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Abstract

Novák conjectured in 1974 that for any cyclic Steiner triple systems of order v with

v ≡ 1 (mod 6), it is always possible to choose one block from each block orbit so that

the chosen blocks are pairwise disjoint. We consider the generalization of this conjecture

to cyclic (v, k, λ)-designs with 1 6 λ 6 k − 1. Superimposing multiple copies of a cyclic

symmetric design shows that the generalization cannot hold for all v, but we conjecture

that it holds whenever v is sufficiently large compared to k. We confirm that the gener-

alization of the conjecture holds when v is prime and λ = 1 and also when λ 6 (k − 1)/2

and v is sufficiently large compared to k. As a corollary, we show that for any k > 3, with

the possible exception of finitely many composite orders v, every cyclic (v, k, 1)-design

without short orbits is generated by a (v, k, 1)-disjoint difference family.

Keywords: Steiner triple system; Novák’s conjecture; cyclic design; disjoint difference family

1 Introduction

Let V be a set of v points, and B be a collection of k-subsets of V called blocks. A pair (V,B) is
called a (v, k, λ)-design if every pair of distinct elements of V is contained in precisely λ blocks

of B. A (v, 3, 1)-design is called a Steiner triple system of order v and is written as an STS(v).

An automorphism of a (v, k, λ)-design (V,B) is a permutation on V leaving B invariant. A

(v, k, λ)-design is said to be cyclic if it admits an automorphism consisting of a cycle of length

v. Without loss of generality we identify V with Zv, the additive group of integers modulo v.

The blocks of a cyclic (v, k, λ)-design can be partitioned into orbits under Zv. We can choose

any fixed block from each orbit and then call these base blocks. If the cardinality of an orbit is

equal to v, the orbit is full. Otherwise, it is short. It follows from the orbit-stabilizer theorem

that the cardinality of any orbit is a divisor of v and is at least v/k. If gcd(v, k) = 1, then all

orbits of a cyclic (v, k, λ)-design are full (see [15, Lemma 1]). It is known that a cyclic STS(v)

exists if and only if v ≡ 1, 3 (mod 6) and v 6= 9 (see [10, Theorem 7.3]).
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bE-mail address: danhorsley@gmail.com; Supported by ARC grants DP150100506 and FT160100048
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A useful tool for generating cyclic designs is the concept of a difference family. A (v, k, λ)-

cyclic difference family is a family F of k-subsets (called base blocks) of Zv such that the multiset

∆F := {x − y : x, y ∈ F, x 6= y, F ∈ F} contains every element of Zv \ {0} exactly λ times.

Such a family is denoted as a (v, k, λ)-CDF. It consists of λ(v − 1)/(k(k − 1)) base blocks. A

(v, k, λ)-CDF F can generate a cyclic (v, k, λ)-design with block-multiset devF := {F + t : F ∈
F , t ∈ Zv} (see [18, Theorem 3.46]). Furthermore, when gcd(v, k) = 1, F is a (v, k, λ)-CDF if

and only if devF is a cyclic (v, k, λ)-design (see [3, Proposition VII.1.5]).

A (v, k, λ)-CDF is said to be disjoint and written as a (v, k, λ)-DDF when its base blocks

are mutually disjoint. Novák [16] conjectured in 1974 that for any cyclic STS(v) with v ≡ 1

(mod 6), it is always possible to find a set of (v − 1)/6 disjoint base blocks which come from

different block orbits to form a (v, 3, 1)-DDF (see also [1, Remark 16.22] or [10, Work point

22.5.2]).

Conjecture 1. (Novák, 1974) [16] Every cyclic STS(v) with v ≡ 1 (mod 6) is generated by a

(v, 3, 1)-DDF.

Conjecture 1 is widely believed to be true but not much progress has been made on it. So

far it is only known that Conjecture 1 holds for all v ≡ 1 (mod 6) and v 6 61 (see [10, Theorem

22.3]). On the other hand, Dinitz and Rodney [11] proved that a (v, 3, 1)-DDF exists for any

v ≡ 1 (mod 6) by taking a suitable (v, 3, 1)-CDF and then replacing each of its base blocks Bi

by a suitable translate Bi + ti. For more information on (v, 3, 1)-DDFs with v ≡ 3 (mod 6),

interested readers are referred to [6, 12].

Recently, using the Combinatorial Nullstellensatz, Karasev and Petrov [14] proved the fol-

lowing result.

Lemma 1. [14, Theorem 2] Let F be an arbitrary field, and let m and d be positive integers

such that (md)!/(d!)m 6= 0 in F. Let X1, . . . , Xm and T1, . . . , Tm be subsets of F such that

∀i < j |Xi −Xj | 6 2d, ∀i |Ti| > (m− 1)d+ 1,

where Xi−Xj := {x−y : x ∈ Xi, y ∈ Xj}. Then there exists a system of representatives ti ∈ Ti

such that the sets X1 + t1, . . . , Xm + tm are pairwise disjoint.

We now apply Lemma 1 to show that Conjecture 1 is true whenever v is a prime.

Theorem 1. Let k > 2 and let p be a prime. Every cyclic (p, k, 1)-design is generated by a

(p, k, 1)-DDF.

Proof. We may assume p > k because otherwise the result is trivial. Since gcd(p, k) = 1, a

cyclic (p, k, 1)-design has m = (p−1)/(k(k−1)) full orbits and no short orbits. Let B1, . . . , Bm

be base blocks of a cyclic (p, k, 1)-design and let d = ⌈k2/2⌉. Then |Bi − Bj | 6 2d for any

1 6 i < j 6 m. Let T1 = · · · = Tm = Zp. Then |Ti| = p > (m − 1)d + 1 for k > 2.

Since md < p when k > 2, (md)!/(d!)m 6≡ 0 (mod p). Therefore, by Lemma 1, there exists

a system of representatives ti ∈ Ti such that B1 + t1, . . . , Bm + tm are pairwise disjoint. So

B1 + t1, . . . , Bm + tm form a (p, k, 1)-DDF.

Theorem 1 motivates us to present the following conjecture on cyclic (v, k, 1)-designs, which

also allows for designs with short orbits.

Conjecture 2. For any cyclic (v, k, 1)-design, it is always possible to choose one block from

each block orbit so that the chosen blocks are pairwise disjoint.
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The existence of (v, k, 1)-DDFs is in general quite a hard problem. Conjecture 2, if true,

would reduce the existence of (v, k, 1)-DDFs to the existence of (v, k, 1)-CDFs. The following

results on CDFs are known in the literature.

Lemma 2.

(1) [9] For any prime p ≡ 1 (mod 12), there exists a (p, 4, 1)-CDF.

(2) [9] For any prime p ≡ 1 (mod 20), there exists a (p, 5, 1)-CDF.

(3) [8] For any prime p ≡ 1 (mod 30) and p 6= 61, there exists a (p, 6, 1)-CDF.

(4) [7] Let p ≡ 1 (mod k(k − 1)) be a prime. Then a (p, k, 1)-CDF exists if p >
(

k

2

)2k
.

As a corollary of Theorem 1 together with Lemma 2, we obtain the following existence

results on DDFs.

Theorem 2. Let p ≡ 1 (mod k(k − 1)) be a prime.

(1) There exists a (p, k, 1)-DDF for each k ∈ {4, 5, 6} and (k, p) 6= (6, 61).

(2) There exists a (p, k, 1)-DDF whenever p >
(

k

2

)2k
.

We remark that by using Weil’s theorem on estimates of character sums, Wu, Yang and

Huang [19] also established the existence of a (p, 4, 1)-DDF for any prime p ≡ 1 (mod 12). We

also observe that the main result of [13] shows that, for fixed k and large v, one can find a family

F of (1−o(1)) v−1
k(k−1)

pairwise disjoint base blocks of size k such that ∆F contains each difference

at most once. This is accomplished by letting H be the disjoint union of (1− o(1)) v−1
k(k−1)

copies

of Kk and applying [13, Theorem 1.2] to find a rainbow copy of H in the complete graph on

Zv with edges coloured according to their differences.

In this paper, we shall provide a proof of Conjecture 2 when v is sufficiently large compared

to k. In fact, we consider a more general setting. We shall examine cyclic (v, k, λ)-designs with

k > 2λ + 1. As the main result of this paper, we prove Theorem 3 below. In fact we prove a

stronger statement which sometimes guarantees the existence of a family of mutually disjoint

blocks containing many blocks from each orbit (see Theorem 4).

Theorem 3. Let k and λ be fixed positive integers such that k > 2λ+1. There exists an integer

v0 such that, for any cyclic (v, k, λ)-design with v > v0, it is always possible to choose one block

from each block orbit so that the chosen blocks are pairwise disjoint.

Combining Theorems 1 and 3 yields the following corollary.

Corollary 1. Let k > 3 be a fixed integer. With the possible exception of finitely many composite

orders v, every cyclic (v, k, 1)-design without short orbits is generated by a (v, k, 1)-DDF.

2 Preliminaries

For any positive integer c, let [c] := {1, . . . , c}. We will make use of the following simple lemma

which shows that, for large v and fixed k and λ, a cyclic (v, k, λ)-design has few short orbits.

Lemma 3. Let k > 2 and λ > 1 be fixed integers. If (V,B) is a cyclic (v, k, λ)-design with h

short orbits and m full orbits, then

(i) h 6 2λ
√
k; and

(ii) λ(v−1)
k(k−1)

− 2λ
√
k 6 m 6

λ(v−1)
k(k−1)

6 m+ h 6
λ(v−1)
k(k−1)

+ 2λ
√
k.
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Proof. Let the point set of (V,B) be Zv and let B1, . . . ,Bh be the short orbits of (V,B). Let

i ∈ [h]. Recall that by the orbit-stabilizer theorem we have |Bi| = ℓi where
v
k
6 ℓi < v and ℓi | v.

Let Bi be a base block from Bi such that Bi contains the point 0. Since |Bi| = ℓi, Bi + ℓi = Bi.

It follows that Bi contains all multiples of ℓi. Write Si := {0, ℓi, 2ℓi, . . . , ( v
ℓi
− 1)ℓi}. Then

Si ⊆ Bi. Furthermore, for any a ∈ Bi, a+ Si ⊆ Bi, and so Bi is a disjoint union of some cosets

of Si in Zv, which implies |Si| | |Bi|. That is, v
ℓi
| k. Also, because exactly λ blocks in B contain

the pair {0, ℓi}, we have that at most λ of the orbits B1, . . . ,Bh have cardinality ℓi.

Thus, h 6 λσ0(k) where σ0(k) denotes the number of divisors of k. We know that σ0(k) 6

2
√
k for any positive integer k by using the fact that d | k if and only if k

d
| k, and so (i) follows.

Then (ii) follows from (i) by routine calculation after observing that mv +
∑h

i=1 ℓi = |B| =
λv(v−1)
k(k−1)

.

An r-uniform hypergraph G is a pair (V,E) where V is a vertex set and E is a set of r-

subsets of V called edges. The degree degG(x) of a vertex x ∈ V is the number of edges of G

containing x. For distinct vertices x and y of G, the codegree codegG(x, y) is the number of

edges of G containing both x and y. We write δG := min
x∈V

degG(x), ∆G := max
x∈V

degG(x) and

∆c
G := max

x,y∈V,x 6=y
codegG(x, y).

A proper edge-colouring of a hypergraph G = (V,E) with c colours is a function f : E −→ [c]

such that no two edges that share a vertex get the same colour. The following powerful result

of Pippenger and Spencer [17] (based on the Rödl nibble) shows that every almost regular

r-uniform hypergraph G with small maximum codegree can be edge-coloured with close to ∆G

colours.

Lemma 4. [17] Let r > 2 be an integer. For each real number η > 0, there exists a real number

η∗ > 0 and an integer n0 such that if G is an r-uniform hypergraph on n > n0 vertices satisfying

δG > (1− η∗)∆G and ∆c
G 6 η∗∆G, then G has a proper edge-colouring with (1 + η)∆G colours.

3 Proof of Theorem 3

A partial parallel class of a (v, k, λ)-design is a set of pairwise disjoint blocks. Let (V,B) be a

cyclic (v, k, λ)-design with orbits B1, . . . ,Bt, let P be a partial parallel class of (V,B) and let

s = ⌊k−1
λ
⌋. For any nonnegative integer a we define Ta(P) = {i ∈ [t] : |P∩Bi| = a} to be the set

of indices of orbits of (V,B) that contain exactly a blocks in P, and we define τa(P) = |Ta(P)|.
Also, we say that a block B ∈ B is P-good if, for each i ∈ [t], B intersects at most one block

in P ∩ Bi and, for each i ∈ T0(P) ∪ · · · ∪ Ts−1(P), B intersects no block in P ∩ Bi. Blocks in

B that are not P-good are P-bad. Intuitively, a P-good block B has the property that if we

add B to P and remove all blocks of P incident with B, then each orbit that intersected P in

at least s − 1 blocks still intersects the resulting partial parallel class in at least s − 1 blocks.

Finally we define, if s > 2,

d(P) =
s−2
∑

a=0

(s− 1− a)τa(P).

One can think of d(P) as a measure of how far P is from intersecting each orbit in at least s−1

blocks. The definitions of P-good and d(P) are implicitly dependent on the value of s = ⌊k−1
λ
⌋.

Our strategy is to first, in Lemma 5 below, apply Lemma 4 to an auxiliary hypergraph in

order to obtain a partial parallel class in the design that contains s blocks from almost every

orbit. For such a partial parallel class P we then, in Lemma 6, prove that if each orbit that

4



intersects P in fewer than s − 1 blocks contains sufficiently many P-good blocks, then P can

be modified to produce a new class that contains s blocks from almost every orbit and s − 1

blocks from each remaining orbit. Finally, to prove Theorem 4, we show that Lemma 6 can

successfully be applied to a partial parallel class obtained by making some modifications to a

class given by Lemma 5.

Lemma 5. Let k and λ be positive integers and let s = ⌊k−1
λ
⌋. For each real number ǫ∗ > 0,

there exists an integer v∗0 such that, for each integer v > v∗0, any cyclic (v, k, λ)-design with m

full orbits has a partial parallel class P that contains s blocks from each of (1− ǫ∗)m full orbits

and no blocks from any other orbit.

Proof. Let (V,B) be a cyclic (v, k, λ)-design with full orbits B1, . . . ,Bm. Observe that, by

Lemma 3(ii), λ(v−1)
k(k−1)

− 2λ
√
k 6 m 6

λ(v−1)
k(k−1)

. Hence, supposing v is sufficiently large, we have
λ(v−1)

k2
< m 6

λ(v−1)
k(k−1)

. Let w = ⌊v−1
k
⌋ and choose integers s1, . . . , sm ∈ {s, s + 1} such that

s1 + · · · + sm = w. Such integers exist because sm 6
v−1
k

using s 6
k−1
λ

and m 6
λ(v−1)
k(k−1)

, and

because (s + 1)m > v−1
k

using s + 1 >
k
λ
and m > λ(v−1)

k2
. Let W = {ui,j : i ∈ [m], j ∈ [si]} be

a set of w vertices disjoint from V . We form a (k + 1)-uniform hypergraph G with vertex set

V ∪W and edge set

{B ∪ {ui,j} : B ∈ Bi, i ∈ [m], j ∈ [si]}.
Observe that, for each x ∈ V , we have degG(x) = ks1 + · · · + ksm = kw because x is in k

blocks in each full orbit, and hence we have v−k 6 degG(x) 6 v−1. Also, degG(x) = v for each

x ∈ W because each full orbit contains v blocks. Furthermore codegG(x, y) 6 λ(s+1) 6 k+λ−1

for all distinct x, y ∈ V because (V,B) is a design of index λ, codegG(x, y) = 0 for all distinct

x, y ∈ W , and codegG(x, y) = k for all x ∈ V and y ∈ W because k blocks from any full

orbit contain a given vertex in V . So G has v + w vertices, vw edges, δG > v − k, ∆G 6 v,

and ∆c
G 6 k + λ− 1. Thus Lemma 4 implies that for any real number ǫ∗ > 0, supposing v is

sufficiently large, G has a proper edge-colouring with (1 + ǫ∗

s+1
)v colours.

Let C be a largest colour class of this colouring. Then C is a set of disjoint edges of G and,

because G has vw edges, |C| > (s+1)w
s+1+ǫ∗

> w− ǫ∗ w
s+1

> w− ǫ∗m where the last inequality follows

because w < (s+ 1)m. Let

M =
{

i ∈ [m] : |{j ∈ [si] : ui,j is in an edge in C}| > s
}

.

Observe that |M | > (1 − ǫ∗)m because each edge of G contains exactly one vertex in W and

hence there are less than ǫ∗m vertices in W that are not in an edge of C. Let C′ be the set

of edges in C that contain a vertex in {ui,j : i ∈ M, j ∈ [si]} and let P = {E ∩ V : E ∈ C′}.
Then, by the definitions of G and C′, P is a partial parallel class in (V,B) that contains at least
s blocks from Bi for each i ∈ M and no other blocks. So, by deleting some blocks from P if

necessary, we can obtain a partial parallel class with the desired properties.

Lemma 6. Let k and λ be positive integers such that k > 2λ+1 and let s = ⌊k−1
λ
⌋. Let (V,B) be

a cyclic (v, k, λ)-design with orbits B1, . . . ,Bt, and let P ′ be a partial parallel class that contains

at most s blocks from each orbit. If, for each i ∈ T0(P ′)∪ · · ·∪Ts−2(P ′), Bi contains more than

k2(ks− k+1)(d(P ′)− 1) P ′-good blocks, then there is a partial parallel class P ′′ of (V,B) such
that τs−1(P ′′) 6 (k + 1)d(P ′) + τs−1(P ′) and τs(P ′′) = t− τs−1(P ′′).
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Proof. Note that s > 2 by our hypotheses. We prove the result by induction on the quantity

d(P ′). If d(P ′) = 0 then τ0(P ′) = · · · = τs−2(P ′) = 0 and we can take P ′′ = P ′ to complete

the proof. So suppose that d(P ′) = ℓ for some positive integer ℓ and that the result holds for

d(P ′) < ℓ. Let j ∈ T0(P ′) ∪ · · · ∪ Ts−2(P ′) and let Bj be a P ′-good block in Bj (such a block

exists by the hypotheses of the lemma because d(P ′) > 1). Let Q be the set of blocks in P ′

which intersect Bj and let P∗ = (P ′∪{Bj})\Q. Note that P∗ is a partial parallel class of (V,B)
and that |Q| 6 |Bj| = k. Also, because Bj was P ′-good, τ1(Q) = |Q| and T1(Q) ⊆ Ts(P ′).

Observe that |P∗∩Bj | = |P ′∩Bj |+1, |P∗∩Bi| = s−1 for each i ∈ T1(Q), and P∗∩Bi = P ′∩Bi

for all i ∈ [t] \ (T1(Q) ∪ {j}). Thus d(P∗) = d(P ′)− 1 and τs−1(P∗) 6 τs−1(P ′) + k + 1. Any

block in B that was P ′-good but is P∗-bad must intersect one of the at most ks− k + 1 blocks

in {Bj} ∪ ⋃

i∈T1(Q)(P∗ ∩ Bi). For each i ∈ T0(P∗) ∪ · · · ∪ Ts−2(P∗), at most k2 blocks in Bi

intersect each of these blocks and so, because more than k2(ks− k+1)(d(P ′)− 1) blocks in Bi

were P ′-good, more than

k2(ks−k+1)(d(P ′)−1)−k2(ks−k+1) = k2(ks−k+1)(d(P ′)−2) = k2(ks−k+1)(d(P∗)−1)

blocks in Bi are P∗-good. Thus we can apply our inductive hypothesis to P∗ to establish the

existence of a partial parallel class P ′′ of (V,B) such that τs−1(P ′′) 6 (k + 1)d(P∗) + τs−1(P∗)

and τs(P ′′) = t− τs−1(P ′′). The proof is now complete by observing that

τs−1(P ′′) 6 (k+1)d(P∗)+τs−1(P∗) 6 (k+1)(d(P ′)−1)+τs−1(P ′)+k+1 = (k+1)d(P ′)+τs−1(P ′).

Theorem 4. Let k and λ be fixed positive integers such that k > 2λ + 1 and let s = ⌊k−1
λ
⌋.

For each real number ǫ > 0, there is an integer v0 such that, for each integer v > v0, any cyclic

(v, k, λ)-design with t orbits has a partial parallel class that contains s− 1 blocks from each of

at most ǫt orbits and contains s blocks from each other orbit.

Proof. Note that s > 2 by our hypotheses. We may assume that ǫ < 1
4k2

. Let ǫ∗ = ǫ
2(k+1)s

. Let

(V,B) be a cyclic (v, k, λ)-design with orbits B1, . . . ,Bt and suppose that m of these orbits are

full. Throughout this proof, we will tacitly assume v is sufficiently large whenever necessary

and will use asymptotic notation with respect to this regime. Note that t = λ(v−1)
k(k−1)

+ O(1) by

Lemma 3(ii) and hence t = Θ(v). By Lemma 5 there is a partial parallel class P of (V,B) such
that T0(P) contains at most ǫ∗m 6 ǫ∗t indices of full orbits and every other index of a full orbit

is in Ts(P). Let

R = {i ∈ [t] : Bi contains at least
1
2
st P-bad blocks}.

A block in B is P-bad if and only if it intersects at least two blocks in P ∩ Bi for some

i ∈ Ts(P). At most k2λ
(

s

2

)

blocks of B intersect at least two blocks in P∩Bi for each i ∈ Ts(P),

and so it follows that at most k2λ
(

s

2

)

τs(P) 6 k2λ
(

s

2

)

t blocks in B are P-bad. Thus, by the

definition of R, we have |R| 6 k2sλ.

We can greedily choose a partial parallel class R in (V,B) such that |R ∩ Bi| = s for each

i ∈ R and R ∩ Bi = ∅ for each i ∈ [t] \ R. To see this, suppose that x < s|R| 6 k2s2λ blocks

of the class have already been chosen and note that, for each i ∈ R, at most k2 of blocks in Bi

intersect each already chosen block and

|Bi| > v
k
≫ k4s2λ > k2x.
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Thus we can indeed choose a suitable R greedily.

Now let

Q = {i ∈ [t] \R : some block in P ∩ Bi intersects some block in R}.

Observe that ks|R| 6 k3s2λ vertices in V are in a block in R and hence |Q| 6 k3s2λ.

Let P ′ = R ∪ ⋃

i∈[t]\Q(P ∩ Bi) and note that P ′ is a partial parallel class in (V,B). So

Ts(P ′) = (Ts(P) ∪ R) \ Q and T0(P ′) = [t] \ Ts(P ′). Thus τ1(P ′) = · · · = τs−1(P ′) = 0 and

τ0(P ′) 6 τ0(P) + |Q|. Furthermore, T0(P) contains at most ǫ∗t indices of full orbits and, by

Lemma 3(i), at most 2λ
√
k indices of short orbits. From this it follows that

d(P ′) = (s− 1)τ0(P ′) 6 (s− 1)(τ0(P) + |Q|) < ǫt

2(k + 1)
+O(1) ≪ ǫt

k + 1
. (1)

Any block in B that was P-good but is P ′-bad must intersect two of the s blocks in P ′ ∩Bi

for some i ∈ R. For each i ∈ R, at most k2λ
(

s

2

)

blocks in B intersect two of the blocks in

P ′ ∩ Bi. So at most k2λ
(

s

2

)

|R| 6 k4sλ2
(

s

2

)

blocks in B were P-good but are P ′-bad. Thus, for

each i ∈ T0(P ′), because i /∈ R and hence less than 1
2
st blocks in Bi were P-bad, the number

of P ′-bad blocks in Bi is less than
1
2
st+ k4sλ2

(

s

2

)

. Now t 6 λ(v−1)
k(k−1)

+ 2λ
√
k by Lemma 3(ii) and

hence st 6 v
k
+O(1). So, since |Bi| > v

k
, more than v

k
− 1

2
st− k4sλ2

(

s

2

)

>
1
2
st−O(1) blocks in

Bi are P ′-good. Thus P ′ satisfies the conditions of Lemma 6 because

k2(ks− k + 1)(d(P ′)− 1) < ǫk2st < 1
4
st ≪ 1

2
st−O(1)

where the first inequality follows by (1) because ks− k + 1 < s(k + 1) and the second follows

because ǫ < 1
4k2

. Thus, by applying Lemma 6 to P ′, there is a partial parallel class P ′′ of (V,B)
such that τs(P ′′) = t− τs−1(P ′′) and

τs−1(P ′′) 6 (k + 1)d(P ′) < ǫt

where the last inequality follows by (1).

Note that in the special case where λ divides k − 1, the partial parallel class given by

Theorem 4 uses all but at most ǫkt + 1 points of the design.

Proof of Theorem 3 This follows directly from Theorem 4, noting that s > 2 because

k > 2λ+ 1.

4 Concluding remarks

A (v, k, λ)-DDF necessarily has 1 6 λ 6 k − 1 apart from the trivial case of a (k, k, k)-DDF

(see [5]). Theorem 3 requires 1 6 λ 6 (k − 1)/2. It is natural to ask whether it is possible to

relax this condition. We make the following conjecture.

Conjecture 3. Let k and λ be fixed positive integers such that k > λ + 1. There exists an

integer v0 such that, for any cyclic (v, k, λ)-design with v > v0, it is always possible to choose

one block from each block orbit so that the chosen blocks are pairwise disjoint.

Compared with Conjecture 2, Conjecture 3 is stated for sufficiently large v. This is from

the observation that the union of λ copies of a (k(k − 1) + 1, k, 1)-CDF forms a (k(k − 1) +

7



1, k, λ)-CDF which yields a cyclic (k(k − 1) + 1, k, λ)-design without short orbits. Note that

a (k(k − 1) + 1, k, 1)-CDF is often called a cyclic difference set (see [2]) and it generates a

symmetric design, any two blocks of which must intersect in one point. Thus the resulting

cyclic (k(k − 1) + 1, k, λ)-design cannot be generated by a DDF.

Actually Novák made a stronger conjecture on cyclic STS(v) than Conjecture 1 in 1974. A

(v, 3, 1)-DDF for v ≡ 1 (mod 6) is called symmetric if its base blocks can be chosen in such a

way that for any nonzero x of Zv, at most one of x and its complement v−x occurs in the base

blocks and no base block contains zero.

Conjecture 4. (Novák, 1974) [16] Every cyclic STS(v) with v ≡ 1 (mod 6) is generated by a

symmetric (v, 3, 1)-DDF.

So far it is only known that Conjecture 4 holds for all v ≡ 1 (mod 6) and v 6 61 (see [10,

Theorem 22.3]).

Finally we remark that in a recent paper [4] a new concept of “doubly disjoint difference

family” was introduced to establish a composition construction for resolvable difference families.

Roughly speaking, if we take k = 3 and λ = 1 in Theorem 4, then the induced cyclic difference

family “almost” forms a doubly disjoint difference family.
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