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Abstract

Novak conjectured in 1974 that for any cyclic Steiner triple systems of order v with
v = 1 (mod 6), it is always possible to choose one block from each block orbit so that
the chosen blocks are pairwise disjoint. We consider the generalization of this conjecture
to cyclic (v, k, A\)-designs with 1 < A < k — 1. Superimposing multiple copies of a cyclic
symmetric design shows that the generalization cannot hold for all v, but we conjecture
that it holds whenever v is sufficiently large compared to k. We confirm that the gener-
alization of the conjecture holds when v is prime and A = 1 and also when A < (k —1)/2
and v is sufficiently large compared to k. As a corollary, we show that for any k > 3, with
the possible exception of finitely many composite orders v, every cyclic (v, k,1)-design
without short orbits is generated by a (v, k, 1)-disjoint difference family.
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1 Introduction

Let V be a set of v points, and B be a collection of k-subsets of V' called blocks. A pair (V,B) is
called a (v, k, \)-design if every pair of distinct elements of V' is contained in precisely A blocks
of B. A (v,3,1)-design is called a Steiner triple system of order v and is written as an STS(v).

An automorphism of a (v, k, \)-design (V, B) is a permutation on V leaving B invariant. A
(v, k, A)-design is said to be cyclic if it admits an automorphism consisting of a cycle of length
v. Without loss of generality we identify V' with Z,, the additive group of integers modulo v.
The blocks of a cyclic (v, k, A)-design can be partitioned into orbits under Z,. We can choose
any fixed block from each orbit and then call these base blocks. If the cardinality of an orbit is
equal to v, the orbit is full. Otherwise, it is short. It follows from the orbit-stabilizer theorem
that the cardinality of any orbit is a divisor of v and is at least v/k. If ged(v, k) = 1, then all
orbits of a cyclic (v, k, \)-design are full (see [15, Lemma 1]). It is known that a cyclic STS(v)
exists if and only if v = 1,3 (mod 6) and v # 9 (see [10, Theorem 7.3]).
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A useful tool for generating cyclic designs is the concept of a difference family. A (v, k, \)-
cyclic difference familyis a family F of k-subsets (called base blocks) of 7, such that the multiset
AF ={x—y:z,y € Fo # y, F € F} contains every element of Z, \ {0} exactly A times.
Such a family is denoted as a (v, k, \)-CDF. It consists of A(v —1)/(k(k — 1)) base blocks. A
(v, k, A\)-CDF F can generate a cyclic (v, k, \)-design with block-multiset dev.F := {F+t¢: F €
F,t € Z,} (see [18, Theorem 3.46]). Furthermore, when ged(v, k) = 1, F is a (v, k, A\)-CDF if
and only if dev.F is a cyclic (v, k, A)-design (see [3, Proposition VII.1.5]).

A (v, k, A\)-CDF is said to be disjoint and written as a (v, k, \)-DDF when its base blocks
are mutually disjoint. Novék [16] conjectured in 1974 that for any cyclic STS(v) with v = 1
(mod 6), it is always possible to find a set of (v — 1)/6 disjoint base blocks which come from
different block orbits to form a (v,3,1)-DDF (see also [1, Remark 16.22] or [10, Work point
22.5.2]).

Conjecture 1. (Novdk, 1974) [16] Every cyclic STS(v) with v =1 (mod 6) is generated by a
(v,3,1)-DDF.

Conjecture 1 is widely believed to be true but not much progress has been made on it. So
far it is only known that Conjecture 1 holds for all v =1 (mod 6) and v < 61 (see [10, Theorem
22.3]). On the other hand, Dinitz and Rodney [11] proved that a (v,3,1)-DDF exists for any
v =1 (mod 6) by taking a suitable (v,3,1)-CDF and then replacing each of its base blocks B;
by a suitable translate B; + ¢;. For more information on (v,3,1)-DDFs with v = 3 (mod 6),
interested readers are referred to [6, 12].

Recently, using the Combinatorial Nullstellensatz, Karasev and Petrov [14] proved the fol-
lowing result.

Lemma 1. [14, Theorem 2| Let F be an arbitrary field, and let m and d be positive integers
such that (md)!/(d)™ # 0 in F. Let Xy,...,X,, and Ty, ..., T,, be subsets of F such that

Vi<j | Xi—Xj|<2d, Vi |T;}| > (m—1)d+1,
where X; — X; ={x—y: 2z € X;,y € X;}. Then there exists a system of representatives t; € T;
such that the sets X1 +tq,..., X,, + t,, are pairwise disjoint.
We now apply Lemma 1 to show that Conjecture 1 is true whenever v is a prime.

Theorem 1. Let k > 2 and let p be a prime. FEvery cyclic (p,k,1)-design is generated by a
(p, k,1)-DDF.

Proof. We may assume p > k because otherwise the result is trivial. Since ged(p, k) = 1, a
cyclic (p, k, 1)-design has m = (p—1)/(k(k —1)) full orbits and no short orbits. Let By, ..., B,
be base blocks of a cyclic (p, k,1)-design and let d = [k*/2]. Then |B; — B;| < 2d for any

1<i<j<m LetTh =--- =1, =%Z, Then [T}| =p > (m—-1)d+1for k > 2.
Since md < p when k > 2, (md)!/(d!)™ # 0 (mod p). Therefore, by Lemma 1, there exists
a system of representatives t; € T; such that By + t1,..., B, + t,, are pairwise disjoint. So
By +t1,..., By + t, form a (p, k,1)-DDF. O

Theorem 1 motivates us to present the following conjecture on cyclic (v, k, 1)-designs, which
also allows for designs with short orbits.

Conjecture 2. For any cyclic (v, k,1)-design, it is always possible to choose one block from
each block orbit so that the chosen blocks are pairwise disjoint.
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The existence of (v, k,1)-DDFs is in general quite a hard problem. Conjecture 2, if true,
would reduce the existence of (v, k,1)-DDF's to the existence of (v, k,1)-CDFs. The following
results on CDF's are known in the literature.

Lemma 2.
(1) [9] For any prime p =1 (mod 12), there exists a (p,4,1)-CDF.
(2) [9] For any prime p =1 (mod 20), there exists a (p,5,1)-CDF.
(3) [8] For any prime p =1 (mod 30) and p # 61, there exists a (p,6,1)-CDF.
(4) [7]

4) [7] Let p=1 (mod k(k — 1)) be a prime. Then a (p,k,1)-CDF exists if p > (’;)Qk

As a corollary of Theorem 1 together with Lemma 2, we obtain the following existence
results on DDFs.
Theorem 2. Let p =1 (mod k(k — 1)) be a prime.
(1) There exists a (p,k,1)-DDF for each k € {4,5,6} and (k,p) # (6,61).
(2) There exists a (p, k,1)-DDF whenever p > (’;)21‘C
We remark that by using Weil’s theorem on estimates of character sums, Wu, Yang and

Huang [19] also established the existence of a (p, 4, 1)-DDF for any prime p = 1 (mod 12). We
also observe that the main result of [13] shows that, for fixed k and large v, one can find a family

Fof (1—o(1))5 i 1) pairwise disjoint base blocks of size k such that AF contains each dlfference
at most once. This is accomplished by letting H be the disjoint union of (1 —o(1)) 755 1) copies
of K}, and applying [13, Theorem 1.2] to find a rainbow copy of H in the complete graph on
7., with edges coloured according to their differences.

In this paper, we shall provide a proof of Conjecture 2 when v is sufficiently large compared
to k. In fact, we consider a more general setting. We shall examine cyclic (v, k, A)-designs with
k > 2\ + 1. As the main result of this paper, we prove Theorem 3 below. In fact we prove a
stronger statement which sometimes guarantees the existence of a family of mutually disjoint
blocks containing many blocks from each orbit (see Theorem 4).

Theorem 3. Let k and A\ be fized positive integers such that k > 2A+1. There exists an integer
vo such that, for any cyclic (v, k, \)-design with v = vy, it is always possible to choose one block
from each block orbit so that the chosen blocks are pairwise disjoint.

Combining Theorems 1 and 3 yields the following corollary.

Corollary 1. Let k > 3 be a fized integer. With the possible exception of finitely many composite
orders v, every cyclic (v, k, 1)-design without short orbits is generated by a (v, k,1)-DDF.

2 Preliminaries

For any positive integer ¢, let [c] := {1, ..., c}. We will make use of the following simple lemma
which shows that, for large v and fixed k£ and A, a cyclic (v, k, A)-design has few short orbits.

Lemma 3. Let k > 2 and X\ > 1 be fized integers. If (V,B) is a cyclic (v, k, \)-design with h
short orbits and m full orbits, then

(i) h 2)\\/E' and
(i) 33 —2WE<m <350 <m+h < 353 + 20wk




Proof. Let the point set of (V,B) be Z, and let By, ..., By, be the short orbits of (V,B). Let
i € [h]. Recall that by the orbit-stabilizer theorem we have |B;| = ¢; where 7 < {; <vand {; | v.
Let B; be a base block from B; such that B; contains the point 0. Since |B;| = ¢;, B; +{; = B;.
It follows that B; contains all multiples of ¢;. Write S; := {0,¢;,2¢;,. .., (2’—1 — 1)¢;}. Then
S; C B;. Furthermore, for any a € B;, a+.5; C B;, and so B; is a disjoint union of some cosets
of S; in Z,, which implies [S;| | [B;|. That is, 7 | k. Also, because exactly A blocks in B contain
the pair {0, ¢;}, we have that at most A of the orbits By, ..., B, have cardinality ¢;.

Thus, h < Aog(k) where oq(k) denotes the number of divisors of k. We know that oy (k) <
2v/k for any positive integer k by using the fact that d | k if and only if g | k, and so (i) follows.

Then (ii) follows from (i) by routine calculation after observing that mv + S ¢; = |B| =

Av(v—1)
k(k—1) ° U

An r-uniform hypergraph G is a pair (V, E) where V is a vertex set and E is a set of r-
subsets of V' called edges. The degree deg.(x) of a vertex = € V is the number of edges of G
containing x. For distinct vertices x and y of G, the codegree codegg(x,y) is the number of
edges of G containing both z and y. We write dg = Ig'crél‘l/l degq(x), Ag = max degs(x) and

A% = max codegg(z,vy).
z,yeV,x#y
A proper edge-colouring of a hypergraph G = (V, E)) with ¢ colours is a function f : E — [c]

such that no two edges that share a vertex get the same colour. The following powerful result
of Pippenger and Spencer [17] (based on the RAdl nibble) shows that every almost regular
r-uniform hypergraph GG with small maximum codegree can be edge-coloured with close to Ag
colours.

Lemma 4. 17| Let r > 2 be an integer. For each real number n > 0, there exists a real number
n* > 0 and an integer ng such that if G is an r-uniform hypergraph onn = ny vertices satisfying
de = (1 —=n*)Ag and AL < n*Ag, then G has a proper edge-colouring with (14 n)Ag colours.

3 Proof of Theorem 3

A partial parallel class of a (v, k, \)-design is a set of pairwise disjoint blocks. Let (V,B) be a
cyclic (v, k, A)-design with orbits By, ..., B;, let P be a partial parallel class of (V,B) and let
s = |%1]. For any nonnegative integer a we define T,(P) = {i € [t] : |PNB;| = a} to be the set
of indices of orbits of (V, B) that contain exactly a blocks in P, and we define 7,(P) = |T.(P)|.
Also, we say that a block B € B is P-good if, for each i € [t], B intersects at most one block
in P N B; and, for each i € To(P) U --- UTs_1(P), B intersects no block in P N B;. Blocks in
B that are not P-good are P-bad. Intuitively, a P-good block B has the property that if we
add B to P and remove all blocks of P incident with B, then each orbit that intersected P in
at least s — 1 blocks still intersects the resulting partial parallel class in at least s — 1 blocks.

Finally we define, if s > 2,
s—2

d(P)=> (s—1—a)r(P).
a=0
One can think of d(P) as a measure of how far P is from intersecting each orbit in at least s —1
blocks. The definitions of P-good and d(P) are implicitly dependent on the value of s = [ 1],
Our strategy is to first, in Lemma 5 below, apply Lemma 4 to an auxiliary hypergraph in
order to obtain a partial parallel class in the design that contains s blocks from almost every

orbit. For such a partial parallel class P we then, in Lemma 6, prove that if each orbit that
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intersects P in fewer than s — 1 blocks contains sufficiently many P-good blocks, then P can
be modified to produce a new class that contains s blocks from almost every orbit and s — 1
blocks from each remaining orbit. Finally, to prove Theorem 4, we show that Lemma 6 can
successfully be applied to a partial parallel class obtained by making some modifications to a
class given by Lemma 5.

Lemma 5. Let k and \ be positive integers and let s = L%j For each real number € > 0,
there exists an integer vy such that, for each integer v = v§, any cyclic (v, k, \)-design with m
full orbits has a partial parallel class P that contains s blocks from each of (1 —€*)m full orbits

and no blocks from any other orbit.

Proof. Let (V,B) be a cyclic (v, k, A)-design with full orbits By,...,B,,. Observe that, by
Lemma 3(ii) A= oAVE < m < 2l Hence, supposing v is sufficiently large, we have

sy k(k—1)
% <m < QEZ:B Let w = | and choose integers si,..., sy, € {s,s + 1} such that
S1 4+ -+ + S, = w. Such integers exist because sm < ”;1 using s < % and m < %, and
because (s + 1)m > “* using s +1 > £ and m > % Let W = {u;; :i € [m],j € [s;]} be

a set of w vertices disjoint from V. We form a (k + 1)-uniform hypergraph G with vertex set
V UW and edge set
{B U {ui,j} B e BZ,Z € [m],j € [82]}

Observe that, for each x € V', we have degq(x) = ks + -+ - + ks,, = kw because z is in k
blocks in each full orbit, and hence we have v —k < degg(x) < v—1. Also, deg(x) = v for each
x € W because each full orbit contains v blocks. Furthermore codegg(x,y) < A(s+1) < k+A—1
for all distinct z,y € V because (V, B) is a design of index A, codegq(x,y) = 0 for all distinct
x,y € W, and codegq(x,y) = k for all x € V and y € W because k blocks from any full
orbit contain a given vertex in V. So G has v + w vertices, vw edges, d¢g = v — k, Ag < v,
and A < k+ A — 1. Thus Lemma 4 implies that for any real number €* > 0, supposing v is
sil
Let C be a largest colour class of this colouring. Then C is a set of disjoint edges of G and,

(s+Dw
s+1+4€*

sufficiently large, G has a proper edge-colouring with (1 + <“=)v colours.

because G has vw edges, |C| >
because w < (s+ 1)m. Let

> w — €5 > w — ¢'m where the last inequality follows

M ={i€[m]:|{j€ls]:uiisinan edge in C}| > s},

Observe that |M| > (1 — €*)m because each edge of G contains exactly one vertex in W and
hence there are less than e*m vertices in W that are not in an edge of C. Let C’ be the set
of edges in C that contain a vertex in {w;; : 4 € M,j € [s;]} and let P ={ENV : E € C'}.
Then, by the definitions of G and C’, P is a partial parallel class in (V, B) that contains at least
s blocks from B; for each ¢ € M and no other blocks. So, by deleting some blocks from P if
necessary, we can obtain a partial parallel class with the desired properties. O

Lemma 6. Let k and A be positive integers such that k > 2A+1 and let s = |51 ]. Let (V, B) be
a cyclic (v, k, \)-design with orbits By, ..., B;, and let P’ be a partial parallel class that contains
at most s blocks from each orbit. If, for each i € To(P')U---UTs_o(P’'), B; contains more than
k*(ks — k +1)(d(P") — 1) P’'-good blocks, then there is a partial parallel class P" of (V, B) such
that 7,1 (P") < (k4 1)d(P’) + 15-1(P") and 7s(P") =t — 751 (P").



Proof. Note that s > 2 by our hypotheses. We prove the result by induction on the quantity
d(P'). If d(P") = 0 then 7o(P’) = -+ = 75_2(P’') = 0 and we can take P” = P’ to complete
the proof. So suppose that d(P’) = ¢ for some positive integer ¢ and that the result holds for
d(P') < t. Let j € To(P')U---UT,_5(P’) and let B; be a P’-good block in B; (such a block
exists by the hypotheses of the lemma because d(P’) > 1). Let Q be the set of blocks in P’
which intersect B; and let P* = (P’U{B;})\ Q. Note that P* is a partial parallel class of (V, B)
and that |Q| < |B,| = k. Also, because B; was P'-good, 71(Q) = |Q| and T1(Q) C T,(P’).

Observe that |P*NB;| = |P'NB;|+1, |P*NB;| = s—1 for each i € T1(Q), and P*NB; = P'NB;
for all ¢ € [t] \ (T1(Q) U {j}). Thus d(P*) =d(P’) — 1 and 75_1(P*) < 75_1(P') + k+ 1. Any
block in B that was P’-good but is P*-bad must intersect one of the at most ks — k + 1 blocks
in {B;} UUier, (g (P* N By). For each i € Ty(P*)U--- U T, 5(P*), at most k* blocks in B;
intersect each of these blocks and so, because more than k?(ks — k +1)(d(P’") — 1) blocks in B;
were P’-good, more than

kK2 (ks —k+1)(d(P') —1) —k2(ks —k+1) = k2(ks — k+ 1)(d(P") —2) = k*(ks—k+1)(d(P*) —1)

blocks in B; are P*-good. Thus we can apply our inductive hypothesis to P* to establish the
existence of a partial parallel class P” of (V, B) such that 7,_1(P") < (k4 1)d(P*) + 75_1(P*)
and 75(P") =t — 7,_1(P"). The proof is now complete by observing that

Ts—1(P") < (k+1)d(P*)+75-1(P*) < (k+1)(d(P")—=1)+75—1(P")+k+1 = (k-+1)d(P")+75—1(P').
O

Theorem 4. Let k and )\ be fized positive integers such that k > 2\ + 1 and let s = L%J
For each real number e > 0, there is an integer vy such that, for each integer v = vy, any cyclic
(v, k, N)-design with t orbits has a partial parallel class that contains s — 1 blocks from each of
at most et orbits and contains s blocks from each other orbit.

Proof. Note that s > 2 by our hypotheses. We may assume that ¢ < ﬁ. Let € = m Let

(V, B) be a cyclic (v, k, A)-design with orbits By, ..., B; and suppose that m of these orbits are
full. Throughout this proof, we will tacitly assume v is sufficiently large whenever necessary

and will use asymptotic notation with respect to this regime. Note that ¢t = QEZ:B + O(1) by
Lemma 3(ii) and hence t = ©(v). By Lemma 5 there is a partial parallel class P of (V, B) such
that Tp(P) contains at most €*m < €*t indices of full orbits and every other index of a full orbit
is in Ts(P). Let

R = {i € [t] : B; contains at least st P-bad blocks}.

A block in B is P-bad if and only if it intersects at least two blocks in P N B; for some
i € To(P). At most k*A(3) blocks of B intersect at least two blocks in PNB; for each i € Ty(P),
and so it follows that at most k*A(3)75(P) < k2A(})t blocks in B are P-bad. Thus, by the
definition of R, we have |R| < k*s\.

We can greedily choose a partial parallel class R in (V) B) such that |R N B;| = s for each
i € Rand RN B; =0 for each 7 € [t] \ R. To see this, suppose that » < s|R| < k*s?) blocks
of the class have already been chosen and note that, for each ¢ € R, at most k2 of blocks in B;
intersect each already chosen block and

Bi| = £ > k*'s*\ > K’z



Thus we can indeed choose a suitable R greedily.
Now let

Q = {i € [t] \ R : some block in P N B; intersects some block in R}.

Observe that ks|R| < k*s®\ vertices in V are in a block in R and hence |Q| < k*s?)\.
Let P' = R U Uiy o(P N Bi) and note that P’ is a partial parallel class in (V,B). So
To(P') = (Ts(P) UR) \ Q and To(P') = [t] \ Ts(P’). Thus 7 (P') = -+ = 75_1(P’) = 0 and
70(P") < 10(P) + |Q|. Furthermore, Ty(P) contains at most €*¢ indices of full orbits and, by
Lemma 3(i), at most 2Av/k indices of short orbits. From this it follows that

d(P') = (s = L)7o(P) < (s = 1)(1(P) + Q) < m+0(1) (1)

Any block in B that was P-good but is P’-bad must intersect two of the s blocks in P’ N B;
for some ¢ € R. For each v € R, at most k:z)\(s) blocks in B intersect two of the blocks in
P’ N B;. So at most k2A(5)|R| < k*sA?(3) blocks in B were P-good but are P’-bad. Thus, for
each i € Ty(P’), because i ¢ R and hence less than $st blocks in B; were P-bad, the number
of P’-bad blocks in B; is less than 3 st + k*sA?(3). Now ¢ < ZEZ:B + 2\Vk by Lemma 3(ii) and
hence st < £+ O(1). So, since |B;| > 2, more than % — Lst — k*sA?(5) > st — O(1) blocks in
B; are P’-good. Thus P’ satisfies the condltlons of Lemma 6 because

K*(ks — k+1)(d(P') — 1) < ek®st < 1st < $st — O(1)

where the ﬁrst inequality follows by (1) because ks — k 4+ 1 < s(k 4+ 1) and the second follows
because € < gz Thus, by applying Lemma 6 to P’, there is a partial parallel class P” of (V, B)

such that 75(P") =t — 75_1(P") and
To—1(P") < (k+ 1)d(P') < et

where the last inequality follows by (1). O

Note that in the special case where A\ divides £ — 1, the partial parallel class given by
Theorem 4 uses all but at most ekt + 1 points of the design.

Proof of Theorem 3 This follows directly from Theorem 4, noting that s > 2 because
k>2\+1. O

4 Concluding remarks

A (v, k, \)-DDF necessarily has 1 < A < k — 1 apart from the trivial case of a (k, k, k)-DDF
(see [5]). Theorem 3 requires 1 < A < (k — 1)/2. It is natural to ask whether it is possible to
relax this condition. We make the following conjecture.

Conjecture 3. Let k and X\ be fized positive integers such that k > X+ 1. There exists an
integer vy such that, for any cyclic (v, k, \)-design with v > vy, it is always possible to choose
one block from each block orbit so that the chosen blocks are pairwise disjoint.

Compared with Conjecture 2, Conjecture 3 is stated for sufficiently large v. This is from
the observation that the union of A copies of a (k(k — 1) 4+ 1,k,1)-CDF forms a (k(k — 1) +
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1, k, A)-CDF which yields a cyclic (k(k — 1) 4+ 1, k, A)-design without short orbits. Note that
a (k(k — 1)+ 1,k,1)-CDF is often called a cyclic difference set (see [2]) and it generates a
symmetric design, any two blocks of which must intersect in one point. Thus the resulting
cyclic (k(k — 1) + 1, k, A)-design cannot be generated by a DDF.

Actually Novék made a stronger conjecture on cyclic STS(v) than Conjecture 1 in 1974. A
(v,3,1)-DDF for v =1 (mod 6) is called symmetric if its base blocks can be chosen in such a
way that for any nonzero x of Z,, at most one of x and its complement v — x occurs in the base
blocks and no base block contains zero.

Conjecture 4. (Novdk, 1974) [16] Every cyclic STS(v) with v =1 (mod 6) is generated by a
symmetric (v,3,1)-DDF.

So far it is only known that Conjecture 4 holds for all v =1 (mod 6) and v < 61 (see [10,
Theorem 22.3)).

Finally we remark that in a recent paper [4] a new concept of “doubly disjoint difference
family” was introduced to establish a composition construction for resolvable difference families.
Roughly speaking, if we take k = 3 and A = 1 in Theorem 4, then the induced cyclic difference
family “almost” forms a doubly disjoint difference family.
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