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Chromatic symmetric functions from the modular law

Alex Abreu and Antonio Nigro

Abstract. In this article we show how to compute the chromatic quasisymmetric function of
indifference graphs from the modular law introduced in [GP13]. We provide an algorithm which
works for any function that satisfies this law, such as unicellular LLT polynomials. When the
indifference graph has bipartite complement it reduces to a planar network, in this case, we prove
that the coefficients of the chromatic quasisymmetric function in the elementary basis are positive
unimodal polynomials and characterize them as certain q-hit numbers (up to a factor). Finally,
we discuss the logarithmic concavity of the coefficients of the chromatic quasisymmetric function.
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1. Introduction

The chromatic polynomial can be characterized as the unique function

χ : Graphs → Q[x]

that has the following three properties.1

(A) It satisfies the deletion-contraction recurrence, χG = χG\e − χG/e for every edge e ∈ E(G).
(B) It is multiplicative, χG1⊔G2 = χG1χG2 .
(C) It has values at complete graphs given by χKn(x) = x(x − 1) · · · (x− n+ 1).

The chromatic polynomial of a graph admits a symmetric function generalization introduced by
Stanley in [Sta95]. Given a graph G it is defined as

csf(G) :=
∑

κ

xκ

where the sum runs through all proper colorings of the vertices κ : V (G) → N and xκ :=
∏

v∈V (G) xκ(v).

A coloring κ is proper if κ(v) 6= κ(v′) whenever v and v′ are adjacent. If Λ is the algebra of symmet-
ric functions, it turns out that csf is a function from Graphs to Λ. This function is multiplicative
and its values at complete graphs are given by csf(Kn) = n!en (where en is the elementary sym-
metric function of degree n). However, it does not satisfy the deletion-contraction recurrence, one
simple reason being that the chromatic symmetric function is homogeneous of degree equal to the
number of vertices of G.

1Actually, only properties (A) and (C) are needed.

http://arxiv.org/abs/2006.00657v2


2 Chromatic symmetric functions from the modular law

In this paper we will restrict ourselves to indifference graphs, i.e., graphs whose set of vertices can
be identified with [n] := {1, 2, . . . , n} and such that if {i, j} is an edge with i < j, then {i, k} and
{k, j} are also edges for every k such that i < k < j. This class of graphs, restrictive as it might
look, ends up having deep relations with geometry and representation theory, see, for example,
[BC18], [GP16] and [AH19].

Indifference graphs can be naturally associated with Hessenberg functions and Dyck paths (see
Figure 1A). A Hessenberg function is a non-decreasing function h : [n] → [n] such that h(i) ≥ i
for every i ∈ [n]. The graph associated to h is the graph with vertex set [n] and set of edges
E = {{i, j}; i < j ≤ h(i)}. All indifference graphs arise from Hessenberg functions. To each
Hessenberg function there is an associated Dyck path, which is the unique path with h(i) north
steps before the i-th east step. We usually denote a Hessenberg function by the n-tuple of its values
h = (h(1), h(2), . . . , h(n)) or by the word in n (north step) and e (east step) corresponding to its
associated Dyck path. We denote by D the set of Dyck paths, which will be identified with the set
of Hessenberg functions and with the set of indifference graphs. In the rest of the introduction by
graph we will always mean an indifference graph.

h = (2, 3, 3)
= nnenee

1 2 3

G

Figure 1A. A Hessenberg function h, its corresponding Dyck path and its asso-
ciated indifference Graph.

When G is the graph associated to h, we can recover the chromatic polynomial of G by a
differential operator ∆h in the Weyl algebra Q[x, ∂]. The operator ∆h is obtained from h by
replacing each east step with ∂ and each north step with x. For example, if h = nnenee, then
∆h = x2∂x∂2. It is not hard to check that the chromatic polynomial of G satisfies the following
equality

∆hx
n = χG(n)x

n.

Moreover, with this interpretation, the deletion-contraction recurrence (when applied to edges
of G that correspond to corners in h) is, essentially, the well known formula [∂, x] = 1, which gives

(1a) x∂ = ∂x− 1.

See Figure 1B.
As pointed out before, the fact that Formula (1a) is not homogeneous is one of the reasons

for the deletion-contraction recurrence not holding for the chromatic symmetric function. On the
other hand, it is not hard to find homogeneous relations for ∂ and x. For example, one can simply
consider [[∂, x], x] = 0 and [[∂, x], ∂] = 0. Explicitly this gives

(1b)
2x∂x = x2∂ + ∂x2

2∂x∂ = ∂2x+ x∂2.

In particular, if G0, G1 and G2 are graphs associated to Dyck paths h0, h1 and h2 such that h0

and h2 are obtained from h1 by replacing a subpath nen with enn and nne, respectively, then (see
Figure 1C below)



Alex Abreu and Antonio Nigro 3

h = nnenee

x
∂

1 2 3

G

h′ = nennee

∂

x
1 2 3

G \ e h′′ = nnee

1, 2 3

G/e

Figure 1B. The deletion-contraction recurrence

(1c) 2χG1 = χG0 + χG2 .

Similarly, the same holds if h0 and h2 are obtained from h1 by replacing a subpath ene with een
and nee, respectively.

h = nnenee

x
∂ x

1 2 3

G1

h0 = nennee

∂

x

x

1 2 3

G0

h2 = nnneee

∂

x

x

1 2 3

G2

Figure 1C. Homogeneous relation involving x and ∂.

One can actually replace Property (A) (the deletion-contraction recurrence) with the recurrence
in Equation (1c), and these properties will still characterize the chromatic polynomial for indiffer-
ence graphs. In other words, the restriction of χ to the set of indifference graphs is the unique
function that has the following three properties.

(A’) Whenever G0, G1, and G2 are graphs associated to Dyck paths h0, h1, and h2 such that h0

and h2 are obtained from h1 by replacing a subpath nen with enn and nne, respectively, or
by replacing a subpath ene with een and nee, respectively, then 2χG1 = χG0 + χG2 .

(B) It is multiplicative, χG1⊔G2 = χG1χG2 .
(C) It has values at complete graphs given by χKn(x) = x(x − 1) · · · (x− n+ 1).
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One possible way to see this is to find more general relations between ∂ and x starting from Equation
(1b). One example is the following

(1d) (b+ 1)x∂lxb = l∂l−1xb+1∂ + (b+ 1− l)∂lxb+1.

This equation, translated to graphs, means that when G0, G1 and G2 are the graphs associated to
Dyck paths h0, h1, and h2 (see Figure 2C) such that h0 and h2 are obtained from h1 by replacing
a subpath nelnb with elnb+1 and el−1nb+1e, respectively, then we have

(1e) (b+ 1) · χG1 = l · χG2 + (b+ 1− l) · χG0 .

Given a connected graph G1, which is not complete, we have that its associated Dyck path h1

must end with nelnbec for some positive integers l, b, c. If we define h0 and h2 by replacing the
subpath nelnb of h1 with elnb+1 and el−1nb+1e, respectively, we have that both h0 and h2 are Dyck
paths (because G1 is connected) and we can apply Equation (1e). This process eventually ends,
since b will increase at each step. Of course, the chromatic polynomial of indifference graphs can
be easily computed directly, but the above recurrence is useful, for instance, if one wants to write
the chromatic polynomial in certain bases as in [Bre92].

The ideia is to repeat this process for the chromatic symmetric function. Actually, we will work
with the chromatic quasisymmetric function introduced by Shareshian and Wachs in [SW16]. For
a graph G with set of vertices [n], the chromatic quasisymmetric function csfq(G) is defined as

csfq(G) :=
∑

κ

qascG(k)xκ.

where the sum runs through all proper colorings of G and

ascG(κ) := |{(i, j); i < j, κ(i) < κ(j); {i, j} ∈ E(G)}|

is the number of ascents of the coloring κ. When G is an indifference graph, we have that csfq(G)
is actually symmetric, so we will think of csfq as function csfq : D → Λq, where Λq is the algebra of
symmetric functions with coefficients in Q(q).

With a little experimentation one can see that Equation (1c) does not hold in general for the
chromatic symmetric function of indifference graphs. However, it still holds if we add some extra
assumptions on h0, h1 and h2, which are summarized in Definition 2.1. The purpose of this article
is to determine when Equation (1e) lifts to the chromatic symmetric function (see Proposition 2.4).
Moreover, we prove that there are enough of these liftings to fully characterize Stanley’s chromatic
symmetric function on indifference graphs as stated in the following theorem.

Theorem 1.1. The function csfq : D → Λq is the unique function that has the following three
properties.

(A) It satisfies the modular law, as in Definition 2.1.
(B) It is multiplicative, csfq(G1 ⊔G2) = csfq(G1) csfq(G2).
(C) It has values at complete graphs given by csfq(Kn) = n!qen.

Actually we prove a more general result. For an indifference graph G with vertex set [n], we
denote by Gt its transposed graph, that is, we relabel the vertices of G via i 7→ n+ 1− i.

Theorem 1.2. Let A be a Q(q)-algebra and let f : D → A be a function that satisfies the modular
law, as in Definition 2.1. Then f is determined by its values f(Kn1 ⊔ Kn2 ⊔ · · · ⊔ Knm) at the
disjoint ordered union of complete graphs and these values are independent of the order in which
the union is taken. Moreover, we have that f(Gt) = f(G) for every indifference graph G.

Our proof of Theorem 1.2 is constructive. We find an algorithm (Algorithm 2.7) based exclusively
on the modular law. This algorithm was implemented in SAGE and is available upon request.

Every function that satisfies the modular law is intimately related with the chromatic symmetric
function, as seen in Corollary 3.2. It would be interesting to find functions with combinatorial
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interpretations that satisfy the modular law. In [AN20] the authors define one such function enu-
merating increasing spanning forests and use it to sharpen the description of the e-coefficients of
unicellular LLT polynomials conjectured in [Ale20] and [GHQR19].

When G is an indifference graph whose complement is bipartite, we observe in Remark 2.11
that the algorithm reduces to a planar network. In this situation, we show that csfq(G) can be
computed in terms of q-hit numbers. This is a q-analogue of Stanley-Stembridge combinatorial
formula [SS93, Theorem 4.3]. We recall that the partition associated to h is given by λ = (n −
h(1), n− h(2), . . . , n− h(n)).

Theorem 1.3. Let h be an Hessenberg function whose associated indifference graph has bipartite
complement and let λ be the partition associated to h. If m := min{λ1, ℓ(λ)}, then

csfq(h) = m!qRm,n−m(λ)en−m,m +
∑

j<m

qjj!q[m− 2j]qRj,n−j−1(λ)en−j,j .

where Rj,k(λ) are the Garsia-Remmel q-deformation of hit numbers, that is, it enumerates weighted
rook placements on k× k board with exactly j rooks on the Young diagram of λ. Moreover, we have
that csfq(h) is e-unimodal.

In the last section we discuss the logarithmic concavity of the coefficients of the chromatic qua-
sisymmetric function. In the breakthrough work [Huh12] it is proved that the chromatic polynomial
of a graph is log-concave. This result was later generalized to matroids in [AHK18]. We supply
some evidence supporting the logarithmic concavity of the e-coefficients of csfq(h) for h ∈ D.

We point out that several analogues of deletion-contraction exist for the chromatic symmetric
function (or some closely related symmetric functions). A non-commutative chromatic symmetric
function is defined in [GS01] which satisfies a deletion-contraction recurrence. In [GP13], a mod-
ular law for the chromatic symmetric function is introduced for any graph. When restricted to
indifference graphs it is the analogue of Equation (1c). In [Lee18], this relation is found for the
closely related unicellular LLT polynomial. A chromatic symmetric function for weighted graphs is
defined in [CS19] which satisfies a deletion-contraction recurrence when one considers contractions
of weighted graphs. Other linear relations in various settings can be found in [OS14], [HNY20],
[D’A20], and [AS20].

It is also worth mentioning that, for unicellular LLT polynomials, the analogy with differential
operators was made precise in [CM18]. They defined operators d− and d+ which play the roles of
x and ∂ in the discussion above, and proved that the unicellular LLT polynomial associated to a
Dyck path h can be computed as dh(1) where dh is the operator obtained from h by replacing each
east step with d+ and each north step with d−.

In the recent paper [AS20] it is demonstrated how to obtain the chromatic symmetric function
from a similar set of relations (see [AS20, Corollary 6.16]). Actually, one of the relations used in
loc. cit. is contained in the modular law used here. The authors also consider a bounce relation on
Schröeder paths that implies the modular law and other relations.

2. The algorithm

Our main goal in this section is to prove Theorem 1.2. We first need some notation. We denote
the set of Dyck paths by D and by Dn the set of Dyck paths of size n. We will also think of
D as the set of Hessenberg functions via the identification between Dyck paths and Hessenberg
functions. There is a (non-commutative) product on the set D given by concatenation of Dyck
paths, while on Hessenberg functions the product of h1 : [n1] → [n1] with h2 : [n2] → [n2] is the
function h : [n1 + n2] → [n1 + n2] given by h(i) = h1(i) if i ∈ [n1] and h(i) = h2(i) + n1 if
i ∈ {n1 + 1, . . . , n1 + n2}. We denote this product by h = h1 · h2. We say that h is irreducible if
it cannot be written as a product of non-trivial Hessenberg functions, or equivalently, if the Dyck
path associated to h does not touch the diagonal. Every h is written uniquely as the product of
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irreducible Hessenberg functions, which are called the irreducible components of h. There is an
involution on D given by transposing the Dyck paths, and we denote by ht the transpose of h. We
let kn be the unique Hessenberg function in Dn with kn(1) = n, and call it complete.

Also, we define [n]q := qn−1
q−1 and n!q =

∏n
j=1[j]q in Q(q) and let A be a Q(q)-algebra.

Definition 2.1. We say that a function f : D → A satisfies the modular law if

(2a) (1 + q)f(h1) = qf(h0) + f(h2)

whenever one of the following conditions hold

(1) There exists i ∈ [n−1] such that h1(i−1) < h1(i) < h1(i+1) and h1(h1(i)) = h1(h1(i)+1)
or h1(i) = n. Moreover, h0 and h2 satisfy hk(j) := h1(j) for every j 6= i and k = 0, 2, while
hk(i) = h1(i)− 1 + k.

(2) There exists i ∈ [n− 1] such that h1(i + 1) = h1(i) + 1 and h−1
1 (i) = ∅. Moreover, h0 and

h2 satisfy hk(j) := h1(j) for every j 6= i, i+ 1 and k = 0, 2, while h0(i) = h0(i+ 1) = h1(i)
and h2(i) = h2(i + 1) = h1(i+ 1).

We note that if we define the function f t : D → A by f t(h) = f(ht), then f satisfies the modular
law if and only if f t satisfies it as well. Throughout this section f : D → A will be a function
satisfying the modular law.

Conditions (1) and (2) can also be seen in the associated Dyck paths (see [AS20, Equation 12]
for precise definitions).

As in the introduction, we proceed by constructing more general relations starting from Equation
(2a). This is the content of Propositions 2.2, 2.3 and 2.4 below. The first two are proved in [HNY20,
Theorem 3.4 (a)].

Proposition 2.2. Let h1 be a Hessenberg function and 1 ≤ i < j ≤ n be integers such that

(1) either h1(i − 1) < h1(i), or i = 1 and h1(1) > 1.
(2) j − 1 < h1(i) = h1(i + 1) = . . . = h1(j − 1)
(3) h−1

1 ({i, . . . , j − 2}) = ∅.

If

h0(l) :=

{
h1(l)− 1 if l ∈ {i, . . . , j − 1},

h1(l) otherwise,
and h2(l) :=

{
h1(l)− 1 if l ∈ {i, . . . , j − 2},

h1(l) otherwise.

Then

f(h1) = [j − i]qf(h2) + (1 − [j − i]q)f(h0).

h1 h0 h2

Figure 2A. The relevant pieces of the Dyck paths h1, h0 and h2.

Proof. We define gk, for k ∈ {0, . . . , j − i − 1} as

gk(l) :=

{
h1(l)− 1 if l ∈ {i, . . . , i+ k}

h1(l) otherwise.
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Since f satisfies the modular law, and each triple gk, gk+1 and gk−1 satisfies condition (2), we have
that

(1 + q)f(gk) = qf(gk+1) + f(gk−1),

and since g0 = h1, gj−i−2 = h2 and gj−i−1 = h0, we get the result. �

Proposition 2.3. Let h1 be a Hessenberg function and 1 ≤ i ≤ n be an integer such that

(1) either h1(i − 1) < h1(i), or i = 1 and h1(1) > 1;
(2) there exist 1 ≤ a < h1(i) such that h1(a + 1) = h1(a + 2) = . . . = h1(h1(i)). (Usually, we

will consider a = h1(i − 1).)

If

h0(l) :=

{
a if l = i

h1(l) otherwise
and h2(l) :=

{
a+ 1 if l = i

h1(l) otherwise

Then

f(h1) = [h(i)− a]qf(h2) + (1 − [h(i)− a]q)f(h0).

h1 h0 h2

Figure 2B. The relevant pieces of the Dyck paths h1, h0 and h2.

Proof. The proof is analogous to that of Proposition 2.2, using condition (1) in place of (2). �

We now state the analogue of Equation (1e) for functions that satisfy the modular law.

Proposition 2.4. Let h1 be a Hessenberg function and 1 ≤ i < j ≤ n be integers such that

(1) either h1(i − 1) < h1(i), or i = 1 and h1(1) > 1.
(2) j − 1 < h1(i) = h1(i + 1) = . . . = h1(j − 1) < h1(j).
(3) h−1

1 ({i, . . . , j − 2}) = ∅.
(4) There exists 1 ≤ b ≤ h1(j) − h1(i) such that h1(h1(i)) = h1(h1(i) + 1) = h1(h1(i) + 2) =

. . . = h1(h1(i) + b).

If

h0(l) :=

{
h1(l)− 1 if l ∈ {i, . . . , j − 1}

h1(l) otherwise
and h2(l) :=






h1(l)− 1 if l ∈ {i, . . . , j − 2}

h1(l) + b if l = j − 1

h1(l) otherwise

Then

(2b) [b+ 1]qf(h1) = [j − i]qf(h2) + ([b + 1]q − [j − i]q)f(h0).
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h1 h0 h2

Figure 2C. The relevant pieces of the Dyck paths h1, h0 and h2. Compare with
Equation (1d).

h′

Figure 2D. The relevant piece of the Dyck path h′.

Proof. Define h′ (see Figure 2D) as

h′(l) =

{
h1(l)− 1 if l ∈ i, . . . , j − 2

h1(l) otherwise

By Proposition 2.2 applied to h1 and Proposition 2.3 applied to h2, we have that

f(h1) = [j − i]qf(h
′) + (1− [j − i]q)f(h0)

f(h2) = [k + 1]qf(h
′) + (1− [k + 1]q)f(h0)

Then
[k + 1]qf(h1)− [j − i]qf(h2) = ([k + 1]q − [j − i]q)f(h0),

and the result follows. �

In terms of the Dyck path, the choice of i, j, b determines a subpath nej−inb of the Dyck path
induced by h. Condition (3) means that there are no east steps between the i-th and (j − 1)-th
north steps (see Figure 2E), while condition (4) means that there are no north steps between the
h(i)-th and (h(i)+ b)-th east steps (see Figure 2F). An example where both conditions are satisfied
can be seen in Figure 2G.

i j

b

Figure 2E. An example of a
choice of i, j, b that does not sat-
isfy condition (3).

i j

b

i j

b

Figure 2F. Examples of two
choices of i, j, b that does not
satisfy condition (4).

The idea is that, for every h ∈ Dn with at least one irreducible component that is not complete,
there always exist integers i, j, b satisfying the conditions in Proposition 2.4. So we can reduce the
computation of f(h1) to the computations of f(h0) and f(h2). As long as we always choose the
greatest possible b, this process actually terminates.
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i j

b

Figure 2G. An example of a choice of i, j, b that satisfy conditions (3) and (4).

To see that there always exist such i, j, b, we say that a Hessenberg function h is aligned if, for
every i = 1, . . . , n, we have that either h(h(i) + 1) > h(h(i)) or h(h(i)) = n (see Figure 2H). We
note that a Hessenberg function is aligned if and only if its irreducible components are aligned as
well.

Aligned Aligned Non aligned

Figure 2H. An aligned and non aligned Hessenberg function

Proposition 2.5. Let h ∈ Dn be a non aligned Hessenberg function. Let i be the smallest integer
such that h(h(i) + 1) = h(h(i)) and h(h(i)) < n. Define j := min{l; l > i, h(l) > h(i)} and
b := max{l; l ≥ 1, h(h(i) + l) = h(i), h(i) + l ≤ h(j)}. Then h and i, j, b satisfy the conditions in
Proposition 2.4.

Proof. The only condition that is not straightforward to check is condition (3) in Proposition 2.4.
If there exists l such that h(l) ∈ {i, . . . , j − 2}, then h(l) + 1 ∈ {i, . . . , j − 1}, which means that
h(h(l) + 1) = h(h(l)) which condradicts the minimality of i. See figure 2I.

aligned

aligned

non aligned

i j

b

Figure 2I. The smallest i such that h(h(i) + 1) = h(h(i)).

�

Proposition 2.6. Let h ∈ Dn be an aligned irreducible non-complete Hessenberg function. Let
1 ≤ i < j ≤ n be the integers such that h(i − 1) < h(i) = h(i + 1) = . . . h(j − 1) < h(j) = n (here
define h(0) = 0). Define b := n− h(i). Then h and i, j, b satisfy the conditions in Proposition 2.4.
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Proof. The only condition that is not straightforward to check is condition (3) in Proposition 2.4.
If there exists l such that h(l) ∈ {i, . . . , j − 2}, then h(l) + 1 ∈ {i, . . . , j − 1}, which means that
h(h(l) + 1) = h(h(l)) < n which contradicts the fact that h is aligned. See figure 2J. �

i j

b

Figure 2J. Depiction of i, j, b when h is aligned.

Algorithm 2.7. We can now define the following algorithm for computing f in terms of f(kn1 ·
. . . · knm).

(1) If h = kn1 · . . . · knm for some positive integers n1, . . . , nm, then return f(h). Else, go to
step (2).

(2) If h is non-aligned, choose i, j, b as in Proposition 2.5 and use Proposition 2.4. Return to
step (1) with h0 and h2. Else, go to step (3).

(3) If h is aligned, choose an irreducible component of h which is not complete. Then choose
i, j, b as in Proposition 2.6 for this component and use Proposition 2.4. Return to step (1)
with h0 and h2.

If f is multiplicative, that is if f(h1 · h2) = f(h1)f(h2), then we can compute f in terms of f(kn).

Example 2.8. In Figure 2K we show the steps of Algorithm 2.7 for the Hessenberg function
h = (2, 4, 4, 5, 5).

Remark 2.9. If we define f̃(h) = f(h)

qℓ(h)/2 , where ℓ(h) =
∑n

i=1 h(i)− i, then Equation (2a) has the

following, more symmetric, form

(q−
1
2 + q

1
2 )f̃(h1) = q−

1
2 f̃(h0) + q

1
2 f̃(h2).

Likewise, one can derive symmetric forms for the equations in Propositions 2.2, 2.3 and 2.4. For
instance, Equation (2b) in Proposition (2.4) will read

Jb + 1Kq f̃(h1) = Jj − iKq f̃(h2) + Jb+ 1− j + iKqf̃(h0)

where

JaKq =
q

a
2 − q−

a
2

q
1
2 − q−

1
2

.

When A = A(q) for some Q-algebra A, we say that g ∈ A(q) is palindromic with center of symmetry
k if

q2kg(q−1) = g(q).

By the discussion above, when f(kn1 · . . . · knm) is palindromic with center of symmetry

1

2

m∑

j=1

nj(nj − 1)

2

for every sequence of positive integers (n1, . . . , nm), Algorithm 2.7 proves that f(h) is palindromic

with center of symmetry ℓ(h)
2 for every h ∈ D. For example, this holds true for the chromatic

quasisymmetric function.
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Figure 2K. Running Algorithm 2.7 for h = (2, 4, 4, 5, 5).

Remark 2.10. When h is abelian, that is, if h(h(1) + 1) = n, one can compute f(h) from the
modular law using the algorithm in [Ale20, Proposition 29].

Remark 2.11. If h is abelian then h is aligned and all subsequent Hessenberg functions appearing
in Algorithm 2.7 will be aligned as well. This means that no steps of type (2) will be required. In
this case the algorithm can be represented graphically by a planar network as described below.

First, we need a definition. We let ai,j := min{k ≥ 0;h(i − k) < j} if h(1) < j and ai,j = i
otherwise. This network can be visualized in the plane lattice. It has starting point (i, h(i)), where
i := max{j, h(j) < n} (or (0, n) when h(1) = n). It has steps (0,−1) and (−1,−1) and end points
(j, j) with j ≥ 0.

Each step (i, j) → (i− 1, j− 1) has weight
[ai,j ]q

[n−j+1]q
, while each step (i, j) → (i, j− 1) has weight

1 − [ai,j ]q
[n−j+1]q

. Finally, each end point (j, j) has weight f(kj · kn−j). The network is depicted in

Figure 2L.

Remark 2.12. There is one case where this network is manifestly “positive” (in the sense that the
numerators of the weights are q-polynomials with non-negative coefficients). This happens when
the largest clique contained in the indifference graph associated to h contains the vertex n. More
precisely, let j0 := min{j;h(j) = n} and assume that n− j0 ≥ h(i) − i for every i ∈ [n]. Then for
i < j0 the following inequality holds

h(i− n+ j − 1)− i+ n− j + 1 ≤ n− j0

and hence

h(i− n+ j − 1) ≤ j + i− 1− j0 < j.
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[2]q−[2]q
[2]q

[2]q
[2]q

[3]q−[2]q
[3]q

[2]q
[3]q

[3]q−[1]q
[3]q

[1]q
[3]q

[4]q−[2]q
[4]q

[2]q
[4]q

[4]q−[1]q
[4]q

[1]q
[4]q

[5]q−[1]q
[5]q

[1]q
[5]q

[6]q−[0]q
[6]q

[5]q−[0]q
[5]q

f(k3 · k3)

f(k2 · k4)

f(k1 · k5)

f(k6)

Figure 2L. The planar network for the Hessenberg function h = (3, 5, 5, 6, 6, 6).

This implies that ai,j ≤ n− j + 1 and then all weights appearing in the network for h are positive.

Theorem 2.13. Algorithm 2.7 terminates.

Proof. We first introduce some notation. For a Hessenberg function h1 ∈ Dn we say that the
quadruple (i, j, b, g) is a step for h1, if h1 and i, j, b satisfy the conditions in Proposition 2.4 (with
maximum possible b) and g is either h0 or h2. Moreover, if g = hk, for k = 0, 2, we say that
(i, j, b, g) is a k-step for h1. The height of a step (i, j, b, g) for h1 is defined as h1(i) + b.

Since the set Dn is finite it is enough to prove that if we start with a Hessenberg function g, it
never reappears in the steps of the algorithm. Suppose, for contradiction, that there exists N > 0,
positive integers il, jl, bl for l = 1, . . . , N − 1, and Hessenberg functions gl for l = 1, . . .N , such that
g1 = g, gN = g and (il, jl, bl, gl+1) is a step for gl for every l. Also, let M be the maximum height
attained, that is, M = max{gl(jl) + bl; l ∈ [N − 1]}, and define al := min{i; gl(i) ≥ M}. See Figure
2M below.

By Proposition 2.4 and the fact that M is the maximum height we see that al is non increasing.
Since a1 = an, we have that (al) is constant and we set a := a1. The idea now is to prove that
gl(a− 1) is non-increasing, which would imply that gN(a− 1) < g1(a− 1), a contradiction.

Let cl := max{j < M ; gl(j + 1) > gl(j)}. First of all, we note that cl actually exists, because
gl(a− 1) < M ≤ gl(a), in particular cl ≥ a− 1. Moreover, cl is independent of l, because we have
that gl+1(i) = gl(i) whenever i ≥ a.



Alex Abreu and Antonio Nigro 13

M

al

Figure 2M. Depiction of the maximum height M and of al.

Since gl(c) < gl(c + 1), we cannot have that gl(il) ≤ c < gl(il) + bl (see Condition (4) in
Proposition 2.4). This means that either gl(il) > c or gl(il) + b ≤ c. In either case, we have that
the sets Bl := {i, hl(i) ≤ c} and Cl := {i, c < hl(i)} satisfy that Bl ⊂ Bl+1 and Cl+1 ⊂ Cl. Then
these sequences of sets are also constant sequences and we set B := B1 and C := C1.

Since there is at least one step (il, jl, bl, gl+1) of height M and such a step must satisfy jl = a, we
must have that gl(a− 1) > c, In particular a− 1 ∈ C, which implies that hl(a− 1) > c for every l.
Therefore, every step with jl = a is of height M (recall that in Propositions 2.5 and 2.6 we choose
b maximal). However, we know that gl(a − 1) < M for every l and that gl(a − 1) 6= gl+1(a − 1)
only when jl = a. On the other hand every step of height M must be a 0-step, which means that
gl+1(a− 1) < gl(a− 1), therefore gn(a− 1) < g1(a− 1) which is a contradiction. �

Finally, to complete the proof of Theorem 1.2 we need the following proposition.

Proposition 2.14. For every sequence of positive integers (c1, . . . , cm) and permutation σ ∈ Sm,
we have that

f(kc1 · kc2 · . . . · kcm) = f(kcσ(1)
· kcσ(2)

· . . . · kcσ(m)
).

In particular, if h is a Hessenberg function and ht is its transpose, then f(h) = f(ht).

Proof. The second statement follows from the first. Defining f t as f t(h) = f(ht), then f t also
satisfies the modular law. Since

f t(kc1 · kc2 · . . . · kcm) = f(kcm · kcm−1 · . . . · kc1) = f(kc1 · kc2 · . . . · kcm)

for every sequence of positive integers (c1, . . . , cm), we have that f t = f by Algorithm 2.7 and
Theorem 2.13, which proves that f(ht) = f(h).

To prove the first statement, we begin by showing that f(ka · kn−a) = f(kn−a · ka) for every
a ∈ [n]. Clearly, we can assume that a ≤ n/2. We fix n and proceed by induction on a. If
a = 0, there is nothing to prove. Otherwise, consider the Hessenberg function h such that h(1) =
h(2) = . . . = h(a) = n − a and h(a + 1) = n. Since h is abelian we can apply Remark 2.11 to
write f(h) =

∑
i≤a cif(ki · kn−i). However, applying the same Remark to f t and noticing that

h = ht, we get that f(h) =
∑

i≤a cif(kn−i · ki). Since, by induction hypothesis, we have that

f(ki · kn−i) = f(kn−i · ki) for i < a, and since

ca =

n−2a∏

i=1

[a+ i]q − [a]q
[a+ i]q

6= 0,

we get that f(ka · kn−a) = f(kn−a · ka).
We can actually generalize the argument above, and prove that f(h1 · ka · kn−a · h2) = f(h1 ·

kn−a · ka · h2) for every h1, h2 ∈ D. Since every permutation is a product of simple transpositions
we have the stated result. �
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We finish this section with some remarks. First, if we work with the q-Weyl algebra and substitute
∂ with the q-derivation

∂qf :=
f(x)− f(xq)

x(1− q)

a straightforward computation gives the q-analogues of Equations (1b) and (1d) (although we have
to substitute q with q−1).

(1 + q−1)x∂qx =q−1∂qx
2 + x2∂q

[b+ 1]q−1x∂l
qx

b =[l]q−1∂l−1
q xb+1∂q + ([b+ 1]q−1 − [l]q−1)∂l

qx
b+1.

Second, Proposition 2.4 has a more general form, which originates from the following q-Chu-
Vandermonde equality

(
a+ b

a

)

q−1

xa∂l
qx

b =
a∑

j=0

q−j(b−l+j)

(
a+ b− l

a− j

)

q−1

(
l

j

)

q−1

∂l−j
q xa+b∂j

q .

Since we did not need this general form, we merely state it and leave it as an exercise to the avid
reader.

Proposition 2.15. Let h ∈ Dn be a Hessenberg function and 1 ≤ i < j ≤ n and a ≥ 1 be integers
such that

(1) either h(i− 1) + a ≤ h(i), or i = 1 and h(1) > a.
(2) j − 1 < h(i) = h(i+ 1) = . . . = h(j − 1) < h(j).
(3) h−1({i, . . . , j − 2}) = ∅.
(4) There exists 1 ≤ b ≤ h(j)− h(i) such that

h(h(i)− a+ 1) = h(h(i)− a+ 2) = . . . = h(h(i)) = h(h(i) + 1) = . . . = h(h(i) + b).

If

hk(l) :=






h(l)− a if l ∈ {i, . . . , j − 1− k}

h(l) + b if l ∈ {j − 1− k, . . . , j − 1}

h(l) otherwise

then

(2c)

(
a+ b

a

)

q

f(h) =

a∑

j=0

qj(b−l+j)

(
a+ b− l

a− j

)

q

(
l

j

)

q

f(hj).

3. The chromatic quasisymmetric function

We begin by recalling that the chromatic quasisymmetric function does indeed satisfy the mod-
ular law. This is already well known in the literature (see for instance [GP13, Proposition 3.1],
[Lee18, Theorem 3.4], [HNY20, Theorem 3.1] and [Ale20, Corollary 20 and Proposition 23]). In
particular, if we write

csfq(h) =
∑

λ⊢n

csfq,λ(h)eλ

we have that the functions csfq,λ : D → Q(q) also satisfy the modular law. The following result
proves that every other function f : D → Q(q) is actually a Q(q)-linear combination of csfq,λ.

Let Vn be the space of functions f : Dn → Q(q) that satisfy the modular law.

Theorem 3.1. The space Vn has basis {csfq,λ}λ⊢n.

Proof. By Theorem 1.2, we have that Vn has dimension at most the number of partitions of n. On

the other hand, we have that csfq,λ(kµ) = 0 for every µ ⊢ n with µ 6= λ and csfq,λ(kλ) =
∏ℓ(λ)

i=1 λi!q,
which means the csfq,λ are linear independent. This finishes the proof. �
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In a way, the coefficients of the chromatic quasisymmetric function in the elementary basis are
the simplest functions that satisfy the modular law, as the following makes precise.

Corollary 3.2. Let A be a Q(t)-algebra, and f : D → A be a function satisfying the modular law.
Then

f(h) =
∑

λ⊢n

csfq,λ(h)

λ!q
f(kλ).

We will now prove that, when h is abelian, Algorithm 2.7 is manifestly positive after we change
h to a suitable abelian Hessenberg function that has the same chromatic quasisymmetric function.
As a consequence, we recover some of the results in [HP19] and [CH18].

For a Hessenberg function h ∈ Dn we call the sequence ai = h(i)− i the area sequence of h. We
note that in order for a sequence of non-negative integers to be an area sequence of a Hessenberg
function we must have ai + i ≤ n and ai+1 ≥ ai − 1. Given a Hessenberg function h, note that the
chromatic polynomial of its indifference graph G is given by χG(x) =

∏n
i=1(x − ai) and as such it

does not depend on the order of the elements in the area sequence. We have a similar result for the
chromatic quasisymmetric function.

Proposition 3.3. Let h1 and h2 be abelian Hessenberg functions in Dn such that the area sequence
of h1 is a permutation of the area sequence of h2. Then csfq(h1) = csfq(h2).

Proof. The main idea is that for abelian Hessenberg functions the chromatic symmetric function is
uniquely determined by the chromatic polynomial, which in turn is determined by the elements in
the area sequence.

Let χq : D → Q(t)[x] be given by χq(h) =
∏
(x− [h(i)− i]q). Then, χq satisfies the modular law.

Indeed, it is enough to notice that

(1 + q)(x − [a]q) = q(x − [a− 1]q) + (x− [a+ 1]q)

for every a ≥ 1.
Consider the homomorphism α : Λq → Q(q)[x] between Q(t)-algebras given by

α(en) =

∏n−1
j=0 (x − [j]q)

n!q
.

We can see that

α(en−i,i) =

∏n−i−1
j=0 (x− [j]q)

(n− i)!q

∏i−1
j=0(x− [j]q)

i!q
,

which means that {α(en−i,i)}i=0,...,⌈n/2⌉ is a linearly independent set over Q(t) (one can just com-
pute the values at x = [n− 1]q, [n− 2]q, . . . , [⌈n/2⌉ − 1]q).

Since α ◦ csfq and χq are multiplicative, satisfy the modular law, and agree at the complete
graphs, they must coincide, α ◦ csfq = χq. If h1 and h2 are abelian Hessenberg functions with the
same area sequence, then χq(h1) = χq(h2), which implies that α(csfq(h1)−csfq(h2)) = 0. However,
csfq(h1)− csfq(h2) is a Q(t)-linear combination of en−i,i (see [SW16, Theorem 6.3]). By the linear
independence of α(en−i,i), we have that csfq(h1) = csfq(h2). �

The following corollary is evident from Corollary 3.2.

Corollary 3.4. Let h1 and h2 be abelian Hessenberg functions in Dn such that the area sequence of
h1 is a permutation of the area sequence of h2. Then f(h1) = f(h2) for every function f : D → A
satisfying the modular law.

We remark that h1 = (2, 4, 4, 5, 5) and h2 = (3, 3, 4, 5, 5) have area sequences (1, 2, 1, 1, 0) and
(2, 1, 1, 1, 0), but different chromatic quasisymmetric functions, which is possible because h1 is not
abelian.

We now prove that after rearranging the area sequence, we get an abelian Hessenberg function
for which all steps in Algorithm 2.7 are positive.
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Lemma 3.5. Given an abelian Hessenberg function h1 ∈ Dn, there exists h2 ∈ Dn, also abelian,
with area sequence (bi) having the following two properties:

(1) The sequence (bi) is a permutation of the area sequence of h1.
(2) We have that b1 ≥ bi for every i ∈ [n].

Proof. We begin noting that the area sequence of ht is a permutation of the area sequence of h for
every h ∈ D. This is clear from the fact that the associated indifference graphs are isomorphic and
hence have tha same chromatic polynomial.

Let ai be the area sequence of h1 and define j0 := min{j ∈ [n], h1(j) = n}. Up to taking
transposes, we may assume that a1 ≥ aj0 . Define the sequence (bi) such that b1, . . . , bj0 − 1 is a
non-increasing permutation of a1, . . . , aj0−1 and bi = ai for i = j0, . . . , n. Clearly b1 ≥ bi for every
i ∈ [j0 − 1] and b1 ≥ a1 ≥ aj0 = bi0 > bi for every i = j0 + 1, . . . , n. All that is left to prove is that
(bi) is the area sequence of an abelian Hessenberg function.

First, we prove that (bi) induces a Hessenberg function h2(i) = bi + i. This means proving that
bi+ i ≤ n and bi+1 ≥ bi− 1, both of which we prove by contradiction. If bi+ i > n for some i ∈ [n],
then i ∈ [j0 − 1], since bi = ai for i = j0, . . . , n. Since there must exist l ∈ {i, . . . , j0 − 1} and j ≤ i
such that al = bj , we have that al + l = bj + l ≥ bi + i > n, which is a contradiction.

Now, assume that there exists i such that bi ≥ 2+ bi+1. This means that there exists j ∈ [j0− 1]
such that aj + 1 6= ai for every i ∈ [j0 − 1] and aj < max{ai; i ∈ [j0 − 1]}. Since ai+1 ≥ ai − 1 for
every i ∈ [n], this can only happen if aj = max{ai.i ∈ [j]}, in particular aj ≥ a1 ≥ aj0 . However,
every value between max{ai; i ∈ [jo − 1]} and aj0 must appear in (ai)i∈[j0], which proves that there
exists i such that aj + 1 = ai. �

Proposition 3.6. If h is an abelian Hessenberg function then csfq(h) is e-positive and e-unimodal.
That is, the coefficients of csfq in the elementary basis are unimodal polynomials in q with positive
coefficients.

Proof. By Lemma 3.5 and Proposition 3.3 above, we have that there exists an abelian Hessenberg
function h′ with csfq(h

′) = csfq(h) and such that its area sequence (bi) satisfies b1 ≥ bi. This implies
that h′t satisfies the condition in Remark 2.12. Hence, substituting h with h′t, we can assume that
h satisfies the condition in Remark 2.12.

As in Remark 2.11, we let i = max{j;h(j) < n}. Each path from (i, h(i)) to a final point (l, l)
has final denominator (n− l)!q/(n− h[(i))!q. Since csfq(kl · kn−l) = l!q(n− l)!qen−l,l, we have that
the coefficient of en−l,l is csfq(h) is l!q(n− h(i))!q · Pl, where Pl is obtained from the numerators in
the network. In this cases, Remark 2.12 proves that csfq(h) is e-positive.

To prove unimodality, it is sufficient to show that every path from (i, h(i)) to (l, l) has unimodal
contribution with the same center. Indeed, we recall that the product of two palindromic unimodal
polynomials with centers a and b is a palindromic unimodal polynomial with center a+ b ,and the
sum of two palindromic unimodal polynomials with same center a still is a palindromic unimodal
polynomial with center a (see [Sta89]). By the discussion in previous paragraph, we can consider
only the numerators in the network described in Remark 2.11.

We note that the difference [a]q − [b]q, for a > b, is a palindromic unimodal polynomial with

center a+b−1
2 , when b = 0, we get that [a]q is a palindromic unimodal polynomial with center

a−1
2 . In particular, every path from (i, h(i)) to (l, l) has unimodal contribution. Moreover, every

such path can be obtained from any other path (from (i, h(i)) to (l, l)) by successively replacing a
subpath (−1,−1), (0,−1) with (0,−1), (−1,−1) (or vice-versa), that is, replacing the red path with
the blue path (or vice-versa) in Figure 3A.

Assuming that (i, j) is the starting point in Figure 3A, and that ai,j = a and ai,j−1 = b, we have
that the (numerators of the) weights in each edge are the ones depicted in Figure 3A. However,
both products [a]q([n− (j− 1)+1]q− [b− 1]q) and ([n− j+1]q− [a]q)[b]q are palindromic unimodal
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[a]q
([n− j + 1]q − [a]q)

([n− (j − 1) + 1]q − [b− 1]q)
[b]q

Figure 3A. Caption

polynomials of the same center. Indeed, we have that

a− 1

2
+

n− (j − 1) + 1 + (b − 1)− 1

2
=

n− j + a+ b− 1

2
=

n− j + 1 + a− 1

2
+

b − 1

2
.

This proves that every path from (i, h(i)) to (l, l) gives a palindromic unimodal polynomial with
the same center, hence the sum Pl of all these contributions will remain palindromic and unimodal.
This means that the coefficient l!q(n− h(i))!qPl is a palindromic unimodal polynomial. �

We finish this section with a remark concerning the Hopf algebra of Dyck paths.

Remark 3.7. Abusing notation, we denote by D the Hopf algebra of Dyck paths defined in [GP16].
As a vector space over Q(t), the algebra D has the set of Dyck paths as a basis, with multiplication
induced by concatenation. The comultiplication is a little more involved and we refer the reader to
[GP16].

One can run Algorithm 2.7 in D. That is, if I ⊂ D is the vector space generated by relations
(1+q)h1−qh0−h2 whenever h0, h1, h2 are Dyck paths satisfying one of the conditions in Definition
2.1, then

h ≡
∑

λ⊢n

csfq,λ(h)

λ!q
kλ mod I

for every Dyck path h, where λ!q =
∏ℓ(λ)

i=1 λi!q. In particular, we have I = ker(csfq) when csfq is
regarded as a Hopf algebra map csfq : D → Λq.

4. Rook placements and q-hit numbers

In this section, we prove a q-analogue of [SS93, Theorem 4.3]. We mention that rook placements
also appear in relation with terms in the e-expansion of csfq, see [AP18]. First we must recall the
definition of the q-analogue of hit numbers introduced in [GR86].

Let Em be the m × m board and let λ be a partition such that its Young diagram fits in Em,
that is λ1, ℓ(λ) ≤ m. To keep the notation consistent with the last sections, we will number the
lines of Em from bottom to top. This means that the Young diagram of λ is the set of cells
{(i, j); j ≤ λm+1−i}.

Define Bj,m(λ) as the set of placements of m rooks on Em such that precisely j are in the Young
diagram of λ. Each rook placement has a λ-weight defined as in [Dwo98]. This weight is the number
of cells e ∈ Em such that

(1) there is no rook on e,
(2) there is no rook to the left of e,
(3) one of the following holds

(a) if e ∈ λ then the rook on the same column of e is in λ and below e,
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(b) if e /∈ λ then the rook on the same column of e is either in λ or below e.

See Figure 4A for an example, where the black circles are the rooks, while the white circles corre-
spond to the cells e satisfying the conditions above.

Figure 4A. A rook placement in B3,6(λ) with λ-weight 12 for λ = (4, 3, 2, 2).

We then define

Rj,m(λ) :=
∑

σ∈Bj,m(λ)

qwtλ(σ).

where wtλ(σ) is the λ-weight of σ.

Lemma 4.1. Let λ be a partition in Em. Suppose that either j = ℓ(λ) and λ1 ≤ m− 1 or j = λ1

and ℓ(λ) ≤ m− 1. Then

Rj,m(λ) = ([m]q − [j]q)Rj,m−1(λ).

Proof. Assume first that j = ℓ(λ) and λ1 ≤ m − 1. Then the placements in Bj,m(λ) are such
that the rooks in the first j-lines are in λ, so we only have to place m− j rooks on the remaining
(m− j)× (m− j) board.

If a rook is placed in λ on column k, we can actually compute the contribution to the λ-weight
of the cells not in λ on column k. This is precisely m − j − ak, where ak is the number columns
to the left of column k with no rooks on λ. In particular it does not depend on how to place the
remaining m− j rooks. The same holds true for Bj,m−1. Hence, we have that

Rj,m(λ) = tj [m− j]qRj,m−1(λ).

The factor tj comes from the differences (m − j − ak) − (m − 1 − j − ak) = 1 for each rook in λ,
and [m− j]q comes from the ratio (m− j)!q/(m− j − 1)!q.

When j = λ1, we just note that Rj,m(λ) = Rj,m(λt) (this follows from the deletion-contraction
recurrence [Dwo98, Corollary 6.12]), and the result follows. �

Lemma 4.2. Let λ be a partition in Em such that there exists i such that λi+1 < λi < λi−1

(where we assume λ0 = ∞). Consider the partitions µ and σ obtained from λ by removing the cell
(m+ 1− i, λi) and adding the cell (m+ 1− i, λi + 1), respectively. Then

(1 + q)Rj,m(λ) =qRj,m(µ) +Rj,m(σ),

(1 + q)Rj,m(λt) =qRj,m(µt) +Rj,m(σt).

Proof. We let λ be the contraction of the cell (m + 1 − i, λi) of λ (this means we remove the line
m+ 1− i and column λi from λ). This is the same partition obtained from the contraction of the
cell (m+ 1− i, λi + 1) of σ. By [Dwo98, Theorem 6.11], we have that

Rj,m(λ) = qRj,m(µ) +Rj−1,m−1(λ)− qnRj,m−1(λ)

Rj,m(σ) = qRj,m(λ) +Rj−1,m−1(λ)− qnRj,m−1(λ),

from which the first equality follows. The same argument holds for the transposes. �
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Let h : [n] → [n] be a Hessenberg function. Define the associated partition λ as the partition
such that λt

i = n− h(i). When h is abelian, this means that λ is small in the sense of [SS93], i.e.,
λ1 + ℓ(λ) ≤ n. We define

bj(h) :=





qj [n− 2j]qRj,n−j−1(λ) if j ≤ λ(1), ℓ(λ) ≤ n− j − 1,

Rj,n−j(λ) if {λ(1), ℓ(λ)} = {j, n− j},

0 otherwise

Theorem 4.3. If h is an abelian Hessenberg function then

csfq(h) =
∑

j≤n/2

j!qbj(h)en−j,j .

Proof. By Lemmas 4.1 and 4.2, the right-hand side satisfies the modular law. Hence, by Theorem
1.2 and Remark 2.11, it is enough to prove the equality when h = km · kn−m. We assume without
loss of generality that m ≤ n/2. In this case the partition associated to h is λ = (m,m, . . . ,m).
Moreover, we have that csfq(h) = m!q(n − m)!qen−m,m, while bj(h) = 0 if j 6= m and bm(h) =
Rm,n−m(λ) = (m− n)!q. The result follows. �

By [Hag98, Theorem 6] we have that q-hit numbers are unimodal, this gives a different proof
of Proposition 3.6. Vice-versa, Proposition 3.6 and Theorem 4.3 give a different proof of the
unimodality of q-hit numbers.

5. Logarithmic concavity

In this section we discuss the logarithmic concavity of the coefficients of csfq. We need a few
definitions first. We say that a polynomial P (q) =

∑
ajq

j is log-concave with no internal zeros if it
is unimodal and a2j ≥ aj−1aj+1 for every j. For simplicity, in what follows we will write log-concave
instead of log-concave with no internal zeros. It is a well know fact that the product of two log-
concave polynomials still is a log-concave polynomial (see [Sta89]). On the other hand, the sum of
two log-concave polynomials does not need to be log-concave.

We say that two log-concave polynomials P1(q) =
∑

ajq
j and P2(q) =

∑
bjq

j are synchronized
if

(5a) akbk ≥ ak+1bk−1 and akbk ≥ ak−1bk+1

for every k ≥ 1. By [GMTW15] we have that if P1, P2 and F are log-concave polynomials and P1

and P2 are synchronized, then P1 ·F and P2 ·F are synchronized as well. Moreover, if P1, . . . , Pn are
log-concave polynomials which are pairwise synchronized then P1 + P2 + . . .+ Pn is a log-concave
polynomial, see [GMTW15, Theorem 2.13].

We note that the polynomials [m]q are log-concave with no internal zeros for every non-negative
integer m.

Lemma 5.1. We have that [n]q[m]q and [n+1]q[m− 1]q are synchronized log-concave polynomials
for every non-negative integers n,m.

Proof. Both polynomials are products of log-concave polynomials, and hence are log-concave.
Without loss of generality we will assume that n ≥ m, in this case we have

[n]q[m]q =1 + 2q + . . .+ (m− 1)qm−2 +mqm−1 +mqm + . . .mqn−1

+ (m− 1)qn + (m− 2)qn+1 + . . .+ qn+m−2,

[n+ 1]q[m− 1]q =1 + 2q + . . .+ (m− 1)qm−2 + (m− 1)qm−1 + (m− 1)qm + . . . (m− 1)qn−1

+ (m− 1)qn + (m− 2)qn+1 + . . .+ qn+m−2.
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From these expressions, it is easy to check that the coefficients of both polynomials do satisfy
Equation (5a). Indeed, Equation (5a) for k = m−2,m−1, . . . , n would follow from the inequalities
bellow

(m− 1)2 ≥m(m− 2), (m− 1)2 ≥(m− 2)(m− 1),

m(m− 1) ≥m(m− 1), m(m− 1) ≥(m− 1)2.

For k < m− 2 or k > n, Equation (5a) become k2 ≥ (k − 1)(k + 1), which is also clear. �

We can then prove the log-concavity of the e-coefficients of csfq(G) when G is the path graph,
that is, the graph associated to the Hessenberg function (2, 3, . . . , n− 1, n, n).

Proposition 5.2. If h = (2, 3, . . . , n − 1, n, n), then the e-coefficients of csfq(h) are log-concave
polynomials.

Proof. We have that the coefficient of eλ in csfq(h) is (see [Hai93])

(5b) qℓ(λ)−1

ℓ(λ)∑

i=1

[λi]q

ℓ(λ)∏

j=1,j 6=i

[λj − 1]q.

By Lemma 5.1, we have that [λi1 ]q[λi2 − 1]q and [λi1 − 1]q[λi2 ]q are synchronized for every
i1, i2 ∈ {1, . . . , ℓ(λ)}. Moreover, we have that

∏
j 6=i1,i2

[λj − 1] is log-concave (because each of its

factors is), this implies that [λi1 ]q
∏

j 6=i1
[λj − 1]q and [λi2 ]q

∏
j 6=i2

[λj − 1]q are synchronized. By

[GMTW15, Theorem 2.13] we have that the sum in Equation (5b) is log-concave. �

There are a few other special cases where closed formulas for the e-coefficients are available. In
[CH18, Theorem 4.2] a formula for csfq(h) is given when h = (r, . . . , r, n, n, . . . , n). In this case, the
e-coefficients of csfq(h) are products of polynomials of the form [m]q, in particular these coefficients
are log-concave.

In [HNY20, Proposition 4.4] a closed formula for csfq(h) is given when h corresponds to a lollipop
graph, that is, h = (2, 3, 4, . . . , n+ 1, n+m,n+m, . . . , n+m). If m > n and λ is a partition with
n+m > λ1 ≥ m, then the coefficient of csfq(h) in eλ is

qℓ(λ)−1(m− 1)!q[λ1 − 1]q

ℓ(λ)∑

i=2

[λi]q

ℓ(λ)∏

j=2,j 6=i

[λj − 1]q.

This is essentially the same sum appearing in Equation (5b), which is log-concave. If λ1 = n+m,
then the coefficient of eλ is [n+m]q(m− 1)!q, which is log-concave. All other coefficients are 0.

A more careful analysis of the proof of Proposition 3.6 could lead to a proof of logarithmic
concavity for the abelian case.

We have also tested every indifference graph up to 12 vertices, and all have log-concave e-
coefficients.

Conjecture 5.3. The coefficients of csfq(h) in the elementary basis are log-concave polynomials
for every h.

In the Schur basis we have that the coefficient of s6,1,1,1 in the expansion of csfq(h), for h =
(3, 4, 4, 4, 5, 6, 7, 8, 9), is given by

q5 + 3q4 + 10q3 + 10q2 + 3q + 1,

which is not log-concave. For an example involving an irreducible Hessenberg function, we have
that the coefficient of s4,2,2,1,1,1 in the expansion of csfq(h), for h = (2, 3, 4, 5, 6, 9, 10, 11, 11, 11, 11),
is given by

q14 + 5q13 + 28q12 + 100q11 + 227q10 + 349q9 + 349q8 + 227q7 + 100q6 + 28q5 + 5q4 + q3,
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which is not log-concave. Curiously, up to taking its transposed, this is the only irreducible Hes-
senberg function h : [n] → [n], with n ≤ 11, that has a Schur coefficient that is not log-concave.

In the power sum basis, we have that the coefficient of p1,1,1,1,1 in the expansion of csfq(h), for
h = (3, 4, 5, 5, 5), is given by

1

120
(q7 + 4q6 + 17q5 + 38q4 + 38q3 + 17q2 + 4q + 1),

which is not log-concave.
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