [8, Lemma 2.3]. Hence our
assumption on the Betti numbers implies that pd(S/I) ≤ pd(S/J), and

ti(J) =

{
ti(I), if 0 ≤ i ≤ pd(S/I)

d+ i− 1, if pd(S/I) < i ≤ pd(S/J).
(12)

(a) Assume that the ideal J satisfies the subadditivity condition. Then it follows from
(12) that for all i, j with i+ j ≤ pd(S/I), one has

ti+j(I) = ti+j(J) ≤ ti(J) + tj(J) = ti(I) + tj(I).

So that the ideal I satisfies the sabadditivity condition as well. For the converse, suppose
that the ideal I satisfies the subadditivity condition. If i+ j ≤ pd(S/I), then as above we
have

ti+j(J) ≤ ti(J) + tj(J).

Assume that pd(S/I) < i+ j ≤ pd(S/J). Then,

ti+j(J) = i+ j + d− 1 ≤ (i+ d− 1) + (j + d− 1) ≤ ti(J) + tj(J).

(b) A similar argument as in (a) yields the desired conclusion. �

Proposition 2.12 in combination with Corollary 2.5(a) leads to the following corollary.

Corollary 2.13. Let C be a d-uniform clutter and D be a simplicial subclutter of C. Then

(a) the ideal I(C̄) satisfies subadditivity condition if and only if the ideal I(D̄) does so.
(b) the ideal I(C̄) has a special Betti diagram if and only if I(D̄) does so.

3. Simplicial clutters

In this section, we consider the simplicial subclutters of a complete clutter. A simplicial
subclutter of a complete clutter is called a simplicial clutter. Since I(Cn,d) = 0, one
would expect that the Betti table of the ideals of the simplicial clutters can be explicitly
determined through the data obtained from the simplicial sequences. The following result
which is a direct conclusion of Corollaries 2.9 and 2.7, gives rise to computing Betti
numbers of simplicial subclutters of the complete clutters.

Corollary 3.1. Let C be a simplicial clutter obtained from Cn,d by the simplicial sequence
e = e1, . . . , er and the sets A1, . . . , Ar as defined in Definition 2.1. Then the ideal I = I(C̄)
has linear quotients and

βi,i+d(I) =

r∑
k=1

|Ak|−1∑
j=0

(
tk + j

i

)
, (13)

where t1 = 0 and tk = |{F ∈
k−1⋃
j=1

Aj : ek ⊂ F}|, for 2 ≤ k ≤ r.

According to Corollary 3.1, a class of square-free monomial ideals with linear quotients
is the class of ideals obtained from simplicial subclutters of the complete clutter. Another
class of square-free monomial ideals with linear quotients is the class of square-free stable
ideals (see [18, Problem 8.8(b)]). A square-free monomial ideal I ⊂ S is called square-free
stable if for all square-free monomials u ∈ I and for all j < m(u) such that xj does not
divide u one has xj(u/xm(u)) ∈ I, where m(u) = max{i : xi divides u}. Note that this
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exchange property needs only be checked for the monomials in G(I) (see [18, Problem 6.9]).
In the following theorem we see that the class of equigenerated square-free stable ideas is
contained in the class of ideals associated to simplicial subclutters of complete clutters.

Theorem 3.2. Let I be a square-free stable ideal in S generated in degree d, and let C be
a d-uniform clutter on the vertex set [n] with I = I(C̄). Then C is a simplicial clutter.

Proof. Let I = (xF1 , . . . ,xFr) (i.e. C̄ = {F1, . . . , Fr}). Suppose xF1 < · · · < xFr , where <
is the lexicographic order induced by x1 < · · · < xn. For 1 ≤ i ≤ r, let

Ci = C ∪ {Fi, . . . , Fr}.
Note that C1 = Cn,d, I1 := I(C̄1) = 0 and for i > 1,

Ii := I(C̄i) = (xF1 , . . . ,xFi−1).

It is seen that for 1 ≤ i ≤ r, setting ei = Fi \ {m(xFi)} we have NCi [ei] = e ∪
{m(xFi),m(xFi)+1, . . . , n}. Let F be a d-subset of NCi [ei]. We show that F ∈ Ci. If e ⊂ F ,
then by definition of NCi [ei] we have F ∈ Ci. Suppose e 6⊂ F , F = {a1, . . . , ad} with a1 <
· · · < ad. Since m(xFi) > k for all k ∈ e we have ad−1, ad ∈ {m(xFi),m(xFi) + 1, . . . , n}.
If F /∈ Ci, then xF ∈ Ii which implies that xF < xFi . Hence m(xF ) = ad ≤ m(xFi). Since
ad ∈ {m(xFi),m(xFi)+1, . . . , n} we have m(xF ) = ad = m(xFi). Therefore ad−1 < m(xFi)
which is a contradiction. Hence ei is a simplicial maximal subcircuit of Ci. It follows that
C = Cn,d \A1 \ · · · \Ar is a simlicial clutter, where Ai = {Fi} with ei ⊂ Fi.

�

Theorem 3.2 allows us to use the formula given in Corollary 3.1 to compute the Betti
numbers of I, in case that the ideal I = I(C̄) is a square-free stable ideal. Note that one
may prove Theorem 3.2 by induction on |C̄|, (which is a shorter proof). But we need the
structure of the current proof in the following example.

Example 3.3 (Betti numbers of equigenerated square-free stable ideals). Let I = I(C̄) =
(xF1 , . . . ,xFr) be a square-free stable ideal, where C is a d-uniform clutter on [n]. Suppose
xF1 < · · · < xFr , where < is the lexicographic order induced by x1 < · · · < xn. As seen
in the proof of Theorem 3.2 we have C = Cn,d \ A1 \ · · · \ Ar, where Ai = {Fi} with
Fi = ei ∪ {m(xFi)} and ei ∈ Simp(Cn,d \A1 \ · · · \Ai−1).

Now we compute tk (for k > 1), where tk is defined in Corollary 3.1. Indeed, we
should count the number of F in {F1, . . . , Fk−1} for which ek ⊂ F . Since I is square-
free stable we have xixFk

/xm(xFk
) ∈ I for all i < m(xFk

) such that xi does not divide

xFk
. But xixFk

/xm(xFk
) < xFk

. Thus {i} ∪ ek ∈ {F1, . . . , Fk−1} for all i < m(xFk
) with

i /∈ ek. So the number of F = {i} ∪ ek with i < m(xFk
) and i /∈ ek in {F1, . . . , Fk−1}

is (m(xFk
) − 1) − (d − 1). Note that {i} ∪ ek /∈ {F1, . . . , Fk−1} for i > m(xFk

), because
xFk

< xixek for i > m(xFk
). Consequently, tk = m(xFk

)−d for k > 1. It is also clear that
m(xF1) = d. Thus t1 = 0 = m(xF1)− d. Therefore we get the following

βi,i+d(I) =

r∑
k=1

|Ak|−1∑
j=0

(
tk + j

i

)
(using Corollary 3.1)

=

r∑
k=1

(
m(xFk

)− d
i

)
=
∑

u∈G(I)

(
m(u)− d

i

)
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The last formula matches the formula given in [18, Corollary 7.4.2] for square-free stable
ideals.

A sequence β = (β0, . . . , βn−1) of integers is called the Betti sequence of a graded ideal
if there exists a graded ideal I ⊂ S = K[x1, . . . , xn] such that βi = βi(I), for all i. In [6,
Theorem 3.3], it is proved that any Betti sequence of a graded ideal with linear resolution
is the Betti sequence of the ideal associated to a chordal clutter. Since the ideals of
simplicial clutters have linear resolution too, the question arises whether all ideals which
have a linear resolution occur as the circuit ideal of simplicial clutters. In the following
result we give an affirmative answer to this question.

Theorem 3.4. Let β = (β0, . . . , βn−1) be a sequence of integers. Then β is a Betti
sequence of a graded ideal with linear resolution if and only if β is the Betti sequence of
the circuit ideal of the complement of a simplicial clutter.

Proof. Let I be a graded ideal in S with d-linear resolution. As it is stated in the proof
of [6, Theorem 3.3], there exists a square-free (strongly) stable ideal, say J , such that the
Betti sequence of I coincides with the Betti sequence of J . The assertion now follows from
Theorem 3.2. �

Theorem 3.4 is quite surprising because it confirms that the Betti sequence of any
graded ideal with linear resolution over all fields is the Betti sequence of an ideal with
linear quotients. Note that not all ideals with linear resolution over all fields have linear
quotients (e.g [8, Example 3.14]).

4. Contractible complexes vs. Chordal clutters

In Corollary 3.1, it is stated that I(C̄) has linear quotients if C is a simplicial clutter.
Simple examples show that the class of simplicial clutters are not equivalent to the class
of equigenerated square-free monomial ideals with linear quotients. It follows that they
are not equivalent to the class of square-free ideals with linear resolution over all fields.

Example 4.1. Let G be the graph in Figure 4.

1

2

3

4

5

Figure 4. graph G

We have
I(Ḡ) = (x1x2, x1x3, x2x3, x1x2, x3x4, x3x5, x4x5)

which has linear quotients, and hence linear resolution over all fields. But it is easy to
check that G is not a simplicial clutter.

Now let us consider the dual class of simplicial clutters: the class of clutters with ∅ as
their simplicial subclutter. We know that the ideal attached to the elements of this class
have linear resolution over all fields. Moreover, the class of chordal clutters is a subclass
of this class. So far, we do not know if the class of chordal clutters is indeed equal to the
class of clutters with ∅ as their simplicial subclutter. However, the main idea for defining
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the class of chordal clutters is to find the largest possible class of uniform clutters such
that the associated circuit ideal has a linear resolution over all fields. Note that the class
of chordal clutters is not a subclass of the class of simplicial clutters, for instance, the
graph G in Example 4.1 is chordal, while it is not a simplicial clutter.

In [8] it is proved that the class Cd of chordal clutters strictly contains several previously
known classes of clutters, whose associated ideals have linear resolution over all fields, such
as classes defined by Emtander [13] and Woodroofe [28].

It is shown in [26, Theorem 2.5] that if the circuit ideal of a uniform clutter C is square-
free stable, then C̄ is chordal. Since square-free lexsegment ideals and square-free strongly
stable ideals are square-free stable, it follows that these classes also come form chordal
clutters.

Another subclass of Cd is associated to vertex decomposable simplicial complexes: Let
∆ be the clique complex of a d-uniform clutter C with the property that its Alexander dual,
∆∨, is vertex decomposable. Then C is chordal, [25, Theorem 3.5]. This, in particular,
implies that the matroidal ideals also come from chordal clutters. Indeed, it follows from
the fact that any matroidal ideal is the Stanley-Reisner ideal of the dual of a vertex
decomposable simplicial complex, [10, Proposition 7].

These evidence seemed to strengthen the guess that all square-free monomial ideals
with linear resolution over all fields are associated to chordal clutters. In support of this
guess, in [8] the authors asked whether there exists a d-uniform clutter C such that the
ideal I(C̄) has a linear resolution over all fields, while C does not belong to the class Cd, [8,
Question 1]. Recently, due to a discussion with Eric Babson, it turned out that the answer
is positive. In the following we first find a class of non-chordal clutters whose ideals have
linear resolution over all fields. Then we give explicit examples of this class.

Before finding the mentioned class, we first go through the following Lemma. Let I ⊂ S
be a square-free monomial ideal. For each j, we write I[j] for the ideal generated by all
the square-free monomials of degree j belonging to I.

Lemma 4.2. Let ∆ be a simplicial complex on the vertex set [n], I = I∆ ⊂ S its Stanley-
Reisner ideal and d = max{deg(u) : u ∈ G(I)}. For t ≥ d, let

∆t = ∆ ∪ 〈[n]〉[t−2].

Then I∆t = I[t] and if a ∈ Zn and |a| > i + t, then βi,a(I) = βi,a(I[t]). In particular,
βi,j(I) = βi,j(I[t]), if j − i > t.

Proof. If xF ∈ I[t], then |F | ≥ t and there exists a subset G ⊆ F with xG ∈ G(I) and
xG|xF . Since xG ∈ G(I) and G ⊆ F , we conclude that F /∈ ∆. Since |F | ≥ t we have
F /∈ ∆t. Hence xF ∈ I∆t .

Conversely, take an element xF ∈ I∆t . Then, F /∈ ∆ and |F | ≥ t. Hence xF ∈ I∆ with
deg(xF ) ≥ t. This implies that xF ∈ I[t].

Let t ≥ d. It follows from definition of ∆t that ∆
[i]
t = ∆[i], for all i > t − 2. Hence

H̃i ((∆t)W ;K) = H̃i (∆W ;K), for all i > t − 2 and W ⊂ [n]. Now, let a ∈ Zn with
|a| > i+ t and let W = supp(a). Then, by a theorem of Hochster, we have

βi,a(I∆) = dimK H̃|W |−i−2 (∆W ;K)

= dimK H̃|W |−i−2 ((∆t)W ;K) = βi,a(I∆t).

�
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Remark 2. Let I be a square-free monomial ideal. It is easy to check that as a consequence
of Lemma 4.2 we have

reg
(
I[t]

)
= max {t, reg(I)} , for all t ≥ d. (14)

Moreover,

reg(I) = min
{
t : t ≥ d and I[t] has a t-linear resolution

}
. (15)

The formula (15) implies that one will get an algorithm for computing the regularity of an
arbitrary monomial ideal once there is an algorithm which decides whether a monomial
ideal has a linear resolution. This formula implies, in particular, that if I has a d-linear
resolution, then I[t] has a t-linear resolution for all t ≥ d.

Lemma 4.3 (proposed by a referee of [8]). If C is a d-uniform chordal clutter on the

vertex set [n], then ∆(C) collapses to a subcomplex of 〈[n]〉[d−2].

Proof. Let e = e1, . . . , et be a simplicial order over C and ∆0 := ∆(C). For all i > 0, define

∆i = ∆i−1 \ {F ∈ ∆i−1 : ei ⊆ F}.
Note that NC [e1] is the only facet of ∆0 which properly contains e1 and for i > 1,
NC\e1\···\ei−1

[ei] is the only facet of ∆i−1 which properly contains ei. Therefore ∆0

collapses to ∆t. Since ∆(C \ e1 \ · · · \ ei) = ∆i ∪ 〈e1, . . . , ei〉, it follows that ∆t =

〈[n]〉[d−2] \ {e1, . . . , et}. �

In the following we find a class of clutters such that their associated ideal have a linear
resolution over all fields, while the clutter is not chordal. In order to do this, first we recall
some definitions from algebraic topology.

A face of a simplicial complex ∆ is called a free face if it is properly contained in a
unique facet of ∆. By a simple collapse of ∆ we mean the simplicial complex obtained
from ∆ by removing of all faces of ∆ containing a free face. A simplicial complex ∆ is
said to collapsible to a simplicial complex ∆′, if ∆′ is obtained from ∆ by a sequence of
simple collapses. If a simplicial complex ∆ collapses to the empty simplicial complex then
∆ is called collapsible. Note that any collapsible simplicial complex is contractible. Recall
that a simplicial complex is called contractible if its geometric realization, as a topological
space, is contractible, i.e. if the identity map on it is homotopic to some constant map.

For a pure (d−1)-dimensional simplicial complex ∆, let C∆ denote the d-uniform clutter
whose circuits are the facets of ∆.

Proposition 4.4. Let ∆ be a pure simplicial complex of dimension d − 1 on the vertex
set [n] such that

(i) ∆ is contractible;
(ii) ∆ does not have a free face;

(iii) The clique complex of C∆ is of dimension d− 1.

Then

(a) C∆ is not a chordal clutter.
(b) The ideal I(C̄∆) has a linear resolution over all fields.

Proof. Let ∆′ be the clique complex of C∆. Then since ∆ and ∆′ are both of dimension
d− 1 we have

∆′ = ∆ ∪ 〈[n]〉[d−2].

(a) Since ∆ does not have a free face, it follows that ∆′ does not collapse to a subcomplex

of 〈[n]〉[d−2]. So that C∆ is not chordal by an application of Lemma 4.3.
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(b) Since ∆ is contractible, H̃i (∆;K) = 0 for all i. Since dim ∆ = d − 1, we conclude

that H̃i (∆W ;K) = 0 for all i > d− 2 and for all W ⊂ [n]. Thus

βi,j(I∆) =
∑
a∈Zn
|a|=j

βi,a(I∆) =
∑

W⊂[n]
|W |=j

dimK H̃j−i−2 (∆W ;K) = 0,

for all i and j with j − i > d. Now since ∆ = ∆d, as in Lemma 4.2, it follows from
Lemma 4.2 that βi,j

(
I(C̄∆)

)
= βi,j(I∆′) = 0, for all i, j with j− i > d. This completes the

proof. �

The following two examples are samples of the class defined in Proposition 4.4. To the
knowledge of the authors, there are a few known such examples.

Example 4.5 (A couterexample proposed by Eric Babson). Let ∆ be a pure 2-dimensional
simplicial complex whose geometric realization is a triangulation of a dunce hat, see Fig-
ure 4.5. It is well-known that ∆ is contractible [30]. Moreover, it does not have a free

1

1 1

3

2 2

3

3 2

6

5

4 8

7

Figure 5. A triangulation of the dunce hat

face and, ∆(C∆) is 2-dimensional simplicial complex. Thus ∆ satisfies the assumptions of
Proposition 4.4. Hence I(C̄∆) has linear resolution over all fields, while C∆ is not chordal.

Example 4.6. Here we discuss Bing’s celebrated example: House with two rooms [9], see
Figure 6.

Figure 6. Bing’s House with two rooms
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Consider a 2-dimensional triangulation of this structure. Here we consider a triangula-
tion explained in [2, §5], on 12 vertices:

B =
{
{2, 4, 5}, {2, 3, 5}, {3, 5, 6}, {3, 4, 6}, {1, 2, 7}, {2, 7, 8}, {2, 3, 8}, {3, 8, 9}, {3, 7, 9},

{4, 7, 8}, {4, 5, 8}, {5, 6, 8}, {6, 8, 9}, {6, 7, 9}, {4, 6, 7}, {1, 4, 7}, {3, 4, 7}, {1, 2, 3},
{2, 3, 6}, {2, 5, 6}, {1, 3, 10}, {3, 10, 11}, {2, 3, 11}, {2, 11, 12}, {2, 10, 12}, {4, 10, 11},

{4, 6, 11}, {5, 6, 11}, {5, 11, 12}, {5, 10, 12}, {4, 5, 10}, {1, 4, 10}, {2, 4, 10}
}
.

Let ∆ be the simplicial complex with F(∆) = B. It is well-known that ∆ is contractible;
see e.g. [17, Chapter 0]. The same discussion as in Example 4.5 shows that the ideal I(C̄∆)
has a 3-linear resolution over all fields, but C∆ is not chordal.
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