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Abstract

We give combinatorial descriptions of the terms occurring in continuants of
general continued fractions that diverge to three limits. Equating this combina-
torics with the usual combinatorial description due to Euler induces nontrivial
identities. Special cases and applications to counting sequences are given.
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1. Overview

Research on divergent continued fractions usually occurs in the study of
analytic continued fractions. Meanwhile, combinatorial aspects of continued
fractions are typically studied in in the field of enumerative combinatorics. In
this paper we bring the two subjects together and give a combinatorial descrip-
tion of the continuants of a general class of continued fractions that diverge
to three limits. This class was previously studied from the analytic point of
view by the first author [5]. We are able to relate our combinatorially described
polynomials to the classical continuant polynomials going back to Euler. This
yields identities that have a flavor similar to the identities between different
bases of symmetric polynomials in as much as there is considerable cancellation
occurring between the monomials on one side, but not the other.

As usual we write a continued fraction:
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b0 +
a1

b1 +
a2

b2 +
a3

b3 + ...

with the more compact notation

b0 +
a1
b1 +

a2
b2 +

a3
b3 + · · · . (1)

The kth classical numerator Ak, and kth classical denominator Bk, of the con-
tinued fraction (1) are the respective numerator and denominator when the
finite continued fraction

Ak

Bk
= b0 +

a1
b1 +

a2
b2 +

a3
b3 + · · ·+

ak
bk

is simplified in the usual way. The polynomials Ak = Ak(a1, . . . , ak; b0, . . . , bk)
are also known as continuants. Since Bk = Ak−1(a2, . . . , ak; b1, . . . , bk), it suf-
fices to consider just the sequence Ak.

1.1. Continuants

A combinatorial description for the terms of polynomials Ak was first given
in 1764 by Euler [8] in the case where ai = 1, for 1 ≤ i ≤ k. The case where
bi = 1, for 0 ≤ i ≤ k was considered by Sylvester [18] in 1854. The general case
was finally given by Minding [11] in 1869. See also Chrystal [6] and Muir [12].

This description is simplest in the special case when the indeterminates bi
are set equal to unity. There is really no loss of generality due to the simple
identity

b0 +
a1
b1 +

a2
b2 + · · · +

ak
bk

= b0

(

1 +
a1/b0b1

1 +

a2/b1b2
1 + · · · +

ak/bk−1bk
1

)

.

Euler’s combinatorial description [8] is sometimes referred to by the terms Euler
brackets or Euler’s rule; see, for example, Davenport [7] or Roberts [14]. In any
event the resulting theorem is known as the Euler-Minding Theorem.

Theorem 1 (Euler-Minding Theorem, Sylvester’s form). The classical nu-
merators and denominators of

1 +
a1
1 +

a2
1 +

a3
1 + · · · (2)

are given by

Ak = 1 +
∑

k≥h1>
2h2>

2···>2hℓ≥1
ℓ≥1

ah1
ah2

· · ·ahℓ
, (3)
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and
Bk = 1 +

∑

k≥h1>
2h2>

2···>2hℓ≥2
ℓ≥1

ah1
ah2

· · · ahℓ
, (4)

where i >2 j means i and j have minimal difference 2; i ≥ j + 2.

Thus the monomials in Ak and Bk are described by sequences hi of the form

k ≥ h1 >
2 h2 >

2 · · · >2 hℓ.

We call a sequence satisfying this inequality chain a minimal difference 2 se-
quence.

Note that when k → ∞ limits for Ak and Bk exist in the ring of formal power
series over the monoid generated by the indeterminates ai. As we will soon see,
this does not necessarily hold for other continued fractions with indeterminate
elements.

1.2. Divergent Continued Fractions with Multiple Limits

Apparently, the first theorem on continued fractions that diverge to multiple
limits is that of Stern and Stolz [10, 16, 17]:

Theorem 2 (Stern-Stolz). Let the complex sequence {bi} satisfy
∑ |bi| <∞.

Then

b0 +
1

b1 +

1

b2 +

1

b3 + · · ·
diverges. In fact, for p ∈ {0, 1}, lim

n→∞
A2n+p = Cp ∈ C, and lim

n→∞
B2n+p = Dp ∈

C.

The proof of the Stern-Stolz Theorem goes over into the formal power series
setting and the conclusion is that limiting formal power series exist for the limits
described in the theorem: inspection of the recurrence Ak = bkAk−1 + Ak−2

shows that it converges for k in the residue classes modulo 2, and the same is
true of the sequence Bk, since it satisfies the same recurrence. That the limits
are distinct follows from the determinant formula AkBk−1−Ak−1Bk = (−1)k+1.

Bowman and McLaughlin [5] established the following result on continued
fractions which diverge to three limits as an example of a more general theorem
on continued fractions which diverge to any finite number of limits.

Let K be defined to be the following general continued fraction

K := b0 +
−1 + a1
1 + b1 +

−1 + a2
1 + b2 +

−1 + a3
1 + b3 + · · · . (5)

Because we will be interested in giving a combinatorial description for the terms
of the continuants of K, we designate its classical numerators and denominators
by Pk and Qk, respectively, to distinguish them from the corresponding poly-
nomials associated with (1). With this notation, the result from [5] of interest
is the following theorem.
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Theorem 3 (Example 1i from [5]). Let the complex sequences ai and bi sat-
isfy ai 6= 1 for i ≥ 1, and

∑ |ai|+ |bi| <∞. For j = 1, 2, 3,

lim
n→∞

P6n+j = − lim
n→∞

P6n+j+3 = Cj 6= ∞, (6)

lim
n→∞

Q6n+j = − lim
n→∞

Q6n+j+3 = Dj 6= ∞. (7)

In fact, for j ∈ {1, 2, 3}, K diverges to three limits given by

lim
k→∞

k≡j(mod 3)

Pk

Qk
.

Our main result, Theorem 18, which gives a combinatorial description for
the terms of the continuants of (5), shows the existence of the limits Cj and
Dj as formal power series. (This can also be seen directly from (21) and (23)
below.)

1.3. Partition Applications

Putting ai = qi in Theorem 1 gives that the Rogers-Ramanujan integer
partition identities,

The number of partitions of n into parts with minimal difference two
equals the number of partitions of n into parts congruent to 1 or 4
modulo 5.

The number of partitions of n into parts greater than 1 with min-
imal difference two equals the number of partitions of n into parts
congruent to 2 or 3 modulo 5.

are equivalent to the single identity,

1 +
q

1 +

q2

1 +

q3

1 +

q4

1 + · · · ⊜





∞
∏

j=1

1

(1− q5j+1)(1 − q5j+4)









∞
∏

j=1

1

(1− q5j+2)(1 − q5j+3)





,

where ⊜ indicates that the limiting classical numerator and denominator of
the continued fraction on the left are equal as formal power series in q to the
numerator and denominator on the right.

Thus, a combinatorial description for the terms of the continuants of con-
tinued fraction K, in the case where ai = 0, will give a partition interpretation
to the limiting classical numerator and denominator (in residue classes modulo
6) of Ramanujan’s amazing continued fraction with 3 limits [3, 4]:

lim
k→∞

1

1 +

−1

1 + q +

−1

1 + q2 + · · ·+
−1

1 + q3k+j

= ω2

(

Ω− ωj+1

Ω− ωj−1

) ∞
∏

m=0

(1− q3m+2)

(1− q3m+1)
,

(8)
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where ω = e2πi/3, j ∈ {0, 1, 2}, and

Ω =

∞
∏

p=1

(1− ω2qp)

(1 − ωqp)
.

It follows that when the corresponding products on the right hand have been
given interpretations as partition generating functions, one obtains partition
identities which are equivalent (via the description of terms for K’s continuants)
to Ramanujan’s three-limit continued fraction. This will be attained in a sequel,
and was one of the chief motivations for the present paper.

To state the problem solved in this paper most succinctly, we give a combi-
natorial description for the terms of the polynomials Pk, defined recursively in
the non-commutative indeterminates ai and bi by:

Pk = (−1 + ak)Pk−2 + (1 + bk)Pk−1,

with initial conditions P0 = b0 and P1 = −1 + b0 + a1 + b1b0.

1.4. Results

This paper studies a number of new and interrelated sequences of polynomi-
als whose terms are described combinatorially. These sequences of polynomials
are of two types. The first arise from the classical Euler-Minding Theorem; they
exhibit a modulo two or four behavior as a function of their index. The second
arise from the sequence Pk; these exhibit a modulo six behavior. The terms
of Pk are characterized by Theorem 18, which is the main result of this paper.
Equalities are induced between the two types because the continued fraction (1)
can be transformed into (5) by making the change of variables ai 7→ −1 + ai
and bi 7→ 1+ bi, for i ≥ 1. This results in non-trivial identities, since the sum in
the non-commutative version of the Euler-Minding Theorem (see Section 2.1)
now has intensive sieving occurring, while the polynomials on the other side
are expressed in terms of their monomials. Important special cases arise when
either the variables ai or bi vanish. For the continued fraction K, this results in
the polynomial sequences Ck, Dk, Gk, and Hk introduced in Section 3. Section
4 examines the resulting polynomial identities and also gives applications to
common second order linear recurrence sequences of integers. In a future paper
we will apply Corollary 20 of Theorem 18 to find integer partition identities
equivalent to (8).

The simplest example of our results is perhaps the following, which comes
from Corollaries 22 and 24:

− 2
√
3

3
Im

(

ekπi/3
)

=
∑

k≥λ1>2λ2>2···>2λℓ=1

(−1)ℓ = −χ1(k) +
∑

λ∈Dk

(−1)
k−ℓ+1

2 ,

(9)
where χ1(k) is the nonprincipal Dirichlet character modulo 4, and Dk is the set
of finite integer sequences (depending on k) satisfying,

D1 k ≥ λ1 > λ2 > · · · > λℓ ≥ 2.
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D2 λ1 ≡ k(mod 2).

D3 λj 6≡ λj−1(mod 2).

D4 λℓ ≡ 0(mod 2).

The first expression in (9) indicates a six-fold pattern in the integer sequences
given by the sums, although from superficial appearances of the sums, one might
expect a two-fold or four-fold pattern. The interpretation of the first equality
is beautiful and surprising:

Let Ck denote the set of increasing sequences of positive integers
of minimal difference two, with first term 1 and largest term less than
or equal to k. Then the number of elements of Ck of even length mi-
nus the number of elements of odd length is given by the six-periodic
integer sequence 0,−1,−1, 0, 1, 1, . . . , where the first element of the
sequence is indexed by k = 0.

In Section 4.1 we give a simple proof of this result which is independent of
the more general theory developed in this paper.

Finally, when a decreasing sequence λi satisfies condition D3 above, we say
that it is an alternating parity sequence. Partitions formed from sequences of
such parts have been studied by Andrews [1, 2]. It is easy to show that these
kinds of partitions arise naturally from Euler’s combinatorial description of the
continuants of (1) in the case ai = 1 and bi = qi. In Section 3 alternating
triality sequences arise, which are similar, except the congruence conditions on
the successive terms are modulo three, instead of two.

2. Preliminaries and Lemmas

2.1. Continued Fractions with Noncommuting indeterminates

The fundamental recurrence formulas for the classical numerators and de-
nominators of continued fractions are used for typical proofs of the Euler-
Minding Theorem and they are used to prove Theorem 18. These recurrences
state that for k ≥ 1,

Ak = akAk−2 + bkAk−1, (10)

and
Bk = akBk−2 + bkBk−1, (11)

where A−1 = 1 and B−1 = 0. Recurrence formulas with left or right multiplica-
tion by noncommuting indeterminates have been considered since at least 1913
[19]. The convention of writing parts of partitions in descending order motivates
us to consider recurrences (10) and (11) with noncommuting indeterminates. In
this context we speak of the continued fraction (1) as having noncommuting
indeterminates; we define the classical numerators and denominators as the re-
spective sequences of polynomials in noncommutative indeterminates satisfying
equations (10) and (11), with initial conditions A0 = b0, A1 = b1b0+a1, B0 = 1,
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and B1 = b1. Each classical numerator, Ak, and classical denominator Bk is
an element of the monoid ring Z[M], where M is the monoid generated by
{aj+1, bj}j≥0 with identity ǫ. The integers are isomorphic to the subring Zǫ of
Z[M]; we abuse 1ǫ, as usual, by writing it simply as 1. The product in M is
denoted by concatenation. Definition 1 provides terminology and notation for
Z[M] and its elements.

Definition 1. We call the elements P of Z[M] polynomials. We write P in the
form

P =
∑

m∈M

cmm, (12)

where cm ∈ Z and all but finitely many cm are zero. The support of P , denoted
by supp(P ), is the set

supp(P ) = {m ∈ M : cm 6= 0}.

We write
P =

∑

m∈supp(P )

cmm (13)

to keep polynomial sums finite. We call the elements of supp(P ) the monomials
of P , and for a monomial m of P , we call cmm a term of P . So here, monomials
do not have integer coefficients, while terms do. We call the coefficient of the
identity ǫ in (12) (not (13), since it may be that ǫ /∈ supp(P )) the constant of
P . Thus the constant of P can be zero.

Since the goal is to give combinatorial descriptions for the terms of classical
numerator and denominator polynomials of K, we employ vectors whose com-
ponents are indices of the elements of the support of these polynomials. In the
sequel and throughout, we display the components of an ℓ-dimensional vector
λ as [λ1, λ2, . . . , λℓ]. Definition 2 below defines vectors directly related to the
monomials of a given P ∈ Z[M]. For the definition, we use the noncommutative
product notation inductively defined for n ≥ 1 by

n
∏

j=1

di = d1

n−1
∏

j=1

dj+1,

and the empty product is ǫ as usual.

Definition 2. Let m be a monomial of P ∈ Z[M],

m =

ℓ
∏

j=1

yj,

where yj ∈ {ai+1, bi}i≥0. We denote the degree or length of the monomial m by
ℓ = ℓ(m); we usually suppress the dependence of ℓ on m.

7



(i) The index of m is the vector λ(m) = [λ1, λ2, . . . , λℓ], where yj = au implies
λj = u and yj = bu implies λj = u.

(ii) The a-index of m is the vector α(m) = [α1, α2, . . . , αℓ], where

αj =

{

u if yj = au,

0 otherwise.

(iii) The b-index of m is the vector β(m) = [β1, β2, . . . , βℓ], where

βj =

{

u if yj = bu,

0 otherwise.

Note that for a monomial m the index of m is the sum of the a-index and
b-index: λ(m) = α(m) + β(m).

Example 1. The monomial a6b4b3b2a1 has index [6, 4, 3, 2, 1]. It has a-index
[6, 0, 0, 0, 1] and b-index [0, 4, 3, 2, 0]. Monomial b5a4b2b0 has a-index [0, 4, 0, 0],
b-index [5, 0, 2, 0], and index [5, 4, 2, 0].

By a formal power series we mean an element of the monoid ring Z[[M]],
that is, an expression of the form

c =
∑

m∈M

cmm,

where now we do not require all but finitely many cm to be 0. Addition and
multiplication are defined as usual.

Before studying K we derive the noncommutative description of the terms
of the continuants of the general continued fraction (1).

2.2. A Noncommutative Euler-Minding Theroem

Minding [11] seems to have been the first to give the following slightly more
general version of Euler’s result [8]. See also [13].

Theorem 4 (Euler-Minding Theorem). The classical numerators and de-
nominators of the continued fraction

b0 +
a1
b1 +

a2
b2 +

a3
b3 + · · · (14)

in commutative indeterminates {aj+1, bj}j≥0 are given by

Ak = bkbk−1 · · · b1b0



1 +
∑

1≤hj<2hj−1<2···<2h1≤k

ah1
ah2

· · · ahj

bh1
bh1−1bh2

bh2−1 · · · bhj
bhj−1



 ,

(15)
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and

Bk = bkbk−1 · · · b1



1 +
∑

2≤hj<2hj−1<2···<2h1≤k

ah1
ah2

· · ·ahj

bh1
bh1−1bh2

bh2−1 · · · bhj
bhj−1



 .

(16)

Note that this theorem does not immediately give a description for the terms
for each continunant since the terms are rational, not monomial. But this is
easy to remedy.

Theorem 4 expresses Ak and Bk as rational functions in commuting inde-
terminates. One obtains the noncommutative version by multiplying through
by the b-product in front, canceling, and then ordering the terms so that the
indices from left to right are decreasing; the construction of the terms in the
sum guarantees that the indices are distinct, so no ambiguity between, say aibi
and biai can occur. For the classical numerators, (10) must be satisfied along
with the initial conditions A0 = b0 and A1 = b1b0 + a1. Induction on (10) gives
that Ak is a polynomial in the indeterminates {aj+1, bj}kj=0. Since (10) intro-
duces the new indeterminates ak and bk by left multiplication, the indices of the
terms of the classical numerators are in descending order. Therefore, the result
of expanding each summand of (15) and putting the indices into descending
order satisfies (10) with noncommuting indeterminates. Thus,

Ak =

k
∏

t=0

bk−t+
∑

1≤hj<
2hj−1<

2···<2h1≤k
j≥1

k−h1−1
∏

t=0

bk−t×
j
∏

u=1



ahu

hu−hu+1−1
∏

v=2

bhu−v



 .

(17)
A summand appearing in the second term of (17) has the form

bkbk−1 · · · bh1+1 × (ah1
bh1−2bh1−3 · · · bh2+1)(ah2

bh2−2 · · · bh3+1)

· · · (ahj
bhj−2 · · · b0).

Observe that the largest index is k and the indices are distinct nonnegative
integers. When an a-index is equal to some hj , the next index is hj − 2, since
the next index is either b-index hj − 2 or a-index hj+1 = hj − 2. When the
index is some b-index hi − s, the next index is hi − s− 1, since the next index
is either a-index hi−1 = hi − s− 1 or b-index hi − s− 1. Finally, the last index
is either zero or one. The last index is a b-index zero when hj > 1, and it is the
a-index 1 when hj = 1.

It is now easy to describe the subset of monomials of M occurring in the
noncommutative Euler-Minding Theorem: let Ak be the set of monomials with
a-index α, b-index β, and index λ = α+ β satisfying the following properties.

A1 k = λ1 > λ2 > · · · > λℓ ≥ 0.

A2 If λj = αj , then λj+1 = λj − 2.
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A3 If λj = βj , then λj+1 = λj − 1.

A4 Either λℓ = βℓ = 0 or λℓ = αℓ = 1.

It is clear that A1–A4 describe the terms of (17).
For example, A0 = {b0}, and A1 = {b1b0, a1}. Indeed, the index of any

element of A0 has λ1 = 0 by A1. The only possible a and b indices are each [0].
These vectors satisfy A1–A4, so A0 = {b0}. Also A1 = {b1b0, a1}; the index of
any element of A1 has λ1 = 1 by A1. So, the possible indices are [1, 0] and [1].
By A2 the vector [1, 0] cannot be an a-index. The monomial b1b0 with a-index
[0, 0] and b-index [1, 0] satisfies A1–A4. Thus, b1b0 is in A1. By A4 the vector
[1] is not a b index. The monomial a1 with a-index [1] and b-index [0] satisfies
A1–A4. Thus, a1 is in A1, and A1 = {b1b0, a1}.

It is not hard to show that b0 is a term of Ak if and only if k is even and that
a1 is a term of Ak if and only if k is odd. Further it can be shown, although we
don’t take it up here, that limk→∞ A2k and limk→∞ A2k+1 exist and are distinct
in Z[[M]].

Theorem 5 (Noncommutative Euler-Minding Theorem). The classical
numerators of the continued fraction

b0 +
a1
b1 +

a2
b2 +

a3
b3 + · · ·

in noncommutative indeterminates {aj+1, bj}j≥0 for k ≥ 0 are given by

Ak =
∑

m∈Ak

m. (18)

Proof. As explained in the paragraph following Theorem 4, ordering the result-
ing subscripts in descending order and canceling the bjs in (15) gives (18).
�

2.3. Lemmas

Let Pk(a1, a2, . . . , ak; b0, b1, b2, . . . , bk) and Qk(a2, . . . , ak; b1, b2, . . . , bk) be
the kth classical numerators and denominators of the continued fraction

K = b0 +
−1 + a1
1 + b1 +

−1 + a2
1 + b2 +

−1 + a3
1 + b3 + · · · ,

where indeterminates {aj+1, bj}j≥0 are noncommutative. By the fundamental
recurrence formulas (10) and (11), the classical numerators and denominators
of K satisfy

Xk = (−1 + ak)Xk−2 + (1 + bk)Xk−1,

with initial conditions P0 = b0, Q0 = 1, P1 = −1+b0+b1b0+a1, and Q1 = 1+b1.
The first three classical numerators are:

P0 = b0,

P1 = −1 + b0 + b1b0 + a1,

P2 = −1 + a2b0 + b1b0 + a1 − b2 + b2b0 + b2b1b0 + b2a1.

10



The following lemma gives a relationship between the kth classical denominator
and k + 1th classical numerator.

Lemma 6.

Qk = −Pk+1(0, a1, a2, . . . , ak; 0, 0, b1, . . . , bk). (19)

Proof. Let xk denote the right hand side of (19). Then x0 = 1 and x1 = 1+ b1.
Observe that xk satisfies xk = (−1 + ak)xk−2 + (1 + bk)xk−1. This is the same
recurrence and initial conditions satisfied by Qk. �

Define the sequence of polynomials Rk as follows: set R−1 = 0 and for k ≥ 0,
let

Rk(a1, a2, . . . , ak; b0, b1, . . . , bk) = Pk −Rk−1(a1, a2, . . . , ak−1; b0, b1, . . . , bk−1),
(20)

so that
Pk = Rk +Rk−1. (21)

The classical recurrence formula for Pk,

Pk = (−1 + ak)Pk−2 + (1 + bk)Pk−1, (22)

and (21) give a recurrence formula for Rk,

Rk = −Rk−3 + ak(Rk−2 +Rk−3) + bk(Rk−1 +Rk−2). (23)

For consistency, set a0 = 0 and initialize R−3 = 0, R−2 = 1, and R−1 = 0.
Interpreting this recurrence formula is the key to our proof of Theorem 18.

For future reference the first seven elements in the sequence {Rn}∞n=0 are
listed:

R0 = b0, (24a)

R1 =− 1 + a1 + b1b0, (24b)

R2 = a2b0 − b2 + b2a1 + b2b1b0 + b2b0, (24c)

R3 =− b0 − a3 + a3a1 + a3b1b0 + a3b0 + b3a2b0 − b3b2 + b3b2a1

+ b3b2b1b0 + b3b2b0 − b3 + b3a1 + b3b1b0, (24d)

R4 =1− a1 − b1b0 + a4a2b0 − a4b2 + a4b2a1 + a4b2b1b0 + a4b2b0 − a4

+ a4a1 + a4b1b0 − b4b0 − b4a3 + b4a3a1 + b4a3b1b0 + b4a3b0

+ b4b3a2b0 − b4b3b2 + b4b3b2a1 + b4b3b2b1b0 + b4b3b2b0 − b4b3

+ b4b3a1 + b4b3b1b0 + b4a2b0 − b4b2 + b4b2a1 + b4b2b1b0 + b4b2b0, (24e)

11



R5 =− a2b0 + b2 − b2a1 − b2b1b0 − b2b0 − a5b0 − a5a3 + a5a3a1

+ a5a3b1b0 + a5a3b0 + a5b3a2b0 − a5b3b2 + a5b3b2a1 + a5b3b2b1b0

+ a5b3b2b0 − a5b3 + a5b3a1 + a5b3b1b0 + a5a2b0 − a5b2 + a5b2a1

+ a5b2b1b0 + a5b2b0 + b5 − b5a1 − b5b1b0 + b5a4a2b0 − b5a4b2

+ b5a4b2a1 + b5a4b2b1b0 + b5a4b2b0 − b5a4 + b5a4a1 + b5a4b1b0

− b5b4b0 − b5b4a3 + b5b4a3a1 + b5b4a3b1b0 + b5b4a3b0 + b5b4b3a2b0

− b5b4b3b2 + b5b4b3b2a1 + b5b4b3b2b1b0 + b5b4b3b2b0 − b5b4b3

+ b5b4b3a1 + b5b4b3b1b0 + b5b4a2b0 − b5b4b2 + b5b4b2a1 + b5b4b2b1b0

+ b5b4b2b0 − b5b0 − b5a3 + b5a3a1 + b5a3b1b0 + b5a3b0 + b5b3a2b0

− b5b3b2 + b5b3b2a1 + b5b3b2b1b0 + b5b3b2b0 − b5b3 + b5b3a1

+ b5b3b1b0, (24f)

and

R6 = b0 + a3 − a3a1 − a3b1b0 − a3b0 − b3a2b0 + b3b2 − b3b2a1 − b3b2b1b0

− b3b2b0 + b3 − b3a1 − b3b1b0 + a6 − a6a1 − b1b0 + a6a4a2b0

− a6a4b2 + a6a4b2a1 + a6a4b2b1b0 + a6a4b2b0 − a6a4 + a4a1

+ a6a4b1b0 − a6b4b0 − a6b4a3 + a6b4a3a1 + a6b4a3b1b0 + a6b4a3b0

+ a6b4b3a2b0 − a6b4b3b2 + a6b4b3b2a1 + a6b4b3b2b1b0 + a6b4b3b2b0

− a6b4b3 + a6b4b3a1 + a6b4b3b1b0 + a6b4a2b0 − a6b4b2 + a6b4b2a1

+ a6b4b2b1b0 + a6b4b2b0 − a6b0 − a6a3 + a6a3a1 + a6a3b1b0 + a6a3b0

+ a6b3a2b0 − a6b3b2 + a6b3b2a1 + a6b3b2b1b0 + a6b3b2b0 − a6b3

+ a6b3a1 + a6b3b1b0 − b6a2b0 + b6b2 − b6b2a1 − b6b2b1b0 − b6b2b0

− b6a5b0 − b6a5a3 + b6a5a3a1 + b6a5a3b1b0 + b6a5a3b0 + b6a5b3a2b0

− b6a5b3b2 + b6a5b3b2a1 + b6a5b3b2b1b0 + b6a5b3b2b0 − b6a5b3

+ b6a5b3a1 + b6a5b3b1b0 + b6a5a2b0 − b6a5b2 + b6a5b2a1 + b6a5b2b1b0

+ b6a5b2b0 + b6b5 − b6b5a1 − b6b5b1b0 + b6b5a4a2b0 − b6b5a4b2

+ b6b5a4b2a1 + b6b5a4b2b1b0 + b6b5a4b2b0 − b6b5a4 + b6b5a4a1

+ b6b5a4b1b0 − b6b5b4b0 − b6b5b4a3 + b6b5b4a3a1

+ b6b5b4a3b1b0 + b6b5b4a3b0 + b6b5b4b3a2b0 − b6b5b4b3b2

+ b6b5b4b3b2a1 + b6b5b4b3b2b1b0 + b6b5b4b3b2b0 − b6b5b4b3

+ b6b5b4b3a1 + b6b5b4b3b1b0 + b6b5b4a2b0 − b6b5b4b2 + b6b5b4b2a1

+ b6b5b4b2b1b0 + b6b5b4b2b0 − b6b5b0 − b6b5a3 + b6b5a3a1

+ b6b5a3b1b0 + b6b5a3b0 + b6b5b3a2b0 − b6b5b3b2 + b6b5b3b2a1

+ b6b5b3b2b1b0 + b6b5b3b2b0 − b6b5b3 + b6b5b3a1 + b6b5b3b1b0 + b6

− b6a1 − b6b1b0 + b6a4a2b0 − b6a4b2 + b6a4b2a1 + b6a4b2b1b0

+ b6a4b2b0 − b6a4 + b6a4a1 + b6a4b1b0 − b6b4b0 − b6b4a3 + b6b4a3a1

+ b6b4a3b1b0 + b6b4a3b0 + b6b4b3a2b0 − b6b4b3b2 + b6b4b3b2a1

+ b6b4b3b2b1b0 + b6b4b3b2b0 − b6b4b3 + b6b4b3a1 + b6b4b3b1b0
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+ b6b4a2b0 − b6b4b2 + b6b4b2a1 + b6b4b2b1b0 + b6b4b2b0. (24g)

Lemma 7. For k ≥ 2, the polynomials Rk, Rk−1, and Rk−2 have pairwise
disjoint supports; there is no cancellation of terms in the sum Rk+Rk−1+Rk−2.

Proof. This follows easily by induction on recurrence formula (23). �

Corollary 8. For k ≥ 0, let rk count the number of terms of Rk. The sequence
of integers {rk}∞k=0 satisfies the recurrence formula

{

r0 = 1, r1 = 3, r2 = 5

rk = rk−1 + 2rk−2 + 2rk−3,

and has generating function

∑

k≥0

rkx
k =

1 + 2x

1− x− 2x2 − 2x3
.

Proof. This is immediate from Lemma 7 and (23). The calculation of the gen-
erating function follows by the usual method. �

Lemma 9. Let T be a term of Rk. For j > 0:

1. The degree of T in each variable a1, a2, . . . , ak, b0, b1, . . . , bk is at most
one.

2. If aj is a factor of T , then bj is not a factor of T .

Proof. By induction these statements are true for the terms of Pk by (22). The
result for Rk then follows from (21). �

Let ρ(k) be the periodic sequence:

ρ(k) =











−1 if k ≡ 1(mod 6)

1 if k ≡ 4(mod 6)

0 otherwise .

Observe that the constant of Rk equals ρ(k) for k = 0, 1, . . . , 5. Further observe
that the coefficient of each term in Rk is ±1, for k = 0, 1, . . . , 5. More generally
the following lemma holds.

Lemma 10. The constant of each polynomial Rk is ρ(k). Further, the coeffi-
cient of any term T of Rk is ±1.
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Proof. Let Const(Ri) = Ri(0, 0, . . . , 0; 0, 0, . . . , 0) be the constant of Ri. By
(23), Const(Rk) = −Const(Rk−3). That the constant term of Rk is ρ(k) follows
by induction. In (24), the coefficients of R0, R1, and R2 are ±1. The lemma
now follows by Lemma 7 and (23). �

Proposition 13 will show the following definition characterizes supp(Rk)\{ǫ}.

Definition 3. For k ≥ 0, define Rk to be the set of monomials whose index λ,
a-index α, and b-index β satisfy the following properties:

R1 k ≥ λ1 > λ2 > . . . λℓ ≥ 0.

R2 λ1 ≡ k(mod 3).

R3 If λj = αj , then λj 6≡ λj+1 + 1(mod 3).

R4 If λj = βj , then λj 6≡ λj+1(mod 3).

R5 If λℓ = αℓ, then λℓ 6≡ 2(mod 3).

R6 If λℓ = βℓ, then λℓ 6≡ 1(mod 3).

Note that property R1 implies that monomials in Rk satisfy the condi-
tions of Lemma 9. Example 2 below shows the sets {b0}, {b1b0, a1}, and
{b2b1b0, b2a1, a2b0, b2b0, b2} are R0, R1, and R2, respectively.

Example 2. Property R1 implies that all elements of R0 have an index with
λ1 = λℓ = 0. Thus, any monomial in R0 has index, a-index, and b-index each
equal to [0]. This index, a-index, and b-index satisfy R1–R6, thus R0 = {b0}.

Properties R1 and R2 imply that all elements of R1 have an index with
λ1 = 1. Possible indices are [1, 0] and [1]. When λ = [1, 0], the a-index [1, 0]
and b-index [0, 0] do not satisfy R3, so a1b0 /∈ R1. However, the monomial
with a-index [0, 0] and b-index [1, 0] satisfies R1–R6. Thus b1b0 ∈ R1. The
monomials index [1] with a-index [1] and b-index [0] satisfies R1–R6, thus
a1 ∈ R1. The monomials index [1] with a-index [0] and b-index [1] does not
satisfy R6, so b1 /∈ R1. Thus R1 = {b1b0, a1}.

Properties R1 and R2 imply that all elements of R2 have an index with
λ1 = 2. Possible monomial indices are [2, 1, 0], [2, 1], [2, 0], and [2]. For a
monomial in R2 with index [2, 1, 0], α1 6= 2 and α1 6= 1 by R3. Thus, a2b1b0,
a2a1b0, b2a1b0 /∈ R2. However the monomial with index [2, 1, 0], a-index [0, 0, 0]
and b-index [2, 1, 0] does satisfy R1–R6. Thus, b2b1b0 ∈ R2. For a monomial
in R2 with index [2, 1], α1 6= 2, so R3 implies that a2b1, a2a1 /∈ R2. For
a monomial with index [2, 1], b2 6= 1, so R6 implies that b2b1 /∈ R2. The
monomial with (α,β) = ([0, 1], [2, 0]) satisfies R1–R6. Thus, b2a1 ∈ R2. For
index [2, 0], the monomials with (α,β) equal to ([2, 0], [0, 0]) or ([0, 0], [2, 0])
satisfy R1–R6. Thus a2b0, b2b0 ∈ R2. For index [2], R5 implies α1 6= 2. Thus,
a2 /∈ R2. The monomial with (α,β) = ([0], [2]) satisfies R1–R6. Thus b2 ∈ R2.
Finally, R2 = {b2b1b0, b2a1, a2b0, b2b0, b2}.
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The following remark gives conditions for when monomials ak or bk are in
Rk.

Remark 1. For k > 0, the monomial ak with (α,β) = ([k], [0]) is an element
of Rk if and only if k ≡ 0, 1(mod 3) by R5. Similarly by R6, the monomial bk
with (α,β) = ([0], [k]) is an element of Rk if and only if k ≡ 0, 2(mod 3). Thus
for i ≥ 0, {a3i+1} = R3i+1 ∩ {a3i+1, b3i+1}, {b3i+2} = R3i+2 ∩ {a3i+2, b3i+2},
and {a3i+3, b3i+3} ⊂ R3i+3.

Lemma 11. The sequence rk − |ρ(k)| counts the number of elements in Rk.

Proof. Our proof uses induction on k. From Example 2, the sets R0, R1, and
R2 have 1, 2, and 5 elements, respectively. We verify r0 − |ρ(0)| = 1 − 0 = 1,
r1 − |ρ(1)| = 3− 1 = 2, and r2 − |ρ(2)| = 5− 0 = 5.

Make the induction hypothesis that Rk−3, Rk−2, and Rk−1 have rk−3 −
|ρ(k− 3)|, rk−2 −|ρ(k− 2)|, and rk−1 −|ρ(k− 1)| elements, respectively. Let Rj

be the monomials of Rj after substitutions aj+1 7→ aj+1 and bj 7→ bj for j ≥ 0.
Here the overline denotes a different copy of the indeterminates.

We define a bijection ψ : Rk−3∪Rk−3∪Rk−2∪Rk−2∪Rk−1 → Rk\{ak, bk}
as follows. ψ left multiplies elements of Rk−3 ∪ Rk−2 by ak and then removes
all overlines, ψ left multiplies elements of Rk−2 ∪ Rk−1 by bk, and ψ leaves
each element of Rk−3 fixed. ψ−1 is described as follows. When ak is a factor
of a monomial in Rk\{ak, bk}, ψ−1 removes the factor ak and overlines the
remaining indeterminate factors. The result of this is in Rk−3 or Rk−2 due to
property R3. Similarly, when bk is a factor of a monomial in Rk\{ak, bk}, ψ−1

removes the factor bk, and the result is in either Rk−2 or Rk−1 by property R4.
Otherwise, ψ−1 leaves a monomial of Rk\{ak, bk} fixed.

Since there is a bijection betweenRk\{ak, bk} and the pairwise disjoint union
Rk−3 ∪Rk−3 ∪Rk−2 ∪Rk−2 ∪Rk−1, the number of elements in Rk\{ak, bk} is

rk−1 − |ρ(k − 1)|+ 2rk−2 − 2|ρ(k − 2)|+ 2rk−3 − 2|ρ(k − 3)|.
By the recurrence formula for rk in Corollary 8, the above equals

rk − |ρ(k − 1)| − 2|ρ(k − 2)| − 2|ρ(k − 3)|. (25)

Remark 1 gives that the number of elements in Rk ∩ {ak, bk} is one when
k ≡ 1, 2(mod 3) and two when k ≡ 0(mod 3). Since |ρ(k)| = 1 if k ≡ 1(mod 3)
and is zero otherwise, the total number of elements in Rk∩{ak, bk} is expressible
as |ρ(k)|+|ρ(k−1)|+2|ρ(k−2)| or |ρ(k−3)|+|ρ(k−1)|+2|ρ(k−2)|. Adding this
to the number of elements of Rk\{ak, bk} found in (25) gives that the number
of monomials in Rk is rk − |ρ(k − 3)| = rk − |ρ(k)|. �

Corollary 12. Let sk = |Rk|. Then sk satisfies the linear recurrence sk =
sk−1 + 2sk−2 + 3sk−3 − sk−4 − 2sk−5 − 2sk−6 with initial conditions, s0 = 1,
s1 = 2, s2 = 5, s3 = 13, s4 = 28, and s5 = 65.

Proof. From the fact that sk and |ρ(k)| satisfy linear recurrences of order three,
with constant coefficients, it follows that sk can satisfy a similar recurrence of
order at most 9. Standard linear algebra gives the recurrence for sk. �
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Proposition 13. For k ≥ 0, supp(Rk − ρ(k)) = Rk.

Proof. By Lemma 11 supp(Rk−ρ(k)) andRk have the same number of elements,
rk − |ρ(k)|. Therefore, it is enough to show that the support of Rk − ρ(k) is a
subset of Rk. Our proof of this uses induction on k. The support of R0 − ρ(0)
is {b0}, the support of R1 − ρ(1) is {a1, b1b0}, and the support of R2 − ρ(2) is
{a2b0, b2, b2a1, b2b1b0, b2b0}. These sets are identical to the corresponding sets
R0, R1, and R2 found in Example 2.

Let m be a monomial of Rk with degree ℓ, a-index α, b-index β, and index
λ. Suppose that each monomial m′ in the support of Ri is also in Ri for i =
1, 2, . . . , k−1. By (23) and Lemma 7, m is either in the support of −Rk−3−ρ(k),
akRk−2, akRk−3, bkRk−1, or bkRk−2. We verify that the index, a-index, and
b-index of m satisfy the conditions R1–R6 in each of these cases.

Suppose m is a monomial of −Rk−3 − ρ(k). Then m is a monomial of
Rk−3 − ρ(k − 3), since −ρ(k) = ρ(k − 3) and the supports of polynomials −P
and P are the same. By the induction hypothesis, m is in Rk−3. From property
R2 for Rk−3, the first component of the index of m satisfies λ1 ≡ k−3(mod 3),
so λ1 ≡ k(mod 3) and m satisfies R2. The other properties R1, R3-R6 clearly
follow from the respective properties of Rk−3.

Suppose m is a monomial of akRk−3+p where p = 0, 1. If ℓ = 1, then m = ak
and ρ(k − 3 + p) is nonzero. Thus, k − 3 + p ≡ 1(mod 3) and k ≡ 1, 0(mod 3),
and R5 holds. The monomial ak has index λ = [k] + [0]. Properties R1 and
R2 of Rk hold for ak. Properties R4 and R6 hold for ak since no λj = βj .
Property R3 holds since ℓ = 1. Next, if ℓ > 1, then by the inductive hypothesis
m = akm

′, where m′ ∈ Rk−3+p. The index of m is λ = [k,α′] + [0,β′], where
λ′ = α′+β′ is the index ofm′. Clearlym satisfies R1 and R2 for Rk. From R2
for Rk−3+p, λ

′
1 ≡ k−3+p(mod 3), thus λ1 = α1 = k 6≡ k−3+p+1(mod 3) and

R3 holds for j = 1. PropertyR3 holds for j > 1 sincem′ ∈ Rk−3+p. Properties
R4–R6 are satisfied by m from the respective properties of m′ ∈ Rk−3+p.

Suppose m is a monomial of bkRk−2+p where p = 0, 1. If ℓ = 1, then m = bk
and ρ(k − 2 + p) is nonzero. Thus, k − 2 + p ≡ 1(mod 3) and k ≡ 0, 2(mod 3),
and R6 holds. The monomial bk has index λ = [0]+[k]. Properties R1 and R2
of Rk hold for bk. Properties R3 and R5 of Rk hold for bk since no λj = αj .
Property R4 holds since ℓ = 1. Next if ℓ > 1, then by the inductive hypothesis
m = bkm

′, where m′ ∈ Rk−2+p. The index of m is λ = [0,α′] + [k,β′], where
λ′ = α′ + β′ is the index of m′. Clearly m satisfies R1 and R2 for Rk. From
R2 for Rk−2+p, λ

′ ≡ k − 2 + p(mod 3), thus λ1 = β1 = k 6≡ k − 2 + p(mod 3)
and R4 holds for j = 1. Property R4 holds for j > 1 since m′ ∈ Rk−2+p.
Properties R3, R5, and R6 are satisfied by m from the respective properties
of m′ ∈ Rk−2+p. �

We now turn our attention to the coefficients of Rk. By Lemma 10, each
monomial m ∈ supp(Rk) has coefficient cm = ±1. The determination of the
sign depends on the following definition.
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Definition 4. We call a set of three consecutive integers an adjacent triple. For
a monomial m of Rk with index λ, the integers in the set

{−1, 0, . . . , k}\{λ1, λ2, . . . , λℓ}

are called the omitted subscripts of m. For a monomial m ∈ Rk with index
λ, define the function gk(m) to be the maximum number of pairwise disjoint
adjacent triples whose union is a subset of the omitted subscripts of m.

The coefficient cm of m ∈ supp(Rk) is determined by the parity of gk(m).
Specifically, cm = (−1)gk(m). We show this in Lemma 16. The coefficients of
three monomials are computed in Example 3.

Example 3. First, consider the monomial b2 in supp(R5) with index [2]. Mono-
mial b2 has omitted subscripts {5, 4, 3, 1, 0,−1}. This set is the union of g5(b2) =
2 disjoint triples: {5, 4, 3} and {1, 0,−1}. Thus, the coefficient of b2 is (−1)2 = 1.

Second, consider the monomial b6b4a3 in supp(R6) with index [6, 4, 3]. It has
omitted subscripts {5, 2, 1, 0,−1}. The omitted subscripts contain two adjacent
triples, {2, 1, 0} and {1, 0,−1}. Since these adjacent triples are not disjoint,
g6(b6b4a3) = 1, and the coefficient of b6b4a3 is (−1)1 = −1.

Third, consider the monomial a6b4b2b1b0 in supp(R6). This monomial has
index [6, 4, 2, 1, 0] and has omitted subscripts {5, 3,−1}. The omitted subscripts
give g6(a6b4b2b1b0) = 0 pairwise disjoint adjacent triple subsets. Thus the
coefficient of a6b4b2b1b0 is (−1)0 = 1.

Observe that the coefficient of b2 in R8 should be the opposite of its coefficient
in R5, since the omitted subscripts in the former case contains an additional
adjacent triple {8, 7, 6}. More generally, Lemma 14 describes how the coefficient
of a monomial of Rk is based upon recurrence formula (23).

Lemma 14. For each monomial m of Rk −ρ(k) with index λ = α+β ∈ Rk of
length ℓ > 1, let m′ be the monomial with index λ

′ = α′+β
′ = [α2, α3, . . . , αℓ]+

[β2, β3, . . . , βℓ]. Define sgnk(m) to be the coefficient of m (or sign of m) in the
polynomial Rk. Then for k ≥ 3 and p = 1, 2, 3,

sgnk(m) =

{

sgnk−p(m
′) if λ1 = k and λ2 ≡ k − p(mod 3),

− sgnk−3(m) if λ1 6= k.

Proof. Let sgnk(m)m be a term of Rk−ρ(k). There are five cases corresponding
to the five summands when the right hand side of (23) is expanded. If sgnk(m)m
is a term of bkRk−1, then sgnk(m) = sgnk−1(m

′). If sgnk(m)m is a term of
akRk−2 or bkRk−2, then sgnk(m) = sgnk−2(m

′). If sgnk(m)m is a term of
akRk−3, then sgnk(m) = sgnk−3(m

′). If sgnk(m)m is a term of −Rk−3, then
sgnk(m) = − sgnk−3(m). �
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Lemma 15.

gk(m) =

⌊

k − λ1
3

⌋

+

⌊

λℓ + 1

3

⌋

+

ℓ
∑

j=2

⌊

λj−1 − λj − 1

3

⌋

,

the last sum being zero when ℓ = 1.

Proof. The maximum number of disjoint three adjacent triples strictly between
integers λj−1 and λj is

⌊

λj−1 − λj − 1

3

⌋

.

The lemma follows from summing and using the conventions λ0 = k + 1 and
λℓ+1 = −2. �

Lemma 16. For a monomial m of Rk,

sgnk(m) = (−1)gk(m).

Proof. We proceed by induction on k. The initial cases are given by (24). Let
m be in the support of Rk − ρ(k) with index λ = α + β. Suppose that each
monomial m∗ in the support of Rj−ρ(j) has coefficient sgnj(m

∗) = (−1)gj(m
∗),

for j = 0, 1, 2, . . . , k − 1. From Lemma 14 and the induction hypothesis,

sgnk(m) =



















(−1)gk−1(m
′) if λ1 = k and λ2 ≡ k − 1(mod 3),

(−1)gk−2(m
′) if λ1 = k and λ2 ≡ k − 2(mod 3),

(−1)gk−3(m
′) if λ1 = k and λ2 ≡ k − 3(mod 3),

(−1)1+gk−3(m) if λ1 6= k,

(26)

where m′ has index λ′ = [α2, α3, . . . , αℓ]+ [β2, . . . , βℓ]. Each of the cases in (26)
gives (−1)gk(m). Indeed, in each case where λ1 = k,

{−1, 0, 1, 2, 3, . . . , k}\{λ1, λ2, . . . , λℓ}
= {−1, 0, 1, 2, 3, . . . , k − 1}\{λ2, λ3 . . . , λℓ}.

So when λ1 = k, the maximum number of disjoint adjacent triples of these equal
sets gk(m) and gk−1(m

′), respectively, are equal.
We use that gk(m) = gk−1(m

′) for the first three cases where λ1 = k and
λ2 ≡ k−p(mod 3) for p = 1, 2, 3. Let d be the integer such that λ2 = k−p−3d.
By Lemma 15,

gk−1(m
′) =

⌊

λℓ + 1

3

⌋

+

⌊

k − 1− λ2
3

⌋

+
ℓ

∑

j=3

⌊

λj−1 − λj − 1

3

⌋

. (27)
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Substituting k − p− 3d for λ2 in the second summand of (27) yields,

⌊

k − 1− λ2
3

⌋

=

⌊

3d+ p− 1

3

⌋

= d =

⌊

3d

3

⌋

=

⌊

k − p− λ2
3

⌋

.

Thus we can replace the second summand of (27):

gk−1(m
′) =

⌊

λℓ + 1

3

⌋

+

⌊

k − p− λ2
3

⌋

+
ℓ

∑

j=3

⌊

λj−1 − λj − 1

3

⌋

= gk−p(m
′).

For the last case when λ1 6= k, property R2 gives that λ1 6= k, k − 1, k − 2.
Thus, the adjacent triple k, k − 1, k − 2 is in

{−1, 0, 1, 2, 3, . . . , k}\{λ1, λ2, λ3 . . . , λℓ},

and gk(m) is one more than the number of adjacent triples in

{−1, 0, 1, 2, 3, . . . , k − 3}\{λ1, λ2, λ3 . . . , λℓ}.

Thus 1 + gk−3(m) = gk(m) and sgnk(m) = (−1)gk(m) by (26). �

3. Main Results

The following proposition gives a combinatorial description for the terms of
the polynomials Rk.

Proposition 17. For k ≥ 0,

Rk(a1, a2, . . . , ak, b0, b1, . . . , bk) = ρ(k) +
∑

m∈Rk

(−1)gk(m)m. (28)

Proof. Applying Lemmas 10, 13, and 16 gives (28). �

Theorem 18 below results from piecing together Lemma 6, (21), and Propo-
sition 17. Lemma 6 states Qk = φ(−Pk), where φ is the substitution that maps
a1, b0, and b1 to 0, and for j > 1, substitutes aj−1 for aj , and substitutes bj−1

for bj. The linearity of φ and (21) gives Qk = −φ(Rk+1)− φ(Rk).
Define σ(k) to be

σ(k) =
2
√
3

3
sin

(

kπ

3

)

=
2
√
3

3
Im

(

ekπi/3
)

, (29)

and note that σ(k) is the six-periodic sequence which begins 0, 1, 1, 0, −1, −1,
. . . , for k ≥ 0 that satisfies σ(k) = −σ(k − 3).

19



Theorem 18. The kth classical numerator and denominator Pk and Qk of

b0 +
−1 + a1
1 + b1 +

−1 + a2
1 + b2 +

−1 + a3
1 + b3 + · · ·

are
Pk = −σ(k) +

∑

m∈Rk−1

(−1)gk−1(m)m+
∑

m∈Rk

(−1)gk(m)m, (30)

and

Qk = σ(k + 1)−
∑

m∈Rk

λℓ>1

(−1)gk(m)φ(m) −
∑

m∈Rk+1

λℓ>1

(−1)gk+1(m)φ(m). (31)

Proof. First observe that σ(k) = −ρ(k − 1) − ρ(k). The proof follows imme-
diately from (21), (28), and (19). The condition λℓ > 1 in (31) simplifies the
summations by removing all summands with φ(m) = 0, where φ(m) is as defined
after the proof of Proposition 17. �

The next two corollaries are specializations of Theorem 18. The first of these
is the case when bj = 0 for j ≥ 0. Making this substitution into (30) causes
all monomials whose b index has nonzero components and those elements with
βℓ = αℓ = 0 to vanish from the summation in (30). This implies that the index
equals the a index for these monomials. Thus for k ≥ 1 the support of the
classical numerators is the subset Uk of Rk whose b index is zero and whose
index satisfies the following properties:

U1 k ≥ λ1 > λ2 > . . . λℓ ≥ 1.

U2 λ1 ≡ k(mod 3).

U3 λj 6≡ λj+1 + 1(mod 3).

U4 λℓ 6≡ 2(mod 3).

Corollary 19. The kth classical numerator and denominator Ck and Dk of

−1 + a1
1 +

−1 + a2
1 +

−1 + a3
1 + · · ·

are
Ck = −σ(k) +

∑

m∈Uk−1

(−1)gk−1(m)m+
∑

m∈Uk

(−1)gk(m)m, (32)

and

Dk = σ(k + 1)−
∑

m∈Uk

λℓ>1

(−1)gk(m)φ(m)−
∑

m∈Uk+1

λℓ>1

(−1)gk+1(m)φ(m). (33)
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The second case of Theorem 18 is b0 = 0 and aj = 0 for j ≥ 1. The
monomials whose a index has nonzero components as well as those elements
with βℓ = αℓ = 0 vanish from the summation in (30). Hence for k ≥ 1 the
support of the classical numerators is the subset Vk of Rk whose a index is zero
and whose index satisfies the following properties:

V1 k ≥ λ1 > λ2 > . . . λℓ ≥ 2.

V2 λ1 ≡ k(mod 3).

V3 λj 6≡ λj+1(mod 3).

V4 λℓ 6≡ 1(mod 3).

Corollary 20. The kth classical numerator and denominator Gk and Hk of

−1

1 + b1 +

−1

1 + b2 +

−1

1 + b3 + · · ·
are

Gk = −σ(k) +
∑

m∈Vk−1

(−1)gk−1(m)m+
∑

m∈Vk

(−1)gk(m)m, (34)

and

Hk = σ(k + 1)−
∑

m∈Vk

λℓ>1

(−1)gk(m)φ(m)−
∑

m∈Vk+1

λℓ>1

(−1)gk+1(m)φ(m). (35)

Corollary 20 was first given as Theorem 33 of [15].
We refer to a finite decreasing sequence λi satisfying λj 6≡ λj+1 + t(mod 3),

for a fixed t ∈ {0, 1, 2}, as an alternating triality sequence. Only the cases
t = 0, 1 occur in this paper.

4. Applications to Polynomial Identities and Integer Sequences

4.1. Relating Theorems 5 and 18

What do Theorems 5 with 18 imply when taken together?
To relate these theorems, the following change of variables is used. Let

δ : Z[M] → Z[M] be the homomorphism induced by δ(ai) = −1 + ai and
δ(bi) = 1 + bi. When applied to Ak, each monomial of length l gives rise to 2l

monomials with different signs, since the monomials in Ak are of degree one in
each of their indeterminates. Thus Theorems 5 and 18 give,

∑

m∈Ak

δ(m) = −σ(k) +
∑

m∈Rk−1

(−1)gk−1(m)m+
∑

m∈Rk

(−1)gk(m)m. (36)

Notice the left side of (36) has intense cancellation, while the right side has
none. This identity becomes more explicit in the special cases corresponding to
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Corollaries 19 and 20. First we provide a corollary of Theorem 5 that can be
equated to Corollary 19. Define the set of minimal difference two sequences Ck

by
Ck = {λ : k ≥ λ1 >

2 λ2 >
2 · · · >2 λℓ = 1}.

It is easy to see that |Ck| equals the kth Fibonacci number, for an element of
Ck is either an element of Ck−1, or is obtained by adjoining the integer k to an
element of Ck−2. The initial values F0 = |C0| = 0 and F1 = |C1| = 1 give the
conclusion.

Corollary 21. The classical numerators of the continued fraction

−1 + a1
1 +

−1 + a2
1 +

−1 + a3
1 + · · · (37)

in noncommutative indeterminates {aj+1}j≥0 for k ≥ 0 are given by

Ck =
∑

λ∈Ck

(−1 + aλ1
)(−1 + aλ2

) · · · (−1 + aλℓ
). (38)

Proof. By Theorem 4 (with b0 = 0 and bi = 1, for i > 0), the kth classical
numerator of

a1
1 +

a2
1 +

a3
1 + · · ·

equals
∑

λ∈Ck

aλ1
aλ2

· · ·aλℓ

after writing subscripts in descending order. Substituting sequence {−1+aj}j≥1

for {aj}j≥1 yields (38). �

Equating Corollaries 19 and 21 gives Corollary 22 below.

Corollary 22.

∑

λ∈Ck

ℓ
∏

j=1

(−1 + aλj
) = −σ(k) +

∑

m∈Uk−1

(−1)gk−1(m)m+
∑

m∈Uk

(−1)gk(m)m, (39)

∑

λ∈Ck

(−1)ℓ = −σ(k), (40)

and
− σ(k) +

∑

m∈Uk−1

(−1)gk−1(m) +
∑

m∈Uk

(−1)gk(m) = 0 (41)

Example 4 below demonstrates these identities in the k = 5 case. Before the
example we give the simple proof of (40) mentioned in Section 1.4.
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Proof. Let en and on denote the number of elements of Cn of even and odd
lengths, respectively. Since every element of Cn is either an element of Cn−1,
or is obtained by adjoining the integer n to an element of Cn−2, it is clear that
on = on−1+en−2, and en = en−1+on−2. Putting xn = en−on, and subtracting
the first of the two equations from the second, gives that xn = xn−1 − xn−2.
Clearly xn−1 = xn−2 − xn−3. Substituting the second of these two equations
into the first gives xn = −xn−3, which is the same recurrence satisfied by −σ(k).
For k = 0, 1, 2, −σ(k) = 0,−1,−1, and the left-hand side of (40) also equals
0,−1,−1, since C0 = ∅ and C1 and C2 each contain only the sequence {1}. �

Example 4. Let k = 5 in (39). It is found that σ(5) = −1, U4 = {[4, 1], [4], [1]}
and U5 = {[5, 3, 1], [5, 3]}, so that right-hand side of (39) is:

1 + a4a1 − a4 − a1 + a5a3a1 − a5a3. (42)

The left-hand side of (39) for k = 5 can be computed by summing the contri-
butions from each sequence in Ck and making several cancellations. First, we
find the contribution due to {5, 3, 1} ∈ C5:

(a5−1)(a3−1)(a1−1) = a5a3a1−(a5a3 + a5a1 + a3a1)+(a5 + a3 + a1)−1. (43)

Similarly, the sequence {5, 1} contributes

(a5 − 1)(a1 − 1) = a5a1 − a5 − a1 + 1. (44)

The sequence {4, 1} contributes

(a4 − 1)(a1 − 1) = a4a1 − a4 − a1 + 1. (45)

The sequence {3, 1} contributes

a3a1 − a3 − a1 + 1. (46)

Finally, the sequence {1} contributes

a1 − 1. (47)

Summing (43)–(47) and canceling terms recovers (42).
The sum on the left-hand side of (40) in the k = 5 case is over the sequences

{5, 3, 1}, {5, 1}, {4, 1}, {3, 1} and {1}. The sum can be computed according to
the lengths of these sequences as (−1)3 + 3(−1)2 + (−1)1 = 1, which indeed is
equal to −σ(5). Also observe that the substitution aj 7→ 1 in (42) yields zero,
giving (41).

To relate Theorem 5 to Corollary 20, define Dk to be the set of alternating
parity sequences satisfying:

D1 k ≥ λ1 > λ2 > · · · > λℓ ≥ 2.

D2 λ1 ≡ k(mod 2).
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D3 λj 6≡ λj−1(mod 2).

D4 λℓ ≡ 0(mod 2).

Theorem 5 now reduces to:

Corollary 23. The classical numerators of the continued fraction

−1

1 + b1 +

−1

1 + b2 +

−1

1 + b3 + · · ·
in noncommutative indeterminates {bj}j≥0 for k ≥ 0 are given by

Gk = −χ1(k) +
∑

λ∈Dk

(−1)
k−ℓ+1

2 (1 + bλ1
)(1 + bλ2

) · · · (1 + bλℓ
). (48)

Proof. By Theorem 4, the kth classical numerator of

−1

b1 +

−1

b2 +

−1

b3 + · · ·
in commuting variables is

b2 · · · bk



1 +
∑

3≤h1<2h2<2···<2hj≤k

(−1)j+1

bh1−1bh1
bh2−1bh2

· · · bhj−1bhj



 .

When expanded, the degree of a summand is ℓ = k−1−2j. So j = k−ℓ−1
2 . Note

that after cancellation the largest subscript has the same parity as k and the
smallest subscript is even. When k is even, b2 · · · bk is not canceled when dis-
tributed and the constant is zero. When k is odd, the constant is (−1)1+(k−1)/2.
Thus the constant is −χ1(k), the nonprincipal Dirichlet character modulo 4. Re-
arranging subscripts in descending order gives that in noncommuting variables,
the classical numerator is

−χ1(k) +
∑

λ∈Dk

(−1)
k−ℓ+1

2 (1 + bλ1
)(1 + bλ2

) · · · (1 + bλℓ
).

�

Equating Corollaries 20 and 23 yields the following corollary.

Corollary 24.

− χ1(k) +
∑

λ∈Dk

(−1)
k−ℓ+1

2

ℓ
∏

j=1

(1 + bλj
) = −σ(k) +

∑

m∈Vk−1

(−1)gk−1(m)m

+
∑

m∈Vk

(−1)gk(m)m,

−χ1(k) +
∑

λ∈Dk

(−1)
k−ℓ+1

2 = −σ(k),

and
−χ1(k) + σ(k) =

∑

m∈Vk−1

(−1)gk−1(m)+ℓ +
∑

m∈Vk

(−1)gk(m)+ℓ.
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4.2. Applications to some linear recurrence sequences

Corollaries 19 and 20 lead to new formulas for Fibonacci and Pell numbers.
In this section, we use notation Pk for the kth Pell number, not the kth classical
numerator of K as before. Thus, in this section Pk = 2Pk−1+Pk−2, with initial
conditions P0 = 0 and P1 = 1. Despite possible interest, we do not take up the
corresponding results that follow from Corollaries 21 and 23 here, nor do we
investigate the consequences for other or more general integer sequences.

The definition of σ(k) and the following corollary imply the well-known fact
that the kth Fibonacci number, Fk, is even if and only if k ≡ 0(mod 3).

Corollary 25.

Fk = −σ(k) +
∑

m∈Uk−1

λℓ>0

(−1)gk−1(m)2ℓ +
∑

m∈Uk

λℓ>0

(−1)gk(m)2ℓ, (49)

and
Fk =

∑

m∈Uk−1

λℓ=1

(−1)gk−1(m)2ℓ−1 +
∑

m∈Uk

λℓ=1

(−1)gk(m)2ℓ−1, (50)

where Fk is the kth Fibonacci number.

Proof. The substitution ai = 1, b0 = 0, and bj = 1 in (1) and the recurrence
formulas (10) and (11) gives that Ak = Fk and Bk = Fk+1. The same classical
numerators and denominators arise from the substitution ai = 2 in Corollary
19. Then (32) and (33) gives (49) along with

Fk+1 = σ(k + 1)−
∑

m∈Uk

λℓ>1

(−1)gk(m)2ℓ −
∑

m∈Uk+1

λℓ>1

(−1)gk+1(m)2ℓ.

Shifting k 7→ k − 1 in this identity and adding it to (49) yields (50). �

It is also possible to compute Fk using Corollary 20. The classical numerators
of the continued fraction

−1

−1 +

−1

1 +

−1

−1 +

−1

1 + · · · (51)

are τ(k)Fk , where

τ(k) =

{

−1 if k ≡ 1, 2(mod 4)

1 if k ≡ 3, 4(mod 4).

The substitutions b2j−1 = −2 and b2j = 0 in the continued fraction in Corollary
20 give (51).

Corollary 26.

τ(k)Fk = −σ(k) +
∑

m∈Vodd
k−1

(−1)gk−1(m)(−2)ℓ +
∑

m∈Vodd
k

(−1)gk(m)(−2)ℓ,

where Vodd
k is the subset of Vk whose monomials have indices which are all odd.
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Note that when k is even, property V2 implies Vodd
k = ∅. Since τ(2k − 1) =

(−1)k and τ(2k) = (−1)k,

(−1)kF2k−1 = −σ(2k − 1) +
∑

m∈Vodd
2k−1

(−1)g2k−1(m)(−2)ℓ,

and
(−1)kF2k = −σ(2k) +

∑

m∈Vodd
2k−1

(−1)g2k−1(m)(−2)ℓ.

Turning to the Pell numbers, the kth classical numerator of the continued
fraction

1/4

1 +

1/4

1 +

1/4

1 +

1/4

1 + · · · (52)

is Pk/2
k+1. Substituting ai = 5/4 into the continued fraction in Corollary 19

yields (52).

Corollary 27.

Pk = −2k+1σ(k) +
∑

m∈Uk−1

(−1)gk−1(m) 5ℓ 2k+1−2ℓ +
∑

m∈Uk

(−1)gk(m) 5ℓ 2k+1−2ℓ,

(53)
and

Pk = 2k+1



−σ(k) +
∑

m∈Uk−1

(−1)gk−1(m)(5/4)ℓ +
∑

m∈Uk

(−1)gk(m)(5/4)ℓ



 .

This gives an interpretation of the fact that Pell number

Pk ≡ υ(k)(mod 5), (54)

where υ(k) is the 12 periodic sequence 0, 1, 2, 0, 2, 4, 0, 4, 3, 0, 3, 1, . . . starting
from k = 0. Observe that multiplying both sides of (53) by 2k−1 gives

2k−1Pk ≡ −22kσ(k) (mod 5),

since in the sums 2k − 2ℓ ≥ 0. Because gcd(2k−1, 5) = 1,

Pk ≡ −2k+1σ(k) (mod 5).

The periodicity of 2k(mod 5) and −σ(k)(mod 5) now yield (54).
Next, the kth classical numerator of the continued fraction

−1

−2 +

−1

2 +

−1

−2 +

−1

2 + · · · (55)

is τ(k)Pk. We can apply Corollary 20 by making substitutions b2k−1 = −3 and
b2k = 1.
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Corollary 28.

τ(k)Pk = −σ(k) +
∑

m∈Vk−1

(−1)gk−1(m)(−3)ℓodd +
∑

m∈Vk

(−1)gk(m)(−3)ℓodd ,

where ℓodd(m) counts the odd indices of m.

We conclude with an application of Theorem 18. Let nk and pk be the
number of terms of Rk that have negative sign and positive sign, respectively.
From the recurrence formula (23), these sequences satisfy

nk = pk−3 + nk−3 + 2nk−2 + nk−1,

and
pk = nk−3 + pk−3 + 2pk−2 + pk−1.

Let Jk+1 = pk−nk. Then Jk satisfies the recurrence formula Jk = Jk−1+2Jk−2,
with initial conditions J1 = J2 = 1; these are the Jacobsthal numbers. One
property of the Jacobosthal numbers is that Jk + Jk−1 = 2k−1 for k ≥ 0. Thus
from (30),

− σ(k) +
∑

m∈Rk−1

(−1)gk−1(m) +
∑

m∈Rk

(−1)gk(m) = 2k. (56)

5. Tables

The following two figures show the relations between the different polyno-
mials associated with K encountered in this paper.
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Rn(a1, a2, . . . , an; b0, b1, . . . , bn)
Support counted by
{

r0 = 1, r1 = 3, r2 = 5,

rn = rn−1 + 2rn−2 + 2rn−3

with generating function
1 + 2x

1− x− 2x2 − 2x3
.

Monomials in Rn counted by


















s0 = 1, s1 = 2, s2 = 5,

s3 = 13, s4 = 28, s5 = 65,

sn = sn−1 + 2sn−2 + 3sn−3

−sn−4 − 2sn−5 − 2sn−6

with generating function
1− x+ x2 + x3

1− x− 2x2 − 3x3 + x4 + 2x5 + 2x6
.

Rn(a1, a2, . . . , ak; 0, 0, . . . , 0)
Support counted by
{

u0 = 0, u1 = 2, u2 = 0,

un = un−2 + 2un−3

with generating function
2x

1− x2 − 2x3
.

Monomials in Un counted by


















s0 = 0, s1 = 1, s2 = 0,

s3 = 2, s4 = 3, s5 = 2,

sn = sn−2 + 3sn−3 − sn−5

−2sn−6

with generating function
x+ x3

1− x2 − 3x3 + x5 + 2x6
.

Rn(0, 0, . . . , 0; 0, b1, . . . , bn)
Support counted by
Tribonaccis
{

T0 = 0, T1 = 1, T2 = 1,

Tn = Tn−1 + Tn−2 + Tn−3

with generating function
x

1− x− x2 − x3
.

Monomials in Vn counted by


















s0 = 0, s1 = 0, s2 = 1,

s3 = 2, s4 = 3, s5 = 7,

sn = sn−1 + sn−2 + 2sn−3

−sn−4 − sn−5 − sn−6

with generating function
x2 + x3

1− x− x2 − 2x3 + x4 + x5 + x6
.

Figure 1: Counting sequences related to polynomials Rn and their special cases. For Tri-
bonaccis, see [9].

28



Pn(a1, a2, . . . , an; b0, b1, . . . , bn)
Support counted by
{

p0 = 1, p1 = 4, p2 = 8,

pn = pn−1 + 2pn−2 + 2pn−3

with generating function
1 + 3x+ 2x2

1− x− 2x2 − 2x3
.

Monomials in Rn ∪Rn−1 counted by


















s0 = 1, s1 = 3, s2 = 7,

s3 = 18, s4 = 41, s5 = 93,

sn = sn−1 + 2sn−2 + 3sn−3

−sn−4 − 2sn−5 − 2sn−6

with generating function
1 + 2x+ 2x2 + 2x3 + x4

1− x− 2x2 − 3x3 + x4 + 2x5 + 2x6
.

Pn(a1, a2, . . . , ak; 0, 0, . . . , 0)
Support counted by
{

p0 = 0, p1 = 2, p2 = 2,

pn = pn−2 + 2pn−3

with generating function
2x+ 2x2

1− x2 − 2x3
.

Monomials in Un ∪ Un−1 counted by


















s0 = 0, s1 = 1, s2 = 1,

s3 = 2, s4 = 5, s5 = 5,

sn = sn−2 + 3sn−3 − sn−5

−2sn−6

with generating function
x+ x2 + x3

1− x2 − 3x3 + x5 + 2x6
.

Pn(0, 0, . . . , 0; 0, b1, . . . , bn)
Support counted by
Tribonacci-type sequence
{

p0 = 0, p1 = 1, p2 = 2,

pn = pn−1 + pn−2 + pn−3

with generating function
x+ x2

1− x− x2 − x3
.

Monomials in Vn ∪ Vn−1 counted by


















s0 = 0, s1 = 0, s2 = 1,

s3 = 3, s4 = 5, s5 = 10,

sn = sn−1 + sn−2 + 2sn−3

−sn−4 − sn−5 − sn−6

with generating function
x2 + 2x3 + x4

1− x− x2 − 2x3 + x4 + x5 + x6
.

Figure 2: Counting sequences related to classical numerators Pn and their special cases. Note
that the generating functions are a product of (1 + x) and the generating functions of the
polynomials in the previous figure.
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