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Abstract

We present a new procedure to determine the growth function of a homogeneous Garside monoid,
with respect to the finite generating set formed by the atoms. In particular, we present a formula for
the growth function of each Artin–Tits monoid of spherical type (hence of each braid monoid) with
respect to the standard generators, as the inverse of the determinant of a very simple matrix.

Using this approach, we show that the exponential growth rates of the Artin–Tits monoids of type
An (positive braid monoids) tend to 3.233636 . . . as n tends to infinity. This number is well-known,
as it is the growth rate of the coefficients of the only solution x0(y) = −(1+y+2y2+4y3+9y4+ · · · )
to the classical partial theta function.

We also describe the sequence 1, 1, 2, 4, 9, . . . formed by the coefficients of −x0(y), by showing that
its kth term (the coefficient of yk) is equal to the number of braids of length k, in the positive braid
monoid A∞ on an infinite number of strands, whose maximal lexicographic representative starts with
the first generator a1. This is an unexpected connection between the partial theta function and the
theory of braids.

1 Introduction

A Garside monoid is a cancellative monoid where greatest common divisors and least common multiples
exist and some finiteness conditions are satisfied. The initial properties of Garside monoids were discov-
ered by F. Garside in his famous paper [15], which was concentrated in the particular case of braids.
Garside theory was definitely established in the work of Paris and Dehornoy [12, 11], where in particular
the notion of Garside group was defined as the group of fractions of a Garside monoid. Since then, Gar-
side theory has become a remarkable topic in Combinatorial Group Theory, as very important families of
groups and monoids are Garside (Artin–Tits groups of spherical type, torus link groups, groups related
to solutions of quantum Yang-Baxter equations), and some well-known conjectures have been established
with the help of Garside theory, like the K(π, 1) conjecture for finite complex reflection arrangements [6].
We recall the basics we need of Garside theory at the beginning of Section 2.

The main objects of study of this paper are the growth functions in Garside monoids, particularly in
Artin–Tits monoids of spherical type, with respect to the generating set formed by the atoms. Our initial
goal was to give a new procedure to compute the growth function of a homogeneous Garside monoid of
finite type, which should yield a simple formula in well-known particular cases.

It was already shown by Deligne [13] that the growth function gM (t) of a monoid M is the inverse of
a polynomial (called the Möbius polynomial of M) if M is an Artin–Tits monoid of spherical type, and
his proof can be generalized to other Garside monoids (Corollary 2.2). Building on this, we develope in
Section 3 a new and quite straightforward way of counting the number of elements of given length in a

∗Both authors partially supported by Spanish Project MTM2016-76453-C2-1-P and FEDER.
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Garside monoid of finite type, or in other words, the coefficients of the growth function of the monoid,
relative to the atoms.

A major consequence of this new way of counting is the following statement, which includes precise
descriptions of the growth functions for all the Artin–Tits monoids of spherical type; these descriptions
appear in the text of the paper as Theorem 4.4, Theorem 5.4 and Theorem 5.12, and we present them

here in a unified way. Observe that, throughout the paper, we will assume that the number
(

k
2

)

= k(k−1)
2

makes sense for every integer k ≥ 0.

Theorem. Let M an Artin–Tits monoid of spherical type. Then there exists a square matrix M such
that

gM (t) = |M|−1.

Moreover:

• If M is of type An, M is denoted MA
n , has order n+1, and its entry (i, j) equals t(

j−i+1
2 ) whenever

j − i+ 1 ≥ 0, and 0 otherwise.

• If M is of type Bn, M is denoted MB
n , has order n+ 1, its entry (i, n+ 1) equals t(n−i+1)2 for all

i, and its entry (i, j) for j ≤ n equals t(
j−i+1

2 ) whenever j − i+ 1 ≥ 0, and 0 otherwise.

• If M is of type Dn, M is denoted MD
n , has order n, its entry (i, n) equals 2t(

n−i+1
2 ) − t(n−i+1)(n−i)

for all i, and its entry (i, j) for j < n equals t(
j−i+1

2 ) whenever j − i+ 1 ≥ 0, and 0 otherwise.

The following are concrete examples of the above result, for n = 4 or n = 5:

gA4(t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 t t3 t6 t10

1 1 t t3 t6

0 1 1 t t3

0 0 1 1 t
0 0 0 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1

gB4(t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 t t3 t6 t16

1 1 t t3 t9

0 1 1 t t4

0 0 1 1 t
0 0 0 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1

gD5(t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 t t3 t6 2t10 − t20

1 1 t t3 2t6 − t12

0 1 1 t 2t3 − t6

0 0 1 1 2t− t2

0 0 0 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1

In [8], Bronfman gave a recursive formula to compute (in an efficient way) the Möbius polynomial of M ,
when M = An. Using the previous information, we are able to express the same Möbius polynomial as
the determinant of a matrix, recovering in particular (Theorem 4.5) Bronfman’s recursive formula as the
expansion of this determinant along the first row.

Once we obtained these explicit formulae for the growth functions of the Artin–Tits monoids, we drove
our attention to a more ambitious goal. Recall that given a monoid M , if we denote by Mk the set of
elements in M of length k, the exponential growth rate of M is defined as follows

ρM = lim
k→∞

k
√

|Mk|.

In the case of an Artin–Tits monoid M of spherical type, since gM (t) is the inverse of a polynomial, the
number ρM is inverse of the smallest root of the Möbius polynomial, which is unique, real and positive,
as shown by Jugé [19]. It is also known that, in the case of Artin–Tits monoids of type An (the braid
monoids), the limit of their growth rates as n tends to infinity exists, and lies between 2.5 and 4 (see [35,
Theorem 8] and [19, Proposition 7.98]). However, the precise description of this limit remained elusive for
years, so we intended to compute it taking account of the information previously obtained in the article.

2



The strategy to obtain the limit implies the construction of a new bridge between (combinatorial) Monoid
Theory and Real Analysis. Surprisingly, the coefficients of the leading root of the partial theta function
(see Section 6.1.1), which is defined in a pure analytical framework, can be computed counting braids.
Consider the braid monoid A∞ on an infinite number of strands, which is the direct limit of the braid
monoids A1 ⊂ A2 ⊂ A3 ⊂ · · · with the natural inclusions. We order the standard generators in the natural
way (a1 < a2 < a3 < · · · ), and we consider the words in these generators ordered lexicographically. Every
element in A∞ has a unique representative which is maximal with respect to this order. We will show
the following:

Theorem 6.8. Let x0(y) be the only solution to the classical partial theta function
∞
∑

k=0

y(
k

2)xk, and let

ξ0(y) = −x0(y) = 1+ y+2y2+4y3+9y4+ · · · For every k ≥ 0, the coefficient of yk in the series ξ0(y) is
equal to the number of braids of length k, in the monoid A∞, whose maximal lexicographic representative
starts with a1.

Then we use the fact that the growth rate of the coefficients 1, 1, 2, 4, 9, . . . of ξ0(y) is known [33] and,
building on some results from [14], we show the following:

Theorem 6.17. Let ρ = lim
n→∞

ρAn
. Then ρ = 3.23363 . . . is the growth rate of the coefficients of ξ0(y).

That is, ρ is equal to the KLV-constant q∞.

It is overwhelming that this constant, that has a prominent role in different branches of Analysis (see
Section 6.1.2), appears here as a purely monoid-theoretic invariant associated to the braid monoid An,
a fact that opens interesting perspectives of research. Moreover, we should remark that the constant
can be determined with arbitrary precision, using for example the results of [20]. The reader interested
in this relation between growth of braid monoids and the partial theta function can read Section 2 and
Section 3, and jump directly to Section 6.

Acknowledgements: The second author thanks Yohei Komori for pointing out that the matrices de-
termining the Möbius polynomials could be simplified by taking all signs positive.

2 Growth functions of homogeneous Garside monoids of finite
type

In this section we recall some basic facts of Garside theory and we discuss the growth of homogeneous
Garside monoids of finite type.

In a Garside monoid M , which is cancellative, its elements form a lattice with respect to the prefix order,
defined by x 4 y if xz = y for some z ∈M . The lattice property means that for every a, b ∈M , there exist
unique elements a ∧ b and a ∨ b, which are the greatest common divisor and the least common multiple,
respectively, with respect to 4. It is important to notice that 4 is invariant under left multiplication
and under left cancellation, that is, x 4 y if and only if cx 4 cy for every c, x, y ∈ M . This implies that
ca ∧ cb = c(a ∧ b) and ca ∨ cb = c(a ∨ b) for every a, b, c ∈M .

For every element in a Garside monoidM , the number of nontrivial factors that can be used to decompose
it as a product of elements in M is bounded above. The maximal number of factors for a given a ∈ M
is denoted ||a||. It follows that every Garside monoid admits a special set of generators, called atoms,
which are those elements that cannot be decomposed as a product of two nontrivial elements: Every
element a ∈M can be written as a product of ||a|| atoms. A Garside monoid is said to be of finite type

if the set of atoms is finite.

Let us fix a Garside monoid M , and its set of atoms A as a set of generators. Given a ∈ M , its length
|a| is defined to be the length of the shortest word (in the atoms) representing a. If all relations in M
(written in terms of A) are homogeneous, then |a| = ||a|| is the word-length of any representative of a as

3



a word in the atoms. In this paper we shall only consider homogeneous Garside monoids of finite type,
which include Artin–Tits monoids of spherical type.

For every integer k, let Mk be the set of elements in M of length k, and let αk = |Mk| be its cardinal.
Notice that α0 = 1, that αk = 0 for k < 0, and that αk is a positive integer for k ≥ 0, as we chose a
finite set of generators. Let t be an indeterminate. The growth function (or growth series, or spherical
growth series) of M is defined to be:

gM (t) =
∑

k≥0

αkt
k

It would be more precise to denote this function by gM,A(t), as it depends on the generating set A, but
in this paper we shall only consider the set of atoms as generating set for M .

There are some well known results concerning the growth function of braid monoids, Artin–Tits monoids
of spherical type, and more generally homogeneous Garside monoids of finite type. The first one is that
gM (t) is the inverse of a polynomial (its Möbius polynomial). This was shown by Deligne [13] for Artin–
Tits monoids of spherical type with their classical Garside structure. It was rediscovered by Bronfman [8],
generalizing it to a wider class of monoids, including homogeneous Garside monoids of finite type, and
also rediscovered by Saito [32]. We will show here a simple proof, in the spirit of Bronfman. Given a
finite subset S = {s1, . . . , sr} ⊂M , let ∨S = s1 ∨ · · · ∨ sr. If S = ∅, we set ∨S = 1 ∈M .

Theorem 2.1 ([13, 8, 32]). Let M be a homogeneous Garside monoid of finite type. Let A be its set of
atoms, and let αi = |Mi| be the number of elements of length i, written as a product of atoms. (Notice
that αi = 0 if i < 0). Then, for every k > 0, one has:

∑

S⊂A

(−1)|S|αk−||∨S|| = 0

Proof. Given a ∈ M , let (aM)k = {b ∈ M ; ||b|| = k and a 4 b}, the set of elements of length k which
admit a as a prefix. Let A = {a1, . . . , am}. Every nontrivial element in M must admit some atom as
prefix, hence Mk = (a1M)k ∪ · · · ∪ (amM)k. By the inclusion-exclusion principle, it follows that

αk =
∑

∅6=S⊂A

(−1)|S|−1

∣

∣

∣

∣

∣

⋂

ai∈S

(aiM)k

∣

∣

∣

∣

∣

.

As M is cancellative and has homogeneous relations, one has

(aM)k = a Mk−||a|| = {ac ∈M ; ||c|| = k − ||a||},

for every a ∈ M . It follows that counting the elements in (aM)k is the same as counting the number of
elements in M of length k − ||a||. That is, |(aM)k| = αk−||a||.

Notice that given S = {x1, . . . , xr} ⊂ A, the common multiples of x1, . . . , xr are precisely the multiples
of x1 ∨ · · · ∨ xr. Hence

(x1M)k ∩ · · · ∩ (xrM)k = ((x1 ∨ · · · ∨ xr)M)k = ((∨S)M)k,

hence |(x1M)k ∩ · · · ∩ (xrM)k| = αk−||∨S||. Replacing this in the above expresion for αk, one gets:

αk =
∑

∅6=S⊂A

(−1)|S|−1αk−||∨S||,

which is precisely what we wanted to show, as αk = αk−0 = αk−||∨∅||.

Corollary 2.2 ([13, 8, 32]). If M is a homogeneous Garside monoid of finite type, the growth function
of M is the inverse of a polynomial. Namely, if A ⊂M is the set of atoms,

gM (t) =

(

∑

S⊂A

(−1)|S| t||∨S||

)−1

4



Proof. Let N = || ∨ A||. Notice that, for every k > 0, the formula in Theorem 2.1 is a sum of terms of
the form ±αk−i for some i ≤ N . Collecting the terms with the same value of i, one obtains:

0 =
∑

S⊂A

(−1)|S|αk−||∨S|| =

N
∑

i=0

ciαk−i. (1)

It is important to notice that the coefficient ci does not depend on k: it only depends on the number and
size of subsets S ⊂ A such that || ∨S|| = i. Since c0 = 1, we have a recurrence relation which determines
the sequence {αk}k≥0:

αk = −
N
∑

i=1

ciαk−i, (2)

Each αk is thus a linear combination of αk−1, . . . , αk−N , where the coefficients −c1, · · · ,−cN are fixed
(they depend only on the monoid M).

It is easy to check that the coefficients of a power series (in this case gM (t)) satisfy such a recurrence
relation if and only if the power series is the inverse of a polynomial, namely:

gM (t) =

(

N
∑

i=0

ci t
i

)−1

.

Notice that the polynomial in the above formula is the one obtained from the right hand side of (1) when
replacing αk−i with t

i for i = 0, . . . , N . Therefore, by the second equality in (1), we obtain:

∑

S⊂A

(−1)|S|t||∨S|| =
N
∑

i=0

cit
i.

Hence

gM (t) =

(

∑

S⊂A

(−1)|S|t||∨S||

)−1

.

We can then write gM (t) = 1
HM (t) , where HM (t) =

∑

S⊂A(−1)|S|t||∨S||, the Möbius polynomial of M ,

has degree || ∨ A||. In the case of the braid monoid on n strands, this degree is
(

n
2

)

.

We remark that the recurrence relation (2) gives a very fast way to obtain αk for any given k > 0, starting
from α0 = 1 and αi = 0 for i < 0, provided that the coefficients ci are known. But in order to obtain
this recurrence relation (2) explicitly, using the formula in Theorem 2.1, one needs to collect all terms
involving each αk−i. This means to run through all subsets of A. Therefore, computing the recurrence
relation (2) using Theorem 2.1 has exponential complexity with respect to the number of atoms.

Nevertheless, when the number of atoms is small, one can compute the growth function without much
problem using the formula in Corollary 2.2. For instance, we include here the (already known) growth
functions of all Artin–Tits groups of spherical type which are not of type A, D, E.

gE6(t) =

(

1− 6t+ 10t2 − 10t4 + 5t5 − 4t6 + 3t7+
+4t10 − 2t11 + t12 − t15 − 2t20 + t36

)−1

gE7(t) =

(

1− 7t+ 15t2 − 5t3 − 16t4 + 12t5 − 3t6 + 8t7 − 3t8 − 3t9+
+6t10 − 5t11 + t12 − 3t15 + t16 − 2t20 + 2t21 + t30 + t36 − t63

)−1

gE8(t) =





1− 8t+ 21t2 − 14t3 − 21t4 + 28t5 − 7t6 + 12t7 − 8t8 − 10t9+
+10t10 − 12t11 + 7t12 + 2t13 − t14 − 3t15 + 2t16 − 2t20+
+6t21 − t22 − t23 − t28 + t30 + t36 − t37 − t42 − t63 + t120





−1
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gF4(t) =
(

1− 4t+ 3t2 + 2t3 − t4 − 2t9 + t24
)−1

gH3(t) =
(

1− 3t+ t2 + t3 + t5 − t15
)−1

gH4(t) =
(

1− 4t+ 3t2 + 2t3 − t4 + t5 − 2t6 − t15 + t60
)−1

gI2(p)(t) = (1− 2t+ tp)
−1

The last case is valid for p ≥ 3 (even for p = 2, which does not yield an irreducible monoid), although it
is usual to denote I2(3) = A2 and I2(4) = B2.

Concerning the remaining types, Bronfman [8] gave a procedure to compute the recurrence relation (2), or
equivalently the Möbius polynomial HM (t), in the case of braid monoids (Artin–Tits monoids of type A).
Namely, he gave a recurrence relation expressing the polynomial HAn

(t) in terms of HA1(t), HA2(t), . . . ,
HAn−1(t). Using Bronfman’s formula, one has a polynomial time algorithm (with respect to n) to compute
the growth function of An.

In Theorem 4.5 we will recover Bronfman’s recurrence relation as an immediate consequence of our
formula for gAn

(t). And we will also obtain new recurrence relations involving Artin–Tits monoids of
types B and D. This will be done in the next section.

3 Counting elements in a homogeneous Garside monoid

We will now present a more straightforward way to count the number of elements of given length in
the monoid M , that is, the coefficients of the growth function gM (t), without using the formula in
Theorem 2.1.

Recall that M is a homogeneous Garside monoid of finite type, and that Mk is the set of elements of
length k (as words in the atoms). Let A = {a1, . . . , an} be the set of atoms. We will study the elements
inMk by choosing a suitable word representing each element. Namely, we define the lex-representative
of an element ofM , as its biggest representative in lexicographical order with a1 < a2 < · · · < an. Notice
that the number of lex-representatives of length k is precisely αk.

It is clear that M0 = {1}. For k > 0, we will be able to count the number of elements in Mk using a
stratification of these sets by suitable subsets.

Definition 3.1. For k ≥ 0 and i = 1, . . . , n, we define L
(i)
k to be the set of elements in Mk whose

lex-representative starts with ai. That is,

L
(i)
k = {b ∈Mk; ai 4 b, ai+1, . . . , an 64 b}.

It is then clear that, for k > 0, Mk = L
(1)
k ⊔ L

(2)
k ⊔ · · · ⊔ L

(n)
k .

The number of elements in each L
(i)
k is not easy to compute directly. But we can define some related

subsets of Mk which will allow us to perform the computation:

Definition 3.2. Given k ≥ 0 and 1 ≤ i ≤ j ≤ n, let

U
(i,j)
k = {b ∈Mk; ai, . . . , aj 4 b, aj+2, . . . , an 64 b}

Notice that if k > 0, every b ∈ U
(i,j)
k admits all atoms ai, . . . , aj as prefixes, which is equivalent to

ai ∨ · · · ∨ aj 4 b. As aj 4 b, the lex-representative of b starts either with aj or with an atom of bigger
index. But b does not admit at as prefix for t ≥ j + 2. Hence, the lex-representative of b starts with
either aj or aj+1.

Therefore, b ∈ U
(i,j)
k if and only if it has length k, its lex-representative starts with either aj or aj+1, and

ai ∨ · · · ∨ aj 4 b.
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Lemma 3.3. For every k ≥ 0 and i = 1, . . . , n one has:

∣

∣

∣L
(i)
k

∣

∣

∣ =

n
∑

j=i

(−1)j−i
∣

∣

∣U
(i,j)
k

∣

∣

∣

Proof. The case k = 0 is trivial, as all sets are empty. We will then assume that k > 0.

For every element b ∈ U
(i,j)
k , its lex-representative starts with either aj or aj+1. This depends on whether

aj+1 4 b or not. We can then split U
(i,j)
k into two disjoint subsets, if j < n:

U
(i,j)
k = {b ∈Mk; ai, . . . , aj 4 b, aj+1, . . . , an 64 b}

⊔

{b ∈Mk; ai, . . . , aj+1 4 b, aj+2, . . . , an 64 b}.

If j = n we just have:

U
(i,n)
k = {b ∈Mk; ai, . . . , an 4 b}.

It is important to notice that if j1 and j2 are not consecutive, the sets U
(i,j1)
k and U

(i,j2)
k are disjoint.

Hence, we can consider the disjoint union U
(i,i)
k ⊔ U

(i,i+2)
k ⊔ U

(i,i+4)
k ⊔ · · · , and also the disjoint union

U
(i,i+1)
k ⊔ U

(i,i+3)
k ⊔ U

(i,i+5)
k ⊔ · · · .

Suppose first that n− i is odd. In this case:

U
(i,i)
k ⊔ U

(i,i+2)
k ⊔ · · · ⊔ U

(i,n−1)
k =

n
⊔

j=i

{b ∈Mk; ai, . . . , aj 4 b, aj+1, . . . , an 64 b}.

And also:

U
(i,i+1)
k ⊔ U

(i,i+3)
k ⊔ · · · ⊔ U

(i,n)
k =

n
⊔

j=i+1

{b ∈Mk; ai, . . . , aj 4 b, aj+1, . . . , an 64 b}.

Therefore, the former disjoint union contains the latter, and we have:
(

U
(i,i)
k ⊔ U

(i,i+2)
k ⊔ · · · ⊔ U

(i,n−1)
k

)

\
(

U
(i,i+1)
k ⊔ U

(i,i+3)
k ⊔ · · · ⊔ U

(i,n)
k

)

= {b ∈Mk; ai 4 b, ai+1, . . . , an 64 b} = L
(i)
k ,

which implies the formula in the statement.

If n− i is even, the argument is analogous. We have:

U
(i,i)
k ⊔ U

(i,i+2)
k ⊔ · · · ⊔ U

(i,n)
k =

n
⊔

j=i

{b ∈Mk; ai, . . . , aj 4 b, aj+1, . . . , an 64 b}.

And also:

U
(i,i+1)
k ⊔ U

(i,i+3)
k ⊔ · · · ⊔ U

(i,n−1)
k =

n
⊔

j=i+1

{b ∈Mk; ai, . . . , aj 4 b, aj+1, . . . , an 64 b}.

Hence, removing the latter union from the former yields L
(i)
k , and the formula in the statement also holds

in this case.

We are mainly interested in Artin–Tits monoids of type A, B and D (also called Artin–Tits monoids of

type An, Bn and Dn). In those cases, we will be able to describe the sizes of each L
(i)
k and each U

(i,j)
k in

terms of the sizes of the following sets:
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Definition 3.4. For k ≥ 0 and i = 0, . . . , n+ 1, let

M
(i)
k = {b ∈Mk; ai+1, . . . , an 64 b}.

Notice that M
(i)
0 = {1} for every i. On the other hand, if k > 0, the condition ai+1, . . . , an 64 b just

means that the lex-representative of b starts with an atom from {a1, . . . , ai}. Hence, if k > 0:

M
(i)
k = L

(1)
k ⊔ L

(2)
k ⊔ · · · ⊔ L

(i)
k .

Notice that M
(0)
k = ∅ and that M

(n+1)
k =M

(n)
k =Mk.

It is clear, by definition, that M
(i−1)
k is a subset of M

(i)
k , and that

L
(i)
k =M

(i)
k \M

(i−1)
k .

Hence: ∣

∣

∣L
(i)
k

∣

∣

∣ =
∣

∣

∣M
(i)
k

∣

∣

∣−
∣

∣

∣M
(i−1)
k

∣

∣

∣ .

In order to avoid cumbersome notation in the following formulae, we will denote mk,i =
∣

∣

∣M
(i)
k

∣

∣

∣ and

uk,i,j =
∣

∣

∣
U

(i,j)
k

∣

∣

∣
. Then we have:

Proposition 3.5. For k ≥ 0 and i = 1, . . . , n+ 1, one has:

mk,i = mk,i−1 +

n
∑

j=i

(−1)j−iuk,i,j .

Proof. If i ≤ n, this is just Lemma 3.3, as mk,i − mk,i−1 =
∣

∣

∣L
(i)
k

∣

∣

∣. If i = n + 1, the formula reads

mk,n+1 = mk,n, which is true since M
(n+1)
k =M

(n)
k .

If the monoid M is an Artin–Tits monoid of type An, Bn or Dn, we will be able to describe each number
uk,i,j in terms of some ml,t, with l < k. Replacing this in the formula of Proposition 3.5, we will obtain
a recurrence relation for the numbers mk,i, which is precisely what we need to compute the number
αk = mk,n = mk,n+1.

We will then compute a table of the form

m0,1 m0,2 . . . m0,n m0,n+1

m1,1 m1,2 . . . m1,n m1,n+1

m2,1 m2,2 . . . m2,n m2,n+1

m3,1 m3,2 . . . m3,n m3,n+1

...
...

...
...

mk,1 mk,2 . . . mk,n mk,n+1

...
...

...
...

The last two columns of this table will be identical, and they will contain the numbers mk,n = mk,n+1 =
αk, that is, the number of elements in Mk.

We will be able to compute each number in the above table, as a (signed) sum of at most n of the previous
elements. The method for computing each mk,i will produce the new formulae for the Möbius polynomial
of the monoid, and a better understanding of its growth rate, in the cases in which M is an Artin–Tits
monoid of type An, Bn or Dn.
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4 Artin–Tits monoid of type A

4.1 Counting elements in the monoid (type A)

Let An be an Artin–Tits monoid of type A with n standard generators. That is, the positive braid monoid
with n+ 1 strands. Its standard presentation is the following:

An =

〈

a1, . . . , an

∣

∣

∣

∣

aiaj = ajai, |i− j| > 1
aiajai = ajaiaj , |i− j| = 1

〉

It is well–known [26] that if 1 ≤ i ≤ j ≤ n, the submonoid of An generated by {ai, . . . , aj} is again an
Artin–Tits monoid of type Aj−i+1. Therefore, the least common multiple of the standard generators (in
both the submonoid and the monoid) is [27, Lemma 3.1]:

ai ∨ · · · ∨ aj = ai(ai+1ai)(ai+2ai+1ai) · · · (ajaj−1 · · ·ai).

Hence:

||ai ∨ · · · ∨ aj || =

(

j − i+ 2

2

)

.

Also, for t ≥ j + 2, the atom at commutes with ai, . . . , aj, hence it commutes with the whole element
ai ∨ · · · ∨ aj . Therefore:

(ai ∨ · · · ∨ aj) ∨ at = (ai ∨ · · · ∨ aj) at.

Because of these two properties, we can explicitly determine the numbers uk,i,j as follows.

Lemma 4.1. Let M be the Artin–Tits monoid of type An, and let 1 ≤ i ≤ j ≤ n. One has

uk,i,j = m
k−(j−i+2

2 ),j+1

Proof. We have

U
(i,j)
k = {b ∈Mk; ai, . . . , aj 4 b, aj+2, . . . , an 64 b}

= {b ∈Mk; ai ∨ · · · ∨ aj 4 b, aj+2, . . . , an 64 b}

= {(ai ∨ · · · ∨ aj)c ∈Mk; aj+2, . . . , an 64 (ai ∨ · · · ∨ aj)c}

Notice that for every t ≥ j+2, one has at 4 (ai∨· · ·∨aj)c if and only if (ai∨· · ·∨aj)∨at 4 (ai∨· · ·∨aj)c,
that is (ai ∨ · · · ∨ aj) at 4 (ai ∨ · · · ∨ aj)c, which is equivalent to at 4 c. Hence

U
(i,j)
k = {(ai ∨ · · · ∨ aj)c ∈Mk; aj+2, . . . , an 64 c}.

As M is cancellative and homogeneous, the set of elements (ai ∨ · · · ∨ aj)c having length k is in bijection
with set of elements c having length k − ||ai ∨ · · · ∨ aj || = k −

(

j−i+2
2

)

. Therefore

∣

∣

∣U
(i,j)
k

∣

∣

∣ =
∣

∣

∣{c ∈M
k−(j−i+2

2 ); aj+2, . . . , an 64 c}
∣

∣

∣ =

∣

∣

∣

∣

M
(j+1)

k−(j−i+2
2 )

∣

∣

∣

∣

Corollary 4.2. In the Artin–Tits monoid An, for k ≥ 0 and i = 1, . . . , n+ 1, one has:

mk,i = mk,i−1 +

n
∑

j=i

(−1)j−im
k−(j−i+2

2 ),j+1

Proof. This is a direct consequence of Proposition 3.5 and Lemma 4.1.
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The above recurrence relation allows us to compute, in a very efficient way, a table whose entries are mk,i

for i = 1, . . . , n+ 1 and k ≥ 0, for the monoid An. We start the table with the first row:

m0,1 = m0,2 = · · · = m0,n+1 = 1

The second row can then be computed, from left to right, using the recurrence relation of Corollary 4.2.
That is, we compute m1,1 = m1,0 + m0,2 = 0 + 1 = 1, then m1,2 = m1,1 + m0,3 = 1 + 1 = 2, then
m1,3 = 2+1 = 3 and so on, up tom1,n = (n−1)+1 = n andm1,n+1 = n. In the same way, we can compute
each new row from the previous ones, starting from the leftmost entry, using the recurrence relation of
Corollary 4.2. For instance, we can see in Figure 1 the first seven rows of the table corresponding to the
monoid A3. Notice for instance that m6,1 = m6,0 +m5,2 −m3,3 +m0,4 = 0 + 51− 19 + 1 = 33, or that
m6,2 = m6,1 +m5,3 −m3,4 = 33 + 94− 19 = 108.

i
k

1 2 3 4

0 1 1 1 1
1 1 2 3 3
2 2 5 8 8
3 4 11 19 19
4 8 24 43 43
5 16 51 94 94
6 33 108 202 202

Figure 1: A table containing mk,i for the Artin–Tits monoid A3, for k ≤ 6.

Now recall that the rightmost column (and also the adjacent column, which is identical) contains precisely

the coefficients of the growth function gAn
(t), as mk,n+1 = mk,n =

∣

∣

∣M
(n)
k

∣

∣

∣ = |Mk| = αk. For instance,

the table in Figure 1 tells us that there are 202 elements of length 6 in the monoid A3. In other words,
there are 202 positive braids of length 6 with 4 strands.

4.2 A new formula for the growth function (type A)

From the recurrence relation given in Corollary 4.2 to compute the table of mk,i’s, we will be able to
provide a new formula for the growth function of the Artin–Tits monoid An. We will also do the same
for types Bn and Dn in Section 5.

Notice that every new entry of the table is obtained from the previous ones by a linear combination with
coefficients 0 or ±1. Moreover, in order to compute the kth row of the table, one just needs to use values
from the previous

(

n+1
2

)

rows.

More precisely, for k ≥ 1 let vk−1 be a column vector whose entries correspond to the entries of rows
k − 1 to k −

(

n+1
2

)

in the table (we consider mt,i = 0 if t < 0). Namely

vk−1 =
(

mk−1,1 · · ·mk−1,n+1 mk−2,1 · · ·mk−2,n+1 · · ·mk−(n+1
2 ),1 · · ·mk−(n+1

2 ),n+1

)t

For instance, if M = A3, we can check from the table in Figure 1 that:

v0 = (1 1 1 1 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0)
t

v1 = (1 2 3 3 | 1 1 1 1 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0)
t

10



v2 = (2 5 8 8 | 1 2 3 3 | 1 1 1 1 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0)
t

And so on. Just to give an example with nonzero entries, we have:

v6 = (33 108 202 202 | 16 51 94 94 | 8 24 43 43 | 4 11 19 19 | 2 5 8 8 | 1 2 3 3)
t

From the above arguments, every entry of vk is a linear combination of the entries of vk−1, for every
k > 0. And the coefficients of the linear combination do not depend on k. Hence, we have:

Lemma 4.3. There is a square matrix A with
(

n+1
2

)

(n+1) rows, whose entries belong to {0, 1,−1} such
that for every k ≥ 1

Avk−1 = vk

Proof. Just to give an idea of how the matrix A looks like, here is A when n = 3:

A =























0 1 0 0
0 1 1 0
0 1 1 1
0 1 1 1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 -1 0
0 0 -1 -1
0 0 -1 -1
0 0 -1 -1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

I O O O O O
O I O O O O
O O I O O O
O O O I O O
O O O O I O























Here I is the 4× 4 identity matrix, and O is the 4× 4 zero matrix.

In general, the matrix A can be defined as follows. Let L be the (n+1)× (n+1) lower triangular matrix
whose entries are ℓi,j = 1 if i ≤ j and 0 otherwise. We will shift the columns of L in the following way:
Given a matrix P , define sh(P ) to be the matrix obtained from P by removing its rightmost column and
adjoining a zero-column to the left. In other words, sh(P ) is obtained from P by shifting its columns one
position to the right and inserting zeroes in the first column. When n = 3 we can repeatedly shift the
matrix L to obtain:

L =

(

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

)

sh(L) =

(

0 1 0 0
0 1 1 0
0 1 1 1
0 1 1 1

)

sh2(L) =

(

0 0 1 0
0 0 1 1
0 0 1 1
0 0 1 1

)

sh3(L) =

(

0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

)

Then A is defined as a matrix made of blocks of size (n+ 1)× (n+ 1). The block in position (i, j) with
1 ≤ i, j ≤

(

n+1
2

)

is

Γi,j =























(−1)tsht−1(L) if i = 1 and j =
(

t
2

)

for some t.

I(n+1)×(n+1) if i = j + 1.

O(n+1)×(n+1) otherwise.

Let us show that Avk−1 = vk for every k ≥ 1. First, it is clear from the definition of A that the
(n + 1 + j)th entry of Avk−1 equals the jth entry of vk−1, which is precisely the (n+ 1 + j)th entry of
vk. Hence we just need to prove the equality for the first n+ 1 entries of Avk−1 and vk.

We will first see that the first entry of Avk−1 is mk,1. Notice that the nonzero entries of the first row of
A form an alternate sequence of 1’s and −1’s placed at columns

[(

2

2

)

− 1

]

(n+ 1) + 2,

[(

3

2

)

− 1

]

(n+ 1) + 3, . . .

[(

n+ 1

2

)

− 1

]

(n+ 1) + (n+ 1).
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The entries occupying these positions in the vector vk−1 are precisely

m
k−(22),2

, m
k−(32),3

, . . . m
k−(n+1

2 ),n+1.

This implies that the first entry ofAvk−1 is
n
∑

j=1

(−1)j−1m
k−(j+1

2 ),j+1 which by Corollary 4.2 (asmk,0 = 0)

is precisely equal to mk,1.

Now suppose, by induction, that 2 ≤ i ≤ n and that the (i− 1)st entry of Avk−1 is mk,i−1. We will show
that the ith entry of Avk−1 is mk,i and this will finish the proof.

Notice that the ith row of A is the sum of the (i− 1)st row plus a vector whose nonzero entries form an
alternate sequence of 1’s and −1’s placed at columns

[(

2

2

)

− 1

]

(n+ 1) + (i+ 1),

[(

3

2

)

− 1

]

(n+ 1) + (i+ 2), . . .

[(

n− i+ 2

2

)

− 1

]

(n+ 1) + (n+ 1).

(In the case i = n+ 1 all entries of this vector are zero, as the rows n and n+ 1 of A are equal.)

The entries occupying these positions in vk−1 are

m
k−(22),i+1, m

k−(32),i+2, . . . m
k−(n−i+2

2 ),n+1.

Therefore the ith entry of Avk−1 equals

((i− 1)st row of A)vk−1 +
n
∑

j=i

(−1)j−im
k−(j−i+2

2 ),j+1

which by induction hypothesis and by Corollary 4.2 equals

mk,i−1 +
n
∑

j=i

(−1)j−im
k−(j−i+2

2 ),j+1 = mk,i

as we wanted to show.

We can now prove our new formula for the growth function of An, in a similar way in which growth
functions of automatic groups are computed from transition matrices of finite state automata.

Theorem 4.4. Let M be the Artin–Tits monoid of type An, that is the positive braid monoid on n + 1

strands. Let MA
n be the square matrix of order n+1 whose entry (i, j) equals t(

j−i+1
2 ) whenever j−i+1 ≥ 0,

and 0 otherwise. Then
gM (t) = |MA

n |
−1

Proof. It follows immediately from Lemma 4.3 that Akv0 = vk for all k ≥ 0. Now notice that the
(n+1)st entry of vk is precisely mk,n+1 = αk. Hence, if we define the row vector v = (0 · · · 0 1 0 · · · · · · 0),
where the number 1 occupies the (n+ 1)st position, we obtain

αk = vAkv0

for k ≥ 0. Therefore

gAn
(t) =

∑

k≥0

αkt
k =

∑

k≥0

(

vAkv0

)

tk = v





∑

k≥0

Aktk



v0 = v (I −At)−1
v0

12



Let A′ be the adjugate matrix of I −At. We know that (I −At)−1 =
A′

|I −At|
, so

gAn
(t) =

vA′v0

|I −At|

We will now show that v A′v0 = 1. To achieve this goal, notice that both v A′v0 and |I − At| are
polynomials in Z[t]. We will show that |I−At| has degree

(

n+1
2

)

, and it follows directly from Corollary 2.2

that gAn
(t) is the inverse of a polynomial of degree

(

n+1
2

)

. Hence v A′v0 is a constant. From gAn
(0) =

α0 = 1 it follows that the constant is 1. Therefore:

gAn
(t) =

1

|I −At|

Now let us apply column operations to the matrix I −At which preserve its determinant. It is easier to
explain these operations in terms of blocks. Keep in mind the case n = 3 as a clarifying example:

|I −At| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

I − sh(L)t O sh2(L)t O O −sh3(L)t
−It I O O O O
O −It I O O O
O O −It I O O
O O O −It I O
O O O O −It I

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

If we add to each (block) column the column on its right multiplied by t, starting from the right hand
side, we obtain

|I −At| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

I − sh(L)t+ sh2(L)t3 − sh3(L)t6 ⋆ ⋆ ⋆ ⋆ ⋆
O I O O O O
O O I O O O
O O O I O O
O O O O I O
O O O O O I

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

The symbol ⋆ stands for an entry whose value is not important for us, as it does not affect the determinant.
Hence

|I −At| = |I − sh(L)t+ sh2(L)t3 − sh3(L)t6| =

∣

∣

∣

∣

∣

∣

∣

∣

1 −t t3 −t6

0 1− t −t+ t3 t3 − t6

0 −t 1− t+ t3 −t+ t3 − t6

0 −t −t+ t3 1− t+ t3 − t6

∣

∣

∣

∣

∣

∣

∣

∣

Now we substract to each row the previous one, starting from the bottom, and we obtain

|I −At| =

∣

∣

∣

∣

∣

∣

∣

∣

1 −t t3 −t6

−1 1 −t t3

0 −1 1 −t
0 0 −1 1

∣

∣

∣

∣

∣

∣

∣

∣

Finally we point out the alternating signs, all of which can be turned positive by changing the sign of the
even rows and then changing the sign of the even columns. As the number of sign changes is even, the
final result is

|I −At| =

∣

∣

∣

∣

∣

∣

∣

∣

1 t t3 t6

1 1 t t3

0 1 1 t
0 0 1 1

∣

∣

∣

∣

∣

∣

∣

∣

= |MA
3 |
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In the case of arbitrary n, exactly the same operations lead to the matrix MA
n defined in the statement.

It remains to show that |I − At| is a polynomial of degree
(

n+1
2

)

. To achieve this, one just needs to
expand the determinant |MA

n | along the first row:

|MA
n | = 1|MA

n−1| − t|MA
n−2|+ t3|MA

n−3| − · · ·+ (−1)n−1t(
n

2)|MA
0 |+ (−1)nt(

n+1
2 ).

By induction in n, the ith summand (i ≤ n) has degree
(

i
2

)

+
(

n−i+1
2

)

, which is smaller than
(

n+1
2

)

, hence
the last summand contains the leading term.

The expansion of the determinant of MA
n along the first row yields precisely the previously known result

by Bronfman [8], relating the Möbius polynomials of Artin–Tits monoids of type An, for distinct values
of n:

Theorem 4.5. [8] If the growth function of the Artin–Tits monoid of type An is

gAn
(t) =

1

Hn(t)

and we denote H−1(t) = H0(t) = 1, then for n ≥ 1 one has:

Hn(t) =
n+1
∑

i=1

(−1)i−1t(
i

2)Hn−i(t)

Proof. By Theorem 4.4 one has Hn(t) = |MA
n | for all n ≥ 1. The formula in the statement is just the

expansion of |MA
n | along the first row.

To finish the section, we exhibit some examples of the matrices and the growth functions, for small values
of n.

Examples:

gA1(t) =

∣

∣

∣

∣

1 t
1 1

∣

∣

∣

∣

−1

, gA2(t) =

∣

∣

∣

∣

∣

∣

1 t t3

1 1 t
0 1 1

∣

∣

∣

∣

∣

∣

−1

,

gA3(t) =

∣

∣

∣

∣

∣

∣

∣

∣

1 t t3 t6

1 1 t t3

0 1 1 t
0 0 1 1

∣

∣

∣

∣

∣

∣

∣

∣

−1

, gA4(t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 t t3 t6 t10

1 1 t t3 t6

0 1 1 t t3

0 0 1 1 t
0 0 0 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1

.

In other words,

gA1(t) =
1

1− t
, gA2(t) =

1

1− 2t+ t3
, gA3(t) =

1

1− 3t+ t2 + 2t3 − t6
,

gA4(t) =
1

1− 4t+ 3t2 + 3t3 − 2t4 − 2t6 + t10
.

5 Artin–Tits monoids of type B and D

In the previous section we treated the case of Artin–Tits monoids of type A. In this section we will see
that the same techniques can be applied to Artin–Tits monoids of type B and D. As the proofs are almost
identical, we shall basically provide just the parts in which they differ.
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5.1 Counting elements in the monoid (type B)

Let Bn be the Artin–Tits monoid of type B with n standard generators. Its standard presentation is the
following:

Bn =

〈

a1, . . . , an

∣

∣

∣

∣

∣

∣

aiaj = ajai, |i− j| > 1
aiajai = ajaiaj , |i− j| = 1, i, j 6= n

an−1anan−1an = anan−1anan−1

〉

In this case (see [26]), for 0 ≤ i ≤ j ≤ n, the consecutive generators ai, . . . , aj either generate an Artin–
Tits group of type Aj−i+1 (if j < n), or generate an Artin–Tits group of type Bj−i+1 (if j = n). In the
latter case, the least common multiple of the generators is [27, Lemma 4.1]:

ai ∨ · · · ∨ an = (ai · · · an−1anan−1 · · ·ai)(ai+1 · · · an−1anan−1 · · ·ai+1) · · · (an−1anan−1)an.

Therefore, one has

||ai ∨ · · · ∨ aj|| =

{
(

j−i+2
2

)

if j < n

(n− i+ 1)2 if j = n

Also, as it happened in An, if t ≥ j + 2 the atom at commutes with ai, . . . , aj , so one has

(ai ∨ · · · ∨ aj) ∨ at = (ai ∨ · · · ∨ aj)at.

Therefore we obtain the following result.

Lemma 5.1. Let M be the Artin–Tits monoid of type Bn. For 1 ≤ i ≤ j ≤ n one has

uk,i,j =







m
k−(j−i+2

2 ),j+1 if j < n,

mk−(n−i+1)2,n+1 if j = n.

Proof. Same proof as Lemma 4.1.

Corollary 5.2. In the Artin–Tits monoid Bn, for k ≥ 0 and i = 1, . . . , n+ 1, one has:

mk,i = mk,i−1 +





n−1
∑

j=i

(−1)j−im
k−(j−i+2

2 ),j+1



+ (−1)n−imk−(n−i+1)2,n+1

Proof. This is a direct consequence of Proposition 3.5 and Lemma 5.1.

Using this recurrence relation we can also compute, in the case of Bn, a table containing the numbers
mk,i, where each row is computed from left to right, using the data in the previous ones. In Figure 2
we can see the first seven rows of the table corresponding to B3. We recall that the rightmost column
contains the number of elements of length k in B3.

5.2 A new formula for the growth function (type B)

We keep proceeding as in the case of Artin–Tits monoids of type A, although this time the defined vectors
have length n2(n+ 1). Namely, we define for k ≥ 1, the column vector

vk−1 =
(

mk−1,1 · · ·mk−1,n+1 mk−2,1 · · ·mk−2,n+1 · · ·mk−n2,1 · · ·mk−n2,n+1

)t

where the mi,j ’s are defined for the Artin–Tits monoid Bn.
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i
k

1 2 3 4

0 1 1 1 1
1 1 2 3 3
2 2 5 8 8
3 4 12 20 20
4 9 28 48 48
5 20 65 113 113
6 45 150 263 263

Figure 2: A table containing mk,i for the Artin–Tits monoid B3, for k ≤ 6.

Lemma 5.3. There is a square matrix B with n2(n + 1) rows, whose entries belong to {0, 1,−1} such
that for every k ≥ 1

Bvk−1 = vk

Proof. As in the previous section, we can indicate how the matrix B looks like, by showing it explicitly
when n = 3. As in the case of type A, let us denote (for n = 3):

sh(L) =

(

0 1 0 0
0 1 1 0
0 1 1 1
0 1 1 1

)

sh2(L) =

(

0 0 1 0
0 0 1 1
0 0 1 1
0 0 1 1

)

sh3(L) =

(

0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

)

This time the last column of these matrices behaves differently, so given a matrix T , we will denote T ′ the
matrix obtained from T by replacing its last column by a column of zeroes, and T ′′ the matrix obtained
from T by keeping its last column and replacing all other entries by zeroes. Of course, T ′ + T ′′ = T .

As an example, we have:

sh2(L) =

(

0 0 1 0
0 0 1 1
0 0 1 1
0 0 1 1

)

sh2(L)′ =

(

0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0

)

sh2(L)′′ =

(

0 0 0 0
0 0 0 1
0 0 0 1
0 0 0 1

)

then the matrix B is the following block matrix:

B =

























sh(L) O −sh2(L)′ −sh2(L)′′ O O O O sh3(L)′′

I O O O O O O O O

O I O O O O O O O

O O I O O O O O O

O O O I O O O O O

O O O O I O O O O

O O O O O I O O O

O O O O O O I O O

O O O O O O O I O

























where I is the 4× 4 identity matrix and O is the 4× 4 zero matrix.

For every n ≥ 2, the (n+1)× (n+1) blocks of the matrix B are defined in the following way. The block
in position (i, j) with 1 ≤ i, j ≤ n2 is

Bi,j = Γ1 + Γ2 + Γ3,
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where

Γ1 =







(−1)tsht−1(L)′ if i = 1 and j =
(

t
2

)

for some 2 < t ≤ n

O(n+1)×(n+1) otherwise.

Γ2 =







(−1)tsht−1(L)′′ if i = 1 and j = t2 for some 2 ≤ t ≤ n

O(n+1)×(n+1) otherwise.

Γ3 =







I(n+1)×(n+1) if i = j + 1

O(n+1)×(n+1) otherwise.

The proof which shows that Bvk−1 = vk for every k ≥ 1 is analogous to that of type A, this time using
the formula in Corollary 5.2.

Theorem 5.4. Let M be the Artin–Tits monoid of type Bn. Let MB
n be the square matrix of order n+1

whose entry (i, n+ 1) equals t(n−i+1)2 for all i, and whose entry (i, j) for j ≤ n equals t(
j−i+1

2 ) whenever
j − i+ 1 ≥ 0, and 0 otherwise. Then

gM (t) = |MB
n |

−1

Proof. Using the same arguments as in the proof of Theorem 4.4, one has:

gBn
(t) =

vB′v0

|I − Bt|

Later we will see that |I − Bt| is a polynomial of degree n2, and gBn
(t) is the inverse of a polynomial of

degree n2 by Corollary 2.2. Hence vB′v0 is a constant, namely 1 (as gBn
(0) = α0 = 1).

Therefore:

gBn
(t) =

1

|I − Bt|

In the case n = 3 we have:

|I−Bt| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

I − sh(L)t O sh2(L)′t sh2(L)′′t O O O O −sh3(L)′′t
−It I O O O O O O O

O −It I O O O O O O

O O −It I O O O O O

O O O −It I O O O O

O O O O −It I O O O

O O O O O −It I O O

O O O O O O −It I O

O O O O O O O −It I

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

As we did for type A, if we add to each (block) column the column on its right multiplied by t, starting
from the right hand side, we obtain

|I − Bt| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
O I O O O O O O O
O O I O O O O O O
O O O I O O O O O
O O O O I O O O O
O O O O O I O O O
O O O O O O I O O
O O O O O O O I O
O O O O O O O O I

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

17



where
T = I +

(

−sh(L)′t+ sh2(L)′t3
)

+
(

−sh(L)′′t+ sh2(L)′′t4 − sh3(L)′′t9
)

Hence

|I − Bt| = |T | =

∣

∣

∣

∣

∣

∣

∣

∣

1 −t t3 −t9

0 1− t −t+ t3 t4 − t9

0 −t 1− t+ t3 −t+ t4 − t9

0 −t −t+ t3 1− t+ t4 − t9

∣

∣

∣

∣

∣

∣

∣

∣

Notice that the exponents in the last column are of the form k2, while the exponents on the other columns
are of the form

(

k
2

)

.

Substracting to each row the previous one, starting from the bottom, we obtain

|I − Bt| =

∣

∣

∣

∣

∣

∣

∣

∣

1 −t t3 −t9

−1 1 −t t4

0 −1 1 −t
0 0 −1 1

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1 t t3 t9

1 1 t t4

0 1 1 t
0 0 1 1

∣

∣

∣

∣

∣

∣

∣

∣

= |MB
3 |

In the case of arbitrary n, exactly the same operations lead to the matrix MB
n defined in the statement

of Theorem 5.4. Hence |I − Bt| = |MB
n |.

Notice that MB
n equals MA

n except for the last column. Hence, if we expand the determinant of MB
n

along the last column, we see that we can express |MB
n | in terms of |MA

t | for t < n. Namely:

|MB
n | = 1|MA

n−1| − t|MA
n−2|+ t4|MA

n−3| − · · ·+ (−1)n−1t(n−1)2 |MA
0 |+ (−1)ntn

2

.

As |MA
t | is a polynomial of degree

(

t
2

)

, it follows that |MB
n | is a polynomial of degree n2. This finishes

the proof.

The above expansion of the determinant of MB
n along the last column, yields a formula relating the

Möbious polynomials of Bn to the Möbius polynomials of Am for m < n.

Corollary 5.5. If the growth functions of the Artin–Tits monoids of types An and Bn are

gAn
=

1

Hn(t)
, gBn

=
1

Fn(t)

and we denote H−1(t) = H0(t) = 1, then for n ≥ 1 one has:

Fn(t) =

n
∑

i=0

(−1)iti
2

Hn−1−i(t)

Proof. By Theorem 5.4 one has Fn(t) = |MB
n | for all n ≥ 1. The formula in the statement is just the

expansion of |MB
n | along the last column.

But we can also expand the determinant |MB
n | along the first row, yielding a formula relating the growth

function of Bn to the growth functions of Bm for m < n.

Corollary 5.6. If the growth functions of the Artin–Tits monoid of type Bn is

gBn
=

1

Fn(t)

and we denote F−1(t) = F0(t) = 1, then for n ≥ 1 one has:

Fn(t) =

(

n
∑

i=1

(−1)i−1t(
i

2)Fn−i(t)

)

+ (−1)ntn
2

18



Proof. By Theorem 5.4 one has Fn(t) = |MB
n | for all n ≥ 1. Now expand this determinant along the first

row.

As we did with the monoid of type A, we finish the section with some examples.

Examples:

gB1(t) =

∣

∣

∣

∣

1 t
1 1

∣

∣

∣

∣

−1

, gB2(t) =

∣

∣

∣

∣

∣

∣

1 t t4

1 1 t
0 1 1

∣

∣

∣

∣

∣

∣

−1

,

gB3(t) =

∣

∣

∣

∣

∣

∣

∣

∣

1 t t3 t9

1 1 t t4

0 1 1 t
0 0 1 1

∣

∣

∣

∣

∣

∣

∣

∣

−1

, gB4(t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 t t3 t6 t16

1 1 t t3 t9

0 1 1 t t4

0 0 1 1 t
0 0 0 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1

.

In other words,

gB1(t) =
1

1− t
, gB2(t) =

1

1− 2t+ t4
, gB3(t) =

1

1− 3t+ t2 + t3 + t4 − t9
,

gB4(t) =
1

1− 4t+ 3t2 + 2t3 − t5 − t6 − t9 + t16
.

5.3 Counting elements in the monoid (type D)

The standard presentation of the Artin–Tits monoid of type D with n ≥ 4 generators is the following:

Dn =

〈

a1, . . . , an

∣

∣

∣

∣

∣

∣

∣

∣

aiaj = ajai, |i− j| > 1, {i, j} 6= {n− 2, n}
aiajai = ajaiaj , |i− j| = 1, {i, j} 6= {n− 1, n}

an−2anan−2 = anan−2an
an−1an = anan−1

〉

In this monoid (see [26]), the submonoid generated by the consecutive standard generators ai, . . . , aj is
an Artin–Tits monoid of type D if j = n and i ≤ n − 3, it is Z

2 if j = n and i = n − 1, and it is an
Artin–Tits monoid of type A otherwise. In the first case, the least common multiple of the generators
is [27, Lemma 5.1]:

ai ∨ · · · ∨ an =

n−1
∏

j=i

(ajaj+1 · · · an−2)(an−1an)(an−2an−3 · · · aj).

This word has length (n− i+1)(n− i). We remark that if i = n−2 and j = n, the least common multiple
of an−2, an−1, an (which generate a group of type A3) is an element of length 6, and this number is also
equal to (n − i + 1)(n − i). And if i = n − 1 and j = n, the generators an−1 and an commute, so their
least common multiple is an−1an which has length 2, that is, equal to (n− i+ 1)(n− i). Therefore:

||ai ∨ · · · ∨ aj || =

{

(n− i+ 1)(n− i) if j = n and i < n
(

j−i+2
2

)

otherwise.

On the other hand, if t ≥ j +2, the atom at commutes with ai, . . . , aj , except when t = n and j = n− 2.
In this latter case, the generators ai, ai+1, . . . , an−2, an behave as consecutive generators in a monoid of
type A. Hence, when t ≥ j + 2:

(ai ∨ · · · ∨ aj) ∨ at =

{

(ai ∨ · · · ∨ aj)at if j < n− 2
(ai ∨ · · · ∨ aj)atajaj−1 · · · ai if j = n− 2 (hence t = n)
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Therefore, in Dn the situation is the following.

Lemma 5.7. Let M be the Artin–Tits monoid of type Dn (n ≥ 4). For 1 ≤ i ≤ j ≤ n one has

uk,i,j =















mk−(n−i+1)(n−i),n+1 if j = n and i < n

m
k−(n−i

2 ),n −m
k−(n−i+1

2 ),n+1 if j = n− 2,

m
k−(j−i+2

2 ),j+1 otherwise.

Proof. If j = n and i < n we have

uk,i,j = |{b ∈Mk; ai ∨ · · · ∨ an 4 b}| = |Mk−(n−i+1)(n−i)| = mk−(n−i+1)(n−i),n+1.

Suppose now that j = n− 2. In this case:

U
(i,n−2)
k = {b ∈Mk; ai ∨ · · · ∨ an−2 4 b, an 64 b}

= {(ai ∨ · · · ∨ an−2)c ∈Mk; an 64 (ai ∨ · · · ∨ an−1)c}

But an 4 (ai∨· · ·∨an−2)c if and only if (ai∨· · ·∨an−2)∨an 4 (ai∨· · ·∨an−2)c, which occurs if and only
if (ai ∨ · · · ∨ an−2) anan−2an−3 · · · ai 4 (ai ∨ · · · ∨ an−2)c, which is equivalent to anan−2an−3 · · · ai 4 c.
Hence

U
(i,n−2)
k = {(ai ∨ · · · ∨ an−2)c ∈Mk; anan−2an−3 · · · ai 64 c}.

Therefore
uk,i,n−2 =

∣

∣

∣U
(i,n−2)
k

∣

∣

∣ =
∣

∣

∣{c ∈M
k−(n−i

2 ); anan−2an−3 · · · ai 64 c}
∣

∣

∣ .

Hence, we must remove from the elements inM
k−(n−i

2 ) those having anan−2an−3 · · · ai as prefix. As Dn is

a cancellative monoid, there are exactly
∣

∣

∣Mk−(n−i

2 )−(n−i)

∣

∣

∣ =
∣

∣

∣Mk−(n−i+1
2 )

∣

∣

∣ elements to remove. Therefore

uk,i,n−2 =
∣

∣

∣
M

k−(n−i

2 )

∣

∣

∣
−
∣

∣

∣
M

k−(n−i+1
2 )

∣

∣

∣
= m

k−(n−i

2 ),n −m
k−(n−i+1

2 ),n+1

as we wanted to show. The reason of using either n or n+ 1 as second subindex will become clear later.

Finally, in all the remaining cases (either i = j = n or j /∈ {n− 2, n}), we have:

U
(i,j)
k = {b ∈Mk; ai ∨ · · · ∨ aj 4 b, aj+2, . . . , an 64 b} = m

k−(j−i+2
2 ),j+1

in the same way as in Lemma 4.1.

Corollary 5.8. In the Artin–Tits monoid Dn (n ≥ 4), for k ≥ 0 and i = 1, . . . , n− 2, one has:

mk,i = mk,i−1 +





n−3
∑

j=i

(−1)j−im
k−(j−i+2

2 ),j+1





+ (−1)n−2−i
(

m
k−(n−i

2 ),n − 2m
k−(n−i+1

2 ),n+1 +mk−(n−i+1)(n−i),n+1

)

,

and also:
mk,n−1 = mk,n−2 +mk−1,n −mk−2,n+1

mk,n = mk,n−1 +mk−1,n+1,

mk,n+1 = mk,n.

Proof. This is a direct consequence of Proposition 3.5 and Lemma 5.7.
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The first formula in Corollary 5.8 has an interesting property: It involves no expression of the formmt,n−1

for any t. Hence, the formulae can be simplified if we remove the column corresponding to i = n− 1 from
the table containing the mk,i’s. For that purpose, we define:

Definition 5.9. Let M be the Artin–Tits monoid of type Dn. For k ≥ 0 we define:

dk,i =

{

mk,i if i ∈ {1, . . . , n− 2},
mk,i+1 if i ∈ {n− 1, n}.

We have then defined the numbers dk,1, . . . , dk,n, such that dk,n−1 = dk,n = |Mk| = αk. With this
definition, the recurrence relation in Corollary 5.8 can be rewritten as follows:

Corollary 5.10. In the Artin–Tits monoid Dn, for k ≥ 0 and i = 1, . . . , n one has:

dk,i = dk,i−1 +





n−1
∑

j=i

(−1)j−id
k−(j−i+2

2 ),j+1



+ (−1)n−i−1
(

d
k−(n−i+1

2 ),n − dk−(n−i+1)(n−i),n

)

Proof. For i = 1, . . . , n− 2, this is a direct consequence of Corollary 5.8.

For i = n− 1, we have (using Corollary 5.8 and the fact that mk−1,n = mk−1,n+1):

dk,n−1 = mk,n = mk,n−1 +mk−1,n+1

= (mk,n−2 +mk−1,n −mk−2,n+1) +mk−1,n+1

= mk,n−2 + 2mk−1,n+1 −mk−2,n+1

= dk,n−2 + 2 dk−1,n − dk−2,n

which satisfies the statement.

Finally, if i = n:
dk,n = mk,n+1 = mk,n = dk,n−1 = dk,n−1 − (dk,n − dk,n)

so the result also holds in this case.

Thanks to Corollary 5.10 we can compute a table containing the numbers dk,i for k ≥ 0 and i = 1, . . . , n.
Notice that the rightmost column contains the numbers dk,n for k ≥ 0, which correspond to the number
of elements of length k, with respect to the standard generators of Dn.

i
k

1 2 3 4

0 1 1 1 1
1 1 2 4 4
2 2 6 13 13
3 5 16 38 38
4 12 42 105 105
5 29 108 280 280
6 72 277 732 732

Figure 3: A table containing the numbers dk,i for the Artin–Tits monoid D4, for k ≤ 6.
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5.4 A new formula for the growth function (type D)

The linear recurrence obtained in the case of Artin–Tits monoids of type D forces us to define vectors
with n2(n− 1) entries. Namely, we define for k ≥ 1 the column vector

vk−1 =
(

dk−1,1 · · · dk−1,n dk−2,1 · · · dk−2,n · · · dk−n(n−1),1 · · · dk−n(n−1),n

)t

Lemma 5.11. There is a square matrix D with n2(n− 1) rows, whose entries belong to {0, 1,−1} such
that for every k ≥ 1

Dvk−1 = vk

Proof. This proof is analogous to those of type A and B. One can see the matrix D as a squared block
matrix, with n(n− 1) rows, each block made of n× n matrices. In the case n = 4, the first row of blocks
is the following:

0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1
0 1 1 0 0 0 0 0 0 0 -1 -2 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1
0 1 1 2 0 0 0 -1 0 0 -1 -2 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1
0 1 1 2 0 0 0 -1 0 0 -1 -2 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1

And the remaining rows are made of identity and zero matrices, with the identities placed at the subdi-
agonal.

Recall the definition of shk(L) for k > 0. As for type B, the last column of these matrices behaves
differently than in the case of type A, so given a matrix T , we denote T ′ the matrix obtained from T by
replacing its last column by a column of zeroes, and T ′′ the matrix obtained from T by keeping its last
column and replacing all other entries by zeroes. Then, for every n ≥ 2, the n × n blocks of the matrix
D are defined in the following way.

The block in position (i, j) with 1 ≤ i, j ≤ n(n− 1) is

Di,j = Γ1 + Γ2 + Γ3 + Γ4

where

Γ1 =







(−1)tsht−1(L)′ if i = 1 and j =
(

t
2

)

for some 2 ≤ t < n

On×n otherwise.

Γ2 =







(−1)t 2 sht−1(L)′′ if i = 1 and j =
(

t
2

)

for some 2 ≤ t ≤ n

On×n otherwise.

Γ3 =







(−1)t−1 sht−1(L)′′ if i = 1 and j = t(t− 1) for some 2 ≤ t ≤ n

On×n otherwise.

Γ4 =







In×n if i = j + 1

On×n otherwise.

This description follows directly from the formula in Corollary 5.10.

Theorem 5.12. Let M be the Artin–Tits monoid of type Dn, for n ≥ 4. Let MD
n be the square matrix

of order n whose entry (i, n) equals 2t(
n−i+1

2 ) − t(n−i+1)(n−i) for all i, and whose entry (i, j) for j < n

equals t(
j−i+1

2 ) whenever j − i+ 1 ≥ 0, and 0 otherwise. Then

gM (t) = |MD
n |

−1
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Proof. Following the lines of Theorem 4.4 and Theorem 5.4, one has:

gDn
(t) =

vD′v0

|I −Dt|

Later we will see that |I−Dt| is a polynomial of degree n(n−1), and gDn
(t) is the inverse of a polynomial

of degree n(n− 1) by Corollary 2.2. Hence vD′v0 is a constant, namely 1.

Therefore:

gDn
(t) =

1

|I −Dt|

As we did for types A and B, if we add to each (block) column the column on its right multiplied by t,
starting from the right hand side, we obtain a matrix which for n = 4 looks like the following:

|I −Dt| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
O I O O O O O O O O O O
O O I O O O O O O O O O
O O O I O O O O O O O O
O O O O I O O O O O O O
O O O O O I O O O O O O
O O O O O O I O O O O O
O O O O O O O I O O O O
O O O O O O O O I O O O
O O O O O O O O O I O O
O O O O O O O O O O I O
O O O O O O O O O O O I

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Hence

|I −Dt| = |T | =

∣

∣

∣

∣

∣

∣

∣

∣

1 −t t3 −2t6 + t12

0 1− t −t+ t3 2t3 − 3t6 + t12

0 −t 1− t+ t3 −2t+ t2 + 2t3 − 3t6 + t12

0 −t −t+ t3 1− 2t+ t2 + 2t3 − 3t6 + t12

∣

∣

∣

∣

∣

∣

∣

∣

Substracting to each row the previous one, starting from the bottom, we obtain

|I −Dt| =

∣

∣

∣

∣

∣

∣

∣

∣

1 −t t3 −2t6 + t12

−1 1 −t 2t3 − t6

0 −1 1 −2t+ t2

0 0 −1 1

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1 t t3 2t6 − t12

1 1 t 2t3 − t6

0 1 1 2t− t2

0 0 1 1

∣

∣

∣

∣

∣

∣

∣

∣

= |MD
4 |

In the case of arbitrary n, exactly the same operations lead to the matrix MD
n defined in the statement

of Theorem 5.12. Hence |I −Dt| = |MD
n |.

Notice that, as for type B, the matrix MD
n equals MA

n−1 except for the last column. Hence, if we expand
the determinant of MD

n along the last column, we see that we can express |MD
n | in terms of |MA

t | for
t < n− 1. Namely:

|MD
n | = 1|MA

n−2|− (2t− t2)|MA
n−3|+ · · ·+(−1)n(2t(

n−1
2 )− t(n−1)(n−2))|MA

0 |+(−1)n−1(2t(
n

2)− tn(n−1)).

As |MA
t | is a polynomial of degree

(

t
2

)

, it follows that |MD
n | is a polynomial of degree n(n − 1). This

finishes the proof.

From this formula it is easy to relate the growth functions of the monoid Dn with the growth functions
of monoids of type An.
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Corollary 5.13. If the growth functions of the Artin–Tits monoids of types An and Dn are

gAn
=

1

Hn(t)
, gDn

=
1

Gn(t)

and we denote H−1(t) = H0(t) = 1, then for n > 1 one has:

Gn(t) =
n
∑

i=1

(−1)i−1
(

2t(
i

2) − ti(i−1)
)

Hn−i−1(t)

Proof. By Theorem 5.12 one has Gn(t) = |MD
n | for all n > 1. The formula in the statement is just the

expansion of |MD
n | along the last column.

But we can also expand the determinant |MD
n | along the first row, yielding a formula relating the growth

function of Dn to the growth functions of Dm for m < n. To simplify the statement, although the monoid
Dn is defined for n ≥ 4, we will naturally assume that D2 = Z× Z and D3 = A3.

Corollary 5.14. If the growth functions of the Artin–Tits monoid of type Dn, for n ≥ 2, is

gDn
=

1

Gn(t)

and we denote G1(t) = 1, then for n ≥ 2 one has:

Gn(t) =

(

n−1
∑

i=1

(−1)i−1t(
i

2)Gn−i(t)

)

+ (−1)n−1
(

2t(
n

2) − tn(n−1)
)

Proof. By Theorem 5.12 one has Gn(t) = |MD
n | for all n ≥ 4. Now expand this determinant along the

first row.

As in the previous cases, here are some examples to illustrate the computations.

Examples:

gD2(t) =

∣

∣

∣

∣

1 2t− t2

1 1

∣

∣

∣

∣

−1

, gD3(t) =

∣

∣

∣

∣

∣

∣

1 t 2t3 − t6

1 1 2t− t2

0 1 1

∣

∣

∣

∣

∣

∣

−1

,

gD4(t) =

∣

∣

∣

∣

∣

∣

∣

∣

1 t t3 2t6 − t12

1 1 t 2t3 − t6

0 1 1 2t− t2

0 0 1 1

∣

∣

∣

∣

∣

∣

∣

∣

−1

, gD5(t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 t t3 t6 2t10 − t20

1 1 t t3 2t6 − t12

0 1 1 t 2t3 − t6

0 0 1 1 2t− t2

0 0 0 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1

.

In other words,

gD2(t) =
1

1− 2t+ t2
, gD3(t) =

1

1− 3t+ t2 + 2t3 − t6
, gD4(t) =

1

1− 4t+ 3t2 + 2t3 − 3t6 + t12
,

gD5(t) =
1

1− 5t+ 6t2 + 2t3 − 4t4 + t5 − 4t6 + t7 + 2t10 + t12 − t20
.
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6 Growth rates

One of the big advantages of the way we use for counting the number of elements in a monoid, is that
one can easily extract some conclusions on its growth rate. We recall that the exponential growth rate
of a monoid, with respect of a given set of generators is equal to

ρM = lim
k→∞

k
√

|Mk|

In the case of Artin–Tits monoids of type An, Bn and Dn, this growth rate has been extensively studied
by several authors [32, 35, 19]. In [19], it is shown that the Möbius polynomial for M has a unique root
of smallest modulus, which is a real number. Its inverse is precisely ρM .

If one considers the family of monoids {An}n≥1, it is a natural question, posed by several authors, to
find the limit:

ρ = lim
n→∞

ρAn
.

It was shown in [35, Theorem 8] that 2 ≤ ρAn
≤ 4 for all n, so we have 2 ≤ ρ ≤ 4. This was improved

in [19, Proposition 7.98], where it is shown that the sequence ρAn
is non-decreasing, and that its limit ρ

satisfies 2.5 < ρ < 4.

We will now see that we can determine ρ with arbitrary precision. For this sake, we will first describe
two concepts of analytical nature: the partial theta function and the KLV-constant q∞.

6.1 Topics from Real Analysis

6.1.1 The partial theta function

We start by recalling the formal power series:

f(x, y) =

∞
∑

k=0

y(
k

2)xk.

In Sokal’s paper [33] this series is called the partial theta function, a name that comes from the relation
with the classical Jacobi theta function. It is noteworthy that this name is sometimes also used for the
more general series

f(x, y) =

∞
∑

k=0

yAk2+Bkxk,

corresponding the previous case to A = 1/2, B = −1/2. We will follow here Sokal’s nomenclature.

Having already appeared in Ramanujan’s work [2], the partial theta function is an instance of a more
general family of series which also contains the deformed exponential function (see for example [25]). It
is also a particular example of the three-variable Rogers-Ramanujan function [31], and should not be
confused with the different -but related- “false theta functions” defined by Rogers in [30]. The study of
the partial theta function has become a fruitful field of research, as relations have been discovered with
the so-called section-hyperbolic polynomials [24], Dirichlet series via asymptotic expansions [5], Garrett-
Ismail-Stanton type identities [36, 16] or q-hypergeometric series, particularly mock modular forms [7]; a
good guide for the theory is the year-long work of Vladimir Kostov (see for example [21, 22, 23]).

To our knowledge, however, no relationship had been found so far between partial theta functions and
algebraic invariants, in particular coming for Group/Monoid Theory. To describe such a relation, we need
to introduce the concept of leading root. Following Sokal, given a formal series f(x, y) with coefficients
in a commutative unital ring R, there is a unique formal series x0(y) in R[[y]] such that f(x0(y), y) = 0.
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This series is called the leading root of f(x, y), and in the case of the partial theta function defined above,
it has the shape:

x0(y) = −(1 + y + 2y2 + 4y3 + 9y4 + · · · )

The sequence of coefficients of −x0(y), which is

1, 1, 2, 4, 9, 21, 52, 133, . . .

is proved to be an increasing sequence of positive integers [33], and its first 7,000 terms were computed
by the author.

In Proposition 6.6 below we will state that this sequence is in particular, and very surprisingly, a com-
binatorial invariant of Artin–Tits monoids. A different combinatorial (non-algebraic) approach to these
coefficients, based on stack polyominos, can be found in unpublished work of Prellberg [29].

6.1.2 The KLV-constant q∞

In the last section of Sokal’s paper [33] the exponential growth of the previous sequence of coefficients
is also established, as a consequence of Pringhseim theorem. This number is the inverse of the first real
singularity of the leading root of the partial theta function, and turns to be a constant whose value is
3.2336366652 . . . As this number was first effectively computed by Katkova-Lobova-Vishnyakova in [20]
and seems not to have a standard name, we will call it here the KLV-constant and denote it by q∞, as
these authors did.

The KLV-constant appeared in the context of a long-standing problem, very easy to formulate. Consider
the series

ga(z) =

∞
∑

k=0

zk

ak2 ,

for a > 1. The goal is to find the smallest a such that ga(z) has only real roots. This problem was
first undertaken by Hardy [18], who proved that a2 ≥ 9 was a sufficient condition. Afterwards, different
authors attacked the problem and lowered this bound, as for example Pólya-Szegő [28] or Craven-Csordas
[10], who reached a bound of 3.42. The final solution finally appeared in 2003 in [20, Theorem 4], as the
mentioned authors proved that a2 ≥ q∞ is a necessary and sufficient condition for the series ga(z) to
have only real roots. Moreover, their computation provided a way of approximating q∞ with arbitrary
precision.

We will show in the next section that q∞ = ρ. This result permits in particular a completely unexpected
description of the KLV-constant in terms of growths of monoids.

6.2 Growth rates of braid monoids and the partial theta function

Recall from Corollary 4.2 that, for the Artin–Tits monoid of type An, the numbers mk,i satisfy the
following recurrence relation:

mk,i = mk,i−1 +

n
∑

j=i

(−1)j−im
k−(j−i+2

2 ),j+1,

where m0,1 = 1.

Using this recurrence relation, we compute the table containing the numbers mk,i for k ≥ 0 and i =
1, . . . , n+ 1, as in Figure 1.
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i

k

1 2 3 4 5 6

0 1 1 1 1 1 1

1 1 2 3 4 5 5

2 2 5 9 14 19 19

3 4 12 25 43 62 62

4 9 30 68 125 187 187

5 21 75 181 349 536 536

6 51 190 478 952 1488 1488

7 126 484 1254 2555 4043 4043

8 317 1241 3279 6786 10829 10829

i

k

1 2 3 4 5 6 7

0 1 1 1 1 1 1 1

1 1 2 3 4 5 6 6

2 2 5 9 14 20 26 26

3 4 12 25 44 69 95 95

4 9 30 69 132 221 316 316

5 21 76 188 383 673 989 989

6 52 197 512 1091 1985 2974 2974

7 132 517 1393 3068 5726 8700 8700

8 343 1373 3794 8557 16268 24968 24968

Figure 4: Tables containing mk,i for the Artin–Tits monoids A5 and A6, for k ≤ 8.

We will now compare the tables corresponding to distinct values of n. To give an example, in Figure 4
we can see the first 9 rows of the tables corresponding to A5 and A6.

In Figure 4 we have boldfaced the elements mk,i such that k + i ≤ n + 1. We will call them stabilized
entries. From the recurrence relation in Corollary 4.2, it is easy to see that each stabilized entry in the
table for An is computed using exactly the same values as the corresponding element in the table for
An+1. Hence, if mk,i is a stabilized entry for some An, the value mk,i will be the same in the table
corresponding to An1 , for every n1 > n. In other words, the table stabilizes when n tends to infinity:
The value of each mk,i will become constant. By abuse of notation, we will denote mk,i the value of mk,i

for n ≥ k + i− 1, that is, when its value has stabilized.

The value of the stabilized mk,i can be computed as follows:

mk,i = mk,i−1 +

∞
∑

j=i

(−1)j−im
k−(j−i+2

2 ),j+1 (3)

Notice that this sum is always finite, as the value k −
(

j−i+2
2

)

must be non-negative in order to produce
a nonzero summand.

There is a nice way to understand the limit table, which contains the numbers which are already stabilized.

Notice that if n1 < n2, there is a natural inclusion An1 ⊂ An2 . The direct limit of the monoids {An}n≥1

with respect to these natural inclusions is known as A∞, the braid monoid on an infinite number of
strands. It has the same presentation as the usual braid monoid An, but with an infinite number of
generators:

A∞ =

〈

a1, a2, . . .

∣

∣

∣

∣

aiaj = ajai, |i− j| > 1
aiajai = ajaiaj , |i− j| = 1

〉

If M = A∞ we can define, for k ≥ 0 and i ≥ 1, the number m′
k,i =

∣

∣

∣M
(i)
k

∣

∣

∣ as the number of elements in

M having length k, whose lex-representative starts with a letter from {a1, . . . , ai}. Notice that Mk is an
infinite set, so we need to show that m′

k,i is well defined.

Proposition 6.1. For k ≥ 0 and i ≥ 1, the number m′
k,i is well defined, and it coincides with the

stabilized entry mk,i in the table for An, for every n ≥ k + i− 1.

Proof. Let M = A∞ and let b ∈ M
(i)
k . The lex-representative of b starts with a letter from {a1, . . . , ai}.

We will show that a word representing b cannot contain the letter at for t ≥ k + i.
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Recall that all words representing b have length k, as the relations in A∞ are homogeneous. Also, all
words representing b involve the same set of letters, as this set cannot be modified by applying a relation
(no new letter can appear, and no letter can dissapear).

Suppose that some word w representing b contains the letter at, for some t ≥ k + i. We know that
some letter from {a1, . . . , ai} appears in w, as it appears in the lex-representative of b. But w has length
k, and one of its letters already belongs to {a1, . . . , ai}, so w cannot involve all letters from the set
{ai+1, . . . , ai+k}. Hence, there is some aj ∈ {ai+1, . . . , ai+k} which does not appear in w.

Let I = {a1, . . . , aj−1} and J = {aj+1, aj+1, . . .}. We know that the letters in w belong to I ∪ J , and
that w has letters from both sets. But every element in I commutes with every element in J . This means
that we can obtain, from w, a word representing b having the form wJwI , where wJ only involves letters
from J , and wI only involves letters form I. By hypothesis, wJ is a nonempty word, so b admits some

element from J as a prefix, and this contradicts that b ∈M
(i)
k .

Therefore, every word representing b ∈ M
(i)
k involves only letters from {a1, . . . , ak+i−1}. Hence, the

lex-representatives of b in A∞ and An coincide, for every n ≥ k + i− 1.

We remark that, although the growth rate in A∞ does not make sense, as it is not a finitely generated
monoid (the number of elements of length one is already infinite), the numbers m′

k,i in the limit table are
all well defined. As m′

k,i = mk,i, we will denote these numbers by mk,i, from now on.

Now we will find a new way to describe each stabilized number mk,i, depending only on the elements
mt,1 for t = 0, . . . , k − 1. For that purpose, we need some results from braid theory.

Proposition 6.2. Let b ∈ An be a positive braid. For every j ≤ 1, there is a unique maximal braid γj
such that γj 4 b and γj involves only the generators aj , . . . , an.

Proof. Let ∆[j,n] = aj ∨ · · · ∨ an ∈ An. It is well-known that a positive braid γ ∈ An can be expressed as
a word in the generators {aj, . . . , an} if and only if it is a prefix of (∆[j,n])

m for some m > 0. Actually,
if γ has length t, then γ can be expressed as a word in the generators {aj , . . . , an} if and only if it is a
prefix of (∆[j,n])

t.

Let k be the length of the positive braid b. By the above arguments, a prefix γ 4 b can be written as
a word in {aj, . . . , an} if and only if γ 4 (∆[j,n])

k. Therefore, the set of prefixes of b which involve only

the generators aj , . . . , an is the set of common prefixes of b and (∆[j,n])
k. Since An is a lattice with

respect to the prefix order, it follows that this set has a maximal element (with respect to 4), namely
γj = b ∧ (∆[j,n])

k.

Notice that γj is also maximal in terms of length: it is the biggest prefix of b which involves only the
generators aj, . . . , an.

Proposition 6.3. Let b ∈ An be a positive braid. There is a unique decomposition b = bnbn−1 · · · b1, so
that bnbn−1 · · · bj is the biggest prefix of a which involves the generators aj , . . . an.

Proof. This is clear form the previous result. We just define γn+1 = 1 and γj = b ∧ (∆[j,n])
k for

j = 1, . . . , n, where k is the length of b. Then

1 = γn+1 4 γn 4 · · · 4 γ1 = b.

We must define each bj so that bn · · · bj = γj. Hence bj is the only element such that γj+1bj = γj .

Proposition 6.4. Let b ∈ An be a positive braid, and let b = bnbn−1 · · · b1 be the unique decomposition
described in Proposition 6.3. For every j = 1, . . . , n, the element bj involves generators from {aj , . . . , an}
and, if bj 6= 1, its lex-representative starts with aj.
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Proof. Let k be the length of b. By construction, bj is the only element such that γj+1bj = γj , where
γj = b∧∆k

[j,n] for every j = 1, . . . , n. Since bj is a suffix of γj , it only involves generators from {aj , . . . , an}.

Suppose that bj 6= 1. From the above paragraph, the lex-representative of bj can only start with a
generator from {aj , . . . , an}. We must then show that bj only admits the generator aj as prefix. Suppose
this is not the case. Then ai 4 bj for some i > j. But then γj+1ai is a prefix of b which only involves
generators from {aj+1, . . . , an}, contradicting the maximality of γj+1.

We can finally give a new interpretation of the numbers mk,i corresponding to the monoid M = A∞.

Recall that M
(t)
k is the set of elements of length k in A∞ whose lex-representative starts with aj, for

some j ∈ {1, . . . , t}. On the other hand, let P
(t)
k be the set of t-uples (ct, . . . , c1) ∈ (A∞)t such that

|c1|+ · · ·+ |ct| = k and, for i = 1, . . . , t, either ci = 1 or the lex-representative of ci starts with a1.

Proposition 6.5. Given k ≥ 0 and t ≥ 1, the sets M
(t)
k and P

(t)
k have the same size.

Proof. If b ∈M
(t)
k , then b ∈ AN for some big N (actually, we can take N = t+ k − 1).

By Proposition 6.3, there is a unique decomposition b = bNbN−1 · · · b1, so that bN · · · bj is the biggest
prefix of b which involves the generators aj, . . . , aN . Now, since the lex representative of b starts with ai
for some i ≤ t, it follows that there cannot be a nontrivial prefix of b involving the generators at+1, . . . , aN .
Therefore bj = 1 for j > t, and we just have b = btbt−1 · · · b1.

Let f : A∞ → A∞ be the shifting homomorphism which sends ai to ai+1 for every i ≥ 1. Notice that
f preserves the length of every element and, if the lex-representative of an element b starts with ai, the
lex-representative of f t(b) starts with at+i.

It is clear that f−j(c) is defined if c ∈ A∞ involves only generators ai for i > j. By Proposition 6.4,
f1−j(bj) is well defined and, if it is nontrivial, its lex-representative starts with a1.

We can then define the following map:

ϕ : M
(t)
k −→ P

(t)
k

b 7−→ (ct, . . . , c1),

where cj = f1−j(bj) for j = 1, . . . , t. We see that ϕ is well defined from the above arguments, and also
because |ct|+ · · ·+ |c1| = |bt|+ · · ·+ |b1| = |b| = k.

Now let us define the following map:

ψ : P
(t)
k −→ M

(t)
k

(ct, . . . , c1) 7−→ b = bt · · · b1,

where bj = f j−1(cj) for j = 1, . . . , t. See Figure 5 for an example. We will show that ψ is well defined,
and it is the inverse of ϕ, so both maps are bijections.

It is clear that b is a well-defined positive braid, of length |bt|+ · · ·+ |b1| = |ct|+ · · ·+ |c1| = k. Also, for
every j = 0, . . . , t− 1, the element bt · · · bj+1 involves only generators ai for i > j.

Let us show that for j = 1, . . . , t, the braid bj · · · b1 cannot start with ai for i > j. If j = 1 this is clear, as
b1 = c1 either is trivial or its lex-representative starts with a1. Suppose that j > 1 and the claim is true
for smaller values of j. If ai 4 bj · · · b1 for some i > j, then ai ∨ bj 4 bj · · · b1. By construction, bj cannot
start with ai, hence ai ∨ bj = bjd for some nontrivial positive braid d. Since ai and bj involve generators
of index at least j, the braid d also involves generators of index at least j. But we have bjd 4 bj · · · b1,
hence d 4 bj−1 · · · b1, which implies that bj−1 · · · b1 can start with a generator of index at least j, a fact
that contradicts the induction hypothesis. The claim is then shown.

It follows that bt · · · bj+1 is the biggest prefix of b involving generators ai for i > j. This has two

consequences. Firstly, the lex-representative of bt · · · b1 starts with ai for i ≤ t, hence b ∈M
(t)
k , and ψ is
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Figure 5: A braid b = b4b3b2b1 = (1)(a3a4a4a3)(a2a2a3a4a4)(a1a2a2a3a4a1) ∈ M
(4)
k , and its correspond-

ing 4-tuple ϕ(b) = (1, a1a2a2a1, a1a1a2a3a3, a1a2a2a3a4a1) ∈ P
(4)
k .

well defined. Secondly, bt · · · b1 is precisely the unique decomposition of b described in Proposition 6.3,
which is used to define ϕ. So ϕ(ψ((ct, . . . , c1))) = ϕ(b) = (f1−t(bt), f

2−t(bt−1), . . . , f
0(b1)) = (ct, . . . , c1).

As ψ ◦ ϕ is clearly equal to the identity map, it follows that ψ is the inverse of ϕ, as we wanted to
show.

From Proposition 6.5, we can describe the number mk,t directly from the numbers ml,1 for l ≤ k. This
will give us the desired connection of these numbers with the partial theta function f(x, y).

Recall that we denote mk,t =
∣

∣

∣M
(t)
k

∣

∣

∣. Now let

ξ0(y) =
∞
∑

k=0

mk,1y
k = 1 + y + 2y2 + 4y3 + 9y4 + 21y5 + · · ·

The coefficients of ξ0(y) are the numbers in the first column of the limit table containing the numbers
mk,i. Let us show that the series determined by the other columns of the table are, precisely, the powers
of the series determined by the first column.

Proposition 6.6. For every t > 0, one has (ξ0(y))
t =

∞
∑

k=0

mk,ty
k.

Proof. The k-th coefficient of (ξ0(y))
t is equal to:

∑

(kt,...,k1)
kt+···+k1=k

mkt,1 · · ·mk1,1,

which is precisely the number of elements in P
(t)
k . By Proposition 6.5, this is also the number of elements

in M
(t)
k , so the result follows.

We now denote x0(y) = −ξ0(y), and we have the following:

Proposition 6.7. Let f(x, y) =

∞
∑

n=0

y(
n

2)xn. Then f(x0(y), y) = 0.

Proof. The expression f(x0(y), y) is a power series in the variable y. We need to show that all coefficients
are zero.
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The coefficient of y0 in f(x0(y), y) comes from the values n = 0 and n = 1, and it is 1− 1 = 0, as desired.

Let k > 0. By Proposition 6.6, the coefficient of yk in f(x0(y), y) is

−mk,1 +mk−1,2 −m
k−(32),3

+m
k−(42),4

− · · ·

where there are summands as long as the first subindex of m
k−(r2),r

is non-negative. This sum equals

zero by (3) for i = 1, and the result follows.

The following result follows immediately:

Theorem 6.8. Let x0(y) be the only solution to the classical partial theta function

∞
∑

k=0

y(
k

2)xk, and let

ξ0(y) = −x0(y) = 1+ y+2y2+4y3+9y4+ · · · For every k ≥ 0, the coefficient of yk in the series ξ0(y) is
equal to the number of braids of length k, in the monoid A∞, whose maximal lexicographic representative
starts with a1.

6.3 Limit of growth rates of braid monoids

We are considering the partial theta function f(x, y) =
∞
∑

k=0

y(
k

2)xk, whose only nontrivial root is the series

x0(y). The coefficients of the series ξ0(y) = −x0(y) = 1 + y + 2y2 + 4y3 + 9y4 + · · · form the sequence

(Lk)k≥0 = (1, 1, 2, 4, 9, 21, 52, . . .).

The growth rate of this sequence is known to be the KLV-constant q∞ [33], which can be computed with
arbitrary precision:

Theorem 6.9. [33] Let (Lk)k≥0 be the sequence of coefficients of ξ0(y). Then its growth rate is:

lim
k→∞

k
√

Lk = lim
k→∞

Lk+1

Lk

= q∞ = 3.233636 . . .

Notice that the above result states that (Lk)k≥0 grows like (q∞)k. In other words:

0 < lim
k→∞

Lk

(q∞)k
<∞ (4)

We want to relate the constant q∞ to the growth rate of the monoids An, for n ≥ 1. Recall that we
are counting the elements in An by considering their lex-representatives (their maximal lexicographic
representatives with a1 < a2 < · · · < an). The following is an important property of this set of words:

Theorem 6.10. [17] For every n ≥ 1, the set of lex-representatives of the braid monoid An is a regular
language.

In [17], an automaton accepting this regular language is defined, having the minimal possible number of
states. Moreover, in [14], the automaton is described in detail for every n ≥ 1, and the following result
is shown:

Theorem 6.11. [14, Corollary 5.5] For every n ≥ 1, the proportion of lex-representatives of length k, in
the braid monoid An, finishing at the same state as a1, tends to a limit p > 1

32 when k tends to infinity.

31



The above result can be described as follows. LetMn be the incidence matrix of the automaton accepting
the regular language of lex-representatives of An. Each row (resp. column) of Mn corresponds to a state
of the automaton. We can assume that the first row (and also the first column) corresponds to the state
determined by the word a1.

By Perron-Frobenius theory, there is a unique left eigenvector vn of Mn, all of whose coordinates are
non-negative and such that the sum of these coordinates is equal to 1. The ith coordinate of vn is
precisely the limit, as k tends to infinity, of the proportion of lex-representatives of length k finishing at
the ith state (see [14]). Theorem 6.11 states that the first coordinate of vn is greater than 1

32 , for all
n ≥ 1.

Now let us fix some n ≥ 1. We will denote by mk,i(An) the numbers appearing in Corollary 4.2, which
are also the numbers appearing in Figure 4 for n = 5 and n = 6. We know that the growth rate of the
column n+ 1 is precisely ρn, the growth rate of the monoid An. Let us show that all the columns of the
table corresponding to An have the same growth rate.

Proposition 6.12. Let n ≥ 1. For every i = 1, . . . , n+ 1, we have:

lim
k→∞

mk+1,i(An)

mk,i(An)
= ρn.

Proof. The result is trivial if i = n + 1 or if i = n, as these columns contain precisely the number of
braids of given length.

By definition, the number mk,i(An) is the number of lex-representatives in An starting with a generator
from {a1, . . . , ai}. If we consider the incidence matrixMn, and assume that the rows 1, 2, . . . , n correspond
to the states of the lex-representatives a1, a2, . . . , an respectively, then mk,i(An) is the sum of the entries
of the rows 1, 2, . . . , i in the matrix (Mn)

k−1.

By Perron-Frobenius theory, all rows of (Mn)
k have the same growth rate as k tends to infinity, which is

precisely the Perron-Frobenius eigenvalue. In this case, this eigenvalue is precisely ρn (the growth rate
of the sum of the first n rows). Therefore, all sequences (mk,i(An))k≥0 grow like (ρn)

k, as we wanted to
show.

Now we will relate the numbers ρn to the constant q∞. Recall from [19] that ρn is an increasing sequence
of real numbers, whose limit we denote ρ:

lim
n→∞

ρn = ρ.

We need the following:

Definition 6.13. Given a real number µ ≥ ρ, let c(n, µ) =

∞
∑

k=0

(

ρn
µ

)k

=
1

1− ρn

µ

=
µ

µ− ρn
.

Lemma 6.14. Given µ ≥ ρ, one has lim
n→∞

c(n, µ) = ∞ if and only if µ = ρ.

Proof. It follows trivially from Definition 6.13.

Now let us denote by e the (column) vector (of any desired length) which consists only of 1’s. Hence,
from the definition of the Perron-Frobenius eigenvector vn, we have vn · e = 1.

Lemma 6.15. For every µ ≥ ρ and every n ≥ 2, we have:

c(n, µ) = vn(I − µ−1Mn)
−1e
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Proof. We know [14, Lemma 5.2] that

(I − µ−1Mn)
−1 = I + (µ−1Mn) + (µ−1Mn)

2 + (µ−1Mn)
3 + · · ·

If we multiply any summand by vn from the left, and by e from the right, we obtain

vn(µ
−1Mn)

ke =
1

µk

(

vnM
k
n

)

e =
1

µk

(

ρknvn

)

e =

(

ρn
µ

)k

.

Therefore

vn(I − µ−1Mn)
−1e = 1 +

(

ρn
µ

)

+

(

ρn
µ

)2

+

(

ρn
µ

)3

+ · · · = c(n, µ).

Now recall that the number mk,1(An) is equal to the sum of the entries of the first row of (Mn)
k−1.

That is, mk,1(An) is the first entry of the column vector (Mn)
k−1e. Recall also that the sequence

{mn,1(An)}n≥0 is equal to {mn,1(A∞)}n≥0 = {Ln}n≥0 = {1, 1, 2, 4, 9, . . .}. By Theorem 6.9, the growth
rate of {mn,1(An)}n≥0 is equal to the constant q∞.

Notice that, for every n ≥ 1 and every k ≥ 0, we have mk,1(An) ≤ mk,1(A∞). Hence, the sequence
{mk,1(An)}k≥0 is dominated by the sequence {mk,1(A∞)}k≥0. It follows that the growth rate of the
former sequence cannot be bigger than the growth rate of the latter. In other words: ρn ≤ q∞ for every
n ≥ 1. Therefore,

ρ = lim
n→∞

ρn ≤ q∞,

and we can consider the numbers c(n, q∞).

Proposition 6.16. We have:
lim
n→∞

c(n, q∞) = ∞.

Proof. We know from Lemma 6.15 that

c(n, q∞) = vnIe+ vn(q
−1
∞ Mn)e+ vn(q

−1
∞ Mn)

2e+ vn(q
−1
∞ Mn)

3e+ · · ·

That is,

c(n, q∞) = 1 +
vnMne

q∞
+

vnM
2
ne

q2∞
+

vnM
3
ne

q3∞
+ · · ·

We now recall from Theorem 6.11 that the first coordinate of vn is greater than 1
32 . Therefore, if we

denote e1 the first row of the identity matrix, we have, for every k > 0:

vnM
k
ne >

1

32

(

e1M
k
ne
)

=
mk+1,1(An)

32
.

The above inequality holds since all the coordinates of vectors and matrices involved are nonnegative.

Recall also that m1,1(An) = 1, so 1 > 1
32 =

m1,1(An)
32 .

Finally, we obtain:

c(n, q∞) >
m1,1(An)

32
+
m2,1(An)

32 q∞
+
m3,1(An)

32 q2∞
+
m4,1(An)

32 q3∞
+ · · ·

Now recall that for every k ≤ n, we have mk,1(An) = mk,1(Ak). Also, q∞ > 3, so we can divide the
above expression by q∞ and truncate at the nth term, to obtain:

c(n, q∞) >
m1,1(A1)

32 q∞
+
m2,1(A2)

32 q2∞
+
m3,1(A3)

32 q3∞
+ · · ·+

mn,1(An)

32 qn∞
.
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The right hand side is the truncation at n of the infinite sum:

1

32

∞
∑

k=1

mk,1(Ak)

qk∞

Since the numerators correspond to the sequence {Lk}k≥0 whose growth rate is q∞, it follows that the
fractions tends to a positive real number, so the above infinite sum does not converge. In other words,
its truncations tend to infinity, and this implies that c(n, q∞) also tends to infinity, as n grows.

We can finally show the main result of this section.

Theorem 6.17. Let ρ = lim
n→∞

ρAn
. Then ρ = 3.23363 . . . is the growth rate of the coefficients of ξ0(y).

That is, ρ is equal to the KLV-constant q∞.

Proof. By Proposition 6.16, we have that limn→∞ c(n, q∞) = ∞. By Lemma 6.14, this can only happen
if q∞ = ρ.

We finish this paper with a question concerning the remaining Artin–Tits monoids:

Question: Is it true that ρ(An) = ρ(Bn) = ρ(Dn) = q∞?

Using injective maps An → Bn+1 and An → Dn+1, which send ai to ai, it is easy to prove that
ρ(Bn) ≤ q∞; however, our methods are unable to state the opposite inequalities.
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