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Abstract

Let Qr
n be the graph with vertex set {−1, 1}n in which two vertices are joined if their

Hamming distance is at most r. The edge-isoperimetric problem for Qr
n is that: For every

(n, r,M) such that 1 ≤ r ≤ n and 1 ≤ M ≤ 2n, determine the minimum edge-boundary
size of a subset of vertices of Qr

n with a given size M . In this paper, we apply two different
approaches to prove bounds for this problem. The first approach is a linear programming
approach and the second is a probabilistic approach. Our bound derived by the first approach
generalizes the tight bound for M = 2n−1 derived by Kahn, Kalai, and Linial in 1989.
Moreover, our bound is also tight for M = 2n−2 and r ≤ n

2
− 1. Our bounds derived by

the second approach are expressed in terms of the noise stability, and they are shown to be
asymptotically tight as n → ∞ when r = 2⌊βn

2
⌋ + 1 and M = ⌊α2n⌋ for fixed α, β ∈ (0, 1),

and is tight up to a factor 2 when r = 2⌊βn
2
⌋ and M = ⌊α2n⌋. In fact, the edge-isoperimetric

problem is equivalent to a ball-noise stability problem which is a variant of the traditional
(i.i.d.-) noise stability problem. Our results can be interpreted as bounds for the ball-noise
stability problem.

Keywords: Isoperimetric inequalities, noise stability, Fourier analysis, linear programming
bound, probabilistic approach, hypercontractivity

1. Introduction

The isoperimetric problem is one of most classic problems, which is to determine the
minimum possible boundary-size (i.e., perimeter) of a set with a fixed size (i.e., volume).
A famous result for the isoperimetric problem in the n-dimensional Euclidean space states
that an n-ball has the smallest surface area per given volume. In last several decades, an
analogue of the isoperimetric problem was considered in the discrete setting. Let G = (V,E)
be a graph and A ⊆ V a non-empty subset of vertices of G. The edge-boundary ∂A of A is

1This work was supported by the NSFC grant 62101286 and the Fundamental Research Funds for the
Central Universities of China (Nankai University).
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the set of all edges of G joining a vertex in A to a vertex in V \A. The edge-isoperimetric
problem for G asks for the determination of

min{|∂A| : A ⊆ V, |A| =M}, (1)

for each integer M . When the graph G is set to (the powers of) discrete hypercubes, the
corresponding isoperimetric problem attracts a lot of attentions due to its importance to re-
lated problems in combinatorics, discrete probability, computer science, social choice theory,
and others; see e.g. [15, 7, 5, 3, 1]. For the hypercube2 {−1, 1}n, the Hamming distance
dH(x,y) := |{i : xi 6= yi}| between two vectors x and y in {−1, 1}n is defined as the number
of coordinates in which they differ. For positive integers n and r such that r ≤ n, we let Qr

n

denote the r-th power of the n-dimensional discrete hypercube graph, i.e., the graph with
vertex-set {−1, 1}n in which two vectors are joined if they are Hamming distance at most
r apart. When r = 1, the hypercube graph Qr

n is denoted as Qn for brevity. The edge-
isoperimetric problem for Qr

n is hence formulated as follows. For every (n, r,M) such that3

r ∈ [1 : n] and M ∈ [1 : 2n], determine the minimum boundary-size of a subset (also termed
a code) of Qr

n with a given size M . Throughout this paper, we denote the (normalized)
volume as

α :=
M

2n
and β :=

r

n
.

The edge-isoperimetric problem is also related to the estimate of distance distribution of a
subset in the hypercube Qn. For a graph G = (V,E) and a non-empty subset A ⊆ V , the
subgraph induced by A is denoted as G[A], which is the graph whose vertex set is A and
whose edge set consists of all of the edges in E that have both endpoints in A. Let e(A) denote
the number of edges of G[A]. Indeed, if G is a d-regular graph, then 2e(A) + |∂A| = d|A| for

all A ⊆ V . Denote B
(n)
r := {x : dH(x, 1) ≤ r} (or shortly Br) as the r-radius ball with center

1 = {1, 1, ..., 1}. Denote the cardinality of B
(n)
r as

(
n
≤r

)
:=

∑r
i=0

(
n
i

)
. Similarly, we denote the

Hamming sphere with the same radius and center as S
(n)
r := {x : dH(x, 1) = r} (or shortly

Sr) and its cardinality as
(
n
r

)
. Since Qr

n is (
(

n
≤r

)
− 1)-regular, it holds that for A ⊆ {−1, 1}n

with size M , 2e(A)+|∂A| = [
(

n
≤r

)
−1]M. Hence, the edge-isoperimetric problem is equivalent

to determining

max{e(A) : A ⊆ {−1, 1}n, |A| =M}.

2Without loss of generality, one can also consider the hypercube as {0, 1}n, and our results can be easily
converted into this case via a simple bijection x ∈ {0, 1} 7→ (−1)x. We choose “{−1, 1}n” since the Fourier
transform of a function on this set is easier to present.

3Throughout this paper, we denote [a : b] for a, b ∈ R such that a ≤ b as the set of integers between a

and b (i.e., [a, b] ∩ Z). .
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For a non-empty subset A ⊆ {−1, 1}n, the distance distribution of A is defined as the
following probability mass function4:

P (A)(i) :=
1

|A|2 |{(x,x
′) ∈ A2 : dH(x,x

′) = i}|, i ∈ [0 : n].

It is clear that P (A)(0) = 1
|A| ,

∑n
i=0 P

(A)(i) = 1, and P (A)(i) ≥ 0 for i ∈ [0 : n]. Further-

more, by definition, if |A| =M then e(A) = M2

2

∑r
i=1 P

(A)(i). Hence, the edge-isoperimetric
problem is also equivalent to determining

max{
r∑

i=0

P (A)(i) : A ⊆ {−1, 1}n, |A| =M},

i.e., the estimation of the cumulative distribution function of the distance distribution.

A trivial upper bound for the edge-isoperimetric problem is
∑r

i=0 P
(A)(i) ≤ 1, which is

attained if M is small enough, more precisely, if M ≤
(

n
≤b/2

)
(i.e., the optimal sets A are

contained in a Hamming ball of radius b/2) [10, 7]. For r = 1 (i.e., for Qn), the edge-
isoperimetric problem was solved by Harper [4], Lindsey [13], Bernstein [2] and Hart [6],
who showed that lexicographic subsets are optimal in minimizing the edge-boundary size.
Here, lexicographic subsets are subsets whose elements are given by initial segments of the
lexicographic ordering on {−1, 1}n. In fact, lexicographic subsets are generalizations of
subcubes, and reduce to subcubes when the sizes of them are 2k for integers k. Furthermore,
for r ≥ 2 and M = 2n−1, the edge-isoperimetric problem was solved by Kahn, Kalai, and
Linial [7] in 1989, who showed that subcubes are also optimal for this case. However, the
problem for r ≥ 2 and M 6= 2n−1 has remained open. In this paper, we make progress on
these unsolved cases, more specifically, on the cases of r ≥ 2 and M = α2n with α ∈ (0, 1

2
).

In other words, the case in which M is linear in 2n is considered in this paper. For this
case, we provide two bounds for the edge-isoperimetric problem. In particular, we prove
that subcubes are also optimal for r ≥ 2 and M = 2n−2.

When M is exponential in n, by using an improved hypercontractivity inequality, Kir-
shner and Samorodnitsky [9] recently showed that for M = 2nH(σ) with σ ∈ (0, 1

2
) and for

i = nλ with λ ≤ 2σ(1− σ),

P (A)(i) ≤ 2n[σH( λ
2σ

)+(1−σ)H( λ
2(1−σ)

)−H(σ)], (2)

where H(p) := −p log2 p− (1− p) log2(1− p) for p ∈ [0, 1] denotes the binary entropy (here,
the convention 0 log2 0 = 0 is adopted). By computing the derivative, one can find that
given σ, the exponent at the right side of (2) is non-decreasing in λ for λ ≤ 2σ(1 − σ).

4Our definition of the distance distribution is slightly different from the classic one (e.g., in [14]), since in
the classic definition, the factor is 1

|A| , rather than 1
|A|2 . Our choice is more convenient when the code size

is large (e.g., linear in 2n).
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Hence, the inequality in (2) implies that for M = 2nH(σ) with σ ∈ (0, 1
2
) and for r = nβ with

β ≤ 2σ(1− σ),
r∑

i=0

P (A)(i) ≤ (r + 1)2n[σH( β
2σ

)+(1−σ)H( β
2(1−σ)

)−H(σ)]. (3)

When rn = ⌊βn⌋ for a fixed β ∈ (0, 1) and let n→∞, it holds that

lim
n→∞

−1

n
log2 max

A:|A|≤2nH(σ)

rn∑

i=0

P (A)(i)

=

{
H(σ)− σH( β

2σ
)− (1− σ)H( β

2(1−σ)
), β ≤ 2σ(1− σ)

0, β > 2σ(1− σ)
. (4)

Here, the optimal exponent in (4) is attained by a sequence of Hamming balls with radii
(approximately) equal to nσ. The first clause at the right side of (4) follows from (3), and
the second one follows by the following facts: 1. when β = 2σ(1 − σ), the right side of (4)
vanishes; 2. given a set A, r 7→∑r

i=0 P
(A)(i) is non-decreasing, which implies that the left side

of (4) is non-increasing in β; 3. the left side of (4) is non-negative. It is worth noting that if
we replace

∑rn
i=0 P

(A)(i) at the left side of (4) with P (A)(rn), then the asymptotic exponent is
different from the above. Specifically, this new exponent is zero for 2σ(1−σ) ≤ β ≤ 1

2
and it

is symmetric with respect to β = 1
2
; see details in Remark 29 of [9]. Furthermore, Rashtchian

and Raynaud [17] also derived different bounds for the edge-isoperimetric problem for Qr
n.

Their bounds are tight up to a factor of exp(Θ(r)) (i.e., a factor depending only upon r).

1.1. Ball-Noise Stability: Probabilistic Reformulation of the Edge-Isoperimetric Problem

In this subsection, we reformulate the edge-isoperimetric problem in probabilistic lan-
guage. Let X ∼ Unif{−1, 1}n and Y = X ◦ Z = (Xi · Zi)1≤i≤n where Z ∈ {−1, 1}n is
independent of X and ◦ denotes the Hadamard product (element-wise product).

Definition 1. For f : {−1, 1}n → R and r ∈ [0 : n], the sphere-noise stability and ball-noise
stability of f at r are respectively

SStabr[f ] := E[f(X)f(Y)] =
∑

x,y∈f−1(1)

1{dH(x,y) = r}
2n
(
n
r

) (5)

with X ∼ Unif{−1, 1}n,Z ∼ Unif(Sr), and

BStabr[f ] := E[f(X)f(Y)] =
∑

x,y∈f−1(1)

1{dH(x,y) ≤ r}
2n
(

n
≤r

)

with X ∼ Unif{−1, 1}n,Z ∼ Unif(Br).
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Obviously, the joint distribution PXY is symmetric (i.e., PXY = PYX) if X ∼ Unif{−1, 1}n
and Z ∼ Unif(Sr) or Z ∼ Unif(Br). The edge-isoperimetric problem for Qr

n is equivalent to
the following question: For every (n, r,M) such that 1 ≤ r ≤ n and 1 ≤M ≤ 2n, determine

Γ
(n)
S (M, r) := max

f :{−1,1}n→{0,1}
P[f=1]=α

SStabr[f ] (6)

Γ
(n)
B (M, r) := max

f :{−1,1}n→{0,1}
P[f=1]=α

BStabr[f ] (7)

and their limits as n → ∞ for fixed α = M
2n

and β = r
n
. Here, the Boolean function

f : {−1, 1}n → {0, 1} in the optimizations can be seen as the indicator of the code A. Our
motivation for studying the case in which M is linear in 2n comes from this probabilistic
formulation of the edge-isoperimetric problem, since in this probabilistic formulation, α = M

2n

corresponds to the probability of the code A under the uniform measure. For even and
odd values of r, the limit behaviour is in fact different for the case of interest here. For
α, β ∈ (0, 1), we define

Γodd,S(α, β) := lim
n→∞

Γ
(n)
S (⌊α2n⌋, 2⌊βn

2
⌋ + 1)

Γeven,S(α, β) := lim sup
n→∞

Γ
(n)
S (⌊α2n⌋, 2⌊βn

2
⌋)

Γeven,S(α, β) := lim inf
n→∞

Γ
(n)
S (⌊α2n⌋, 2⌊βn

2
⌋). (8)

By replacing sphere noise with ball noise, Γodd,B(α, β),Γeven,B(α, β),Γeven,B(α, β) are defined
similarly. (The limits in the definitions of Γodd,S(α, β) and Γodd,B(α, β) exist, which will be
shown in Theorem 2.) We term the optimization problems in (6) and (7) respectively as the
sphere-noise stability and ball-noise stability problems.

The sphere-noise stability and ball-noise stability problems can be seen as variants of
the traditional i.i.d.-noise stability problem. In the traditional noise stability problem,
Z ∼ Rad⊗n(β). Here Rad⊗n(β) denotes the n-product of the biased Rademacher distri-
bution Rad(β), β ∈ (0, 1

2
) with itself, where the biased Rademacher distribution Rad(β) is a

distribution having the probability mass function

PZ(z) =

{
1− β z = 1

β z = −1
.

The noise stability of a function f is defined as

Stabβ[f ] := E[f(X)f(Y)] =
∑

x,y∈f−1(1)

βdH(x,y)(1− β)n−dH(x,y)

2n
, (9)

where X ∼ Unif{−1, 1}n,Z ∼ Rad⊗n(β), and again Y = X ◦ Z. Similarly to (6)-(8), define

Γ
(n)
IID(M,β) := max

f :{−1,1}n→{0,1}
P[f=1]=α

Stabβ [f ] and ΓIID(α, β) := lim
n→∞

Γ
(n)
IID(⌊α2n⌋, β). (10)

5



Obviously, the limit in (10) exists, since Γ
(n)
IID(⌊α2n⌋, β) is non-decreasing in n for given α, β.

The edge-isoperimetric problem for Qr
n and the ball-noise stability problem in (7) are

equivalent, as shown in the following proposition.

Proposition 1. For A ⊆ {−1, 1}n with size α2n, BStabr[1A] =
α22n

( n
≤r)

∑r
i=0 P

(A)(i).

Proof.

BStabr[1A] = P[X ∈ A,Y ∈ A] =
∑

x,y∈A

1{dH(x,y) ≤ r}
2n
(

n
≤r

)

=
α22n(

n
≤r

)
∑

x,y∈A

1{dH(x,y) ≤ r}
(α2n)2

=
α22n(

n
≤r

)
r∑

i=0

P (A)(i).

Combining (4) and Proposition 1 yields that when5 Mn = 2n(H(σ)+on(1)) (i.e., αn =
2n(H(σ)−1+on(1))) and rn = ⌊βn⌋ for some fixed σ ∈ (0, 1

2
), β ∈ (0, 1), it holds that

lim
n→∞

−1

n
log2 Γ

(n)
B (Mn, rn)

=

{
D((1− σ − β

2
, β
2
, β
2
, σ − β

2
)‖(1−β

2
, β
2
, β
2
, 1−β

2
)), β ≤ 2σ(1− σ)

1 +H(min{β, 1
2
})− 2H(σ), β > 2σ(1− σ)

, (11)

where D(Q‖P ) :=
∑

xQ(x) log2
Q(x)
P (x)

denotes the relative entropy between two distributions
Q and P .

In the literature, the (i.i.d.) noise stability problem was studied by Benjamini, Kalai,

and Schramm [1]. When α = 1
2

and n ≥ 1, Γ
(n)
IID(2

n−1, β) = 1−β
2

. This is a consequence of
Witsenhausen’s results on maximal correlation [18]. When α = 1

4
and n ≥ 2, Yu and Tan

[21] showed that Γ
(n)
IID(2

n−2, β) = (1−β
2
)2. In the literature, hypercontractivity inequalities

were also used to prove asymptotically tight (up to a factor (log 1
α
)k for some k) bounds on

ΓIID(α, β) as α → 0 for fixed β; see [15, 8, 21]. Kirshner and Samorodnitsky’s improved
hypercontractivity inequality in Theorem 8 of [9] implies that when Mn = 2n(H(σ)+on(1)) (i.e.,

α = 2n(H(σ)−1+on(1))) for some σ ∈ (0, 1
2
), the exponent of Γ

(n)
IID(Mn, β) for β ∈ (0, 1

2
) is

lim
n→∞

−1

n
log2 Γ

(n)
IID(Mn, β) = min

QXY :QX=QY =(1−σ,σ)
D(QXY ‖PXY ) (12)

= min
0≤θ≤2σ

D
(
(1− σ − θ

2
,
θ

2
,
θ

2
, σ − θ

2
)‖(1− β

2
,
β

2
,
β

2
,
1− β
2

)
)
, (13)

where the right side of (12) is termed the minimum relative entropy over couplings of
QX = QY = (1 − σ, σ) [22, 19], and the unique optimal θ attaining the minimum in (13) is

5Throughout this paper, we use on(1) to denote a term (or sequence) that vanishes as n→∞.
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θ∗ =
√

1+4(κ−1)σ(1−σ)−1

κ−1
with κ = (1−β

β
)2. Here, the optimal exponent in (13) is attained by a

sequence of Hamming balls (or Hamming spheres). The result in (12) and (13) was general-
ized to the two set version of noise stability and also generalized to arbitrary distributions
on finite alphabets or Polish spaces in [22, 19]. Furthermore, for σ < 1

2
, β ≤ 2σ(1 − σ), it

holds that θ∗ < β, which implies that for this case, the expression in (13) is strictly smaller
than that in (11).

1.2. Main Results

In this paper, we study the discrete edge-isoperimetric problem for Qr
n with r ≥ 1. We

apply two different techniques to derive bounds for this problem. The first one is Fourier
analysis combined with linear programming duality. By such a technique, we prove the
following bound which is called linear programming (LP) bound.

Theorem 1 (Linear Programming Bounds). 1. For α := M
2n
≤ 1

2
,

Γ
(n)
B (M, r) ≤ α2[1− ψ+

n (α, r)(
n
≤r

) ] + α(1− α)
(
n−1
r

)
(

n
≤r

) , (14)

where6 ψ+
n (α, r) := [ψn(α, r)]

+ and

ψn(α, r) :=





max
odd k∈[n−τ(n):n]

n(n−2
r−1)

2k−n
[2( 1

α
− 1)− 1

α
n+1
k+1

], even r ≤ n/2− 1

max
k∈[n−τ(n):n]∩F

(n−1)(n−2
r−1)

2k−n−1
[2( 1

α
− 1)− 1

α
n
k
], odd r ≤ n/2− 1

max
odd k∈[n

2
+1:n]

k(n−2
r+1)

(2k−n)
[2( 1

α
− 1)− 1

α
n
k
], even r > n/2− 1

max
odd k∈[n

2
+1:n]

k(n−2
r )

(2k−n)
[2( 1

α
− 1)− 1

α
n
k
], odd r > n/2− 1

(15)

with

τ(n) :=
1

2
(
n

2
+ 2−

√
n

2
+ 2) (16)

and

F :=
{
even k : k ≥ n+ r + 1

2

}

∪
{
odd k : k ≥ max{n + 1

2
,
(n− 1)r

n− 1− r}+
√

(n+ 1)r

2(n− 1− r)
}
. (17)

2. When considering the asymptotic case as n→∞, we have that for fixed δ > 0,

Γ
(n)
B (M, r) ≤ α2(1− (1− 2β)φn(α, r)) + on(1) (18)

6Throughout this paper, [x]+ := max{x, 0}.
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holds for all α := M
2n
∈ [δ, 1

2
− δ], β := r/n ∈ (0, 1

2
− δ] ∪ [1

2
, 1], where on(1) is only dependent

on δ and independent of M, r. Here,

φn(α, r) :=





βϕ(α)− ( 1
α
− 1), even r ≤ n/2− 1

βϕ̂(α, β)− ( 1
α
− 1), odd r ≤ n/2− 1

0, r > n/2− 1

where

ϕ(α) :=

{
2(1−√

α)2

α
, 0 ≤ α < 1/4

1
α
− 2, 1/4 ≤ α ≤ 1/2

ϕ̂(α, β) :=

{
1

2η̂−1
[2( 1

α
− 1)− 1

αη̂
], 0 ≤ α < 1/4

1
α
− 2, 1/4 ≤ α ≤ 1/2

with η̂ := max
{

1
2(1−√

α)
,min{1+β

2
, β
1−β
}
}
.

For comparison, observe that when α = 2−k for a positive integer k, every (n − k)-
dimensional Hamming subcube Cn−k (e.g., {1}k×{−1, 1}n−k) attains the following ball-noise
stability:

BStabr[1Cn−k
] = α

(
n−k
≤r

)
(

n
≤r

) . (19)

In particular, for fixed k, as n, r →∞ and r/n→ β,

BStabr[1Cn−k
]→ (

1− β
2

)k. (20)

Definition 2. The even part Aeven of a set A ⊆ {−1, 1}n is defined as {x ∈ A : dH(x, 1) is even},
i.e., the intersection of A and the set of vectors x of even Hamming weight dH(x, 1). The
odd part of A is defined as Aodd = A\Aeven.

For even r, the same ball-noise stability as in (19) can be also achieved by the even part
(or odd part) of an (n − k + 1)-dimensional subcube, e.g., {x ∈ {1}k−1 × {−1, 1}n+1−k :
dH(x, 1) is even}.

Comparing Theorem 1 with (19) and (20), we know that the bound in (14) is tight for
α = 1/2 and n ≥ 1 as well as for α = 1/4, r ≤ n/2 − 1, and n ≥ 2. For the former case
(α = 1/2 and n ≥ 1), ψ+

n (1/2, r) = 0, which leads to the tight result

Γ
(n)
B (2n−1, r) =

(
n−1
≤r

)

2
(

n
≤r

) and ΓB(1/2, β) =
1− β
2

, β ∈ (0, 1).

This recovers a classic result derived by Kahn, Kalai, and Linial [7]. For the latter case
(α = 1/4, r ≤ n/2 − 1, and n ≥ 2), ψn(1/4, r) = 2

(
n−2
r−1

)
, where the optimal k attaining

8



ψn(1/4, r) in (15) for even r ≤ n/2− 1 is k∗ = n for odd n, and k∗ = n− 1 for even n, and
the optimal k attaining ψn(1/4, r) for odd r ≤ n/2− 1 is k∗ = n. This leads to that

Γ
(n)
B (2n−2, r) =

(
n−2
≤r

)

4
(

n
≤r

) and ΓB(1/4, β) = (
1− β
2

)2, β ∈ (0, 1/2).

This result is new.
For fixed α = M

2n
≤ 1

2
and sufficiently large n, Rashtchian and Raynaud’s bound in [17]

reduces to the following bound:

Γ
(n)
B (M, r) ≤ 2α(

n
≤r

) [16en
r

(n− log2
1

α
)]r/2.

When considering the setting of interest in this paper (i.e., the case of fixed α = M
2n
∈ (0, 1

2
],

β = r
n
, but n → ∞), Rashtchian and Raynaud’s bound becomes 2α

( n
≤nβ)

[16e
β
(n − log2

1
α
)]nβ/2,

which tends to∞ as n→∞. Hence, their bound is trivial for our setting. We next compare
our result with Kirshner and Samorodnitsky’s in (2). We first restate their result in the
language of the sphere-noise stability. Similarly to Proposition 1, for sphere noise, it holds
that SStabr[1A] =

α22n

(nr)
P (A)(r). Substituting the bound in (2) into this formula yields the

following bound: For M = 2nH(σ) with σ ∈ (0, 1
2
) and r = nβ with β ≤ 2σ(1− σ),

Γ
(n)
S (M, r) ≤ 1(

n
r

)2n[−β log2 β−(σ−β
2
) log2(2σ−β)−(1−σ−β

2
) log2(2−2σ−β)]. (21)

For fixed 0 < α ≤ 1
2
, by solving 2nH(σ) = α2n, we obtain σ = 1−t

2
where t = 2

√
1
2n

ln 1
α
+

on(
1√
n
). On the other hand, for fixed 0 < β ≤ 1

2
, Stirling’s formula implies

(
n
r

)
= 2nH(β)− 1

2
log2(2πn)+On(1).

By this formula, the right side of (21) reduces to 2−
2

1−β
log2

1
α
+ 1

2
log2(2πn)+O(1), which obviously

also tends to ∞ as n→∞. In other words, Kirshner and Samorodnitsky’s bound becomes
trivial as well for our setting. However, it should be noted that Kirshner and Samorodnit-
sky’s bound outperforms our bound when α vanishes exponentially as n → ∞, since their
bound is exponentially tight in this setting.

The proof of Theorem 1 is given in Section 2. Here we provide the outline of the proof.
In our proof, we first relax the edge-isoperimetric problem to a linear program by employing
Fourier analysis. By duality in linear programming, we then rewrite this program as its
dual. Finally, we find a feasible solution to the dual program which hence provides a lower
bound for the primal program. Such a lower bound also results in a lower bound for the
edge-isoperimetric problem.

We next present our second bound, which is proven by a probabilistic approach.

Theorem 2 (Probabilistic Bounds). For 0 < α, β ≤ 1
2
,

Γodd,S(α, β) = Γodd,B(α, β) = ΓIID(α, β), (22)

ΓIID(α, β),
1

2
ΓIID(2α, β) ≤Γeven,S(α, β) ≤ Γeven,S(α, β) ≤ 2ΓIID(α, β), (23)

ΓIID(α, β) ≤Γeven,B(α, β) ≤ Γeven,B(α, β) ≤ 2(1− β)ΓIID(α, β). (24)
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We conjecture that for 0 < α, β ≤ 1
2
, Γeven,S(α, β) = Γeven,S(α, β) = 1

2
ΓIID(2α, β) and

Γeven,B(α, β) = Γeven,B(α, β) = ΓIID(α, β). This is true if Γeven,S(α, β) is attained by
1+χ[1:n]

2
fn

for some Fourier-weight stable (see Definition 3 in Section 3) sequence of Boolean functions fn
and Γeven,B(α, β) is attained by some Fourier-weight stable sequence of Boolean functions gn.
For the ball noise case, this conjecture was confirmed positively for α = 1/2 by combining
Kahn, Kalai, and Linial’s result [7] and Witsenhausen’s result [18], and for α = 1/4 by
combining Yu and Tan’s result [21] and Theorem 1 above.

The proof of Theorem 2 is given in Section 3. As observed in Proposition 1, the edge-
isoperimetric problem for Qr

n is equivalent to a ball-noise stability problem. By Fourier
analysis, we show that this ball-noise stability and the sphere-noise stability are bounded by
the traditional i.i.d. noise stability. Hence, we obtain lower bounds for the edge-isoperimetric
problem.

Instead of the noise stability problem, a hypercontractivity inequality for the sphere
noise was recently investigated by Polyanskiy [16]. Polyanskiy’s hypercontractivity inequality
differs from the sphere-noise stability problem here in two aspects: 1. The hypercontractivity
inequality concerns estimations of E[f(X)f(Y)] for all possible real-valued or complex-valued
functions f , while the noise stability problem restricts f to be a Boolean (i.e., binary-valued)
function; 2. the noise model (X,Y) in Polyanskiy’s hypercontractivity inequality is formed
by adding the sphere noise twice to the uniform random variable X, i.e., Y = X ◦ Z1 ◦ Z2

where Z1 and Z2 are i.i.d. sphere noises, while the noise model (X,Y) in the sphere-noise
stability problem here is formed by adding the sphere noise only once, i.e., Y = X ◦Z where
Z is a sphere noise. Note that for independent Rademacher noises Z1 and Z2, the Hadamard
product Z1 ◦Z2 is still a Rademacher noise. However, this is not true for sphere noise. Even
so, our strategy to prove Theorem 2 is similar to the one used by Polyanskiy [16], and both of
them exploit the connections between the i.i.d. Rademacher noise and the sphere-noise (or
ball-noise). More precisely, the Rademacher noise Z ∼ Rad⊗n(β) in fact can be regarded as
a “smoothing” version (weighted sum, or ‘binomial analogue’) of the sphere-noise (compare
the expressions in (5) and (9)), and moreover, the corruption effect by the Rademacher noise
is mainly determined by the component (the sphere-noise) of radius around nβ (which is
well-known in information theory).

The quantity ΓIID(α, β) was widely studied in the literature. Define ρ := 1 − 2β and
Λρ(α) as the Gaussian quadrant probability defined by Λρ(α) = P[Z1 > t, Z2 > t], where
Z1, Z2 are joint standard Gaussians with correlation E[Z1Z2] = ρ and t is a real number such
that P[Z1 > t] = α. The small-set expansion theorem on [15, p. 264] states that

ΓIID(α, β) ≤ α
1

1−β . (25)

On the other hand, for all 0 < α ≤ 1
2
, Hamming balls [15, Exercise 5.32] yield the lower

bound

ΓIID(α, β) ≥ Λρ(α), (26)

10



and for α = 2−k with a positive integer k, Hamming subcubes yield the lower bound

ΓIID(α, β) ≥ (
1− β
2

)k. (27)

Combining Theorem 2 with (25)-(27) yields the following theorem.

Theorem 3 (Hypercontractivity Bounds). For 0 < α, β ≤ 1
2
,

Λρ(α) ≤ Γodd,S(α, β) = Γodd,B(α, β) ≤ α
1

1−β ,

1

2
Λρ(2α) ≤ Γeven,S(α, β) ≤ Γeven,S(α, β) ≤ 2α

1
1−β ,

Λρ(α) ≤ Γeven,B(α, β) ≤ Γeven,B(α, β) ≤ 2(1− β)α 1
1−β .

Moreover, when k = log2
1
α

is a positive integer, it also holds that

Γodd,S(α, β), Γeven,B(α, β) ≥ (
1− β
2

)k and Γeven,S(α, β) ≥
1

2
(
1− β
2

)k−1. (28)

Similarly to the ball-noise case, when α = 2−k for a positive integer k, Hamming subcubes
Cn−k attain the sphere-noise stability α

(
n−k
r

)
/
(
n
r

)
. However, for even r, the even part (or

odd part) of Cn−k+1 attains the sphere-noise stability α[
(
n−k
r

)
+
(
n−k
r−1

)
]/
(
n
r

)
, which is strictly

larger than the one by Cn−k. In particular, for fixed k, as n, r → ∞ and r/n→ β, it holds
that α[

(
n−k
r

)
+

(
n−k
r−1

)
]/
(
n
r

)
→ 1

2
(1−β

2
)k−1, i.e., the second lower bound in (28). Similarly, for

even r, the lower bound 1
2
Λρ(2α) is asymptotically achieved by the even part (or odd part)

of a Hamming ball with volume 2α.

In fact, it was shown in [15, Exercise 9.24] that given β, Λρ(α) = Θ̃(α
1

1−β ) as α → 0.
Hence, the bounds in Theorem 3 are asymptotically tight (up to a factor (log 1

α
)k for some k)

as α→ 0 for fixed β. By comparing the LP bounds in Theorem 1 and the hypercontractivity
bounds in Theorem 3, it is easy to see that the LP bounds are tighter when α is close to 1

2

and the hypercontractivity bounds are tighter when α is close to 0.

2. Proof of Theorem 1

In this section, we apply Fourier analysis combined with linear programming duality to
prove Theorem 1. We first introduce Fourier analysis and Krawtchouk polynomials, and also
derive new properties of Krawtchouk polynomials. By using Fourier analysis, we then relax
the edge-isoperimetric problem to a linear program. By duality in linear programming, we
then rewrite this program as its dual. Finally, we find a feasible solution to the dual program
which hence provides a lower bound for the primal program. Such a lower bound results in
a lower bound for the edge-isoperimetric problem.
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2.1. Fourier Analysis and Krawtchouk Polynomials

A subset A is uniquely determined by its characteristics function 1A. For this Boolean
function 1A, the Fourier expansion and Fourier weights are defined as follows. Consider
the Fourier basis {χS}S⊆[1:n] with χS(x) :=

∏
i∈S xi for S ⊆ [1 : n]. Then for a function

f : {−1, 1}n → R, define its Fourier coefficients as

f̂S := EX∼Unif{−1,1}n [f(X)χS(X)], S ⊆ [1 : n].

Then the Fourier expansion of the function f (cf. [15, Equation (1.6)]) is f(x) =
∑

S⊆[1:n] f̂SχS(x).

The degree-k Fourier weight of f is defined as Wk[f ] :=
∑

S:|S|=k f̂
2
S, k ∈ [0 : n]. For

brevity, we denote Wk[f ] as Wk. By definition, it is easily seen that for f = 1A, W0 =
α2 and

∑n
k=0Wk = α, where α = |A|/2n. For a code A ⊆ {−1, 1}n, define the scaled

degree-k Fourier weight of 1A as Q(A)(k) := 1
α2Wk. If A is a linear code, then Q(A) is the

distance distribution of the dual of code A, and hence is also called the dual distribution of
A. For details, please refer to [14]. By definition,

Q(A)(0) = 1,

n∑

i=0

Q(A)(i) =
1

α
, and Q(A)(i) ≥ 0 for i ∈ [0 : n]. (29)

For each k ∈ [0 : n] and indeterminate x, the Krawtchouk polynomials [14] are defined
as7

K
(n)
k (x) :=

k∑

j=0

(−1)j
(
x

j

)(
n− x
k − j

)
, (30)

whose generating function satisfies

∞∑

k=0

K
(n)
k (x)zk = (1− z)x(1 + z)n−x. (31)

For brevity and if there is no ambiguity, we denote K
(n)
k as Kk. It is well-known that (see,

7 Here for a real number x and an integer j, the (generalized) binomial coefficients
(
x
j

)
:= x(x−1)···(x−j+1)

j!

if j > 0;
(
x
j

)
:= 1 if j = 0; and

(
x
j

)
:= 0 if j < 0. Obviously, by definition,

(
n
j

)
≥ 0 for nonnegative integer n.

In particular, for nonnegative integer n,
(
n
j

)
= 0 if j < 0 or n < j. See more properties on MacWilliams and

Sloane [14, pp. 13-14].
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e.g., [14])

K0(i) = 1, ∀i ∈ [0 : n];

Kk(0) =

(
n

k

)
, Kk(1) =

(
n

k

)
(1− 2k

n
),

Kk(2) =

(
n

k

)
(1− 4k(n− k)

n(n− 1)
) ∀k ∈ [0 : n];

∑

S⊆[1:n]

χS(x)χS(x
′)z|S| = (1− z)dH(x,x′)(1 + z)n−dH(x,x′), ∀x,x′ ∈ {−1, 1}n;

Kk(dH(x,x
′)) =

∑

S:|S|=k

χS(x)χS(x
′), ∀k ∈ [0 : n],x,x′ ∈ {−1, 1}n. (32)

Taking expectation for both sides of (32), with respect to (X,X′) ∼ Unif⊗2(A), yields the
following relationship between P (A) and Q(A):

Q(A)(k) =
n∑

i=0

P (A)(i)Kk(i) and P (A)(k) =
1

2n

n∑

i=0

Q(A)(i)Kk(i). (33)

These are so-called MacWilliams–Delsarte identities [14].

We now provide the following extremal property of Krawtchouk polynomials. The proof
of Lemma 1 is provided in Appendix A.

Lemma 1. For an integer n ≥ 1, the following hold:

1. For 0 ≤ k, i ≤ n, we have K
(n)
k (0) ≥ |K(n)

k (i)|.
2. For 0 ≤ k ≤ n−1

2
and 1 ≤ i ≤ n− 1, we have K

(n)
k (1) ≥ |K(n)

k (i)|.
3. For 0 ≤ k ≤ τ(n) (defined in (16)) and 2 ≤ i ≤ n− 2, we have K

(n)
k (2) ≥ |K(n)

k (i)|.

Note that the upper threshold τ(n) in Statement 3 is not sharp. Numerical simulation
shows that the upper threshold can be sharpened to a value close to n/2. Proving this seems
not easy. However, it can be proven when n is sufficiently large; see the following lemma.
This lemma is just a strengthening of [20, Lemma 3] and the proof is similar to that of [20,
Lemma 3]. Hence we omit the proof of the following lemma.

Lemma 2. Given a non-negative integer i and δ > 0, for all sufficiently large n,

K
(n)
k (i) ≥ |K(n)

k (x)|, ∀k ∈ [δn : (
1

2
− δ)n], x ∈ [i, n− i]. (34)

Combining Lemmas 1 and 2 yields that given δ > 0, for all sufficiently large n,

K
(n)
k (2) ≥ |K(n)

k (j)|, ∀k ∈ [0 : (
1

2
− δ)n], j ∈ [2, n− 2]. (35)
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2.2. Linear Program and Its Dual

By the MacWilliams–Delsarte identity (33),

r∑

k=0

P (A)(k) =
1

2n

n∑

i=0

Q(A)(i)
r∑

k=0

Kk(i). (36)

We define

ω
(r)
i :=

r∑

k=0

Kk(i) = K(n−1)
r (i− 1) (37)

(for the equality, see [12, Equation (54)]), and for brevity, we also denote ω
(r)
i as ωi. Then,

r∑

k=0

P (A)(k) =
1

2n

n∑

i=0

Q(A)(i)ωi. (38)

Note that, in particular, ω0 =
(

n
≤r

)
and ω1 =

(
n−1
r

)
. From (29), (33), and P (A)(k) ≥ 0, the

following properties of Q(A) hold:

Q(A)(i) ≥ 0, i ∈ [0 : n], Q(A)(0) = 1,

n∑

i=0

Q(A)(i) =
1

α
, (39)

and

n∑

i=0

Q(A)(i)Kk(i) ≥ 0, k ∈ [0 : n]. (40)

Substituting (39) into (38), we obtain

r∑

k=0

P (A)(k) =
1

2n
[ω0 + (

1

α
− 1−

n∑

i=2

Q(A)(i))ω1 +

n∑

i=2

Q(A)(i)ωi]

=
1

2n
[ω0 + (

1

α
− 1)ω1 −

n∑

i=2

Q(A)(i)(ω1 − ωi)].

We now consider a relaxed version of the minimization of
∑n

i=2Q
(A)(i)(ω1−ωi) over the dual

distance distributionQ(A). Instead of the discrete optimization of
∑n

i=2Q
(A)(i)(ω1−ωi) (since

given n, there are only finitely many codes and the corresponding dual distance distributions),
we allow (Q(A)(0), Q(A)(1), ..., Q(A)(n)) to be any nonnegative vector (u0, u1, ..., un) such that

u0 = 1, ui ≥ 0, i ∈ [2 : n];
n∑

i=0

ui =
1

α
;

n∑

i=0

uiKk(i) ≥ 0, k ∈ [0 : n].

Then in order to lower bound
∑n

i=2Q
(A)(i)(ω1−ωi), we consider the following linear program.
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Problem 1 (Primal Problem).

Λn(α, r) := min
u2,u3,...,un

n∑

i=2

ui(ω1 − ωi)

subject to the inequalities

ui ≥ 0, i ∈ [2 : n];
n∑

i=2

[Kk(1)−Kk(i)]ui ≤ Kk(0) +Kk(1)(
1

α
− 1), k ∈ [1 : n].

The dual is the following optimization problem.

Problem 2 (Dual Problem ).

Λn(α, r) := max
x1,x2,...,xn

−
n∑

k=1

[Kk(0) +Kk(1)(
1

α
− 1)]xk (41)

subject to the inequalities

xk ≥ 0, k ∈ [1 : n];
n∑

k=1

[Kk(1)−Kk(i)]xk ≥ −(ω1 − ωi), i ∈ [2 : n]. (42)

By strong duality in linear programming,8 Λn(α, r) = Λn(α, r). Therefore, the following
holds.

Theorem 4. For any code A of size M ,
∑n

i=2Q
(A)(i)(ω1 − ωi) ≥ Λn(α, r).

2.3. Linear Programming Bounds

We next provide a lower bound for Λn(α, r).

Theorem 5. For any code A of size M , Λn(α, r) ≥ ψ+
n (α, r), where ψ+

n was given in Theorem
1.

The proof of Theorem 5 is provided in Appendix B. In our proof, we constructed different
feasible solutions for different cases. For example, for even r ≤ n/2− 1 our feasible solution

is x∗ = (0, ..., 0, x∗k, x
∗
k+1, 0, ..., 0) with x∗k = x∗k+1 =

n(n−2
r−1)

(nk)(2k−n)
, where k is an odd number such

that n − τ(n) ≤ k ≤ n. The feasibility of this solution follows since, on one hand, such a

8Obviously, in the primal problem, since ui ≥ 0, the primal problem is bounded. On the other hand, the
existence of a code A with size M := α2n ensures that ui = Q(A)(i) is a feasible solution. Hence the primal
problem has an optimal solution.
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solution guarantees that equality holds in (42) for i = 2, n; and on the other hand, after
substituting x∗ into (42), it can be found that (42) holds for i ∈ [2 : n] if and only if it holds
for i = 2, n. Hence x∗ is feasible. It is easy to see that it leads to the bound in Theorem 5
for even r ≤ n/2− 1. Other cases are proven similarly.

If we focus on sufficiently large n, then we can obtain a better bound, as shown in the
following theorem. The proof of Theorem 6 is almost same as the proof of Theorem 5 except
that Lemma 2 (more preciously, the inequality (35)), instead of Lemma 1, is applied.

Theorem 6. For any code A of size M and any δ > 0, for sufficiently large n, the set
“[n−τ(n) : n]” in the first two clauses of ψn(α, r) in (15) can be replaced with “[(1

2
+δ)n : n]”.

In particular, when n→∞, for fixed δ > 0,

Λn(α, r) ≥ κn(α, r) :=





(
n−2
r−1

)
(ϕ(α) + on(1)), even r ≤ n(1

2
− δ)(

n−2
r−1

)
(ϕ̂(α, β) + on(1)), odd r ≤ n(1

2
− δ)(

n−2
r+1

)
(ϕ(α) + on(1)), even r ≥ n/2− 1(

n−2
r

)
(ϕ(α) + on(1)), odd r ≥ n/2− 1

holds for any α := M
2n
∈ [δ, 1

2
], β := r/n ∈ (0, 1

2
− δ] ∪ [1

2
, 1], where all the terms on(1) are

independent of M, r (the ones in first two clauses depend on δ).

Theorems 5 and 6 implies the following linear programming bound on
∑r

k=0 P
(A)(k).

Theorem 7 (Linear Programming Bound). 1. For α = M
2n
≤ 1

2
,

r∑

k=0

P (A)(k) ≤ 1

2n
[ω0 + (

1

α
− 1)ω1 − ψ+

n (α, r)]. (43)

2. When considering the asymptotic case as n → ∞, ψ+
n (α, r) in (43) can be replaced by

κn(α, r).

In the perspective of ball-noise stability, Theorem 7 can be rewritten as the bounds in
Theorem 1. In particular, for the asymptotic case, it follows by the fact that for fixed δ > 0,
(nr)
( n
≤r)
→ 1−2β

1−β
uniformly for all β := r/n ∈ [δ, 1

2
− δ]; see Lemma 4 in the next section. This

completes the proof of Theorem 1.

3. Proof of Theorem 2

In this section, we apply a probabilistic approach to prove Theorem 2. A similar approach
was also used by Polyanskiy to study the hypercontractivity phenomenon under the sphere
noise [16].

Similar to the i.i.d.-noise stability, the sphere- or ball-noise stability of a function can be
also expressed in terms of Fourier weights of this function. For a random noise Z ∈ {−1, 1}n,
let T be a noise operator such that for a function f : {−1, 1}n → R, [Tf ](x) = E[f(x ◦ Z)].
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Then it is easy to verify that TχS = (2P[χS(Z) = 1] − 1)χS. Hence, for any function
f : {−1, 1}n → R,

Tf = T

∑

S⊆[1:n]

f̂SχS =
∑

S⊆[1:n]

f̂STχS =
∑

S⊆[1:n]

(2P[χS(Z) = 1]− 1)f̂SχS, (44)

which further implies that

E[f(X)f(Y)] = 〈f,Tf〉 =
∑

S⊆[1:n]

(2P[χS(Z) = 1]− 1)f̂ 2
S

where Y = X ◦ Z. In particular, if Z ∼ Unif(Br), i.e., T corresponds to the ball-noise
operator Br, then

P[χS(Z) = 1] = P[
∏

i∈S
Zi = 1] = P[

|S|∏

i=1

Zi = 1],

where the last equality follows since the distribution of Z is invariant under the permutation
operation. Hence, for ball-noise operator Br,

BStabr[f ] = 〈f,Brf〉 =
n∑

k=0

(2P[

k∏

i=1

Zi = 1]− 1)Wk. (45)

For sphere noise operator Sr, SStabr[f ] admits the same expression above, but in which
Z ∼ Unif(Sr). We next provide the exact and asymptotic expressions for the coefficients
2P[

∏k
i=1 Zi = 1]− 1 for sphere noise and ball noise.

Lemma 3. 1. For Z ∼ Unif(Sr),

2P[

k∏

i=1

Zi = 1]− 1 =
Kr(k)(

n
r

) . (46)

For fixed k and δ > 0, as n→∞,

2P[

k∏

i=1

Zi = 1]− 1→ (1− 2β)k and max
j∈[k:n−k]

|2P[
j∏

i=1

Zi = 1]− 1| → (1− 2β)k (47)

uniformly for all β := r/n ∈ [δ, 1/2− δ].
2. For Z ∼ Unif(Br),

2P[

k∏

i=1

Zi = 1]− 1 =
K

(n−1)
r (k − 1)(

n
≤r

) . (48)

For fixed k and δ > 0, as n→∞,

2P[

k∏

i=1

Zi = 1]− 1→ (1− 2β)k and max
j∈[k:n−k+1]

|2P[
j∏

i=1

Zi = 1]− 1| → (1− 2β)k

uniformly for all β := r/n ∈ [δ, 1/2− δ].
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Proof. We first prove Statement 1. Assume Z ∼ Unif(Sr). By (32) with x′ ← 1 and x← Z,
we have

E[Kk(dH(Z, 1))] = E[
∑

S:|S|=k

χS(Z)χS(1)]. (49)

The right side of (49) is equal to
∑

S:|S|=k E[χS(Z)] =
(
n
k

)
(2P[

∏k
i=1 Zi = 1]−1). The left side

of (49) is equal to Kk(r) =
(nk)
(nr)
Kr(k), since

(
n
i

)
Kk(i) =

(
n
k

)
Ki(k) holds for any nonnegative

integers i, k. Hence, we obtain (46).

Lemma 4. 1. For fixed k ≥ i ≥ 0,
(n−k
r−i)
(nr)
→ βi(1− β)k−i uniformly for all β := r/n ∈ [0, 1].

2. For fixed δ > 0,
( n
≤r)
(nr)
→

∑r
j=0(

β
1−β

)j uniformly for all β := r/n ∈ [0, 1
2
− δ].

3. For fixed k ≥ i ≥ 0 and δ > 0,
( n−k
≤r−i)
( n
≤r)
→ βi(1−β)k−i uniformly for all β := r/n ∈ [δ, 1

2
−δ].

The proof of Lemma 4 is provided in Appendix C.

When Z ∼ Unif(Sr), by definition, P[
∏k

i=1 Zi = 1] =
∑⌊k/2⌋

j=0 ( k
2j)(

n−k
r−2j)

(nr)
. By Statement 1 of

Lemma 4, for fixed k,

P[
k∏

i=1

Zi = 1]→
⌊k/2⌋∑

j=0

(
k

2j

)
β2j(1− β)k−2j =

1 + (1− 2β)k

2
(50)

uniformly for all β := r/n ∈ [0, 1]. The equality above follows by the following interpretation
of the middle term in (50). Consider Y (k) =

∑k
i=1Xi with i.i.d. Xi ∼ Bern(β) (Bernoulli

distribution on {0, 1} with 1 having mass β) and denote pk := P[Y (k) is even] and qk :=
P[Y (k) is odd]. Then, the middle term in (50) is just pk. Obviously, pk, qk satisfy the following
recursive relations: pk = (1 − β)pk−1 + βqk−1 and qk = (1 − β)qk−1 + βpk−1, which imply
pk− qk = (1− 2β)(pk−1− qk−1) = ... = (1− 2β)k. Combining this with pk + qk = 1 yields the
equality in (50). Obviously, (50) is just restatement of the first convergence result in (47).
That is, we complete the proof of the first convergence result in (47).

The second convergence result in (47) follows from the first one in (47), (46), and Lemma
2. This completes the proof of Statement 1.

Statement 2 follows similarly, and hence the proof is omitted here.

Substituting (48) into (45), we obtain

BStabr[f ] =
1(
n
≤r

)
n∑

k=0

WkK
(n−1)
r (k − 1).

Similarly,

SStabr[f ] =
1(
n
r

)
n∑

k=0

WkK
(n)
r (k). (51)
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In contrast, note that [15, Theorem 2.49] for i.i.d. noise,

Stabβ [f ] =
n∑

k=0

Wk(1− 2β)k. (52)

By Lemma 3, we obtain several relationships between SStabr[fn], BStabr[fn], and
Stabβ[fn] for a sequence of functions {fn}. Before introducing these relationships, we first
introduce a new concept on the tail behavior of Fourier weights.

Definition 3. A sequence of functions {fn : {−1, 1}n → R}∞n=1 is called Fourier-weight stable
if limn→∞

∑n
k=n−k0

Wk[fn] = 0, ∀k0 ≥ 0 (or equivalently, limk0→∞ limn→∞
∑n

k=n−k0
Wk[fn] =

0).

Theorem 8. 1. Let {fn} be a sequence of nonnegative (not necessarily Boolean) functions
with bounded L2-norm, i.e., lim supn→∞ E[f 2

n(X)] <∞. Let δ > 0. Given n, let r ∈ N such
that β := r/n ∈ [δ, 1/2− δ]. Then, for even r,

Stabβ[fn] + on(1) ≤ SStabr[fn] ≤ 2Stabβ[fn] + on(1), (53)

Stabβ[fn] + on(1) ≤ BStabr[fn] ≤ 2(1− β)Stabβ[fn] + on(1), (54)

and for odd r,

0 ≤ SStabr[fn] ≤ Stabβ[fn] + on(1), (55)

2βStabβ [fn] + on(1) ≤ BStabr[fn] ≤ Stabβ[fn] + on(1). (56)

Here, the terms on(1) in (53)-(56) are independent of r (given n), but dependent of δ.
2. Any sequence of nonnegative functions fn supported on a subset of {x : dH(x, 1) is even}
(or {x : dH(x, 1) is odd}) attains the upper bounds in (53) and (54) for even r, and the
lower bounds in (55) and (56) for odd r.
3. Any Fourier-weight stable sequence of nonnegative functions fn (e.g., Hamming subcubes
or Hamming balls) attains the lower bounds in (53) and (54) for even r, and the upper
bounds in (55) and (56) for odd r.

Proof. We first consider the sphere noise case. By Lemma 3, for fixed k,

2P[
k∏

i=1

Zi = 1]− 1 = (1− 2β)k + on(1),

2P[
n−k∏

i=1

Zi = 1]− 1 =
Kr(n− k)(

n
r

) =
(−1)r(

n
r

) Kr(k) = (−1)r(1− 2β)k + on(1),

and for fixed k0,

max
k∈[k0+1:n−k0−1]

|2P[
k∏

i=1

Zi = 1]− 1| = (1− 2β)k0+1 + on(1).
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By these equalities, we have that for fixed k0,

SStabr[fn] =

n∑

k=0

Wk(2P[

k∏

i=1

Zi = 1]− 1) ≶ a(k0) + (−1)rb(k0)± c(k0) + on(1).

where

a(k0) =

k0∑

k=0

Wk(1− 2β)k, b(k0) =

k0∑

k=0

Wn−k(1− 2β)k, c(k0) = (

n−k0−1∑

k=k0+1

Wk)(1− 2β)k0+1.

(57)
For odd r,

0 ≤ SStabr[fn] = a(k0)− b(k0) + c(k0) + on(1). (58)

Equation (58) implies (55) since a(k0) ≤
∑n

k=0Wk(1 − 2β)k = Stabβ [fn] and c(k0) ≤
lim supn→∞ E[f 2

n](1− 2β)k0+1 → 0 as k0 →∞.
We now consider even r. For this case,

SStabr[fn] ≶ a(k0) + b(k0)± c(k0) + on(1). (59)

Since Stabβ[fn] =
∑n

k=0Wk(1−2β)k ≤ a(k0)+ b(k0)+ c(k0) and c(k0)→ 0 as k0 →∞. We
have SStabr[fn] ≥ Stabβ [fn] + on(1).

On the other hand, for even r, (58) also implies that for a sequence of functions {fn},

b(k0) ≤ a(k0) + c(k0) + on(1), (60)

where the β’s in definitions of a, b, c in (57) are reset to (r−1)/n = β−1/n so that the radius
r − 1 is odd. Note that 1/n vanishes as n → ∞, and hence, this asymptotically vanishing
term can be merged into on(1), which means that (60) still holds if a, b, c remain unchanged
as in (57) (in other words, the β’s there are r/n). Substituting (60) into (59) yields that for
even r,

SStabr[fn] ≤ 2a(k0) + 2c(k0) + on(1) ≤ 2Stabβ[fn] + 2c(k0) + on(1).

Since k0 > 0 is arbitrary and c(k0)→ 0 as k0 →∞, we obtain (53).
For ball noise case, inequalities (54) and (56) can be proven similarly. The proof is

omitted. Furthermore, if f is supported on a subset of {x : dH(x, 1) is even}, then by
definition, the Fourier coefficients of f satisfy that f̂S = f̂Sc for any S ⊆ [1 : n]. Hence,
Statement 2 can be easily verified. In addition, Statement 3 can be easily verified as well.

We next turn back to prove Theorem 2.

Proof of Theorem 2. The upper bound in (23) and the upper and lower bounds in (24),
as well as Γodd,S(α, β), Γodd,B(α, β) ≤ ΓIID(α, β) and Γeven,S(α, β) ≥ ΓIID(α, β) follow di-
rectly from Theorem 8. It remains to prove Γodd,S(α, β), Γodd,B(α, β) ≥ ΓIID(α, β) and
Γeven,S(α, β) ≥ 1

2
ΓIID(2α, β).
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We first prove Γodd,S(α, β) ≥ ΓIID(α, β). Let A ⊆ {−1, 1}n be a subset of size M . Now
we construct a new subset Bk = A×{−1, 1}k. Obviously, Bk ⊆ {−1, 1}n+k and |Bk| = 2kM .
Next, we prove that for fixed n,A,

lim
k→∞

SStab
2⌊ (n+k)β

2
⌋+1

[1Bk
] ≥ Stabβ[1A]. (61)

For any x ∈ Bk, we can write x = (x1,x2) where x1 ∈ A and x2 ∈ {−1, 1}k. Then we
have

dH(x,y) = dH(x1,y1) + dH(x2,y2). (62)

Denote rk := 2⌊ (n+k)β
2
⌋+ 1. Using (62) we obtain that under sphere noise,

SStabrk [1Bk
] = P[X ∈ Bk,Y ∈ Bk]

=
#{(x,y) ∈ B2

k : dH(x,y) = rk}
2n+k

(
n+k
rk

)

=

n∑

i=0

#{(x1,y1) ∈ A2 : dH(x1,y1) = i}#{(x2,y2) : dH(x2,y2) = rk − i}
2n+k

(
n+k
rk

)

=

n∑

i=0

#{(x1,y1) ∈ A2 : dH(x1,y1) = i}
(

k
rk−i

)

2n
(
n+k
rk

)

→ 1

2n

n∑

i=0

#{(x1,y1) ∈ A2 : dH(x1,y1) = i}βi(1− β)n−i as k →∞ (63)

= Stabβ[1A],

where (63) follows by Lemma 4. Therefore, (61) holds, which implies Γodd,S(α, β) ≥ ΓIID(α, β).
Similarly, one can prove Γodd,B(α, β) ≥ ΓIID(α, β).

We next prove Γeven,S(α, β) ≥ 1
2
ΓIID(2α, β). We have shown that Γodd,S(α, β) = ΓIID(α, β)

holds. We now claim that Γodd,S(α, β) is attained by a Fourier-weight stable sequence of
Boolean functions, and moreover, this sequence also attains ΓIID(α, β). We now prove it.
For any optimal sequence of Boolean functions {fn} attaining Γodd,S(α, β), it holds that
Stabβ[fn] ≥ a(k0), where a(k0) was defined in (57). Combining this inequality with (58)
yields that

SStabr[fn] ≤ Stabβ[fn]− b(k0) + c(k0) + on(1). (64)

Taking limits as n→∞, we obtain

Γodd,S(α, β) ≤ lim inf
n→∞

Stabβ[fn]− b(k0) + c(k0) ≤ ΓIID(α, β)− lim sup
n→∞

b(k0) + (1− 2β)k0+1.

Then, taking limits as k0 → ∞ and by using the equality Γodd,S(α, β) = ΓIID(α, β), we
have that limk0→∞ lim supn→∞ b(k0) = 0, or equivalently, lim supn→∞ b(k0) = 0, ∀k0 ≥ 0,
which implies that limn→∞

∑n
k=n−k0

Wk[fn] = 0, ∀k0 ≥ 0, i.e., {fn} is Fourier-weight stable.
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Moreover, we also have that lim infn→∞ Stabβ[fn] is equal to ΓIID(α, β). Hence, ΓIID(α, β)
is attained by {fn} as well, i.e., the claim is true.

We also need the following decomposition of a Boolean function. Any Boolean f can be
written as f = feven+ fodd, where feven =

1+χ[1:n]

2
f and fodd =

1−χ[1:n]

2
f are Boolean functions

respectively supported on vectors x of even and odd Hamming weights dH(x, 1). In fact, if
A is the support of f , then the supports of feven and fodd are respectively the even part and
odd part of A; see Definition 2. For functions feven, fodd, their Fourier coefficients satisfy
that

f̂even,S = EX∼Unif{−1,1}n [f(X)
1 + χ[1:n](X)

2
χS(X)]

= EX∼Unif{−1,1}n [f(X)
χS(X) + χSc(X)

2
] =

f̂S + f̂Sc

2

and f̂odd,S = f̂S−f̂Sc

2
. Define the Fourier weights Weven,k :=

∑
S:|S|=k f̂

2
even,S and Wodd,k :=

∑
S:|S|=k f̂

2
odd,S. From (44), under sphere noise,

E[feven(X)fodd(Y)] = 〈feven, Srfodd〉 =
∑

S⊆[1:n]

f̂even,S f̂odd,S
Kr(|S|)(

n
r

)

=
∑

S:|S|≤n/2

f̂even,Sf̂odd,S
Kr(|S|)(

n
r

) −
∑

S:|S|≤n/2

f̂even,S f̂odd,S
Kr(|S|)(

n
r

) = 0, (65)

where Y = X ◦ Z with Z ∼ Unif(Sr), and in (65) Kr(|Sc|) = Kr(|S|) for even r is applied.
Given (α, β), denote {fn} as an optimal Fourier-weight stable sequence of Boolean func-

tions with support size ⌊2α2n⌋ that attains ΓIID(2α, β). For brevity, we omit the subscript
n of fn. Then for r = 2⌊βn

2
⌋,

ΓIID(2α, β) = Stabβ[f ] = SStabr[f ] + on(1) (66)

= E[[feven + fodd](X)[feven + fodd](Y)] + on(1)

= E[feven(X)feven(Y)] + E[fodd(X)fodd(Y)] + on(1)

≤ Γeven,S(αeven, β) + Γeven,S(αodd, β) + on(1), (67)

where (66) follows by Statement 3 of Theorem 8, and αeven = E[feven(X)], αodd = E[fodd(X)].
On the other hand, since f is Fourier-weight stable, we have

Weven,0 = (
f̂∅ + f̂[1:n]

2
)2 ≤ (

√
W0 +

√
Wn

2
)2 → W0

4
, as n→∞,

and similarly Wodd,0 → W0

4
as n→∞. This means

αeven → α and αodd → α. (68)

Furthermore, we claim that Γeven,S(α, β) is continuous in α. Let 0 ≤ α1 < α2 ≤ 1. We

now prove this claim. Let 1An be an optimal Boolean function attaining Γ
(n)
S (⌊α22

n⌋, 2⌊βn
2
⌋),
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where An is the support of this optimal Boolean function. Let Bn be an arbitrary subset of
An such that P[X ∈ Bn] = α1. Then,

Γ
(n)
S (⌊α22

n⌋, 2⌊βn
2
⌋) = P[X ∈ An,Y ∈ An]

= P[X ∈ Bn,Y ∈ Bn] + P[X ∈ An\Bn,Y ∈ Bn]

+ P[X ∈ Bn,Y ∈ An\Bn] + P[X ∈ An\Bn,Y ∈ An\Bn]

≤ P[X ∈ Bn,Y ∈ Bn] + 3P[X ∈ An\Bn]

≤ Γ
(n)
S (⌊α12

n⌋, 2⌊βn
2
⌋) + 3

⌊α22
n⌋ − ⌊α12

n⌋
2n

.

Taking lim infn→∞, we obtain

Γeven,S(α1, β) ≤ Γeven,S(α2, β) ≤ Γeven,S(α1, β) + 3(α2 − α1),

which implies the continuity of Γeven,S(α, β) in α. (In fact, by the same argument, other

quantities such as ΓIID(α, β),Γeven,S(α, β),Γeven,B(α, β) etc. are also continuous in α.)
Finally, combining (67) and (68) and applying the continuity of Γeven,S(α, β) yields

Γeven,S(α, β) ≥ 1
2
ΓIID(2α, β).

Appendix A. Proof of Lemma 1

Here we prove Lemma 1 by using the generating function method.
Statement 1: By the equality

∑
kK

(n)
k (i)zk = (1 − z)i(1 + z)n−i where

∑
k means the

summation over all integers (in fact, it can be replaced by
∑n

k=0 for this equality), we have
that

∑

k

[K
(n)
k (0)−K(n)

k (i)]zk = (1 + z)n−i[(1 + z)i − (1− z)i] (A.1)

= 2(1 + z)n−i[
∑

odd j

(
i

j

)
zj ]. (A.2)

Here in fact, the variable j under the summation in (A.2) can be additionally restricted to
belong to [0 : i]. Similarly, we have

∑

k

[K
(n)
k (0) +K

(n)
k (i)]zk = 2(1 + z)n−i[

∑

even j

(
i

j

)
zj ]. (A.3)

Since all coefficients in (A.2) and (A.3) are nonnegative, we have K
(n)
k (0) ≥ |K(n)

k (i)|.
Statement 2: We first prove Statement 2 for odd i, i.e., the following claim.

Claim 1. K
(n)
k (1) ≥ |K(n)

k (i)| holds for 0 ≤ k ≤ n−1
2

and odd i such that 1 ≤ i ≤ n− 1.

23



Similarly to (A.1)-(A.2), we obtain for 1 ≤ i ≤ n− 1,

∑

k

[K
(n)
k (1)−K(n)

k (i)]zk = 2(1− z)[
∑

j

(
n− i
j

)
zj ][

∑

odd j

(
i− 1

j

)
zj ]

= 2(1− z)
∑

k

[
∑

odd j

(
n− i
k − j

)(
i− 1

j

)
]zk

= 2
∑

k

ai,kz
k,

where

ai,k :=
∑

odd j

(
i− 1

j

)
[

(
n− i
k − j

)
−
(

n− i
k − j − 1

)
].

By the formula
(
m
l

)
=

(
m−1
l

)
+
(
m−1
l−1

)
, we can rewrite ai,k =

∑
odd j

(
i−1
j

)
(bk−j−bk−j−2), where

bl :=
(
n−i−1

l

)
. We next prove ai,k ≥ 0 for k ≤ n

2
and odd i ∈ [1 : n− 1].

Observe that for odd i,

ai,k =
∑

odd j

[

(
i− 1

j

)
−

(
i− 1

j − 2

)
]bk−j

=
∑

odd j< i+1
2

[

(
i− 1

j

)
−

(
i− 1

j − 2

)
]bk−j + [

(
i− 1

i+ 1− j

)
−

(
i− 1

i− 1− j

)
]bk−(i+1−j)

=
∑

odd j< i+1
2

[

(
i− 1

j

)
−

(
i− 1

j − 2

)
][bk−j − bk−(i+1−j)].

We now require some basic properties of binomial coefficients. For a nonnegative integer
m, the function g : j ∈ Z 7→

(
m
j

)
satisfies following properties.

1. g is symmetric with respect to m
2
, i.e., g(j) = g(m− j).

2. g is nondecreasing for j ≤ m+1
2

and nonincreasing for j ≥ m+1
2

.

3. g(j1) ≤ g(j2) for all integers j1, j2 such that j1 ≤ j2 and j1 + j2 ≤ m.

The first two properties follow by definition, and the third one follows by the first two since
g(j1) ≤ g(j2) if j2 ≤ m+1

2
, and g(j1) ≤ g(m− j2) = g(j2) if j2 >

m+1
2

.

By the second property above, we have
(
i−1
j

)
≥

(
i−1
j−2

)
since j < i+1

2
(or equivalently,

j ≤ i
2
). By the last one, we have bk−(i+1−j) ≤ bk−j , since k − (i + 1 − j) ≤ k − j and

k−j+k−(i+1−j) = 2k−i−1 ≤ n−i−1. Hence ai,k ≥ 0, which implies K
(n)
k (1) ≥ K

(n)
k (i)

for odd i ∈ [1 : n−1]. Similarly, one can show that K
(n)
k (1) ≥ −K(n)

k (i) for odd i ∈ [1 : n−1],
just by replacing all the summations above over odd j with the corresponding ones over even
j. Hence, Claim 1 holds.
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We next use Claim 1 to prove Statement 2 for odd n and all i ∈ [1 : n−1]. From Claim 1,

K
(n)
k (1) ≥ |K(n)

k (i)| for odd i ∈ [1 : n−1]. On the other hand, K
(n)
k (i) = (−1)kK(n)

k (n−i), 0 ≤
i, k ≤ n Krasikov [11, (11)]. Hence, K

(n)
k (1) ≥ |K(n)

k (n − i)| for odd i ∈ [1 : n − 1]. If,
additionally, n is odd, then n − i takes all even numbers in [1 : n − 1]. Hence, for odd n,

K
(n)
k (1) ≥ |K(n)

k (i)| holds for all i ∈ [1 : n− 1].

We lastly prove Statement 2 for even n and all i ∈ [1 : n − 1]. By the conclusion for

odd n above, K
(n−1)
k (1) ≥ |K(n−1)

k (i)| holds for 0 ≤ k ≤ n−2
2

and 1 ≤ i ≤ n − 2, and

K
(n−1)
k−1 (1) ≥ |K(n−1)

k−1 (i)| holds for 1 ≤ k ≤ n
2

and 1 ≤ i ≤ n − 2. By the property that

K
(n)
k (i) = K

(n−1)
k (i) +K

(n−1)
k−1 (i), 1 ≤ k ≤ n, 0 ≤ i ≤ n Levenshtein [12, (47)], we have that

for 1 ≤ k ≤ n−2
2

and 1 ≤ i ≤ n− 2,

K
(n)
k (1) = K

(n−1)
k (1) +K

(n−1)
k−1 (1) ≥ |K(n−1)

k (i)|+ |K(n−1)
k−1 (i)|

≥ |K(n−1)
k (i) +K

(n−1)
k−1 (i)| = |K(n)

k (i)|.

Hence, it remains to verify the case that k = 0, n−1
2

, or i = n − 1. First, note that n−1
2

is not an integer, and hence, k cannot equal it. We next verify the case that k = 0 or
i = n − 1. By definition, for k = 0, K

(n)
0 (i) = 1, and hence, K

(n)
0 (1) ≥ |K(n)

0 (i)| holds

obviously. For i = n − 1, by definition, K
(n)
k (1) =

(
n
k

)
(1 − 2k

n
) ≥ 0 for k ≤ n/2, and

K
(n)
k (n− 1) = (−1)kK(n)

k (1). Obviously, K
(n)
k (1) = |K(n)

k (n− 1)| holds. Hence, Statement 2
holds for even n. Combining two points above (the cases of odd n and even n), Statement
2 holds for all n ≥ 1.

Statement 3: For 2 ≤ i ≤ n− 2,

n∑

k=0

[K
(n)
k (2)−K(n)

k (i)]zk = (1− z)2(1 + z)n−i[(1 + z)i−2 − (1− z)i−2]. (A.4)

Observe that (1 + z)i−2 − (1− z)i−2 =
∑

odd j∈[0:i−2]

(
i−2
j

)
zj and

(1− z)2(1 + z)n−i = (1− z)2[
n−i∑

j=0

(
n− i
j

)
zj ]

=
n−i∑

j=0

[

(
n− i
j

)
+

(
n− i
j − 2

)
− 2

(
n− i
j − 1

)
]zj . (A.5)

It is easy to verify that
(
n−i
j

)
+

(
n−i
j−2

)
− 2

(
n−i
j−1

)
≥ 0 if j ≤ n−i+2−

√
n−i+2

2
. It means that

K
(n)
k (2) ≥ K

(n)
k (i) when k ≤ n−i+2−

√
n−i+2

2
, since the terms zj in (A.5) with j > k have no

contribution to the term zk in the final expansion in (A.4).
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On the other hand,

(1− z)2(1 + z)2[(1 + z)i−2 − (1− z)i−2] = 2(1− z2)2[
∑

odd j∈[0:i−2]

(
i− 2

j

)
zj ]

= 2
∑

odd j∈[0:i−2]

[

(
i− 2

j

)
+

(
i− 2

j − 4

)
− 2

(
i− 2

j − 2

)
]zj .

It is easy to verify that
(
i−2
j

)
+
(
i−2
j−4

)
− 2

(
i−2
j−2

)
≥ 0 if j ≤ i+2−

√
i+2

2
. Hence K

(n)
k (2) ≥ K

(n)
k (i)

also holds when k ≤ i+2−
√
i+2

2
.

Combining the two points above, we have that for 2 ≤ i ≤ n − 2, K
(n)
k (2) ≥ K

(n)
k (i)

whenever

k ≤ max{n− i+ 2−
√
n− i+ 2

2
,
i+ 2−

√
i+ 2

2
}.

Taking minimization over 2 ≤ i ≤ n−2 to find the worst case, we have thatK
(n)
k (2) ≥ K

(n)
k (i)

holds for 2 ≤ i ≤ n− 2, when

k ≤ min
2≤i≤n−2

max{n− i+ 2−
√
n− i+ 2

2
,
i+ 2−

√
i+ 2

2
} = 1

2
(
n

2
+ 2−

√
n

2
+ 2). (A.6)

Similarly, one can show K
(n)
k (2) ≥ −K(n)

k (i) if k satisfies (A.6).

Appendix B. Proof of Theorem 5

One can easily observe that x = 0 is a feasible solution to Problem 2, since by Lemma
1, K

(n−1)
r (0) ≥ K

(n−1)
r (i − 1), ∀i ∈ [2 : n], ∀r ∈ [0 : n − 1]. This solution leads to the lower

bound Λn(α, r) ≥ 0. In the following, we construct another two kinds of feasible solutions
for different cases: the 1-sparse solution which contains only one non-zero component, and
the 2-sparse solution which contains two non-zero components. By using these feasible
solutions, we will show that Λn(α, r) ≥ ψn(α, r). We partition all the possible cases into four
parts, according to whether r ≤ n/2− 1 and whether r is even.

• Even r ≤ n/2− 1

For this case, we first construct a 2-sparse feasible solution. Let k be an odd number such
that n− τ(n) ≤ k ≤ n− 1. Consider the vector x∗ := (0, ..., 0, x∗k, x

∗
k+1, 0, ..., 0) with the k-th

and (k + 1)-th components (x∗k, x
∗
k+1) satisfying

[Kk(2)−Kk(1)]x
∗
k + [Kk+1(2)−Kk+1(1)]x

∗
k+1 +K(n−1)

r (1)−K(n−1)
r (0) = 0 (B.1)

[Kk(n)−Kk(1)]x
∗
k + [Kk+1(n)−Kk+1(1)]x

∗
k+1 +K(n−1)

r (n− 1)−K(n−1)
r (0) = 0. (B.2)

That is, if we define

ϕ(i) := [Kk(i)−Kk(1)]x
∗
k + [Kk+1(i)−Kk+1(1)]x

∗
k+1 +K(n−1)

r (i− 1)−K(n−1)
r (0),
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then ϕ(2) = ϕ(n) = 0. Solving the equations (B.1) and (B.2), we obtain

x∗k = x∗k+1 =
n
(
n−2
r−1

)
(
n
k

)
(2k − n) . (B.3)

We next prove that x∗ is a feasible solution to Problem 2. That is, for all i ∈ [2 : n], ϕ(i) ≤ 0.
By the choice of x∗, we have ϕ(2) = ϕ(n) = 0. Hence we only need to show ϕ(i) ≤ 0 for all
i ∈ [3 : n− 1]. We next prove this.

By the property Kk(i) = (−1)iKn−k(i), 0 ≤ i, k ≤ n [11, (13)], we have

ϕ(i) = [(−1)iKn−k(i) +Kn−k(1)]x
∗
k + [(−1)iKn−k−1(i) +Kn−k−1(1)]x

∗
k+1

+K(n−1)
r (i− 1)−K(n−1)

r (0).

By Lemma 1, for i ∈ [3 : n− 2] and n− τ(n) ≤ k ≤ n− 1,

ϕ(i) ≤ [|Kn−k(i)|+Kn−k(1)]x
∗
k + [|Kn−k−1(i)|+Kn−k−1(1)]x

∗
k+1 +K(n−1)

r (i− 1)−K(n−1)
r (0)

≤ [Kn−k(2) +Kn−k(1)]x
∗
k + [Kn−k−1(2) +Kn−k−1(1)]x

∗
k+1 +K(n−1)

r (1)−K(n−1)
r (0)

= ϕ(2) = 0.

Hence, it remains to verify that ϕ(n− 1) ≤ 0.
By the property Kk(i) = (−1)kKk(n− i), 0 ≤ i, k ≤ n [11, (11)], we have

ϕ(n− 1) = [(−1)n−1Kn−k(n− 1) +Kn−k(1)]x
∗
k + [(−1)n−1Kn−k−1(n− 1) +Kn−k−1(1)]x

∗
k+1

+K(n−1)
r (n− 2)−K(n−1)

r (0)

= [(−1)n−1+n−kKn−k(1) +Kn−k(1)]x
∗
k + [(−1)n−1+n−k−1Kn−k−1(1) +Kn−k−1(1)]x

∗
k+1

+K(n−1)
r (1)−K(n−1)

r (0)

= 2Kn−k(1)x
∗
k +K(n−1)

r (1)−K(n−1)
r (0)

= 2(
2k

n
− 1)

n
(
n−2
r−1

)

(2k − n) +
(
n− 1

r

)
(1− 2r

n− 1
)−

(
n− 1

r

)
= 0.

Until now, we have shown that x∗ is a feasible solution to Problem 2. This immediately
yields the following bound on Problem 1:

Λn(α, r) ≥ −
(
n

k

)
[1 + (1− 2k

n
)(
1

α
− 1)]x∗k −

(
n

k + 1

)
[1 + (1− 2(k + 1)

n
)(
1

α
− 1)]x∗k+1

=
n
(
n−2
r−1

)

2k − n [2(
1

α
− 1)− 1

α

n+ 1

k + 1
]. (B.4)

We next construct a 1-sparse feasible solution for odd n. Let k = n and x∗ := (0, ..., 0, x∗n),
where x∗n =

(
n−2
r−1

)
which coincides with (B.3) with k = n. For this case, all the derivations

above for the 2-sparse feasible solution still hold since Kn+1(i) = 0 for all 0 ≤ i ≤ n.
In conclusion, for the lower bound in (B.4), k is allowed to be chosen as an odd number

in [n − τ(n) : n]. We maximize this lower bound over all such k’s and obtain the desired
bound.
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• Odd r ≤ n/2− 1

Let k ∈ [n − τ(n) : n] ∩ F be an integer where F is defined in (17). Consider the vector
x∗ := (0, ..., 0, x∗k, 0, ..., 0) with the k-th component x∗k satisfying

[Kk(2)−Kk(1)]x
∗
k +K(n−1)

r (1)−K(n−1)
r (0) = 0.

That is, x∗k =
n(n−1)(n−2

r−1)
(nk)k(2k−n−1)

. For this case, we re-define

ϕ(i) := [Kk(i)−Kk(1)]x
∗
k +K(n−1)

r (i− 1)−K(n−1)
r (0)

= [(−1)iKn−k(i) +Kn−k(1)]x
∗
k +K(n−1)

r (i− 1)−K(n−1)
r (0),

which satisfies ϕ(2) = 0. We next show ϕ(i) ≤ 0 for all i ∈ [3 : n].
Similarly to the case of even r ≤ n/2 − 1, for i ∈ [3 : n− 2] and n− τ(n) ≤ k ≤ n, one

can easily verify that ϕ(i) ≤ ϕ(2) = 0. We next verify that ϕ(n− 1), ϕ(n) ≤ 0.

ϕ(n− 1) = [(−1)n−1Kn−k(n− 1) +Kn−k(1)]x
∗
k +K(n−1)

r (n− 2)−K(n−1)
r (0)

= [(−1)k+1Kn−k(1) +Kn−k(1)]x
∗
k −K(n−1)

r (1)−K(n−1)
r (0).

If k is even, then obviously, ϕ(n− 1) ≤ 0. Otherwise,

ϕ(n− 1) = 2Kn−k(1)x
∗
k −K(n−1)

r (1)−K(n−1)
r (0)

= 2

(
n− 2

r − 1

)
[(
2k

n
− 1)

n(n− 1)

k(2k − n− 1)
− n− 1

r
+ 1]

which is non-positive if k > n+1
2

and

k ≥ 2(n− 1) + s(n + 1) +
√

(2(n− 1)− s(n+ 1))2 + 8s(n− 1)

4s
(B.5)

with s = n−1
r
− 1. By the inequality

√
a2 + b2 ≤ a + b for a, b ≥ 0, (B.5) is satisfied if

k ≥ max{n+ 1

2
,
n− 1

s
}+

√
n+ 1

2s
= max{n+ 1

2
,
(n− 1)r

n− 1− r}+
√

(n+ 1)r

2(n− 1− r) .

Similarly to the case of even r ≤ n/2− 1, for ϕ(n), we have

ϕ(n) = [(−1)nKn−k(n) +Kn−k(1)]x
∗
k +K(n−1)

r (n− 1)−K(n−1)
r (0)

= [(−1)kKn−k(0) +Kn−k(1)]x
∗
k − 2K(n−1)

r (0).

If k is odd, then obviously, ϕ(n) ≤ 0. Otherwise,

ϕ(n) = [Kn−k(0) +Kn−k(1)]x
∗
k − 2K(n−1)

r (0)

= 2(n− 1)

(
n− 2

r − 1

)
(

1

2k − n− 1
− 1

r
)
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which is non-positive if k ≥ n+r+1
2

.
Therefore, the solution constructed above is feasible if k ∈ [n − τ(n) : n] ∩ F . This

immediately yields the following bound on Problem 1:

Λn(α, r) ≥
(n− 1)

(
n−2
r−1

)

2k − n− 1
[2(

1

α
− 1)− 1

α

n

k
].

Maximizing this lower bound over all k ∈ [n− τ(n) : n] ∩ F yields the desired lower bound.

• Odd r > n/2− 1

For odd r > n/2− 1, consider the vector x∗ := (0, ..., 0, x∗k, 0, ..., 0) with the k-th component
x∗k satisfying

2Kn−k(1)x
∗
k +K

(n−1)
n−1−r(1)−K

(n−1)
n−1−r(0) = 0,

i.e., x∗k =
n(n−1)(n−2

r−1)
(nk)k(2k−n−1)

, where k ≥ n
2
+ 1 is odd. Re-define

ϕ(i) := [Kk(i)−Kk(1)]x
∗
k +K(n−1)

r (i− 1)−K(n−1)
r (0)

= [(−1)i+n−kKn−k(n− i) +Kn−k(1)]x
∗
k + (−1)i+n−rK

(n−1)
n−1−r(n− i)−K

(n−1)
n−1−r(0),

which satisfies ϕ(n− 1) = 0. Then for odd k, it holds that for all i ∈ [2 : n],

ϕ(i) ≤ [Kn−k(1) +Kn−k(1)]x
∗
k +K

(n−1)
n−1−r(1)−K

(n−1)
n−1−r(0)

= ϕ(n− 1) = 0.

Hence, the vector x∗ is feasible and leads to the desired bound for this case.

• Even r > n/2− 1

For even r > n/2 − 1, by Lemma 1, it holds that Kr+1(1) ≥ |Kr+1(i)| for all i ∈ [2 : n].

This inequality implies that −(ω(r)
1 −ω

(r)
i ) ≤ −(ω(r+1)

1 −ω(r+1)
i ) where ω

(r)
i is defined in (37).

Hence, inequality Λn(α, r) ≥ Λn(α, r + 1) holds, which, combined with the lower bound for
the case “odd r > n/2− 1”, implies the desired lower bound for even r > n/2− 1.

Appendix C. Proof of Lemma 4

Statement 1 is obvious. Statement 3 follows from Statements 1 and 2. Hence it suffices
to prove Statement 2. Next we do this. On one hand,

(
n
≤r

)
(
n
r

) =

∑r
k=0

(
n

r−k

)
(
n
r

) =

r∑

k=0

r...(r − k + 1)

(n− r + k)...(n− r + 1)

=
r∑

k=0

β...(β − k−1
n
)

(1− β + k
n
)...(1− β + 1

n
)
≤

r∑

k=0

(
β

1− β )
k. (C.1)
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On the other hand, for a fixed N and for any r/n ∈ [0, 1
2
− δ],

(
n
≤r

)
(
n
r

) −
r∑

k=0

(
β

1− β )
k ≥

min{r,N}∑

k=0

β...(β − k−1
n
)

(1− β + k
n
)...(1− β + 1

n
)
−

r∑

k=0

(
β

1− β )
k

≥
min{r,N}∑

k=0

[(
β − k

n

1− β + k
n

)k − (
β

1− β )
k]−

r∑

k=min{r,N}+1

(
β

1− β )
k

Therefore, for fixed N ,

lim inf
n→∞

inf
r/n∈[0, 1

2
−δ]
{
(

n
≤r

)
(
n
r

) −
r∑

k=0

(
β

1− β )
k} ≥ lim inf

n→∞
inf

β∈[0, 1
2
−δ]
−

r∑

k=min{r,N}+1

(
β

1− β )
k ≥ − γ

N+1

1 − γ .

where γ :=
1
2
−δ

1
2
+δ

< 1. Since N is arbitrary,

lim inf
n→∞

inf
r/n∈[0, 1

2
−δ]
{
(

n
≤r

)
(
n
r

) −
r∑

k=0

(
β

1− β )
k} ≥ 0. (C.2)

Combining (C.1) and (C.2) yields that given δ > 0,
( n
≤r)
(nr)
→ ∑r

k=0(
β

1−β
)k uniformly for all

β := r/n ∈ [0, 1
2
− δ].
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