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Department of Mathematics, Imperial College London, London, SW7 2AZ

k.rekvenyi19@imperial.ac.uk

March 10, 2021

Abstract

The orbital diameter of a primitive permutation group is the maximal diameter of its

orbital graphs. There has been a lot of interest in bounds for the orbital diameter. In this

paper we provide explicit bounds on the diameters of groups of simple diagonal type. As a

consequence we obtain a classification of simple diagonal groups with orbital diameter less

than or equal to 4. As part of this, we classify all finite simple groups with covering number

and conjugacy width at most 3. We also prove some general bounds on the covering number

and conjugacy width of groups of Lie type.

1 Introduction

Let G be a group acting transitively on a finite set Ω. Then G acts on Ω × Ω componentwise.
Define the orbitals to be the orbits of G on Ω × Ω. The diagonal orbital is the orbital of the
form ∆ = {(α, α)|α ∈ Ω}. The number or orbitals is called the rank of G. Let us denote this by
rank(G,Ω). Let Γ be a non-diagonal orbital. Define the corresponding orbital graph to be the
undirected graph with vertex set Ω and edge set {α, β} for (α, β) ∈ Γ. Note that G acts transitively
on the edges and the vertices of Γ so it is an edge-transitive and vertex-transitive graph.

By [5, Thm 3.2A] the orbital graphs are all connected if and only if the action of G

is primitive. The orbital diameter of a primitive permutation group G is the supremum of the
diameters of its orbital graphs, see [21]. Let us denote this by orbdiam(G).

The O’Nan-Scott theorem classifies the primitive permutation groups to be one of the
following five types; affine, almost simple, simple diagonal actions, product actions and twisted
wreath actions, see [5]. We call an infinite class C of primitive permutation groups bounded if
there exists t ∈ N such that orbdiam(G) ≤ t for all G ∈ C. The paper [21] describes the O’Nan-
Scott classes which are bounded. The description is somewhat qualitative and does not contain
explicit diameter bounds. Some explicit bounds were obtained in [26] for some almost simple
groups. In this paper we study the orbital diameters of the class of simple diagonal type primitive
permutation groups and provide bounds for these quantities. Further work along these lines by
the author is under way for the other O’Nan-Scott classes.

Let us now describe primitive groups of simple diagonal type, following [22]. Let T be
a non-abelian simple group, Γ = {1, . . . , k} and W = TwrΓSk with base group T k. Now let
D = {(a, . . . , a)|a ∈ T } be a diagonal subgroup and let Ω be the set of right cosets of D in T k.
Then T k acts on Ω by right multiplication, Sk acts on Ω by permuting the components of the coset
representatives, and α ∈ Aut(T ) acts on Ω by D(h1, . . . , hk)

α = D(hα
1 , . . . , h

α
k ) for hi ∈ T . The

groups T k, Sk and Aut(T ) generate a group N ∼= T k.(Out(T )× Sk) and this is the normalizer of
T k in Sym(Ω). We say G ≤ Sym(Ω) is a primitive permutation group of simple diagonal type if
T k ≤ G ≤ N and G acts primitively on Ω, see [22]. Note G = T k.X where X ≤ Out(T ) × Sk.
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Write
D(k, T ) = N ≤ Sym(Ω).

The result in [21, Lemma 5.1] states that the class of simple diagonal groups G = T k.X ≤
D(k, T ) is bounded only if k and the rank of T are both bounded. However no explicit bounds are
obtained.

Before we list our results, we need a few definitions. Notice that if T is simple and t ∈ T \1,
the conjugacy class tT generates T. For a subset S of T and r ∈ N we write Sr = {s1, . . . , sr|si ∈ S}.

Definition 1.1. Let T be a non-abelian simple group, and S a generating set of T. Define the
width of T with respect to S, denoted wS(T ), to be the minimal k ∈ N such that any element of T
can be expressed as a product of at most k elements of S.

1. Let t ∈ T \ 1 and C = tT and put c(T, t) := wC(T ). Define the conjugacy width of T to be

c(T ) = max
t∈T\1

c(T, t).

2. For t ∈ T \ 1 let C = t±T = tT ∪ (t−1)T and put ci(T, t) := wC(T ) Define the inverse
conjugacy width of T to be

ci(T ) = max
t∈T\1

ci(T, t).

3. Let X be such that T EX ≤ Aut(T ), let C = t±X = {t±α|α ∈ X} and put cX(T, t) := wC(T )
Define the X-conjugacy width of T to be

cX(T ) = max
t∈T\1

cX(T, t).

When X = Aut(T ) write cA(T ) = cX(T ).

These are related to the concept of covering numbers introduced in [1]. The covering
number is the lowest number r ∈ N such that Cr = T for all conjugacy classes C. This is denoted
cn(T ). Denote the lowest such number for a specific conjugacy class by cn(T,C). Note that this is
an upper bound for the conjugacy width. We also note that

cA(T ) ≤ cX(T ) ≤ ci(T ) ≤ c(T ) ≤ cn(T ).

Note also that the number ci(T ) was introduced and studied in [19], where it was called the
conjugacy diameter of T .

We now state our results. Let G = T k.X ≤ D(k, T ) where X ≤ Out(T )× Sk. We know
from [22] that

D(k, T ) = {(τ1, . . . , τk).π | τi ∈ Aut(T ) , π ∈ Sm and all τi lie in the same Inn(T )− coset}.

LetW = {(α, . . . , α).π|α ∈ Aut(T ), π ∈ Sk} and put DA = W∩G, soDA = D.X. SinceG = DAT
k

the action of G on Ω is equivalent to the action of G on (G : DA).

For a ∈ T write (ak) = (a, . . . , a) ∈ T k. For t ∈ T \ 1 define the orbital graph

Γt
0 = {DA, DA(1

k−1, t)}G.

The following theorem gives lower and upper bounds on the diameter of Γt
0. In the statement we

abuse notation and denote cX0
(T ) by cX(T ), where X0 is defined as follows. Let G = T k.X with

X ≤ Out(T ) × Sk. Let ρ be the projection of X onto Out(T ) and let π be the canonical map
Aut(T ) → Out(T ). Define X0 = π−1(ρ(X)) ≤ Aut(T ).
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Theorem (3.1,3.2). Let G = T k.X as above. The diameter of Γt
0 satisfies the bounds

1

2
(k − 1)cX(T, t) + 1 ≤ diam(Γt

0) ≤ (k − 1)ci(T ).

Note that from this it follows that orbdiam(G) ≥ 1
2 (k − 1)cX(T ) + 1.

Using these bounds, we provide the following classification of simple diagonal groups of
small orbital diameter.

Theorem (5.1). Let G be a primitive group of simple diagonal type of the form T k.X ≤ D(k, T ) .

1. If orbdiam(G) = 2, then k = 2 and cA(T ) = 2.

2. If orbdiam(G) = 3, then k = 2 and cA(T ) ≤ 3.

3. If orbdiam(G) = 4, then one of the following holds:

(a) k = 2 and cA(T ) ≤ 4

(b) k = 3 and cA(T ) = 2.

The following result gives a partial converse to parts 1, 2 and 3(a).

Lemma (3.3). 1. If G = T 2 then orbdiam(G) = ci(T ).

2. If G = D(2, T ) then orbdiam(G) = cA(T ).

We have not determined whether there are examples of groups in case 3(b) of Theorem 5.1
with orbital diameter 4. In view of Lemma 3.3 and Theorem 5.1, to classify all diagonal type groups
with orbital diameters 2 and 3 we need to classify all non-abelian simple groups with X-conjugacy
width 2, 3 for various X.

First we prove a general result on conjugacy widths and covering numbers of simple groups
of Lie type. The upper bound in the following result was proved in [7]. By Lie rank we mean the
rank of the corresponding simple algebraic group.

Theorem (4.1). There is a constant d such that

r − 3 ≤ cA(T ) ≤ cn(T ) ≤ dr

for all simple groups T of Lie type of Lie rank r.

It was proved in [3] that the only finite simple group with covering number 2 is the
sporadic group J1. It turns out that J1 is also the only finite simple group with (inverse) conjugacy
width 2 (Proposition 4.3). However, there are infinitely many simple groups T with cA(T ) = 2.

Theorem (4.4). Let T be a finite simple group. Then cA(T ) = 2 if and only if T ∼= J1 or
T ∼= PSL2(q) with q ≡ 1 mod 4 or q = 22m.

We also classify simple groups with any of the numbers cn(T ), c(T ), ci(T ) or cA(T ) equal
to 3.

Theorem (4.5). Let T be a finite simple group.

1. c(T ) = 3 if and only if T is isomorphic to one of the following:

• PSL2(q) with q > 2

3



• PSL3(q)

• PSU3(q) with 3|q + 1, q > 2

•
2B2(q) with q > 2

•
2G2(q) with q > 3

• G2(3
n) with n ≥ 2

• A5, A6, A7

• M11, M22, M23, M24, J3, J4, Mcl, Ru, Ly, O′N , Fi24′ , Th, M.

2. cn(T ) = 3 if and only if c(T ) = 3.

3. ci(T ) = 3 if and only if c(T ) = 3.

4. If cA(T ) = 3 then one of the following holds:

(a) c(T ) = 3 and T 6= PSL2(q) with q ≡ 1 (mod 4) or q = 22m.

(b) T ∼= F4(2
n).

Remark For part 3(b) we have not been able to determine whether cA(F4(2
n)) = 3.

The result in [21, Lemma 5.1] on simple diagonal actions states that for a class of primitive
groups T k.X with bounded orbital diameter the Lie rank of T and k are bounded. Conversely, if T
has bounded Lie rank, k is bounded and a few more criteria are met, then one obtains a bounded
class.The proof of this result is model theoretic and includes no explicit bounds on the orbital
diameter. The following result provides an explicit upper bound, giving rise to many bounded
families of primitive groups of simple diagonal type. For simplicity we restrict to the class of
simple diagonal groups of the form T k.Sk ≤ D(k, T ).

Theorem (6.1). Let k ≥ 3 and let T be a simple group. Then

orbdiam(T k.Sk) ≤ 24(k − 1)ci(T )
2.

2 Preliminary Results

In this section we include some background material that we use in the proof of our theorems.

We begin with a well-known a character theoretic result which gives us a method to find
conjugacy widths.

Lemma 2.1. [2, Lemma 10.1] Let C1, . . . , Cd be conjugacy classes of a finite group G with rep-
resentatives c1, . . . , cd. For z ∈ G, the number of solutions (x1, . . . , xd) ∈ C1 × · · · × Cd to the
equation x1 . . . xd = z is ∏

|Ci|

|G|

∑

χ∈Irr(G)

χ(c1) . . . χ(cd)χ(z
−1)

χ(1)d−1
.

Note the immediate corollary of this result.

4



Corollary 2.2. Let C and D be conjugacy classes of G with representatives c, d. If
∣∣∣∣∣∣

∑

χ∈Irr(G)\1G

χ(c)kχ(d−1)

χ(1)k−1

∣∣∣∣∣∣
< 1,

then D ⊆ Ck.

We include another result that we use in our classification of groups with small conjugacy
widths, namely the classification of strongly real groups. A group is strongly real if and only if any
of its elements can be expressed as a product of at most two involutions.

Theorem 2.3 ([8, 10, 12, 13, 17, 23, 25, 27, 28]). Let G be a non-abelian finite simple group. Then
G is strongly real if and only if it is isomorphic to one of

• PSp2n(q) where q 6≡ 3 (mod 4) and n ≥ 1

• PΩ2n+1(q) where q ≡ 1 (mod 4) and n ≥ 3

• PΩ9(q) where q ≡ 3 (mod 4)

• PΩ+
4n(q) where q 6≡ 3 (mod 4) and n ≥ 3

• PΩ−
4n(q) where n ≥ 2

• PΩ+
8 (q) or 3D4(q)

• A5, A6, A10, A14, J1, J2.

The following result is on alternating groups from [4, Thm 2].

Theorem 2.4. [4] Let n ≥ 5, l odd and l ≤ n. Then every permutation in the alternating group
An is a product of three l − cycles if and only if either n

2 ≤ l or n = 7 and l = 3.

We conclude by listing some existing results on the covering numbers of some finite simple
groups.

Theorem 2.5 ([3, 6, 20, 19]). 1. If n ≥ 3, then cn(PSLn(q)) = n for q ≥ 4. Also for q > 3,
cn(PSL2(q)) = 3.

2. cn(An) = ⌊n
2 ⌋ for n ≥ 6, and cn(A5) = 3.

3. cn(2B2(q)) = 3 for q > 2.

4. cn(2G2(q)) = 3 for q > 3.

Note that the covering numbers in Theorem 2.5 are upper bounds for the X-conjugacy
widths, which we will be using later on.

3 The orbital diameter of a simple diagonal group

We begin with some notation. Let T be simple, k ≥ 2 and G = T k.X ≤ D(k, T ) in a primitive
simple diagonal action, where X ≤ Out(T )× Sk as in Section 1. Let Γ be an orbital graph of G.

Define dΓ(a, b) to be the distance between two vertices, a and b in Γ. Denote a path of length at
most m between a and b in Γ by

a
m

b.

Denote the element (t, ..., t) ∈ T k as (tk).
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Let t ∈ T \ 1 and Γt
0 be the orbital graph {DA, DA(1

k−1, t}G. Recall X0 = π−1((ρ(X))
where π is the canonical map Aut(T ) → Out(T ) and ρ is the projection of X to Out(T ). For g ∈ T

we define the length of g with respect to t to be

lXt (g) = min{a : g = t±α1 . . . t±αa , for some αi ∈ X0}.

Recall we write an element of G as (h1, . . . , hk)σh where hi ∈ Aut(T ), σh ∈ Sk, and identify T

with Inn(T ) when convenient.

The first result in this section is a lower bound for the diameter.

Theorem 3.1. Let c = cX(T, t). The diameter of Γt
0 satisfies diam(Γt

0) ≥ M where

M =

{
1
2 (k − 1)c+ 1 k odd
1
2kc k even

Proof. Note that G = DAT
k so every right coset of DA has a coset representative in T k.

Claim 1 Every coset at distance m away from DA is of the form

DA(t1, . . . , tk)

where ti ∈ T are such that
∑k

i=1 l
X
t (ti) ≤ m.

Proof of Claim 1 We prove Claim 1 by induction on m. We start with the base case
m = 1. Suppose DA(g1, . . . , gk) is a neighbour of DA where gi ∈ T . Then there exists h =
(h1, . . . , hk)σh ∈ G such that

{DA, DA(1
k−1, t)}h = {DA, DA(g1, . . . , gk)}.

Hence either h ∈ DA or DA(1
k−1, t)h = DA. If h ∈ DA then h = (ak)σh, with a ∈ Aut(T ). Now

DA(g1, . . . , gk) = DA(1
k−1, t)h = DAh

−1(1k−1, t)h = DA(1
k−1, ta)σh

as required. If DA(1
k−1, t)h = DA, then

DA(g1, . . . , gk) = DAh = DAh
−1(1k−1, t−1)h = DA(1

k−1, t−hk)σh .

Hence Claim 1 holds for m = 1.

Now let m ≥ 2. Let DAh be a coset at distance m from DA. Then DAh is a neighbour of
a coset at distance m− 1 and by the induction hypothesis this coset has form

DA(x1, . . . , xk)

where xi ∈ T and
∑k

i=1 l
X
t (xi) ≤ m−1. There is an edge between DA(x1, . . . , xk) and DAh. Hence

there is f ∈ G such that

{DA, DA(1
k−1, t±a)σ}f = {DA(x1 . . . , xk), DAh}

with f = (f1, . . . , fk)π where fi ∈ Aut(T ) and π ∈ Sk. Again either DAf = DA(x1, . . . , xk) or
DA(1

k−1, t±a)σf = DA(x1, . . . , xk). If DAf = DA(x1, . . . , xk) then fix
−1
i = fjx

−1
j for all i, j, so

DAh = DA(1
k−1, t±a)σf = DA(x1, . . . , xk)f

−1(1k−1, t±a)σf = DA(x1, . . . , xk)(1
k−1, t±afk)σπ

and Claim 1 follows. When DA(1
k−1, t±a)σf = DA(x1, . . . , xk) we obtain the conclusion in a

similar way.
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Claim 2 There exist h1, . . . , hk ∈ T such that dΓt
0
(DA, DA(h1, . . . , hk)) ≥ M, where M

is as in the statement of the Theorem.

Proof of Claim 2 By Claim 1 it suffices to find h1, . . . , hk ∈ T such that min
g∈T

∑k
i=1 l

X
t (ghi) ≥

M. Let h, h′ ∈ T with h 6= h′ and lXt (h) = lXt (h′) = c. Define

(h1, . . . , hk) =

{
(1, h, 1, h, . . . , 1, h) k even

(h, 1, h, 1, . . . , h, 1, h′) k odd
.

Then
lXt (h−1

1 h2) = lXt (h−1
2 h3) = · · · = lXt (h−1

k−1hk) = c and lXt (h−1
1 hk) ≥ 1.

Note that lXt (xy) ≤ lXt (x)+ lXt (y) = lXt (x−1)+ lXt (y) for all x, y ∈ T , so it follows that for all i ≥ 1
and any g ∈ T

c = lXt (h−1
i hi+1)) ≤ lXt (ghi) + lXt (ghi+1)

and
1 ≤ lXt (h−1

1 hk) ≤ lXt (gh1) + lXt (ghk).

Summing these up gives

2
k∑

i=1

lXt (ghi) ≥
k−1∑

i=1

lXt (h−1
i hi+1) + l(h−1

1 hk) ≥ (k − 1)c+ 1.

The result now follows for k odd, and for k even we have lXt (h−1
1 hk) = c, so we get k

2 c as a lower
bound.

The following result is an upper bound.

Lemma 3.2. We have diam(Γt
0) ≤ (k − 1)ci(T ).

Proof. Claim 1 There exist αi ∈ Aut(T ) such that DA((1
i−1, (tαi)±a, 1k−i) is adjacent to DA for

all a ∈ T and all 1 ≤ i ≤ k.

Proof of Claim 1 This is clear for k = 2 so we can assume k ≥ 3. We have

DA
1

DA(1
k−1, t)

by definition of Γ0. Apply (ak) ∈ T k to this to get

DA
1

DA(1
k−1, ta).

As G is primitive, X acts transitively on the symbols 1, . . . , k, so for 1 ≤ i ≤ k there is an element
(αi, . . . , αi).σi ∈ DA such that

DA(1
k−1, t)(αi, . . . , αi).σi = DA(1

i−1, tαi , 1k−i).

Applying (ak) gives

DA
1

DA(1
i−1, (tαi)a, 1k−i).

Furthermore, applying (1i−1, (tαi)−a, 1k−i) to this gives

DA(1
i−1, (tαi)−a, 1k−i)

1
DA

7



and as a was arbitrary Claim 1 follows.

Claim 2 Let hi ∈ T (1 ≤ i ≤ k) and let a ∈ T. Then DA(h1, . . . , hk) is adjacent to
DA(h1, . . . , hi−1, (t

αi)±ahi, hi+1 . . . , hk) for 1 ≤ i ≤ k.

Proof of Claim 2 Apply (h1, . . . , hk) to

DA
1

DA(1
i−1, (tαi)±a, 1k−i).

Claim 3 Let c = ci(T ). For any hi, . . . , hk ∈ T and 1 ≤ i ≤ k,

DA(h1, . . . , hi−1, 1, hi+1, . . . , hk)
c

DA(h1, . . . , hk).

Proof of Claim 3 We know by definition of c that hi can be expressed as a product of at
most c conjugates of (tαi)±1, so

hi = (tαi)±a1 . . . (tαi)±ac

for some ai ∈ T. Hence by repeatedly applying Claim 2

DA(h1, . . . , hi−1, 1, hi+1, . . . , hk)
c

DA(h1, . . . , hi−1, (t
αi)±a1 . . . (tαi)±ac , hi+1, . . . , hk)

so Claim 3 follows.

Using Claim 3 repeatedly we have the following path

DA
c

DA(1, h2, 1
k−2)

c
DA(1, h2, h3, 1

k−3) . . .
c

DA(1, h2, . . . , hk).

As (1, h2, . . . , hk) represents an arbitrary coset, the result follows.

We have an exact result for the orbital diameter for the case when G = T 2 orG = D(2, T ).

Lemma 3.3. 1. If G = T 2 then orbdiam(G) = ci(T ).

2. If G = D(2, T ) then orbdiam(G) = cA(T ).

Proof. 1. We first notice that in the case of k = 2 all orbital graphs are of the form Γt
0. If G = T 2

then X0 = T , so cX(T ) = ci(T ). Hence the bounds from Theorem 3.1 and Lemma 3.2 coincide,
and the result follows.

2. Consider G = D(2, T ) ∼= T 2.(Out(T ) × S2). In this case X0
∼= Aut(T ) and also

DA
∼= Aut(T )×S2. Now Theorem 3.1 gives orbdiam(G) ≥ cA(T ). We will show the other direction

of this inequality. Let t ∈ T \ 1. Consider the orbital graph Γ = {DA, DA(1, t)}
G. Now

DA DA(1, t
±1)

are edges in the graph. For all a ∈ Aut(T ) apply (a, a) ∈ G to these to get

DA DA(1, t
±a).

Now we can construct a path between DA and any arbitrary coset DA(1, h) where h = t±a1 . . . t±ac

with c = cA(T ) such that DA
c DA(1, h). This shows that orbdiam(G) ≤ cA(T ) and the result

now follows.
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4 Conjugacy Widths of Finite Simple Groups

4.1 Bounds on the Conjugacy Width and the Covering Number

In this section we prove bounds on the conjugacy widths c(T ), ci(T ) and cA(T ) for simple groups
as stated in the Introduction. We start with a result on conjugacy widths for simple groups of Lie
type. In the following result, the upper bound is proved in [7].

Theorem 4.1. There is a constant d such that

r − 3 ≤ cA(T ) ≤ cn(T ) ≤ dr

for all simple groups T of Lie type of Lie rank r. More precisely, cA(T ) ≥ CT where CT is as in
Table 1.

T CT

PSLn(q) (n, q) 6= (2, 2) or (2, 3) n

PSUn(q) n ≥ 3 n

PSpn(q) n ≥ 4, (n, q) 6= (4, 2) n

PSp4(2)
′ 3

PΩǫ
n(q) n ≥ 7 ⌊n

2 ⌋
2B2(q) q > 2 3
2G2(q) q > 3 3
G2(3

n) 3
G2(q) 3 ∤ q 4
3D4(q) 4
F4(2

n) 3
F4(q) 2 ∤ q 4
2F4(q) q > 2 4
2F4(2)

′ 4
Eǫ

6(q) 4
E7(q) 4
E8(q) 5

Table 1: Lower bounds

Note that the inequality cA(T ) ≤ ci(T ) ≤ c(T ) ≤ cn(T ) is immediate from the definitions.
Hence establishing a lower bound for cA(T ) immediately gives a lower bound for ci(T ), c(T ) and
cn(T ).

4.1.1 The proof of the lower bound in Theorem 4.1

Let V = Vn(q). For x ∈ PGL(V ) let x̃ ∈ GL(V ) be a preimage of x and define

ν(x) = n−max
λ∈F⋆

q

dimCV (λx̃),

the minimal codimension of an Fq-eigenspace of x̃. For a subset S ∈ PGL(V ) define

ν(S) = max
s∈S

ν(s).

Proposition 4.2. Let T ≤ PGL(V ) ∼= PGLn(q) be a simple group and let X be a group such that
InnT ≤ X ≤ AutT. Let S0 be a non-empty X-invariant subset of T \ 1 such that ν(s) = ν(s′) for
all s, s′ ∈ S0, and let S = S0 ∪ S−1

0 . Then

cX(T ) ≥
ν(T )

ν(S)
.
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Proof. Note that S is a union of X-conjugacy classes. Choose s ∈ S and t ∈ T such that ν(s) =
ν(S) and ν(t) = ν(T ). Put C = sX . By hypothesis, ν(y) = ν(S) for all y ∈ C. Let k = n − ν(S)
and r = n− ν(T ) so that k = max

λ∈F⋆
q

dimCV (λs̃) and r = max
λ∈F⋆

q

dimCV (λt̃). Let s1, . . . , sl ∈ C. Using

elementary linear algebra we see that

max
λi∈F⋆

q

dimCV (λ1s̃1, . . . , λls̃l) ≥ lk − (l − 1)n.

Suppose that w ∈ N is minimal such that t can be expressed as the product of w elements of C, so
w ≤ cX(T ). Hence

r ≥ wk − (w − 1)n.

Rearranging gives

cX(T ) ≥ w ≥
n− r

n− k
=

ν(T )

ν(S)
.

Now we prove the theorem.

Proof of Theorem 4.1. Case 1, Classical Groups

Let T be a classical simple group with natural module V = Vn(q). Define S to be the set
of long root elements in T and let X = Aut(T ). Then S is X-invariant, provided T 6= PSp4(2

a).

Suppose first that T is PSLn(q), PSpn(q) or PSUn(q
1/2) and T 6= PSp4(2

a). Then the
long root elements of T are transvections, which have fixed space on V of dimenstion n − 1, so
ν(S) = 1. We claim that

ν(T ) = n.

This can be seen as follows. Provided T 6= PSUn(q
1/2) with n even, by [14] T has a Singer element

y (i.e. an element such that 〈y〉 is irreducible on V ) and clearly ν(y) = n. And if T = PSUn(q
1/2)

with n = 2d ≥ 4, then SUn(q
1/2) has a subgroup SLd(q), and a Singer element of this also satisfies

ν(y) = n. Hence by Proposition 4.2,

cA(T ) ≥
ν(T )

ν(S)
= n.

Next consider T = PSp4(2
a) with a > 1. Let S̃ be the set of all long or short root elements

of T. Then S̃ in invariant under Aut(T ). The generic character table of T is in the computer package
Chevie [11]. This also contains a function, called ClassMult, which calculates the sum in Lemma

2.1. Using this it can be checked that S̃3 ∪ S̃2 ∪ S̃ ∪ 1 6= T. Hence cA(T ) ≥ 4, as required.

Finally suppose T = PΩǫ
n(q). For n ≤ 6, T is isomorphic to one of the groups we have

already covered, so assume n ≥ 7. The long root elements of T have fixed point space of dimension
n− 2 on V, so ν(S) = 2. If n is even, then T has an element y such that ν(y) = n : for ǫ = − take
y to be a Singer element of Ω−

n (q) [14]; and for ǫ = +, take y to be a Singer element of a subgroup
SLn

2
(q) of Ω+

n (q). If n is odd, then T has an element y such that ν(y) = n− 1 : for example choose

a Singer element in a subgroup Ω−
n−1(q). We conclude that

ν(T ) ≥

{
n n even

n− 1 n odd

Now the conclusion follows from Proposition 4.2.
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Case 2, Exceptional Groups There are only two families of exceptional groups whose

covering number is known; the Suzuki groups, 2B2(q) and the small Ree groups 2G2(q) both have
covering number 3 by Theorem 2.5. By Theorem 2.3 they are not strongly real, so in fact

cA(
2B2(q)) = cA(

2G2(q)) = ci(
2B2(q)) = ci(

2G2(q)) = c(2B2(q)) = c(2G2(q)) = 3.

Now consider T = E8(q), E7(q) or Eǫ
6(q). Let V = Vn(q) be the adjoint module for T ,

of dimension 248, 133 or 78, respectively, and let S be the set of long root elements of T. Then
S is invariant under Aut(T ). From Tables 9, 8 and 6 of [18], we see that ν(S) is as in the table:

T E8(q) E7(q) Eǫ
6(q)

ν(S) 58 34 22
.

Also T has regular unipotent elements y, and these have fixed point spaces of dimension 8, 7 or 6,

respectively. Hence ν(T ) ≥ 240, 126 or 72, and the bound cA(T ) ≥
ν(T )
ν(S) gives the conclusion of

the theorem.

Next consider T = F4(q), q odd. Again let S be the set of long root elements, which
is invariant under Aut(T ), and consider the action on the 26-dimensional module V = V26(q), as
given in [18, Table 3]. We see that ν(S) = 6 while regular unipotent elements show that ν(T ) ≥ 24.
Hence cA(T ) ≥ 4.

Next we claim that cA(T ) ≥ 4 for T = 3D4(q),
2F4(q) (q > 2), 2F4(2)

′ or G2(q) (q 6= 3a).
The character tables of these are available in Chevie and GAP. Using Lemma 2.1 we can compute
that for a root element, r, cA(T, r) ≥ 4.

The last groups remaining to consider are T = F4(2
a) and G2(3

a). These groups are not
strongly real by Theorem 2.3, so cA(T ) ≥ 3 for these.

This completes the proof of Theorem 4.1.

4.2 Conjugacy Width 2

There has been some interest around classifying groups with a small covering numbers. In [3, Thm
2.1] it is proven that the only finite simple group with covering number 2 is J1 . It turns out that
the same is true for the (inverse) conjugacy width.

Proposition 4.3. For a simple group T the following are equivalent;

(i) cn(T ) = 2

(ii) ci(T ) = 2

(iii) c(T ) = 2

(iv) T ∼= J1.

Proof. Clearly (i) ⇒ (ii) ⇒ (iii) and (iv) ⇒ (i) so it remains to prove (iii) ⇒ (iv). So suppose
c(T ) = 2. By Theorems 2.3 and 4.1 we get that T ∼= PSL2(q), q 6≡ 3 mod 4, A10, A14, J1 or
J2. The proof of [3, Thm 4.2 (a)] shows that there is a conjugacy class C ⊆ PSL2(q) such that
PSL2(q) 6= C2 ∪ C ∪ 1, so c(PSL2(q)) ≥ 3. Similarly, products of at most two 3-cycles cannot
express all elements in A10 and A14, so their conjugacy width is greater than 3, and using GAP
we can find an element r in J2 such that c(T, r) ≥ 3. Hence T = J1 and the result follows.
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However, the next result shows that there is an infinite family of finite simple groups,
such that the conjugacy width is not 2 but the automorphism conjugacy width is 2.

Theorem 4.4. Let T be a finite simple group. Then cA(T ) = 2 if and only if either T ∼= J1 or
T ∼= PSL2(q) with q ≡ 1 mod 4 or q = 22m.

Proof. We begin by finding cA(PSL2(q)) for all q ≥ 5.We know by Proposition 2.5 that c(PSL2(q)) =
3. If q ≡ 3 mod 4, then Theorem 2.3 implies that the involution class has conjugacy width greater
than 2, hence cA(PSL2(q)) = 3. If q is a power of 2, then by [3, Thm 4.2 (a)] the only conjugacy
classes with conjugacy width 3 are those denoted by Rj in [3]; these have class representatives
(bj) where b is an element of order q + 1 and 1 ≤ j ≤ q

2 . In fact, [3, Thm 4.2 (a)] gives that
R2

j = G \ C2 where C2 are the root elements. For q = 22m+1, the class R q+1

3

is fixed by all outer

automorphisms, so cA(PSL2(2
2m+1) = 3. For q = 22m, there is no class of type Rj which is fixed

by all outer automorphisms. Using Lemma 2.1 and Chevie[11] we can show that C2 ⊆ RjRl, where
l = 2j if 2j ≤ q

2 and l = q + 1 − 2j if 2j > q
2 , so cA(PSL2(2

2m)) = 2. For PSL2(q) with q ≡ 1
mod 4 we know from [3] that the only classes with conjugacy width equal to 3 are the two classes of
root elements, and PSL2(q) has an outer automorphism that interchanges these two classes. Using
Lemma 2.1 we can show that every element can be expressed as a product of two root elements,
hence cA(PSL2(q)) = 2. This proves the right to left implication of the theorem.

For the converse, suppose cA(T ) = 2. Then any element of T can be expressed as a
product of at most two involutions, so T is strongly real, hence is given by Theorem 2.3. If T is
a simple group of Lie type, then by Theorems 4.1 and 2.3 we have that T ∼= PSL2(q) with q 6≡ 3
mod 4. We proved above that cA(PSL2(q)) = 3 for q = 22m+1, so q ≡ 1 mod 4 or q = 22m. If T is
not of Lie type then by Theorem 2.3, T ∼= A10, A14, J1 or J2. All automorphisms of A10 and A14

fix the class of 3-cycles, so their automorphism conjugacy width is not 2. Looking at the character
table of J2 and using Lemma 2.1 we conclude that c(J2) = cA(J2) ≥ 3. Hence T = J1.

4.3 Conjugacy Width and Covering Number 3

The next result gives a similar classification of groups with conjugacy width 3.

Theorem 4.5. Let T be a finite simple group.

1. c(T ) = 3 if and only if T is isomorphic to one of the following:

• PSL2(q) with q > 2

• PSL3(q)

• PSU3(q) with 3|q + 1, q > 2

•
2B2(q) with q > 2

•
2G2(q) with q > 3

• G2(3
n) with n ≥ 2

• A5, A6, A7

• M11, M22, M23, M24, J3, J4, Mcl, Ru, Ly, O′N , Fi24′ , Th, M.

2. cn(T ) = 3 if and only if c(T ) = 3.

3. ci(T ) = 3 if and only if c(T ) = 3.
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4. If cA(T ) = 3 then one of the following holds:

(a) c(T ) = 3 and T 6= PSL2(q) with q ≡ 1 (mod 4) or q = 22m.

(b) T ∼= F4(2
n).

Proof. Case 1, Alternating Groups

By Theorem 2.5 the only alternating groups with covering number 3 are A5, A6 and A7.
Also by Theorem 2.4, cA(An) ≥ 4 for n ≥ 8. Finally c(An) = ci(An) = 3 for n = 5, 6 and 7 while
cA(An) = 2,2, 3 respectively.

Case 2, Groups of Lie type

If T is a group of Lie type such that cA(T ) ≤ 3 then by Theorem 4.1, T is isomorphic to
one of the following:

PSL2(q), PSL3(q), PSU3(q), PΩ7(q),
2B2(q),

2G2(q), G2(3
a), F4(2

a).

By Theorem 2.5, cn(T ) = 3 for T = PSL2(q), PSL3(q) with q ≥ 4, 2B2(q) and 2G2(q); by
Proposition 4.3 for these groups c(T ) = ci(T ) = 3; and by Theorem 4.4, cA(T ) = 3 apart from
PSL2(q) with q ≡ 1 (mod 4) or q = 22m. For T = PSL3(2) or PSL3(3) we can show using GAP
that cn(T ) = c(T ) = ci(T ) = cA(T ) = 3.

By [24, Cor 1.9] for T = PSU3(q) (q > 2)

cn(T ) =

{
3 3|q + 1

4 3 ∤ q + 1

Hence if 3|q+ 1 then also c(T ) = ci(T ) = cA(T ) = 3. For 3 ∤ q+ 1 it is shown in [24, Table 2] that
for a transvection t ∈ T , c(T, t) = 4 and hence cA(T ) = 4 and ci(T ) = 4.

Next consider T = PΩ7(q), q odd. We claim that cA(T ) ≥ 4. To prove this let V be the
8-dimensional spin representation of Spin7(q). Let S be the set of long root elements of T , which
is invariant under Aut(T ). Using triality we can show that the long root elements of Spin7(q)
act on V as long root elements of Ω+

8 (q), hence they fix a 6-dimensional subspace of V pointwise,
and so ν(S) = 2. We know that Spin+

6 (q)
∼= SL4(q) embeds into Spin7(q). Put V4 as the natural

module of SL4(q). Then by [16, 2.2.8] SL4(q) acts on V as on V4 ⊕ V ∗
4 . Take R to be a Singer

cycle in SL4(q). Now R on V ∗
4 is also Singer cycle, and hence ν(R) = 8. Now by Proposition 4.2,

cA(T ) ≥ 4.

Consider T = G2(3
a). In the case of a = 1, the character table is in GAP, so using

Lemma 2.1 we find that cA(G2(3)) = ci(G2(3)) = c(G2(3)) = 4. For a ≥ 2, even though the
generic character table is available in Chevie, solving this problem is not possible using only
Chevie. This is due to the fact that when running the ClassMult function, Chevie outputs values
for the character sum in Lemma 2.1 together with a set of many ”possible exceptions” which give
conditions under which this value might not hold. For some classes it is possible to deal with these
exceptions, and for others it is not, so we used another method of solution. For the classes that
are possible to handle with Chevie we used Chevie, for the rest we used Corollary 2.2. To describe
this, we use the notation for conjugacy classes and characters of T given in [9]. We partition
the non-trivial irreducible characters into sets ∆k, where the degree of the characters in ∆k is a
polynomial in q of degree k. We see from [9] that Irr(T ) \ 1T = ∆4 ∪∆5 ∪∆6 and we get |∆4| = 1,
|∆5| = 2q − 7 and |∆5| = q2 + 13. For χ ∈ ∆4 we have χ(1) ≥ q4 + q2 + 1, for χ ∈ ∆5 we have
χ(1) ≥ 1

6q(q − 1)2(q2 − q + 1) and for χ ∈ ∆6 we have χ(1) ≥ q(q2 − q + 1)(q3 − 1). In Table 2
we give upper bounds for |χ(x)| for all non-identity conjugacy classes x. The first column lists the
class representatives in the notation of [9]. The other three columns give upper bounds for |χ(x)|
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∆4 ∆5 ∆6

A2 q2 + 1 (q + 1)(q2 + 1) (q + 1)(q2 + q + 1)
A31 q2 + 1 (q + 1)(q2 + 1) (q + 1)(q2 + q + 1)
A41 1 1

2q(q + 1) 2q + 1
A42 1 1

2q(q + 1) 2q + 1

A51 1 4
3q 1

A52 1 4
3q 1

A53 1 4
3q 1

B1 1 + 2q q2 + 3q + 2 3(q + 1)2

B2 1 + q 2q + 2 3(q + 1)
B3 1 + q 2q + 2 3(q + 1)
B4 1 2q + 2 3
B5 1 2q + 2 3
C11 2 + q 2q + 2 3(q + 1)
C12 2 2 3
C21 2 + q 2q + 2 3(q + 1)
C22 2 2 3
D11 2 + q 2q + 2 3(q + 1)
D12 2 2 3
D21 2 + q 2q + 2 3(q + 1)
D22 2 2 3

E1(i, j) 3 4 6
E2(i) 1 4 4
E3(i) 1 4 4
E4(i, j) 3 4 6
E5(i) 0 4 6
E6(i) 0 4 6

Table 2: Bounds on character values

for χ ∈ ∆4, ∆5 and ∆6, respectively. We use these bounds to bound the sum in Corollary 2.2
with k = 3. We find that this sum is less than 1 for all pairs of conjugacy classes (C,D) with the
following exceptions;

C A2 A31 A32 A41 A42 B1 A51 A52 A52 B3 B2 C11(i) C21(i) D11(i) D21(i)
D D ranges over all conj. classes D is 1 or A2 or A32

.

For these exceptions we can show D ⊆ C3 using Chevie and Lemma 2.1, with the exception of
showing E2(i) ⊆ B3

1 , E3(i) ⊆ B3
1 , 1 ⊆ C11(i)

3, 1 ⊆ C21(i)
3, 1 ⊆ D11(i)

3, and 1 ⊆ D21(i)
3. For

these exceptions we obtained more precise bounds for the character values than those in Table
2 and used Corollary 2.2 again. Hence we proved that cn(T ) = 3. It follows by Theorem 4.1,
c(T ) = ci(T ) = cA(T ) = 3 as well.

Finally we need to consider F4(2
n). We can use the argument given for F4(q), q odd in

the proof of Theorem 4.1 to conclude that ci(T ) ≥ 4. We have not been able to determine whether
the automorphism conjugacy width of F4(2

n) is 3.

Case 3, Sporadic Groups

Zisser[29] and Karni[15] showed that the only sporadic simple groups with covering num-
ber 3 are the ones listed in Theorem 4.5. Using character tables in GAP and Lemma 2.1 we
computed c(T ), ci(T ) and cA(T ) for all sporadic groups and obtained the same list.
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5 Simple diagonal groups with small orbital diameter

In this section we prove the following result, which classifies the primitive permutation groups of
simple diagonal type with orbital diameter at most 4. Adopt the notation of the introduction:
T is simple, k ≥ 2, G = T k.X ≤ D(k, T ) with X ≤ Out(T ) × Sk and G acts primitively on
Ω = (G : DA).

Theorem 5.1. Let G be a primitive group of simple diagonal type of the form T k.X ≤ D(k, T ) .

1. If orbdiam(G) = 2, then k = 2 and cA(T ) = 2.

2. If orbdiam(G) = 3, then k = 2 and cA(T ) ≤ 3.

3. If orbdiam(G) = 4, then one of the following holds:

(a) k = 2 and cA(T ) ≤ 4

(b) k = 3 and cA(T ) = 2.

Remark Note that Lemma 3.3 is a partial converse of this result, as it shows that there are some
families of groups of simple diagonal type with k = 2 such that orbdiam(G) = cA(T ), namely
G = D(2, T ).

For the proof of this theorem need some preliminary lemmas.

Note that it follows from Theorem 3.1 that k is a lower bound for the orbital diameter.
In fact, for cA(T ) = 2 it is a strict lower bound;

Lemma 5.2. Let cA(T ) = 2, k ≥ 3 and G = T k.X ≤ D(k, T ). Then orbdiam(G) ≥ k + 1.

Proof. Recall our definition of the length of an element of T with respect to t ∈ T \ 1: for g ∈ T,

lAt (g) = min{a : g = t±α1 . . . t±αa , αi ∈ Aut(T )}.

Since cA(T ) = 2, we have lAt (g) ≤ 2 and lAt (g) = 1 if and only if g ∈ t±Aut(T ). Also by Proposition
4.4, T = J1 or PSL2(q) with q ≡ 1 (mod 4) or q = 22m.

Let t be an involution in T and define Γ0 = {DA, DA(1
k−1, t)}G.

Claim 1 We can choose x, y, z ∈ T such that

lAt (x) = lAt (y) = lAt (x
−1y) = lAt (t

ax) = 2 ∀a ∈ T

and
lAt (z) = lAt (x

−1z) = lAt (y
−1z) = 2.

Proof of Claim 1 For T = J1 and PSL2(4) this can be verified in GAP. Now let T =
PSL2(q), with q ≥ 8 and q ≡ 1 (mod 4) or q = 22m. Let Z = Z(SL2(q)). Define x, y, z ∈ T to be(
ω 0
0 ω−1

)
Z,

(
ω2 0
0 ω−2

)
Z and

(
0 1
1 ω

)
Z, respectively, where ω ∈ F⋆

q has order q − 1. To see

that these elements satisfy Claim 1 consider the product of an involution in PSL2(q) with x or y.

An involution in PSL2(q) is of the form

(
a b

c −a

)
Z, and

(
a b

c −a

)(
ωi 0
0 ω−i

)
Z =

(
aωi b

c −aω−i

)
Z,

which is not an involution. The other assertions in Claim 1 are easily verified.
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Claim 2 There is a coset DA(m1, . . . ,mk) such that dΓ0
(DA, DA(m1, . . . ,mk)) ≥ k + 1.

Proof of Claim 2 Assume first that k is odd and let and let x, y, z ∈ T be as in Claim 1.
Set

(m1, . . . ,mk) = (y, 1, x, 1, x, 1, . . . , 1, x).

Suppose that dΓ0
(DA, DA(m1, . . . ,mk)) ≤ k. Then by Claim 1 in the proof of Theorem 3.1, there

exists g ∈ T such that
k∑

i=1

lAt (gmi) ≤ k. (1)

By Claim 1,

2k =
k−1∑

i=1

lAt (m
−1
i mi+1) + lAt (m

−1
1 mk)

and recall that
lAt (m

−1
i mi+1) ≤ lAt (gmi+1) + lAt (gmi).

Putting these together we get

2k =
k−1∑

i=1

lAt (m
−1
i mi+1)+lAt (m

−1
1 mk) ≤ 2

k∑

i=1

lAt (gmi) = 2

(
lAt (gy) +

k − 1

2
lAt (gx) +

k − 1

2
lAt (g)

)
≤ 2k,

where the last inequality follows from (1). This tells us that
∑k

i=1 l
A
t (gmi) = k. If lAt (gmi) = 1

for all i, then lAt (g) = lAt (gx) = lAt (gy) = 1 which is a contradiction by Claim 1. Hence there
exist j such that lAt (gmj) = 0 and so g = 1, x−1 or y−1. If g = x−1 then k−1

2 lAt (g) = k − 1 and

lAt (x
−1y) = 2, so

∑k
i=1 l

A
t (gmi) ≥ k+1. If g = y−1 then k−1

2 lAt (g) = k−1 and k−1
2 lAt (y

−1x) = k−1,

so
∑k

i=1 l
A
t (gmi) ≥ 2k − 2 ≥ k + 1. And if g = 1 then k−1

2 lAt (x) = k − 1 and lAt (y) = 2, so∑k
i=1 l

A
t (gmi) ≥ k + 1. These contradictions prove Claim 2 for the case where k is odd.

Now assume k is even. In this case let (m1, . . . ,mk) = (y, z, x, 1, x, 1, . . . , 1). Suppose
that dΓ0

(DA, DA(m1, . . . ,mk)) ≤ k. As before, we deduce that there exists g ∈ T such that∑k
i=1 l

X
t (gmi) = k and we reach a contradiction in the same way. These contradictions establish

Claim 2 and so the orbital diameter of G is bounded below by k + 1.

Now we include another result regarding simple groups with conjugacy width 3.

Lemma 5.3. Let T be a simple group and let X be a group such that InnT ≤ X ≤ Aut(T ) and
cX(T ) = 3. Then there exist g, x, y ∈ T such that cX(T, g) = 3 and lXg (x) = lXg (y) = lXg (x−1y) = 3.

Proof. By Theorem 4.5 either cn(T ) = 3 or T ∼= F4(2
a). Assume first that cn(T ) = 3 and choose

any g ∈ T such that cX(T, g) = 3. Let C := g±X and let t ∈ T be such that lXg (t) = 3 and let

D = t±X .

First suppose that cn(T ) = 3. Assume D2 ⊆ C2 ∪ C ∪ {1} = E. Then

T = D3 ⊆ ED ⊆ T

and so
ED = T = {g±ag±bt±c, g±bt±c, t±c | a, b, c ∈ X}.

However since lXg (t) = 3 we have 1 6∈ ED, a contradiction. Hence D2 6⊆ C2 ∪C ∪ {1} and so there
exist x, y ∈ D satisfying the statement of the lemma.
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Finally assume T = F4(2
a). Let g ∈ T be an involution. As F4(2

a) is not strongly real, we
have that cX(T, g) ≥ 3. Recall that an element is real if it is conjugate to its inverse. We shall show
the existence of elements x, y ∈ T such that none of x, y, x−1y is real. The proof of [27, Cor 4.5]
shows the existence of a non-real order 12 element in F4(2

a). By construction, this has a conjugate
in F4(2). From the character table in GAP, F4(2) has precisely two non-real classes, C,C−1 of
elements of order 12. A computation shows that we can find x, y ∈ C such that x−1y ∈ C. Hence
by the previous observation, x, y, x−1y are also non-real in T = F4(2

a).

Lemma 5.4. Let G = T 3.X ≤ D(3, T ) with cX(T ) = 3. Choose g, x, y ∈ T as in the statement of
Lemma 5.3 and let Γ0 = {DA, DA(1, 1, g)}

G. Then diam(Γ0) > 4.

Proof. Let x, y ∈ T be as in Lemma 5.3. The for all t ∈ T we have

lXg (tx) + lXg (t) + lXg (ty) ≥
lXg (x) + lXg (y) + lXg (x−1y)

2
=

9

2
> 4.

Hence dΓ0
(DA, DA(x, 1, y)) > 4. The conclusion follows.

Proof of Theorem 5.1. Let T be simple and G = T k.X ≤ D(k, T ).

1. If orbdiam(G) = 2 then by Theorem 3.1 it follows that k = 2 and cA(T ) = 2.

2. Suppose orbdiam(G) = 3. Then k ≤ 3 by Theorem 3.1. If k = 2 then Theorem 3.1 shows
cA(T ) ≤ 3 as required. If k = 3, then by Theorem 3.1, cA(T ) = 2, but then Lemma 5.2
implies that orbdiam(G) > 3, a contradiction.

3. Assume that orbdiam(G) = 4. By Theorem 3.1 one of the following occurs:

I k = 2 and cA(T ) ≤ 4

II k = 3 and cA(T ) = 2

III k = 3 and cA(T ) = 3

IV k = 4 and cA(T ) = 2.

In Cases I and II, conclusions (a) and (b) of Theorem 5.1 hold.

In Cases III and IV, Lemmas 5.2 and 5.4 imply that orbdiam(G) ≥ 5, which is a contradiction.

6 Upper bound on the orbital diameter

In this section we obtain a general upper bound for the orbital diameter of a primitive simple
diagonal group. To keep things as simple as possible we restrict attention to groups of the form
G = T k.Sk ≤ D(k, T ).

Theorem 6.1. Let T be a simple group and let G = T k.Sk ≤ D(k, T ) be a primitive simple
diagonal group. Then

orbdiam(G) ≤ 24(k − 1)ci(T )
2.

We first need a preliminary lemma.
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Lemma 6.2. Let T be an simple group and u ∈ T an involution. Then there exists x ∈ T such
that uux = [u, x] has order greater than 2.

Proof. Suppose that uux has order less than or equal to 2 for all x ∈ T . Then u commutes with
all of its conjugates, hence it commutes with 〈uT 〉 = T , as T is simple, and so u ∈ Z(T ). This is a
contradiction.

Proof of Theorem 6.1. For k = 2 conclusion follows from Lemma 3.3 so assume k ≥ 3. Let Γ be
an orbital graph of G.

As we already covered the case of Γt
0 in Lemma 3.2, we may assume that Γ = {DA, DA(1

i, ti+1, . . . , tk)}
G

where i ≤ k − 2 and tj ∈ T \ 1 for j ≥ i+ 1.

Suppose there is a path of length at most m from DA to DA(m1, . . . ,mk) where mi ∈ T.

Recall our notation for this:

DA
m

DA(m1, . . . ,mk) (2)

Applying (m−1
1 , . . . ,m−1

k ) we get

DA
m

DA(m
−1
1 , . . . ,m−1

k ). (3)

If we apply (ak) to (2) or (3) for any a ∈ T, we get

DA
m

DA(m
±a
1 , . . . ,m±a

k ). (4)

Claim 1 There exists t ∈ T \ 1 and a path in Γ of the following form;

DA
2

DA(1
k−2, t−1, t).

Proof of Claim 1

Suppose first that there exist l, j ≥ i + 1 such that tl 6= tj . Apply the permutation (l j)
and (1i, ti+1, . . . , tk) to the edge DA DA(1

i, t−1
i+1, . . . , t

−1
k ) to get a path

DA DA(1
i, ti+1, . . . , tk) DA(1

l−1, t−1
j tl, 1

j−l−1, t−1
l tj , 1

k−j).

Putting u = t−1
j tl and applying a suitable permutation yields Claim 1 in this case. Now assume

ti+1 = · · · = tk = t. Apply (1 k) and (1i, tk−i) to the edge DA DA(1
i, (t−1)k−i) to get

DA DA(1
i, tk−i) DA(t

−1, 1k−2, t).

Claim 1 again follows.

Claim 2 There exists t′ ∈ T \ 1 and a path in Γ

DA
24c

DA(1
k−1, t′)

where c = ci(T ).

Proof of Claim 2 We know from Claim 1 that for some t ∈ T \ 1 there is a path

DA
2

DA(1
k−2, t−1, t).
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Let cu ≤ c such that u = t±a1 . . . t±acu is an involution in T where ai ∈ T. We can construct a
path in a similar way as in the proof of Claim 3 of Lemma 3.2 to get that

DA
2c

DA(1
k−2, t±a1 . . . t±acu , t∓a1 . . . t∓acu ) = DA(1

k−2, u, u′).

If there exist b1, b2 ∈ T such that ub1ub2 = 1 and u′n1u′b2 6= 1 then

DA
4c

DA(1
k−1, u′b1u′b2) 6= DA.

If no such b1, b2 exist then for b ∈ T , uub = 1 implies u′u′b = 1. Hence u′ is also an invo-
lution and CG(u) = CG(u

′). So assume now that this is the case. Applying (1k−2, u′, u) to
DA

2c DA(1
k−2, u, u′), we see that here is a path

DA
4c

DA(1
k−2, w, w),

where w 6= 1 and either w = u = u′ or w = uu′. Note that if k = 3, then the claim follows, so
assume k ≥ 4.

We know that w is an involution, as u and u′ commute. By Lemma 6.2 there is x ∈ T

such that wwx has order strictly greater than 2. Now

DA
4c

DA(1
k−2, wx, wx).

Apply (1k−2, w, w) to get

DA
4c

DA(1
k−2, w, w)

4c
DA(1

k−2, wxw,wxw).

Similarly,

DA
8c

DA(1
k−2, wwx, wwx).

Let h = wwx. Then h−1 = wxw, so we have

DA
8c

DA(1
k−2, h−1, h−1).

Apply (1k−3, h, h, 1) to get

DA(1
k−3, h, h, 1)

8c
DA(1

k−3, h, 1, h−1),

so

DA
16c

DA(1
k−3, h, 1, h−1).

Apply (1k−3, h−1, 1, h−1) to get

DA(1
k−3, h−1, 1, h−1)

16c
DA(1

k−3, 1, 1, h−2),

so

DA
24c

DA(1
k−3, 1, 1, h−2),

where h−2 6= 1. Hence Claim 2 follows.

At this point we can apply Lemma 3.2 to deduce that the diameter of Γ is bounded above
by 24(k − 1)c2, completing the proof.
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