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YOUNG’S SEMINORMAL BASIS VECTORS
AND THEIR DENOMINATORS

MING FANG, KAY JIN LIM, AND KAI MENG TAN

ABSTRACT. We study Young’s seminormal basis vectors of the dual Specht modules of the
symmetric group, indexed by a certain class of standard tableaux, and their denominators.
These vectors include those whose denominators control the splitting of the canonical
morphism A(A 4+ ) = A(XN) ® A(u) over Z,), where A(v) is the Weyl module of the
classical Schur algebra labelled by v.

1. INTRODUCTION

Let n be a positive integer. It is well known that the dual Specht modules SQ, as A\ runs
over all partitions of n, give a complete set of irreducible modules of Q&,,. There are two
distinguished bases for each S@, namely the standard basis and Young’s seminormal basis,
both indexed by the set of standard A-tableaux. These two bases play a significant role in
the study of the representation theory of symmetric groups; see for example [4] and the
references therein.

While the transition matrix between these two bases is unitriangular, its entries in general
are rational numbers and not integers. Although the off-diagonal entries of the transition
matrix can be computed recursively, we are not aware of any work that has been done
to determine a closed formula for any of these entries. For a standard A-tableau t, the
denominator of Young’s seminormal basis vector fi, denoted dy, is the least positive integer
k such that k fi lies in the Z-span of the standard basis. This is of course the least (positive)
common multiple of the denominators appearing in the row labelled by t of the transition
matrix from the standard basis to Young’s seminormal basis.

Young’s seminormal basis controls the modular representation theory of symmetric groups
in many ways; see for example [I], 4] [7, [§]. Natural questions related to the arithmetical
properties of Young’s seminormal basis vectors (such as their denominators) arise. As far
as we know, such knowledge is scant in the available literature, but is expected to connect
with the other parts of the modular representation theory [I, [7].

Indeed, the main motivation of the work presented here is [I], in which the authors
initiated a study into comparing the Jantzen filtrations of Weyl modules for a semisimple
algebraic group G over an algebraically closed field k of characteristic p > 0. They showed
that when the canonical G-morphism ¢y, @ A + ) — A(N) ® A(p) splits over Z,),
the localised ring of Z at the prime ideal (p), then the Jantzen filtration of A(\) may be
naturally ‘embedded’ into that of A(X + u) (see [I, Theorem 3.1]). This led to a detailed
study of the split condition of ¢ , when G is of type A, which was shown to be equivalent to
a condition in terms of 8, ,, the greatest common divisor of the coefficients of the product
of certain Young symmetrizers associated to A and u, as well as a condition in terms of the
denominator dp gy of fiagw when the last column of the Young diagram [)] is no shorter
than the first column of the Young diagram [u] (see [I, Section 2.3] for the definition of s @t
for general tableaux s and t). By [I, Theorem 3.13], the determination of 6 , is equivalent

2010 Mathematics Subject Classification. 20C30.

Key words and phrases. Young’s seminormal basis, symmetric groups.

The first author is supported by Natural Science Foundation of China (No. 11471315, 11321101 and
11688101), the second author is supported by Singapore MOE AcRF RG17/20 and the third author is
supported by Singapore MOE AcRF R-146-000-317-114.

1


http://arxiv.org/abs/2007.11188v4

2 MING FANG, KAY JIN LIM, AND KAI MENG TAN

to that of dyxp . The examples in [I, Section 4] show that ) , is very difficult to compute
in general.

In this paper, we develop some techniques to study the fix,.’s mentioned above and
compute its denominator dpg instead. In fact, we study fiq for partitions A and v
such that the Young diagram [v] contains the Young diagram [\]. Here, t*1" is the largest
standard v-tableau that contains the initial A-tableau ! as a subtableau, and t* @ t* =
"1 when the last column of [\] is no shorter than the first column of [u]. This class of
Young’s seminormal basis elements has the following very nice property: each is spanned
by standard basis elements labelled by tableaux which are colour-semistandard, and those
with the same colour type have the same coefficients (see Definition 213 and Theorem

217).
Our first main result (Theorem B.5)) is the closed formula for fi, ) in terms of the

standard basis of S;%_(l).

1.2], which provides a simplified way of computing the product of certain Young symmetriz-
ers, from which 6, (1) could possibly be deduced. We note in addition that Theorem
may also be derived from [7, Theorem 1] in the context of Iwahori-Hecke algebras using a
different inductive approach.

This result may be considered as the counterpart of [6, Theorem

We next study fyx,es)ym). We provide closed formulae for fy,es),¢m), and hence dy,es) o 4om)
in the cases s = 1 and ¢ = 1 (Theorem .7l and Corollary [£I3]) respectively, which can be
used to determine 0y, ) () and 0(1n) () that have been computed in [, Section 4]. Read-
ers who are familiar with [I] will appreciate the succinctness and superiority of this new
approach in computing these two numbers. While we did not succeed in providing a closed
formula for fyxes)m) in the general case, we are able to obtain some reduction results

(Theorem A.12).

Reduction actually holds in a more general setting, and using this, we obtain various
upper bounds for dpy.. We give some examples which show that these upper bounds are
optimal in some cases.

Our results on the denominator dp may be summarised as follows:

Theorem 1.1. Let A = (Ay,..., ), with A, >0, and v = (v1,...,14) be partitions such
that [\] C [v].

(1) If A is obtained from v by removing a removable node A, and By, ..., Bs are the remov-

able nodes of v below A, then

S

dpgw = H(res(A) —res(B;)),

i=1
where res(C) denotes the residue of the node C'.
(2) If r =2, then
lem [)\1 — X+, A= +1+ min()\g, v — )\1)]

dpw = .
1 A — A +1

Here [a,b] = {i | Z | a < i < b} for a,b € Z, and lem S denotes the least common
multiple of the elements in S for S C Z™T.

B) Ifr>2and g ==X\, =vp = =1, then

dt)\Tu = dt(k,es)T(k-H,Zs),
where k = max(A; — Ay + r,min(Ay, 1 — A\2)), £ = min(Ae, 1 — A1) and s = min(r,¥).
(4) We have

thTV = thT(ul,A“,uT,I,)\q«);
dt)v]\u - df(>‘2 AAAAA )\7‘)/]\(1/2 AAAAA ve) 'lf )\1 =" and r 2 2.



YOUNG’S SEMINORMAL BASIS VECTORS AND THEIR DENOMINATORS 3

(5) For all positive integers m with m < vy — A1, we have
thTu ‘ dt)\T/\+(m)dt/\+(m)Tu-
(6) For all positive integers m and i with 2 <1i <r — 1, we have
dpvpaem) [ @ 204 my dpipaicegm

where A = A +i— 1,001, M) and ASE = (A1, ..., \).

Parts (1) and (2) of Theorem [LT] provide closed formulae for dy4. for specific v and A
respectively, while parts (3)-(6) relate dpyw to ‘smaller’ denominators, and hence may be
used to provide upper bounds for general d . not covered in parts (1) and (2).

We now indicate the organisation of this paper. After providing the necessary back-
ground in the next section, we look at the seminormal basis vector fi 1) in Section 3] and
Jiee9) pyemy in Section @l In our concluding Section [, we relate fiaq and its denominator

dpgw to fis 15 and d for some smaller A and 7.

tS\Tz'/
Remark 1.2.

(1) As our motivation from [I] is to study dp e for the symmetric groups, we choose to
present our work in this context here. We believe that most, if not all, of our results
should generalise to Iwahori-Hecke algebras without much difficulty.

(2) Our approach to Young’s seminormal basis vectors is different from [7]. We study
directly D(t) = > sesa(n) dtsd(s) (see Definition 22J), which is a distinguished element
of Q& satisfying fi = D(t)epn. With the introduction of our key notion of colour-
semistandardness (Definition EZT3)), we are able to obtain closed formulae for D(t'{%)
in some cases, and relate the coefficients g4 ; to those coming from smaller partitions
in some others.

2. PRELIMINARIES

In this section, we recall the background theory and prove some preliminary results. For
a large part, we follow the notations that have been used in [I].

Throughout this paper, we use the following notation, for a,b € Z:
[a,b] :={k €Z|a<k<b}.

Also, for S C ZT, lem S denotes the least common multiple of the integers in S.

2.1. Symmetric groups. Denote the group of bijections on a nonempty set X by Gx.
We view elements of such a group as functions, so that we compose these elements from
right to left. When Y is a nonempty subset of X, we view Gy as a subgroup of &x by
identifying an element of &y with its extension that sends z to = for all z € X \ Y.

Let X C Z and k € Z. Define X** := {x + k | 2 € X}, and for any function o : X — X,
write ot* : Xtk — X*F for the function such that ot*(z + k) = o(z) + k for all z € X.
Then o +— 0% is a group isomorphism from Sx to &y+x, and this extends further to
give an isomorphism Q& x — Q& y+«. If R C Q&x, we write RT* for {r** | r € R}. In
particular, G}k = Gx+k.

Let n € Z™, the set of all positive integers. We write &,, for S(1,n)- It is well known that
S, is a Coxeter group with the basic transpositions s; := (i,7+1), one for each ¢ € [1,n—1],
as its Coxeter generators.

2.2. Compositions, partitions and Young tableaux. A composition A = (A, Ag,...)
is a sequence of non-negative integers which are eventually zero. We write |A| for > 72, A;.
If [\| = n, we say that A is a composition of n, and write A F n. The Young subgroup &,
is

&\ =6, 86 c e



4 MING FANG, KAY JIN LIM, AND KAI MENG TAN

This is a parabolic subgroup of &,, as a Coxeter group. The dominance order > on all
compositions is given by: A\ > p if and only if A\; +-+- 4+ X\ > pg + -+ py for all k € Z7T.

Let A E n. The Young diagram of \ is defined to be the set [A\] = {(a,b) € (Z1)? | b < A\ };
and we call its elements the nodes of A. Following [4], 3.30], for a node (a,b) € [A], its residue
res((a,b)) is defined as res((a,b)) = b —a. We depict [A] as an array of left-justified boxes
in which the i-th row comprises exactly A; boxes, with each box representing a node of \.

A A-tableau is a bijective map s : [\] — [1,n], in which case A is said to be the shape of
s, denoted by Shape(s). We identify s with the pictorial depiction of the Young diagram
[A] in which each box in [A] is filled with [1,n] so that each integer appears exactly once.
When s(i, j) = k, the residue of k in s, denoted ress(k), is res((4,7)). Denote the set of all
A-tableaux by T ().

A A-tableau s is said to be row standard (respectively, column standard) if its entries are
increasing along each row (respectively, down each column). If t € T()), we write t for the
row standard A-tableau obtained by rearranging the entries in each row of t. Let RStd(\)
be the set of all row standard A-tableaux. A A-tableau is standard if it is both row and
column standard, and we denote the set of all standard A-tableaux by Std(\).

Let 5 € RStd()\) and r € [1,n]. Since s is row standard, s~ *([1,7]) is the Young diagram
of a composition, and we define the subtableau s, of s to be the restriction of s to this
subdomain. Pictorially, s/, consists precisely of those boxes in [\] which are filled with
1,...,r by s. The dominance order > on RStd(\) is given by s > t if and only if, for each
r € [1,n], we have

Shape(s],) > Shape(tl,).
We write s > tand t<sif s > tand s # t.

Now suppose further that A\ > Ay > ---. In this case, we call X\ a partition of n, denoted
A n. In this paper, all partitions are nonempty (but we allow the composition (0,0, ...)),
and we write A = (A1,..., ;) where r = max{i € Z* | \; > 0}. A node (a,b) € [\ is
removable if (a + 1,b),(a,b+ 1) ¢ [A].

Definition 2.1. Let A - n.
(1) Let v F m such that [A\] C [v]. For s € Std()\), we define s to be the standard
v-tableau where (1)}, = s and the nodes of s1" lying in the skew Young diagram

[V] \ [A] are filled with [n + 1,m] in turn, starting with the top row, going from left to
right in each row, and down the rows.

(2) The initial A-tableau, denoted ", is ty1*, where to is the unique (standard) (1)-tableau.
(3) To ease the notation, for m € Z*, we write ™ for tMAT(M) - Here, and hereafter,
A+ (m) = (A1 +m, Az, ..., A) when A= (Ag,..., A\n).

Remark 2.2. Note that s1¥ is the largest (with respect to &) row standard v-tableau t such
that t,, = s, and that ! is the largest row standard A-tableau.

We illustrate Definition 2] with the following example:

1]2]5]6]
t(272)/l\(47372) — 3147

819

Lemma 2.3. Let A - n and v = m with [\] C [v]. If s € Std(v) such that s > "1, then
Shape(sl,) > A.

Proof. If 5 > t™M7, then Shape(s),) > Shape((t*1¥){,) for all » € [1,m + n]. If the
inequality is not strict at 7 = n, then Shape(sl, ) = Shape((t*1¥)},) = Shape(t}) = X, and
so t:= s, € Std(A). For each r € [1,n], we have

Shape(rl,) = Shape(sl,) > Shape((t*+)],.) = Shape(t*|,),

so that t > ¢}, and hence t = t* since " is the largest standard A-tableau. But then
s> " and s}, = v = t* contradict the maximality of t'¥. O
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Post-composition of A-tableaux by elements of &,, gives a well-defined, faithful and tran-
sitive left action of &,, on T(\), i.e. 0-s =co0s for 0 € &, and s € T(\). For a A-tableau
5, we denote the row and column stabilizers of s under this action by R; and Cs, respec-
tively. In addition, we write d(s) for the unique element in &,, such that s = d(s) - t*, or
equivalently d(s) = s o (t*)71.

We shall require the following elementary result about standard A-tableaux.

Lemma 2.4. Let A+ n.

(1) If w € &, and t € Std(X\) such that w -t € Std(\), then w has a reduced expression
W = S;,Si,_, -~ Siy such that (si; -~ -si,Si) - t € Std(A) for every j € [1,£ —1].

(2) If t € Std(N\) and (i +1,7) € [\] with i > 0, then there exists w € Sy j),((i+1,5) Such
that w -t € Std(\) and (w-t)(i +1,7) — (w - t)(3,4) = 1.

Proof.

(1) We prove by induction on the length ¢(w) of w. There is nothing to prove if ¢(w) = 0.
For ¢(w) > 0, we have w # 1, so that w(j) > w(j + 1) for some j € [1,n — 1]. Since t
and w - t are standard, j and j + 1 cannot be lying in the same row or same column in
t, so that s; - t € Std(\). Now £(ws;) = £(w) — 1 [4], 1.4 Corollary], and so applying the
induction hypothesis to ws; and s; - t finishes the proof.

(2) Let a¢ = t(4,7) and by = (i + 1,j). We prove by induction on by — a¢, where w = 1 if
bi—a¢ = 1. For b—a¢ > 1, if there exists @’ € [a¢+1, by — 1] which does not lie in the i-th
row of t, then choose a’ to be the least such and let t' = (a¢,a+1,...,d’) - t; otherwise
let ' = (by—1,b) - t. Then ¥ € Std(\) with [ay,by] = [Y'(4,7), ¥ (i +1,7)] S [at, by, and
applying the induction hypothesis to t' finishes the proof.

O

2.3. Dual Specht modules. Let A be a partition of n. We briefly review the construction
of the signed permutation module M2 [2, §7.4]. Let Z T () be the free Z-module with basis
T(N\). Then My is the quotient of Z7()\) by the relations ~y - t = sgn(7)t for all t € T(\)
and v € C. Let [t] denote the image of t in M. The left action of &, on T()\) induces a
Z6,-module structure on M2, with o[t] = [0 -] for all t € T()\) and o € &,,.

The integral dual Specht module SZ is the Z-span of the polytabloids e := ZpeRt plt].

This is actually a Z&,,-submodule of ]\Zfé‘, since ey = ey for all t € T(A) and 0 € G,,.
These polytabloids satisfy the following:

e If te T(\) and p € Ry, then
€t = €pt- (21)

o If X and Y are subsets of the i-th and (i + 1)-th rows of t € 7 ()) respectively with
|IX UY|> A and Gxy is a left transversal of &x &y in Sxyy, then

Y o]e=0. (2.2)

O'Enyy
(A proof of this may be adapted from that of [3, Theorem 7.2].)

The following relation then follows from (2 and (2.2): If t € 7()\) and X is a subset of
its (i + 1)-th row, then
e = (18 ey (2.3)
Y

where k = | X| and the sum runs over all k-element subsets Y of the i-th row of t, and ty is
any A-tableau obtained from t by interchanging X and Y (any such ty gives the same ey, ).
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Ezample 2.5. Consider the (3,2)-tableau

1]4]5]
203 ’

{_:

For this example, let e; ; denote the polytabloid containing the tabloid with the numbers
i < j in the second row, so that, for example, e; = ez 3. Using (22]) with X = {4,5} and
Y = {2,3}, we have
0=(14+1(2,3,4) +(2,3,5,4) + (3,4) +(3,5,4) + (2,4)(3,5))e23
=e23t €34+ €35+ €24+ €25+ €45,
SO0 €t = €23 = —€34 — €35 — €24 — €25 — €45.
In particular, (2.1)) and (2.2]) imply that the set {e; | t € Std(X\)} of standard polytabloids

is a basis—called the standard basis—for S%. In addition, they also imply the following
‘straightening rules’ which will be used in this paper.

Proposition 2.6. Let A - n, and let t € RStd(X\) \ Std(\), say for (i,7), (i +1,7) € [A] we
have a = t(i,j) > t(i+1,5) =: b.

(1) Let X = {t(i,s) | s € [, N]} and Y = {t(i + 1,7) | r € [1,j]} (so | X UY| =X\ +1).
Pick a left transversal Gxy of GxSy in Sxyuy so that {1,(a,b)} C Gxy. Then

t<(a,b)-t<7-t
forallT € Gxy \ {1, (a,b)}, and

€t = _e(a,b)-t - E €r.t-

TGGX,y\{l,(a,b)}
(2) The polytabloid e lies in the Z-span of {es | s € Std(\), s > t}.

(3) Suppose that, for some k,l € Z", we have:
(I) tlx and the subtableau of t consisting of the first | rows are both column standard;

(IT) Shape(tlx) has either | or | + 1 rows, and its I-th row is at least as long as the
(I + 1)-th row of A.
Then e lies in the Z-spanned of

{es | s € Std(N), slx = tlk, the first I rows of s are the same as those of t}.

We provide a proof below for the assertion about the dominance order in part (1); the
remaining are direct consequences of (2.1)) and (2.2]).

Proof. Recall the following fact from [4, 3.7 Lemmal: if ¢ lies in a higher row than d in t
and ¢ > d, then (c,d) -t > t, which immediately yields (a,b) -t > t. For 7-t > (a,b) -t,
we prove by induction on the number m of elements in X that lie in the (i + 1)-th row of
7 -t (which is also the number of elements in Y that lie in the i-th row of 7-t). If m =1,
let ' € X be in the (i 4+ 1)-th row of 7 -t and let ¥’ € Y be in the i-th row of 7 - t. Since

7 # (a,b), we have b’ < b or a’ > a, so that

T-t> (a,d) (7-t) > (b,0)(a,a) - (7-t) = (a,b) - t

(where (a,a’) and (b,b") are to be read as 1 if a = a’ and b = V' respectively), with at least
one of the inequalities being strict. For m > 1, take a’ € X and b’ € Y in the (i + 1)-th
and i-th rows of 7 - t respectively, and let 7/ € Gx y such that 7/ -t is row equivalent to
(@', V') (7-1) (two tableaux s and &' are row equivalent if s’ = p - s for some p € R;). Then
there are m — 1 elements in X that lie in the (i 4+ 1)-th row of 7’ - t, and so

Tt (V) (7-t) =7 -t> (a,b) - t,

where the last inequality follows from induction. U
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Given a commutative ring O with 1, define S)(? =0 ®z S;Z\. All the above statements
about S% behave well under base change, so that analogous statements hold when Z is
replaced by O. In this paper, we are most concerned when O = Q, in which case the set
{59 | At n}is a complete set of pairwise non-isomorphic irreducible Q&,,-modules.

We have the following result on the coefficients of an element of Sg? when expressed in
terms of its standard basis:

Proposition 2.7. Let u € SO, say u = ZteStd()\) agey where ag € O for all t € Std(X). Let
I={iel,n—1]|siu=u}, and let W; = (s; | i € I).

(1) If t,¥ € Std(\) such that o -t =1 for some o € Wy, then ay = ay.

(2) Ift € Std(X\) and there exists some (i,j) € Wi such that i and j lie in the same column
of t, then ag = 0.

Proof. First, fix ¢ € I, and let

S; ={te Std(\) | i and i + 1 lie in the same row of t};
Sy = {t € Std(\) | i and i + 1 lie in the same column of t};
S3 = Std()\) \ (Sl U SQ)

Then we have:

(i) sieq = e for all t € Sy;

(i) siee = —ec + Y sesta(n)smt Cs€s for all t € Sy by Proposition 2.6(1) and (2);
(iii) s; -t € S3 (and so s;e; = es;.¢) for all t € Ss.

For each j € [1,3], let V; be the O-span of the e’s with t € S;. Then SY = V4, @ Vo @ V3.
Let u = w1 + ug + usz, where u; € Vj for all j. From the above description of s;e(, we have
siu; = up € Vq and s;ug € V3. Furthermore, if ug # 0, let t € Sy be minimal (with respect
to >) such that a; # 0; then the coefficient of e, in s;us is —ay by (ii) above, contradicting

Ul + u + us :u:siu:si(ul + ug + u3) = uj + S;jug + S;us.

Thus, ug = 0, i.e. ay = 0 for all t € Std(\) with ¢ and i 4 1 in the same column of t, and so
s;ug = ug, which yields a; = as,¢ for all t € S5 = {s € Std(\) | s; - s € Std(\)}.

Now, if t,0 -t € Std(\) where o € Wy, then's;, -, (si,8i,) - t, ..., (i, - -5y ) - t € Std(\) for
some reduced expression o =s;, - - - s;; by Lemma[2.4((1). Since W7 is a parabolic subgroup,
we have 7; € I for all j, so that

ay = asil = a(si2$i1)~t == a(Sie“'Sil)-t = Qo-t
by the paragraph above, proving part (1).

For part (2), if t € Std(A\) has i and j (i < j) lying in the same column with (i, j) € W7,
then [i,j — 1] C I since (4,7) = S;j—1---Si4+1SiSi+1- - Sj—1 is a reduced expression and Wy is
a parabolic subgroup. As the entry j/ in t directly below i satisfies i < 5 < j, we therefore
have (i,7') € Wj. Thus, by replacing j with j’ if necessary, we may assume that ¢ and j lie
in adjacent rows. Consequently, there exists w € &; j; € W such that w - t € Std(\) and
w(j) —w(i) =1 by Lemma[24(2), so that a¢ = a,.¢« = 0 by part (1) and the first paragraph
respectively, since w(i) € [i,j — 1] C 1. O

2.4. Young’s seminormal basis. Young’s seminormal basis is first defined by Murphy in
[5] for the Iwahori-Hecke algebra of the symmetric group. This induces Young’s seminormal
basis for the Specht modules of this algebra (see, for example, [4, 3.33]) which satisfies a
recurrence relation (see [4, 3.36 Theorem]). As we only need this recurrence relation and
not the precise definition of Murphy (or Mathas), we define Young’s seminormal basis (at
the limit ¢ — 1) by this characterising relation.
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Proposition 2.8. Let A\ n. For each s € Std(\), there exists a unique fs € 59 such that
the set {fs € 59 | s € Std(\)} satisfies the following:

(1) ft/\ = et>\ 5
(i) fsis = _%fs +sifs for any i € [I,n — 1] and s, s; - 5 € Std(\) with s; - s < 5, where
Ts; = Tress(i + 1) — resq(i).

Furthermore, {fs | s € Std(\)} is a basis for ST, called Young’s seminormal basis, and

Ts,ifs if Ts,i = +1;
1 .
Sifs = Teid9 + fsioss if rs; < —2;
T'sl’ifﬁ + (1 - %)fsi-ﬁa if"ﬂs,i Z 2.

5,7

Proof. Clearly, if there exists {fs € 59 | s € Std(\)} satisfying the required conditions,
then the f,’s can be easily seen to be unique by induction on s with the order > by Lemma
[2.411), since the conditions prescribe fin, and fs,.s in terms of f, whenever s; - s € Std(\)
with s; - § < 5.

For existence, note that {fs | § € Std(\)} as defined in [I| Definition 2.2(2)] is a basis
for QS,, fr [l Theorem 2.3(6)], and that there is a Q&,-isomorphism ¢ : QS,, fn — Sg
sending fi to ep. Since these fi's satisfy fs.s = ———fs + s;fs whenever s,s; - s € Std(\)

Ts,i

with s;-s <0 s by [I, Theorem 2.3(4)], they are indeed the ones stipulated by the proposition
once we identify them with their images under ¢.

The remaining assertion about s; fs also follows from [I, Theorem 2.3(4)]. O

Definition 2.9. Let A F n.

(1) Denote the transition matrix from the standard basis to Young’s seminormal basis of
S;(\l) by (qU,U)u,neStd(A) (thus fs = ZneStd(A) gsu€y for all 5 € Std(A)).

(2) Define D : Std(A) = Q&, by D(s) = 3 egtan) ¢svd(v) for all s € Std(A). (Recall that
d(v) is the unique element in &, such that d(v) - t* = v.)

(3) For each s € Std(A), the denominator ds of fs is the smallest positive integer k such
that kf; lies in the Z-span of the standard basis of 59.

Lemma 2.10. Let A+ n, and s,t € Std(\). We have:

(1) gss =1, and g5y = 0 unless t > s;

(2) fs = D(s)ep = D(s)fpn, and D(s) € QW for any parabolic subgroup W of &,, with
d(s) e W;

(3) ds = lem{denominator of gs | v € Std(\)} = min{k € Z" | kD(s) € Z&,}.

Proof. Part (1) is [I, Proposition 2.5(4)], while the first assertion of part (2) is clear from
the definition of D(s). By (1), D(s) = d(s) + > . ¢s,0d(v). Note that v > s implies that
d(v) has a reduced expression which is a subexpression of a reduced expression of d(s) [4,
3.7 Lemma], so that d(v) € W when W is a parabolic subgroup of &,, with d(s) € W. Thus
D(s) € QW. Part (3) follows from parts (1) and (2) immediately. O

The following result, which we require in this paper, is a generalisation of [I, Proposition
2.5(2)].

Proposition 2.11. Let I C [1,n — 1], and Wy = (s; |i € I). Let s € Std(\) for some
At n, and define 'y s = {7 € Wy | 7-5 € Std(\)}. Let A€ QW7.

(1) Then Afs lies in the Q-span of {fr.s | T € I'15}.
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(2) If t € Std(v) (for another partition v) and z € 7Z satisfy i +z € [1,|v] — 1] and
ress(i + 1) —resg(i) =resi(i + 2z + 1) —res(i + z) for all i € I, then

AV fi= 3" arfreey

TEFI,E

when Afs =3 cr, . @rfrs (by (1), with a; € Q for all T €'y 5).

Proof. We prove both parts together. It suffices to show these statements for A = o € W7,
and for this, we prove by induction on ¢ = {(o), with £ = 0 being trivial. For ¢ > 0, let
o = sip, with £(p) = ¢ —1 and ¢ € I. By induction, for every 7 € I'y,, there exists a,. € Q
such that

ple= Y difre and  pTfi= ) dlfreey

’TEFLE TEFI,s
Thus,
ofs= Y a(sifrs) and o fi= " d(s]7 freny).
TeFI,s TGFI,s

For each 7 € 'y 5, we have s; fr.s = by fr.s+ 1 f(s;r).s by Proposition 2.8 where b, c; € Q are
completely determined by 7.s; = res;.(i + 1) — res;.;(7), with ¢; = 0 when r,4; € {£1},
or equivalently, when (s;7) - s ¢ Std(\). Part (1) thus follows.

For part (2), note first that for 1 < a; < ag < n with S(a1,a2) € Wi, we have

az2—1 az—1
ress(az) —ress(ay) = Z ress(i + 1) — resg(i) = Z resi(i + 2z + 1) — resy(i + 2)
i=ai i=a1

= res(az + z) — res¢(a; + z).

In particular, for p € Wy and ¢ € I, since the largest integer interval J containing 4 such
that &y C Wy also contains i + 1, and p(J) = J, we have

ress(p(i + 1)) — ress(p(7)) = rese(p(i + 1) + 2) — ress(p(i) + 2).

Next, note also that resy.,(j) = res,(c71(4)) for all o € &,,, u € T(A\) and j € [1,n]. Thus,
for 7 € Wy and 7 € I, we have

Trsi = TeSr.g(i + 1) — res;.q(i) = resg(77 (i + 1)) — ress (771 (4)

= resg(77 (i 4+ 1) + 2) — res((77 (i) + 2)

= rese((T772) 7@ + 1 4 2)) —resy((77%) (i + 2))

=res+xq(i + 24+ 1) —1es (i 4 2) = Ttz s,
so that if s; fr.s = by fr.s + 7 f(s;r).s then

Si 7 it = Sigafrreq = Or frroq & Cr fispsrto)t = br frie + C flsimy o
by Proposition 2.8 Part (2) thus follows. O
Corollary 2.12. Let A = (A1,...,A\y) and v = (v1,...,1) be partitions with [A] C [v].
(1) Lets,t € Std(N). If fe = Afs for some A € QB)y|, then fyv = Afsv.
(2) For any m € [1,v1 — \i], we have
fore = D) foiinge = DE™)DEFT)ep.
(3) Form € Z* and i € [2,r — 1], we have
fom = DEM NI foco

= DMy IO p A Imy

E+(m),

where A = A +i— 1,01, M) and ASE = (A1, ..., \).
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Proof. Part (1) follows from Proposition Z11[2) with z = 0, and part (2) follows from part
(1) (with t = N™ s = 20 and A = D(tM™); note that N4 = M),

For part (3), let s = PAOHm) ¢ = PP and 2 = Al = [A@|. Then res,(j) =
resy(j +2) +i— 1 for all j € [A\; + i, |A®| +m]. Since

(©)
fd(tk(i)\m)-s = ftx(“\m = D(t)\ ‘m)fsa

(#) (1)
and d(t\"Im) e Sx, 44, |A(0)|4m] SO that DMy e Q&) 42|+ by Lemma ZT0(2), we
have

(4)
fwm = fd(tk(i)‘m)ﬂ-t = D(tA Im)-i-th

by Proposition 211)(2). Since fosiim = D(tA<i|m)ft>\<i+(m) by Lemma 2ZT0(2), part (1)
applies to yield

fe= Tocimpreon = DO fucis o
= D) firiimy = DT ™)y
Thus,
foum = DM = DEIM) DT ™ e
U

This paper focuses on Young’s seminormal basis vectors of the form fia., where A and
v are partitions with [A\] C [v]. We end this section by making a useful observation about
the coefficient of es in fiagw.

Definition 2.13. Fix countably infinitely many colours ¢1, ¢a, ..., and order them accord-
ing to the natural order of their subscripts (i.e. ¢; < ¢a < --+). Let A and v be partitions
such that [A] C [v]. Write vy for the composition obtained by concatenating A and v — A, i.e.
A=Ay A1 — Ay e = Ay Vg1, ey ) iEA= (A, ) and v = (v, .. ).

(1) For each i € [1,|v|], define the colour of i to be ¢; if 7 lies in the j-th row of t.

(2) Two v-tableaux s and t are said to have the same vy-colour type if s(i, j) and t(i, j) are
of the same colour for all (i, j) € [v].

(3) Given t € Std(v), we say that t is colour-semistandard of type vy if the colours of the
integers appearing in t are strictly increasing down each column. The set of standard
v-tableaux that are colour-semistandard of type vy shall be denoted as SStd(A; v — ).

Remark 2.14.

(1) For t € Std(v), let v\(t) be the v-tableau (of type vy) obtained from t by replacing
each ¢ appearing in t by r; when ¢ appears in the r;-th row of t#*. Then t is colour-
semistandard of type vy if and only if vy (t) is semistandard as a v-tableau of type vy
in the usual sense, i.e. having entries that are weakly increasing along each row, and
strictly increasing down each column.

(2) We shall often omit any mention of vy when this is obvious from the context, and
simply say ‘colour-semistandard’ and ‘colour type’.

(3) We write SStd(A;m) for SStd(A; (m)) (when v = X+ (m)).

Ezample 2.15. Let A = (3,3,2,2) and v = (4,3,2,2) so that vy = (3,3,2,2,1). The
following is a complete list of representatives s € SStd(\; 1) with distinct colour types:

50 51 52 53 54 55
1]2]3]1] 1]2]3]6] 1]2]3]10] 1]2]3]8] 1]2]3]6] 1]2]3]6]
4]5]6 4]5]1 4]5]6 4[5]6 4[5 |10 4[58
7]8 7 7 710 718 710
910 910 911 911 9[11 911
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The following standard tableaux on the other hand are not colour-semistandard:

1]2]3]1] 1]2[3]9] 1]2]3]10]
4l5]7 al7]s 1]5]6
6 5 [10 7|9
910 611 811

Lemma 2.16. Let A = (A1,...,)\.) and v be partitions such that [A] C [v], and let s €
Std(v) be colour-semistandard. Then for each i € [1,7], any integer in the i-th row of s has
colour ¢ with j' > i. Equivalently, all integers with colour ¢; for j € [1,i] appear in the
first i rows of s.

Proof. This is clear since the colours of the integers appearing in s are strictly increasing
down each column. O

Theorem 2.17. Let A\ and v be partitions such that [\] C [v]. For s,t € Std(v), we have
(1) gopw s = qoqv ¢ if 5 and t have the same colour type;

(2) qpv s = 0 if 5 is not colour-semistandard.

Proof. Since fogw = ZseStd(u) @rv 565, the lemma follows from Propositions 2.7] and 2.8]

as &,, leaves the rows of ™" invariant, and s and t have the same colour type if and only
ifo-s=tforsomeoecG,,. O

3. YOUNG’S SEMINORMAL BASIS VECTOR f

In this section, we determine a closed formula of fix1 when expressed in terms of the

standard basis of Si\QJr(l),

Throughout this section, let A = (A1,...,A,) F n. We first study the tableaux in
SStd(A;1). For each s € SStd(\;1), let

Q(s) = {i € [2,7r] | the i-th row of s contains some integer with colour not equal to ¢;}.
Clearly, Q(s) = @ if and only if 5 = £},

Proposition 3.1. Ifs € SStd(\; 1) with Q(s) = {i1 < i2 < --- < is} # &, then the colour
type of s is as follows:

where A is any partition.

(1) dts first row consists of all integers with colour ¢y together with one integer with colour

Ciys
(2) forie [2,7]\ Q(s), its i-th row consists only of all integers with colour ¢;;

(3) for j €[l,s —1], its ij-th row consists of \j; — 1 integers with colour c;;, together with
one integer with colour ¢, ;

(4) its is-th row consists of \;, — 1 integers with colour ¢;,, together with one integer with
colour cp41.

Proof. By definition of Q(s), for i ¢ Q(s), the i-th row of s contains only integers with
colour ¢;, and hence all the integers with colour ¢;, since the i-th row of s has A\; nodes and
there are exactly \; integers with colour c;.

By Lemma [2.16] the first row of s contains all the A1 integers with colour ¢, and another
integer with colour ¢, say. Since Q(s) # ), we have s # M1 so that a # r+ 1, as otherwise
s = t\! by LemmaZI6l Thus a € [2,7], and since the remaining A, — 1 integers with colour
¢q are insufficient to fill up the a-th row of s (which has A, nodes), we have a € Q(s). Now
for i € [2,a — 1], the i-th row of s contains only all the integers with colour ¢; by Lemma
Consequently a = min(Q(s)) = ;.

For i; € Q(s), we may assume that the first i; — 1 rows of s are as described, and so
these rows contain exactly all the integers with colour ¢, for b € [1,7; — 1], and one other
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integer with colour ¢;;. By Lemma 2.T€] the i;-th row of s contains the remaining A;; — 1
integers with colour ¢;;, and another integer with colour ¢y say, with v > ij;, and for all
i€ [ij + 1,0 — 1], the i-th row of s contains only all the integers with colour ¢;, and hence
i ¢ Q(s). If b = r + 1, then this shows that i; = max(Q(s)) = ¢s. On the other hand, if
b #r+1, then b’ € Q(s) since the remaining \y — 1 integers with colour ¢y are insufficient
to fill up the b’-th row of s (which has Ay nodes). Since i ¢ Q(s) for all ¢ € [i; +1,b' — 1],
this yields ' = i;41 as desired, and our proof is complete. O

Lemma 3.2. Suppose that s € SStd(\;1). Ifi € Q(s) and N\j = N\iy1, then i+ 1 € Q(s).

Proof. If i € Q(s) and A\; = Aiy1, then the i-th row of s contains some integer with colour
¢j, with j > i by Proposition Bl If i + 1 ¢ Q(s) then the (i + 1)-th row of s contains all
the integers with colour ¢;41 by Proposition 3] so that j # i + 1 and hence j > i+ 1. But
then the integer with colour ¢; in the i-th row of s is now above an integer with colour ¢;41
in the (7 + 1)-th row, contradicting s being standard. (]

Lemma suggests that we can reduce Q(s) to a subset P(s) from which we can re-
construct Q(s), as follows. For each a € ZT, let Q(s), = {i € Q(s) | A = a}. Then
Q(5) = Ugez+ Q(5)q (disjoint union). Define

P(s) := {min(Q(s)a) | a € Z", Q(s)a # 2}
Then for each i € P(s), Q(s)r, = {j € [i,r] | A; = A\i} by Lemma B2 and Q(s) =
UieP(s) Q(8),-
Ezample 3.3. Continuing with our running example, Example 215l we have the following
table for the representatives s; (i € [0,5]) in SStd((3,3,2,2);1) with distinct colour types.

50 51 59 53 54 55
1(2(3]11 1 6 123110 1(2(3]8 1({2(3]|6 1(2(3]|6
5 415]6 415 |11 415]6 415]6 41510 415]8
7 7 7 7 (10 7 7 (10
9110 9110 9111 9111 9111 9111
Q(s) ) {2} {4} {3,4} {2,4} {2,3,4}
P(s) @ {2} {4} {3} {2,4} {2,3}

Lemma 3.4. Let s,t € SStd(A;
Qls) = Q(O), if and only if P(s)

Proof. By Proposition Bl s and t have the same colour type if and only if Q(s) = Q(t).
The construction of P(s) from Q(s), and that of Q(s) from P(s), uses only information
about A and not about 5. Thus Q(s) = Q(t) if and only if P(s) = P(t). O

1). Then s and t have the same colour type if and only if
= P(t).

We can now state the main result of this section.

Theorem 3.5. Let A = (A1,...,\r) Fn. For each s € SStd(\; 1), define

1
as = (_1)\Q(5)|*\P(5)\ H ‘ ]
i€ P(s) )\1 - )\z + maX(Q(s))\i)

fon = Z QAsCs.

5€SStd (A1)
In other words, g1 = as if § € SStd(A;1) and 0 otherwise.

Then

We remark that Q(s), and hence P(s) and aq, clearly depends only on the colour type
of 5, so that Theorem is in agreement with Theorem 2171
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Ezample 3.6. Continuing with our running example (Examples and B.3]), we have the
corresponding as for each of the colour types of SStd((3,3,2,2);1) as follows:

S | S0 S1 S2 S3 S4 S5

L
10

N[
sl-

1 1
as |1 5 5 =

By Theorem m f{(3,3,2,2)\1 = ZsEStd((4,3,2,2)) q{(3,3,2,2)\175€5 where qt(3,3,2,2)\175 = Qg if s has
the same colour type as s; (i € [0,5]), and 0 otherwise.

Proof of Theorem [33. Note first that if r = 1, then ! = &+ SStd(A;1) = {1},
P = g = QM (D) and so the theorem holds trivially.

We prove by induction on n, with the base case of n = 1 already dealt with above,
since 7 = 1 in this case. For the inductive step, again we only need to consider the
remaining case of 7 > 1. Let A = (A1,...,Ar—1, Ay —1). Then A+ (n —1). By induction,
fon = Dsessta(i) Ge€s, so that D) = > sesstd(h) @d(5). Thus, by Corollary 2.12(2)
(with m = 1), we have

fomem =D Mepry = D azd(@)epsn
§eSStd(X;1)

§€SStd(A;1) 5eSStd(A;1)

Thus,

fon = fsn_(t;\TAJr(l)) = (sn + m)ft;\/rkv%l) = (sn + ﬁ) Z A5C5pA+(1) (3.1)
5eSStd (A1)

by Proposition 2.8l

To continue, we split the tableaux in SStd(\;1) into three types: § € SStd(\, 1) is of
type 1 if n lies neither in the r-th row nor in the A.-th column, type 2 if n lies in the r-th
row and type 3 if n lies in the A,-th column (in which case n lies in the (r — 1)-th row; this
is only possible when A,_; = A,). Similarly, we split the tableaux in SStd(A;1) into two
types: s € SStd(A;1) is of type 1 if n+ 1 lies in the r-th row, and type 2 if n + 1 lies above
the r-th row. The subset of SStd(X;1) (respectively SStd(\;1)) consisting of tableaux of
type 4 shall be denoted SStd(X;1); (respectively SStd(X;1);).

We have a bijection SStd(\;1) — SStd(\;1); defined by § — (D with inverse
s 5),. We also have a bijection SStd(\;1); — SStd(X; 1)y defined by § — s,, - (5M+(1),
with inverse s — (s,,-8)},, (note that n lies in the r-th row of s € SStd(\; 1)2 by Proposition
BI). Also if 5 € SStd(X; 1) then s, - (3t (1D) = 521 We defer for the moment the
discussion of s, - (5M(1) for § € SStd(X; 1)s.

The following table gives a summary of the important information obtained from Propo-
sition Bl pertaining to 5+t and s,, - (ﬁT’\Hl)) in terms of that pertaining to §.

type of § t r € Q(8)? Q(Y) P(t) ag remarks
1 AT No QB U{r} PGEU{r} T s
2 e Yes Q6) { P@) { = {if QG), =2
PE)\{ry |-l i), £ o
3 A No QGB)U{r} P(3) S VES vt L5
1 sn - (1) No QE) P(3) as

TABLE 1. Summary Table
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We provide a sketch to justify the second row of the table, which is the most difficult,
and leave the other rows to the reader as easy exercises. Suppose that 5 € SStd(j\; 1)o.
The only integer that changes colour when going from & to 5T is n, whose colour
changes from ¢, 41 to ¢,. Thus by Proposition B, 7 € Q(8)y, 1 N Q(EM M), | and & =
QGEM M)y, 1 = Q(E)x,—1\{r} while Q1MW) \{r} = Q(5)x,, and Q1M = Q(5),
for all b # A, A\, — 1. This yields Q(3**t(™) and P(Et*+ (). For agpa+(1), we need only to
note in addition that max(Q(5t** (1), ) = r, while max(Q(3)y,) = r — 1 if Q(3)», # .

With Table 1, we can now proceed to finish the proof, dealing with the cases A._1 # A,
and A._1 = A, separately.

Case 1. \,_1 # )\: In this case, we have SStd(\;1) = U?Zl SStd(X;1); and Q(5),, = @
for all 5 € SStd(\, 1),. Continuing from (3.I)), and using the above summary table whenever
necessary, we get

f{/\\l
az 1
- Z (azes,, spr+) + 3w eap+m) + Z (1 + s =77 )asesrr
5eSStd(A;1)1 5€SStd(A;1)2
- Z (g, 51+ €5, 5p2+0)) F Aaprr) Eapren) + Z QA+ () CapAt(1)
§esstd(A;1)1 §eSStd(\;1)2
= Z O (31A+1) s,y (5p2+1) T Z Aspr+(1) Egpr+(1)
§eSstd(A;1)1 §SStd(A;1)
= Z a5 + Z a5 = Z As€5.
s€SStd(A;1)2 5€SStd(A;1)1 s€SStd(A;1)

Case 2. A\, = \,—1: We look at S; := zﬁeSStd(f\;l) (sn + m)ageﬂﬂu) for ¢ € [1,3]

i

separately. We have, just as in Case 1,
St=" DL (O aprrm)es, o) T A
5€SStd(A;1)4
Furthermore, with the help of Table 1, we have

1
Sy = Z (1+ m)agegTHu)
5eSStd(A1)a

— A1—Ap+r+1 -
= Z + Z At GECEA+)

§eSStd(A;1)2  5e€SStd(M;1)2
QE)r.=2 Q). #9

1
= Z Agpr+ () Eaprr () + Z "X AT dap () Cgpt ) -
§eSStd(\;1)2 §eSStd(A;1)2
QB =2 Q@) #2

For S3, observe first that for each § € SStd(S\; 1)3, we have §(r — 1, \;) = n, and so the r-th
row of § contains [n — A, + 1,n — 1] by Proposition Bl For each i € [n — A, +1,n — 1], let
uz; € RStd(A + (1)) be the tableau obtained from () by swapping n in its (r — 1, A,)-
node with 7 in its r-th row (and rearranging the r-th row so that it is increasing). Then
uz; € SStd(A;1) with the same colour type as M) 5o that Qu;; = Gzpa+() by Lemma
B4l Furthermore, 7

{uzilic€n—M+1,n—1],5€SStd(\;1)3} = {51 W | 5 € SStd(\; 1)2, Q). # 2}
Now, by Proposition 2.6(1),

n—1

o EMHD) = —Cpe) D €
i=n—A\r+1
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Thus,
Ss= D (e, mpim) T s Galae)
§eSStd(X;1)3
n—1
1
= D (@1t s=eapio = D, aaey))
5eSStd(A;1)3 i=n—Ap+1
n—1
= A1+ +r
§eSStd(X;1)3 i=n—Ar+1
n—
- AitAetr
= Z (g €z + Z PYES v (CTRMCIY
§€SStd(A;1)3 i=n—Ar+1
_ AL +Ar+
= D @Gt ), BRG0G0
§eSStd(A;1)3 §€SStd(A;1)2
Q). #2

Hence fapn = S1 + 52 + 53 = ZseSStd(A-l) ases just like in Case 1, as desired.
O

Corollary 3.7. Let A, ..., A; be all the removable nodes of [\ + (1)], labelled from top to
bottom (thus Ag lies in the top row). Then

t

dpn = [ [(res(Ag) — res(4y)).
i=1
Proof. Firstly, [A + (1)] has a removable node on its top row, so Ag = (1, A; Let
s € SStd(A;1). For each i € P(s), we have max(Q(s)y,) = max{j € [1,7] | A;

that the node (max(Q(s)x,), Ai) = Ay, for some n; € [1,¢]. Furthermore,

1

A1 — A + max(Q(s)y,) = res(Ag) — res(Ay,).

Thus |as| = [Liep( W This shows d | [i_, (res(Ap) —res(4;)). To see that
t)\|1

+1).
— A}, s

we indeed have equality, let s be the tableau obtained from by moving only its entries at
the removable nodes, so that the entry at A; appears at A;_; for all ¢ € [1,¢], and the entry

at Ay (namely n + 1) appears at A;. Then s € SStd(\;1) with as = [['_, m,

and we are done. O

Ezample 3.8. The removable nodes of (4, 3,2,2) are Ay = (1,4), A1 = (2,3) and A2 = (4,2).
By Corollary B.7],

dys3221 = (res(Ag) — res(A;))(res(Ag) — res(A2)) = (3 —1)(3 — (—2)) = 10,
agreeing of course with the expression of fys32,2)1 obtained in Example

Remark 3.9. We note that, with Corollary B.7] and [I, Theorem 3.13], we can determine
0),1) and the explicit condition on p for the splitting of the canonical morphism ¢ 1) :

AN+ (1)) = A(AN) ® A(1) over Zy.

4. YOUNG’S SEMINORMAL BASIS VECTOR fi(k,e5)/m

Throughout this section, let k,#,m,s € Z™ with k > ¢, and let
A= (k, 0%).
We study Young’s seminormal basis vector fyx.es)m = fajm. By Theorem ZI7(2), we have

fom= im 4€s-

5€SStd(Aym)
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We shall obtain closed formulae for gy u,15)m , and g x.0|m 4, and some reduction results for
the general case.

Lemma 4.1. Let s € SStd(A;m). Then, for all i € [2,s + 1], only the integers with colour
¢; and c;11 may appear in the i-th row of s.

In particular, all integers in [1,k] appear in the first row of s.

Proof. This is clear since s has s + 1 rows while the integers appearing in s have s + 2
colours which are strictly increasing down each column. O

Corollary 4.2. Let s € SStd(A\;m), and for each i € [1,s|, let ni(s) be the number of
integers having colour c;11 in the first row of s. Then:

(1) 25y ni(s) < min(f, m);
2) for each i € 2,5 + 1], the i-th row of s contains exactly { — i;l n.(s) integers with
r=1
colour ¢; and exactly er;ll ny(s) integers with colour c¢;i1.

Proof.

(1) The first row of s, which has length k + m, contains exactly k integers with colour c¢;
by Lemma BTl Thus m = Y5 ni(s) > 325, ny(s). On the other hand, the second
to s-th rows of s are filled with integers with colour co,...,cs11 only by Lemma [4.T],
so that there are exactly ¢(s — 1) such integers in these rows. This leaves at most ¢
integers with these colours in the first row of s. Hence Y ;_; n;(s) < £.

(2) We prove by induction on i. By Lemma[4.]] the ¢ integers with colour ¢z lie in the first
two rows of s. Since the first row of s contains exactly ni(s) integers with colour ca,
the second row of s contains exactly ¢ —nq(s) integers with colour ¢, and consequently
also contains exactly ni(s) integers with colour ¢ by Lemma L]l Thus, the statement
holds for ¢ = 2. ‘

Assume that i < s and that the i-th row of s contains exactly Zf;ll n,(s) integers
with colour ¢; 11 and exactly £ — er;ll n,(s) integers with colour ¢;. Since the ¢ integers
with colour ¢;+1 may only appear in the first, i-th and (i+1)-th row of s by Lemma [4.1]
and there are exactly n;(s) integers with colour ¢;41 in the first row, the (i + 1)-th row
of § must contain exactly ¢ — >"'_, n,(s) integers with colour ¢;41, and hence exactly

Zi:l n,(s) integers with colour ¢;;2, again by Lemma [A.]1
U

Definition 4.3. Keeping the notation introduced in Corollary 2] we call the sequence
wt(s) := (ni(s),...,ns(s)) the weight of s € SStd(A;m).

Ezample 4.4. For

1]2]3]4]7]10]

€ SStd((4,3%);2),

i

Il
o
o

its weight wt(s) = (1,1).
Let

W = Wrnem) — {(wy, ... w,) € (Z20)* | Y wi < min(¢,m)}.
1=1
For cach w = (wy,...,ws) € W, let s = sh"™ be the (A + (m))-tableau obtained as

follows: starting from t\™

, working from j = s down to j = 1, swap the rightmost Y 7_, w;
integers having colour ¢j4; in the (j + 1)-th row with the leftmost Y J_, w; integers in
the first row having colour ¢;12. A moment’s thought, together with the worked example
below, should convince the reader that sy € SStd(A;m) with weight w, and is in fact the

smallest such (with respect to ).



YOUNG’S SEMINORMAL BASIS VECTORS AND THEIR DENOMINATORS 17

Ezample 4.5. Let k=¢=m =3, s =2 and w = (2,1). Then

tl2fsofuig] ., [1]2]8]7]8]9] ._, 1]2]3][5]6]9]
M = 7[5 ]6 =5 5|6 ]—>5(271): 4|7]8 .
7]8]9 10[11]12 10[11]12

By Corollary 421 we have:

Corollary 4.6. For s,t € SStd(A\;m), we have wt(s) = wt(t) if and only if s and t have
the same colour type.

We next deal with the case s = 1.
Theorem 4.7. We have

1
Jite.opim = Z W Cs-

s€SStd((k,£);m) wt(s)

(6;m)

Here we identify ernm with [0, min(¢, m)], so that wt(s) € Z>q for alls € SStd((k,£);m).

Proof. First, for z,y € Z* with z > y, and i € [0,y], let u;"¥ be the standard (z + 1,y)-
tableau whose first row contains [1, z] and +1+14. Then SStd((z,y);1) = {u;"Y | i € [0,y]}

and
i
wi) = Y
1, ifief0,y—1].

We prove by induction on m. For m = 1, we have
-1

_ 1
fuwon = e ke + 3 E €yt
i=0

by Theorem B35l agreeing with the theorem here.
For m > 1, we have
Fuwyim = D(t(kl)lm—l)D(t(k—i—m—l,ﬁ)u)ewﬁml)

by Corollary 2Z12)(2). By induction,

D(tkDIm=1y _ Z W a(),
§€SStd((k,£);m,1) wt(5)
D(tlk+m=10I1y _ Z Wd(u)

ueSStd((k+m—1,0);1)

—1
ktm—1,0 kt+m—1,0
:Zik—i—ml—ﬁ—l—ld(ui TN A+ d(u, ).
i=0

Thus,

/—1
— 1 1
Fuwom = Z (FTIE®) <Z FFm—t+1 Ca) bt T 6d(§)-u’2+m_1’5> '
=0

5eSStd((k,0);m—1) wi(®)

Note that for each § € SStd((k,¢);m — 1) and i € [0,4], d(s) - uf+m71’g € Std((k + m, 1))
and its first row contains the first row of s, and that k£ 4+ ¢ + m appears in the same node

as in both w1 and d(5) - WM Thus, for w € [0, min(¢, m)] with w < m, we have

€ (@) btm—1t = Ektm if and only if § = sﬁj’z’mfl and ¢ = £, so that the coefficient of €k tm

appearing in fi.e)m is (k7l+11+wt(§)) = (,C_Ziprw). On the other hand, if m € [0, min(¢, m)] (so
wt(8) w

¢ > m), then t*+70 ¢ SStd((k,£);m) with wt(tF+70) = m, and € q(s)altm18 = Cytm)
if and only if

[1,k +m] = d@)d ™ (1, k +m]) = d@E)([1, k +m — 1] U {k +m+1}).

(3
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Since t;+m=10O(1, 5) = j for all j € [1,k +m — 1] and tFFm=10(2 4 4 1) = k +m + 4, we
have

diE)([1L,k+m—1U{k+m+i})
= dE) ({0, g) [ € Lk +m =1} u {10 2,0 + 1))
={s(L,j) |jel,k+m—1]}U{s(2,i+1)}.
Thus, [1,k+m] = d(s)([1, k+m—1]U{k+m+i}) only if i = 0 (otherwise §(2,1) ¢ [1, k+m)]
while §(2,7 + 1) € [1, k + m], contradicting the (row) standardness of §), in which case, we

can choose any § € SStd((k, £); m — 1) whose first row contains both [1, k] and an (m — 1)-
element subset of [k+1, k+m]; all of such tableaux have Weight m—1. Hence, the coeflicient

of eykm.0) appearing in f.om is = = = e+1+m) By Theorem 2I7(1) and
Corollary [£.6] we conclude that
1
fuwoim = > () G
s€SStd((k,£);m) wt(s)
as desired. O

(k+m £+1)

To obtain a closed formula for dy,e)m, we need the following:

Lemma 4.8. Let a € Z" and b € Z>q. Then

lem {(azr> e o, b]} loma, @ +B]

a

Proof. Multiplying the required equality by a throughout, we get the equivalent statement
lem {a(*!") | r € [0,b]} = lem [a, a + b], which we shall prove by induction on b, with b =0
being trivial. Assume thus b > 0, and that lem {a(*}") | r € [0,b — 1]} = lem [a,a + b — 1].
Then lem {a(*}") | r € [0,b]} = lem {lem [a,a + b — 1],@(“14’)}. By [1l Lemma 4.12(1)], we
have a(azb) | lem [a, a + 1], so that
lem {lem [a,a + b — 1], a(“+b)} | lem [a, a + D).
On the other hand, (a +b) | (a + b) (a+b 1) a(a+b) so that
lem [a,a + b) = lem {lem [a,a + b — 1],a + b} | lem {lem [a,a + b — 1], a(azb)}.
Thus
lem {a(“t") | r € [0,b]} = lem {lem [a,a + b — 1], (“er)} = lem [a, a + b],
as desired. 0
Corollary 4.9. We have
lem[k— ¢+ 1,k — ¢+ 1+ min(¢, m)]

dyk,01m =

k—0+1
Proof. This follows from Theorem 7] and Lemma [£.8] immediately. O
Ezample 4.10. Let k = 3, £ = m = 2. The following is a complete list of s,, € SStd((3,2);2)
for each w € Wmm{g m = = |0, 2]
w 0 1 2

1]2]3]6]7] [1]2]3]5]7] [1]2]3]4]5]
NE 4l 67

Sw

By Theorem I, fys.212 = Y sessid((5.2)) it )(wice) ) € Henee

dyaas = lem {2 1) € [0,2]} = lem {1,3,6} = 6 = 2an24]

agreeing with Corollary 4.9
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Remark 4.11. By [I, Theorem 3.13], Corollary 9] can be used to provide a simpler proof
to [1, Theorem 4.13].

For the remainder of this section, write bﬁfw for Q) im g, for each w € W;mn(z m), SO
that
k0
fweom = > by By
wewgnin(z,m)
where Ew = ) scsstd(Am) s by Theorem 217 and Corollary Equivalently,
wt(s)=w
k0 _ k0
D(tF£)Imy — > D) L(5)-

5€SStd((k,£5);m)

We shall provide four reduction results, relating bf,fw to others with different parameters.

To state the first result, note that we have a natural left action of &4 on Wmm(z ™) via

place permutations: o - (wl,wg, oy Ws) = (We-1(1), We=1(2), - - -, We—1()) for all 0 € &5 and
(w1, we,...,ws) € W;mn(g’m).

Theorem 4.12. Let w € Wmm(z m). We have:

\b — |05 | for all o € &,;

bfnfvlv’g if s > min(¢,m);

Proof. For each part we fix some of the parameters k,/, m,s, and will omit them in the
notations to make the latter less cumbersome.

(1) We fix k, ¢, m,s and prove |byw| = |by.w| for all o € &5 and w € W. In fact, it suffices
to prove this for o =s; € &4. Let

14

t; = H(k + (i = DA+ j k + il + 5) € Gy (im1)e41, k+(i+1))-
j=1

Observe that the effect of 6; on t*¢°) is to swap its (i 4+ 1)-th and (i 4 2)-th rows. Thus,

0i funes) = Bieqres) = €g qtees) = (—1) eynes) = (1) fygnes),
where the third equality follows from (2.3]). This yields

0 fkanim = (=1)" fiamenim
by Corollary 2Z.12](1).

On the other hand, 6;fiwes)im = > wew bwliBw. For each w = (wy,...,w,) €
W, let S(k m )(W) be the Q-span of the polytabloids e; which are labelled by s €
Std((k +m 65)) whose first row contains all the k integers with colour ¢;, and exactly
w; integers with colour ¢;y; for all i € [1,s]. Then since ey, . € S(k+m zS)( -w) for
any s € SStd((k, ¢%);m) with wt(s) = w by Proposition [2.6l(3) (with [ = 1), we have
OiEw = 0;> es =Y €g,.s € Sg+m,es)(5i -w). Thus, comparing the S(k+ KS)( - W)-
components on both sides of

N bwBw = (1) fuwesim = Oifigeenim = Y, bubiFu,
weW wew

we have (—1)€bsi.wEsi.W = bwl;Eyw. In particular, bs,. # 0 if and only if by # 0.
Suppose that by # 0, and let b,y = (—1)”’2—‘;". Then b;w € Q\ {0}, and 6;F.
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bi wls,.w. Since 92 =1, we also have 0;Es, .« = 1 E . But 0,Ew,0,Es,.w € Sz

(k4+m,es)°
so this forces b; w, b € Z,ie. bjw ==l Hence |b | = |bs,-w| as required.
We fix ¢,m and prove b’(“0 w) = bEF! for all w € W, when s > min(£,m); here (0, w) =
(0,w1,...,ws) € Wgiq when w = (wy,...,ws). Let
= t(k,ﬁ)T(kan,Ks“) ¢ — ((k+1m,ee)
g — t(BLFIm o — ¢(kF1L)m

)

By Corollary EI2(3) (with i = 2), we have f, = D(s')T~V f,. By Lemma 2I0(1), we
have fi = e¢+ > .. ec6e- Thus,

fs _ l)(sl)—i—(ﬁ—l)ft _ +(£— 1)€t + th +(€ 1) (41)
>t

By Lemma 23] for each v > t, we have Shape(tlyi¢) > (k,¢), so that v contains
[1,k] and some integer i, € [k + 1,k + /] in its first row. Consequently, since for all
T € Sppr41,k+m+(s+1)fs Erv 1S spanned by polytabloids indexed by standard tableaux
having the same first row as 7 - v, which contains the integer i, with colour cs, by
Proposition Z6(3) (with [ = 1), the same holds for D(s')T¢ Ve, as D(s")*(=1 ¢
QS [kq-t41,k-+m+(s+1)q by LemmaZI0(2). The upshot is that, in ([&.I]), only D(s")t(=De,
contributes to the coefficient blgo,w) of €k o in fs;. Now,

D(s/)JF(Z*l)et = Z b\lfvt(u) d(u)+ (=D ¢
ueSStd ((k+1,63);m)

As d(u) T .t is standard for all u € SStd((k+1,¢%);m) and the map u — d(u) "¢ ¢
is injective, the coefficient of e, ok in D(s")t (= Dey is bkt(l) where d(u) T~ . ¢ = F )

(O,W ’
_ bk+1

which is precisely where u = skﬂ Thus b as desired.

(O,w) ™

We fix k,¢,s and prove by, w = bn—1.w for all w € Wg when m > ¢. By Lemma
BT0(1,2) and Corollary ZTH2), D(EFIM1) € Q1 im0 and

k.03 —1
Fawasyim = DAEENMTIY s oy
= D(t(k,25)|m71)(et(;ﬁm—l,esm + Z qt(k;+m_1’es)‘l’tet)_

> t(k+m—1,05)[1

If v > tFm=LE) then Shape(tlgim—1+s¢) > (kK +m — 1,¢%) by Lemma 23] so that
Shape(tlrim_14s) = (k +m, 571 ¢ —1). Thus, for any 7 € Spym_ 115, We have
Shape((T-t)drsrm_1+s¢) = (kK +m, 0571 ¢ — 1) so that e,. is spanned by standard
(k + m, £%)-polytabloids e, such that Shape(ulgim_14s¢) = (K +m, 571 ¢ — 1) by
Proposition 2Z.6(2). Consequently, since D(t*)Im=1) ¢ QG p_1450, DEFE)IMT)e,
lies in the span of polytabloids indexed by standard tableaux in which k + m + sf lie
in their respective last row. Since for all w € WY, s contains k 4+ m + s/ in its first
row for all w € W¥, we see that D(t5¢)Im=1)e. does not contribute to the coefficient
bin,w Of €sm in fik,es)im. On the other hand,

D(f(k’zs”mil) €((k+m—1,05)]1 = Z bm—1 Wt (5) €d(5)-t(k+m, %)
5SStd((k,£5),m—1)
C Y b

seSStd((k,69),m—1)
Clearly, 1(5+m*) is standard for all § € SStd((k, £*);m—1), and the map & ~— sHE+mL%)

is injective. Furthermore, s3~ 1T(k+m ) = = su. Thus by,—1w = by, w just as in part (2).

We fix m and prove that bl&}f = bl‘fv_sl’g_l for all ws € W7* when £ > m.

We prove by induction on s. For s = 1 we have blg{f) = (,Cleﬂ) = blg;)l’gfl by

Theorem [4.7] as desired. Assume thus s > 1.

w
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By Corollary 212)(3) (with i = 2),
ft(kls)\m = D(t(kJrMs_l)‘m)ﬂéil)D(f(k’z)‘m) E¢(k+m,e3)

k41,6 k0 _
= > Dty V(e AW TV d(s) eqesmen
ueSStd((k+1,£5~1);m)
s5€SStd((k,£);m)

k1,6 1kt
- Z bwt(u) bwt(s) Egtu (4'2)
ueSStd((k+1,£5~1);m)
s€SStd((k,£);m)
where st* = (d(u)tDd(s)) - =+ (Note that [@Z) holds for all k,£,m,s € Z+
with k > £.) Since d(s) - t-+m6%) = gp(k+tml) g4t hag the following properties:
e its first row contains [1, k| and exactly wt(s) integers in [k + 1,k + £];

e its third and subsequent rows are exactly those of the second and subsequent rows

of u translated by (¢ —1).

Let Ty ¢ = {t € RStA((Kk +m, 0%)) [t(i+1,1) =k + (i — 1)+ 1 Vi € [1, 5]}, and let
Tl = Thes N SLA((k +m, £9)) and TEFD = Ty o o N SStd((k, £9);m). Since £ > m, we
have Sl‘f&f € Tgsztg for all w, € W1

Let -

Ckps: 2,k +sl+m\{k+ (G —-1)+1]iel,s]} = [LLk—1+s(l—1)+m]

denote the order-preserving bijection between these two subsets of ZT with the same
cardinality. We have an injection Zj ¢ : Ty s — RStd((k — 1 +m, (£ — 1)*)) defined
by Zt04(5) (i 1) = Ex.04(s(ir + 1)) for all (i,9) € [(k — 1+ m, (£ — 1)), that preserves
standardness, colour-semistandardness and weight (where [k + (i — 1)¢ + 1,k + i¢] for
the tableaux in Ty, and [k + (i — 1)(¢ — 1),k — 1 + i(¢ — 1)] for the tableaux in

RStd((k — 1 + m, (¢ — 1)*)) are coloured c¢;11). Note that for w, € W' we have
Ek,é,s(sl&f) = b LD

. qQ
Let Wrzifg’s : S(

Q
ftmoes) S

(k—1+4m,((—1)%)

: Std .
on {eak’hs(s), 1f5 S ‘Zk‘,f,s’
5

be the Q-linear map defined by

0, otherwise

for all t € Std((k + m,¢°)). We claim that Tgstd (e) = ez, v for all t € Ty,
which is of course the definition of Tgsid if t is standard. When t € Tk0,s 1s not

sy

standard, then there exist (7,7), (i +1,75) € [(k + m,¢®)] such that t(7,5) > t(i + 1, j).
Let X = {t(i,a) | a € [},€]} and Y = {t(i + 1,b) | b € [1,4]}. Then by Proposition
2.6(1), we have

€t = — Z €Eo-t-

c€Gx v \{1}
Let y = t(¢+1,1), and let Y' = Y\ {y}. We may choose Gxy so that it contains Gx y.
If o € Gxy and 07 1(y) ¢ X, then 3 := 071(y) € Y, and so o(y,9') € Gxyuy’. Thus
o(y,y’) = o't for some ¢’ € Gxy» and 7 € SxG&y; in particular o6& xSy = 'S xSy
and hence 0 = o/ € Gxys. Therefore, if 0 € Gxy \ Gxys, we have 07 1(y) € X
and so o -t contains y = t(i +1,1) = k + (¢ — 1) + 1 in its i-th row. Consequently,
Wsifﬁs(e"'t) = 0 by Proposition [2.6(2), since s I o - t for all s € Tgfgs. Thus,

wgicgs(et) = — Z Wg%tgs(eg.t),
oeGx v/ \{1}
and since t Qo -t € Ty, for all 0 € Gx ys \ {1} by Proposition 2Z6(1), we conclude by
induction that
Tesa () == ) ez, @)
o€Gyr y\{1}
Now note that:



22

MING FANG, KAY JIN LIM, AND KAI MENG TAN

® Spes(0t) = o6 By s(b);

e 0 € Gy if and only if (o€ € €Gxy/¢71 and we may choose Ge(x),e(yr) to be
EGxyi&™Y

o ((Y) ={&(t(i +1,0)) | b e [2,4]} = {Ekes(t)(@+1,b) | be [1,j — 1]}, and similarly,
§(X) = {Bres(t)(ia) [aej—1,0-1]}

Thus,

Toma (@) == D ez = €S0
TEGe(x YN 1}
by Proposition [Z6](1), establishing our claim.

We now investigate me,, , (€sp) where s € SStd((k, £);m) and u € SStd((k+1,£571);m).
From the properties of s1* listed above, we see that if st ¢ Ty o5, then k4 (i — 1)+ 1
lies above its (i + 1)-th row for some ¢ € [1,s] (by Lemma applied to u), and
hence t ¥ st for all t € ‘Z%fgs, so that W‘Iitgs(eﬁu) = 0 by Proposition 2.6/(2). On

the other hand, if sf* € %kts, we have, by the claim in the last paragraph, that
7732528(@5@) = ez, , ) Now note that:

e for s € SStd((k, £);m) and u € SStd((k+1,¢571);m), we have sT* € Ty, 5 if and only

if s € Tpp1 and u € Tpyq -1, in which case EW,S(W) = :kl,l(s)TEHMS*l(u);

® =} 01 maps SETQ’KE‘% bijectively onto SStd((k — 1,¢ — 1);m), and is weight-preserving;

® Zpils—1 Maps S%?Ltld,é,s—l bijectively onto SStd((k, (¢ — 1)*~1);m), and is weight-

preserving.
Thus,

_ k1,60, k0
magep, (fioweim) = 2 but() Dwege Mgy, (Cst)
u€SStd((k+1,65—1);m)
s5€SStd((k,£);m)

_ k1,0, k0 B
- Z Dyt (u) Ot (s) €y 01 ()1 Sk 1,01 ()

SStd
LIS Y

SStd
56‘2,6’“

_ k1,0 1k b
= Z bwt(u/) bwt(s/) Cor v/

w' e€SStd((k,(¢—1)*~1);m)
s'€SStd((k—1,6—1);m)

kef—1 1 k—1,6—1
- Z bwt(u/) bwt(s/) Cqr 10/

w' e€SStd((k,(6—1)*~1);m)
s'€SStd((k—1,6—1);m)

k—1,0-1
= fie—1,06=1)%)Im = Z bytw)  Cos
veSStd((k—1,(6—1)%);m)

where the fourth and fifth equalities follow from induction hypothesis and ([4.2]) respec-
tively. But we also have fu,es)m = ztESStd((k,ZS);m) bfv’f(t) et, so that

k.0
sy o) = X ez
e
Comparing the coefficient of €_-1.-1 in st (furesym) for each wg € Wy, we get
Ws 2k,8

bff&f = bfffsl’g*l as desired, and our proof is complete.

O

In the next result, e;, for j € [1,s], denotes the j-th standard basis vector for Z°. Note

also that W' = {0} U {e; | j € [1, s]}.
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Corollary 4.13. We have

1 —
ft(k,ls)\m = €(k,15)|m + k——i—s Z S (_1)5 ‘Wt(5)|es7
€SSt ((k,1%);m)\ {0 19)Im )
where | wt(s)| = j of wt(s) = e;.
In particular, dx15)m =k + s.
Proof. By Theorem [£.12](3), bfﬁ}ws = b]f:vlvs. By Theorem [Z5, b8! = (—1)5_]'/,%'_S for all

l,ej

i €[1,s] (since Q(sgf’l) =[j+1,s+1]) and blf:(l, = 1. The corollary thus follows. O

Ezample 4.14. Let k = s = 3, m = 2. The following is a complete list of 5y, € SStd((3,1%);2)
for each w € W1 = {(0,0,0), (1,0,0), (0,1,0), (0,0,1)}:

w (0,0,0) (1,0,0) (0,1,0) (0,0,1)
1]2]3]7]8] [1]2[3]4]8] [1]2][3]s]8] [1]2]3]6]8]
14 15 14 14
Sw | 5] 16 16 15
6] L7 L7 L7
50 51 52 53

For each i € [1,3], let s, = (7,8) - 5;, so that & is the only other standard (5,1%)-tableau
having the same weight (or colour type) as s;. By Corollary [£13],

fso = €5y + %651 + %esll — %652 — %65/2 + %653 + %65/3 and dg, =6.
Remark 4.15.

(1) Using Corollary d.I3and [T, Theorem 3.13], we get 0y 15) (m) = (k—1)!m!s!, generalising
0(1n),(m) = (n — 1)!m! as obtained in [I, Proposition 4.1].

(2) Corollary .13 shows that it is possible for bf,fw = —bf”‘n’ﬁ,.w (cf. Theorem A.12(1)).
Corollary 4.16. Let

k =k — 0+ max(s,min(f,m)), ¢=min({,m), §=min(¢,m,s),

—Z ~
W, = {(wy,...,ws) € Wi |w <--- <ws}

Then k > 0 > S, and

. k.l <
dt(k,ls)\m = mln{/{ ezt | Kbm7,w €, Vw € WS} = dt(,;’gg)‘g.

Proof. Clearly, k > max(s, min(¢,m)) > min(¢,m) = £ > min(¢, m, s) = 3.
Next, Wf is a set of orbit representatives of Wé under the action of &4. Thus,
dyreyim = min{s € Z | KB5S, € Z, Yw € Wi}
=min{r € Z* | k!, €Z, VW € Wf Vo € G}
= min{x € Z" | mbfﬂfw €Z, Vw e Wf}
by Theorem .12{(1), proving the first equality.
Now, when s > 7, there is a bijection Wf_l — Wf defined by w — (0,w). Thus,
dyerres—tym = min{x € Z | kWi € Z, Yw € Wf,l}

= min{x € Z" | /{bif €Z, Vw e Wﬁfl}

(0.w)
= min{r € Z" | kB’ , € Z, vw' € W}

= dyk.5)m
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where the second equality follows from Theorem [£T2)2). Iterating this, we get
dyeyim = dyrpres—typm = -+ = dt<k+s—i,e‘?)\m'
Thus, in general, when s may not be larger than ¢, we have
dykes)im = dyar 65y m
where k' = k + max(s — £,0) = k — £ + max(s, /). Theorem ZI2(3,4) now shows that

d (K’ ,03)| = df(klvzg)‘m*17 lf m > 6’
Lk, m ] '
d{(k/—l,(f—1)5)\m7 ifm< gj

_ d{(k’,Zg)\Z7 lf m > g,
d{(k/—ﬁ-l»m,mg)\m? lfm < g,
= dt(k’—€+l7,25)\2 = dt(fc,ﬁ)\ia

since k' — (40 = k — { + max(s, () = k. O

5. SOME GENERAL REDUCTION RESULTS

In this concluding section, we relate fixy» and dyaq to those labelled by smaller partitions.
Together with the results of the last two sections, we will be able to obtain closed formulae
for dpnyv in a slightly more general setting than what we have seen earlier. We are also able
to use these results to obtain upper bounds for dy 4 in general.

Our first result relates D(t*¥) to another labelled by smaller partitions.
Proposition 5.1. Let A = (\1,...,\.) and v = (v1,...,1) be partitions with [A] C [v].
(1) Let v = (v1,...,vp_1,\r). Then D(t¥) = D(t\7).
(2) (Row removal) Suppose that A\y = vi and r > 2. Let A= (Ng,...,\) and v =
(va,...,v). Then D(tMY) = D7)+,

Proof.

(1) Since foaro = D(t*7) fz, we have by Corollary E12(1)
forr = fpqoyp = DY) fop = DY) fo = D )ew = Y oo ea

sestd(v)

Since d(s) - ¥ = 1" € Std(v) for all 5§ € Std(7), and the map & — &1 is injective, the
desired result follows.

(2) Since fygsoye = fuge = D) fi, and A +617(i, ) = 17 (i+1,5) for all (i, j) € [7]
so that res;s,, (i i) = 1 +respqw (i + Ap) for all i € [1, [7]], we have by Proposition 2.1T(2)
(with z = A)

f{)\Tu — fd )\Tl,)+/\1 v D()\T +)\1fty = Z qt)\TV < +)\1 e
seStd(v)
Since d(3)™™ - ¢ € Std(v) for all § € Std(7), and the map & — d(3)T™ - ¥ is injective,
the desired result follows.

O

Corollary 5.2 (cf. [7, Theorem 1]). Let v be a partition and let A be the partition obtained
from v by removing a removable node, say on its i-th row. Then

D(tAT’/) = D(t()‘i’ . )|1)+(ZZ ) Z aed(s )+(Zl Ry i)
5€SStd((AgyeAr)i1)
(See Theorem [3.F for the definition of as.)
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Proof. This follows by iterating Proposition [(.I[2) and Theorem O

We next relate dpyw to another labelled by smaller partitions.
Theorem 5.3. Let A= (A\1,...,\) and v = (v1,...,1) be partitions with [A] C [v].
(1) We have dpyw = dt)\T(ul,m,uT_l,)\,.).
(2) If \y =1y and r > 2, then dmu =dn,. Ar)p(vgae) -
(3) For m € [1,11 — \1], we have
d’t)‘T” ‘ dt/\\mdt/\+(m)TV-
(4) Fori € [2,r —1] and m € Z", we have

daim | dyg izt g ean)m gy i) im

Proof. Parts (1) and (2) follow from Proposition (5.1
For part (3) we have fan = D(tN™) DM M1V e for any m € [1, 11 — A1] by Corollary
2.12(2). Thus,
dpim gt img frgr = (dpaim D™ (dps omy o D)) e € (26),))S% = S7,
so that dpqw | dpmd(ptomyye as desired.
Part (4) uses Corollary [Z12(3) and an argument similar to part (3). O

By iterating Theorem [(5.3] together with Corollaries B.7, 1.9 and .16l we can obtain
possibly many) upper bounds for any dpxq... For example, when combining part (3) with
A

part (2) in Theorem B3] we get
dt)\Tu ‘ d{M’/l_/\ldt(/\Q AAAAA /\r)T(l/Q AAAAA ve) ’ d{M”l_/\ld{()‘Q AAAAA >\7‘)‘V2—A2dt(>\3 AAAAA )\T)T(IIS AAAAA ve) ’ re .

We may obtain upper bounds for djw,—x,, dirg,.An)vg—2s, - .. further by using part (3) or
(4) of Theorem (.3

We demonstrate this process of obtaining upper bounds below with the example of
dk,esye where k > £ > s. Recall that in the last section, we showed that all denominators
of the form dy.¢s)m can be reduced to this form (Corollary ET6]).

Proposition 5.4. Let k.0, s € Z* with k > ¢ > s. Then

l s . .
, lem [k — 0+ j,k + j]
dyreyie | ged H(k—f+5+l),1_[ i1
i=1 7j=1
Proof. Tterating Theorem [5.3](3), we get
dykesyie | dyckesyndyrrresyie— | -+ | dygresyndyesnesyn -+ - dyrre1,e9)n

L
= [k — ¢+ s+14)

=1
by Corollary B7l We may also iterate Theorem [5.3(4) with ¢ = 2 and get
dyck,eyie | dymoted i es—1ye |+ | dymotedgerroe - - - dyers—1,01e

chm[k 045, k+7]
k—f0+j

by Corollary 191 The proposition thus follows. O
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Example 5.5. In this example, we illustrate how Proposition 5.4l may be used to show that
dyx22)2 = (k4 1)(k +2) for all k > 2. By Corollary LT, this also gives

dykre—sesym = (K +1)(k +2)
whenever k£ > s > 2 and min(¢, m) = 2.

By Corollary 212/(2) and Theorem B.5], we have

2 2
ft(mg)‘2 — D(t(kv2 )\I)D(t(kﬂ,? )Il)et(k%ﬂ)

= Z AyAy€q(y).p-

ueSStd((k,22);1)
veSStd((k+1,22);1)

For each v € SStd((k + 1,22);1), let b, € [k + 2,k + 6] such that v contains [1,% + 1] and
by in its first row. Let

1| 2 [+ o] k |k+2|kt4
_ k22
S=50,0) T |ke1|kes
k+5|k+6

By Proposition 2.6(3) (with [ = 1), eg()., does not contribute to the coefficient of es
in f22)2 unless d(u) - v contains [1,k] U {k + 2,k + 4} in its first row, or equivalently,
du)({k+1,by}) = {k+ 2,k +4}. Assume thus d(u)({k + 1,b,}) = {k + 2,k + 4}.

Case 1a. d(u)(k +1) = k + 2, d(u)(by) = k + 4: There are exactly two such u € SStd((k, 22);1),

namely
1 2 PP PR k; k+2 1 2 PP PP k k+2
Lo N PO P oo U2 =k
k+4|k+5 k+3|k+5

We have d(u1) = (k+ 1,k +2), d(uz) = (k+ 1,k +2)(k+ 3,k +4), ay, = — 737 = Quy»

Jr
and b — k+4, ifu=uy;
" k+3, ifu=u,.

Case 1b. d(u)(k + 1) = k +4, d(u)(b,) = k + 2: There is only one such u € SStd((k, 22); 1),

namely

1|2 ||| k |k+d

U3 = k1| k42

k+3|k+5

We have d(uz) = (k+ 1,k + 4,k + 3,k + 2), ay, = /#1 and b, = k + 3.
Thus b, € {k + 3,k + 4}. We now look at these v € SStd((k + 1,22);1).

Case 2a. b, = k + 4: There is only one such v € SStd((k + 1,22); 1), namely

T2 ||| k |k+l|k+a

L S PR A

k45| k+6

We have a,, = %4_2
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Case 2b. b, = k + 3: There are exactly two such v € SStd((k + 1,22);1), namely
1|2 |~ | | k |k+1]k+3 T2 |~ o] | k |k+1]k+3
Y2 = |piolkia L T PN PO
k+5|k+6 k+4|k+6
We have ay,, = —,#2 = Gyp,.
Now, d(u1) - v = d(ug) - vg = d(uz) - by = s for all i € [1,3], while
1|2 ||| k |k+2|k+a
d(uz) - v3 =d(u3) - v3 = Jt1 | hts € Std((k + 2, 22)) \ {s}.
k+3|k+6
Thus the coefficient of e in f( 222 equals
Qg @y + Quy oy + Gy oy = (—17) (1) + (—57) (—2) + (e0) (C5h2) = — ooy

This yields

N

(k+1)(k +2) | 2o | ged( H (k +1) H lem P2 IRty | Tk + ) = (k+ 1)(k +2)
=1

by Proposition 5.4} forcing equality throughout.
We now give an indication how Theorem [T comes about:

Proof of Theorem [I 1. Part (1) follows from Corollary B.7 and Theorem [5.3(2). Part (

2)

follows from Corollary £.9] and Theorem [5.3(1). Part (3) follows from Corollary and

Theorem [5.3((1), while parts (4)—(6) follow from Theorem [5.3

We end the paper with the following concluding remark.
Remark 5.6. Let A + n. Following [7

O

we can provide an estimate for D(s) and an upper

J,
bound for ds for a general s € Std(\) as follows. For each i € [1,n], let s; = s;, and

let A = Shape(s;). Then st

s;41 for all ¢ € [1,n — 1]. By iterating Corollary

2I2(1), we get fs = DN 1Y) .- DN 12" ) e . Thus, DN 1Y) .- DM ') equals
D(s) modulo the annihilator of ex, so that the former is an estimate of the latter, and
ds | [T dt” wit1. Note that Corollary 5.2 and Theorem [LI(1) give closed formulae for

D(tA'T)\z+1) and d i1 respectively for each i € [1,n—1].
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