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Abstract. Approximate proof labeling schemes were introduced by
Censor-Hillel, Paz and Perry [3]. Roughly speaking, a graph property P can
be verified by an approximate proof labeling scheme in constant-time if the
vertices of a graph having the property can be convinced, in a short period
of time not depending on the size of the graph, that they are having the
property P or at least they are not far from being having the property P.
The main result of this paper is that bounded-degree planar graphs (and
also outer-planar graphs, bounded genus graphs, knotlessly embeddable
graphs etc.) can be verified by an approximate proof labeling scheme in
constant-time.
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1. Introduction

Our paper is about constant-time distributed graph algorithms intro-
duced in the seminal work of Naor and Stockmeyer [16]. Such an algorithm
runs on simple undirected graphs G of bounded degree. Each vertex of G
collects information from vertices located within radius r from it and creates
some output based on the collected information. In a distributed decision
algorithm each vertex outputs a decision: accept or reject. Then, the graph
G is accepted by the collective decision (verification) of the vertices if all the
vertices accept and the graph is rejected if at least one of the vertices rejects.
Unfortunately, there are not too much interesting graph families that can be
verified in this way. However, one can consider a non-deterministic version of
graph verification: proof labeling schemes (introduced by Korman, Kutten
and Peleg [15]) or under the name of locally checkable proofs (due to Göös
and Suomela [12]) with somewhat different conditions (see [7] for an extended
survey). Here, a prover helps the vertices to make their decision.

The prover labels the vertices with an element of a finite set Q and the vertices
can view their r-neighbourhoods as Q-labeled balls for some positive integer
r. A graph family (note that in our paper we only consider graph families of
bounded degrees) can be verified by a proof labeling scheme if there exists a
labeling-verification protocol such that
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• If a graph G is in the family then there exists a labeling that makes all
vertices accept.

• If a graph G is not in the family then for all labelings there exists at least
one vertices that rejects.

Proof labeling schemes help to verify more interesting graph classes. Never-
theless, one the most interesting classes, namely, the class of planar graphs
still cannot be verified by a proof labeling scheme in constant-time [8]. Our
graphs are of bounded-degree, the number of labelings are finite and the nodes
explores a constant distance neighbourhood of themselves, that is why we use
the constant-time terminology.

However, a relaxation of the above verification procedure, approximate proof
labeling schemes, was introduced by Censor-Hillel, Paz and Perry [3](see also
[5]). In the case of an approximate proof labeling scheme the vertices may
accept a graph even if it is not in the graph family, provided that it is not far
from the family in edit distance. One should note that in [3] the proof labeling
schemes are used to certificate the approximation of certain parameters such
as the maximum matching or a maximum independent set, nevertheless the
idea is very similar.

Our result We will show (Theorem 1) that the class of planar graphs and
in general all monotone hyperfinite (see Section 3) graph classes such as
outer-planar graphs, bounded genus graphs or knotlessly embeddable graphs
(or any other minor-closed families) can be verified with an approximate
proof labeling scheme in constant-time.

Related work It is important to note that the class of planar graphs can
be verified with a proof labeling scheme if we allow the vertices to be labeled
by O(log(n))-bits strings, where n is the size of the graph [8], even without
the bounded degree assumption. This result can be extended to the class of
bounded genus graphs as well ([9] and [6]).

Recently, Romero, Wrochna and Živný [19] constructed polynomial-time ap-
proximation schemes for certain maximum constraint satisfaction problems
in the case of monotone hyperfinite graph classes. The main novelty of their
approach was the application of strong hyperfiniteness, a strengthening of the
hyperfiniteness property. Our proof is also based on strong hyperfiniteness,
but in the form of Property A. This geometric property can be used for
proof verification in a natural way and had already important applications in
group theory, in algebraic topology and in the theory of operator algebras.
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2. Approximate proof labeling schemes

In order to avoid any confusion, let us fix some terminologies. For an integer
d > 1, let Grd be the set of all finite, simple graphs of maximum degree at
most d. If x, y are adjacent vertices in a graph G, we use the notation x ∼ y.
For all graphs G ∈ Grd we will consider the shortest path distance dG on the
vertex set V (G) of G. In our paper we consider only properties P such that
P ⊂ Grd for some d.

By a ball of radius r, we mean a finite connected graph B with a distinguished
vertex v (the center) such that

max
y∈V (G)

dG(v, y) = r .

For a fixed graph G and vertex x ∈ V (G) the neighbourhood of radius s
centered at x is the subgraph Bs(x,G) induced on the vertices y such that

dG(x, y) ≤ s .

It is important to note that a neighbourhood Bs(x,G) above is always a ball
with center x, however, the radius of this ball can be equal to s only if the
diameter of the graph G is at least s. If the diameter of G is less than s, then
the radius of Bs(x,G) as a ball is always less than s. We will denote by Nd

r

the maximum size of a ball of radius r with maximum degree at most d.

For a graph G ∈ Grd and a finite set Q, a Q-proof is a function T : V (G) →
Q.

A Q-verifier V of local horizon r is a subset of BQ
r,d, where BQ

r,d is the set of
all Q-vertex labeled balls of radius at most r and maximum degree at most d.

A Q-verifier V of local horizon r accepts a Q-proof T on the graph G ∈
Grd, if for all vertices x ∈ V (G), Br(x,G, T ) ∈ V , where Br(x,G, T ) is the
neighbourhood of radius r centered at x with vertex labelling induced by T .

A Q-verifier V of local horizon r rejects a Q-proof T on the graph G ∈ Grd,
if for at least one vertex x ∈ V (G), Br(x,G, T ) /∈ V .

We refer to subsets of Grd as “properties” and we say that a property P ⊂ Grd
can be verified by a proof labeling scheme (PLS) in constant-time if there

exists a finite set Q, a positive integer r and a verifier V ⊂ BQ
r,d such that

• for any G ∈ P there exists a Q-proof T : V (G) → Q accepted by V ,
• for any H /∈ P all the Q-proofs on H are rejected by V .
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Verifiability by a PLS in constant-time entails that the vertices of a graph
G ∈ P can be convinced in a short period of time, that they are indeed
vertices of a graph having the given property. Clearly, 3-colorability is such
a property. Indeed, the proof T : V (G) → {a, b, c} will be the 3-coloring and
the verifier will check the properness of the coloring on balls of radius 1. On
the other hand, Feuilloley et al. showed ([8], Theorem 2.) that planarity
cannot be verified by a PLS in constant-time.

In light of the result above we need a relaxation of the proof labeling scheme
verification procedure. Such relaxation has been introduced by Censor-Hillel,
Paz and Perry [3] (see also [5]) under the name approximate proof labeling
scheme.

First we need some terminology. Recall that if P ⊂ Grd and H ∈ Grd, then
the edit distance between the monotone property P and the graphH is defined
by

e(H,P) := inf
G∈P ,V (G)=V (H)

|E(G)△E(H)|
|V (H)|

.

Definition 2.1 (Approximate Proof Labeling Scheme). A property P ∈
Grd can be verified by an approximate proof labeling scheme in constant-time
if for any ε > 0 there exists a set Qε ≥ 0, some positive constant rε and a
verifier Vε ⊂ BQε

rε,d
such that

• for any G ∈ P there exists a Qε-proof T on G accepted by Vε,
• for any H, e(H,P) > ε, all Qε-proofs on H are rejected by Vε.

The main result of this paper is the following theorem.

Theorem 1. Planarity and, in general, all monotone hyperfinite properties
that are closed under taking disjoint unions can be verified by an approximate
proof labeling scheme in constant-time for bounded-degree graphs.

Note that a property is monotone if it is closed under taking subgraphs. Hy-
perfiniteness will be discussed in Section 3.

In [1] the authors showed that every minor-closed property is monotone hyper-
finite (Theorem 1.1). In their paper they list several minor-closed properties
e.g. planarity, outer-planarity, graphs with bounded genus or bounded tree-
width. By definition, all of these properties are closed under taking disjoint
unions. Hence, by our main theorem all of these properties can be verified
with an approximate proof labeling scheme in constant-time.

Now, we introduce the notion of relative verifiability by PLS.

Definition 2.2. Let P ⊂ Q ⊂ Grd be properties. We say that P can be
verified by a PLS with respect to Q in constant-time if there exists a verifier
V ⊂ BQ

r,d such that
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• for every G ∈ P there exists a proof T : V (G) → Q such that V
accepts T ,

• for every H /∈ Q all proofs T : V (H) → Q are rejected by V .

Now, let G ∈ Grd, r ≥ 1, Q be a finite set and V ⊂ BQ
r,d. We say that V

verifies G if there exists a proof T : V (G) → Q such that V accepts T .

Let V ⊂ BQ
r,d be a verifier. We denote by LV the set of graphs in Grd verified

by V . So, a property P can be verified by a PLS in constant-time if there
exists V such that P = LV .

Lemma 2.1. If V1 ⊂ BQ1

r1,d
and V2 ⊂ BQ2

r2,d
, then there exists a verifier V3 ∈

BQ1×Q2

r3,d
such that LV3 = LV1 ∩ LV2 and r3 = max(r1, r2).

Proof. Let B be a Q1 × Q2-labeled ball of radius at most r3. Let B1 be the
r1-neighbourhood of the center of B equipped with the Q1-labeling inherited
from the Q1 × Q2-labeling of B using the first coordinate. Similarly, we can
define B2. Let B ∈ V3 if B1 ∈ V1 and B2 ∈ V2.

Assume that G ∈ LV3 and the proof T = T1 × T2 : V (G) → Q1 × Q2 is
accepted by V3. Then by definition, T1 : V (G) → Q1 is accepted by V1 and
T2 : V (G) → Q2 is accepted by V2. Hence, G ∈ LV1 ∩ LV2 .

Conversely, let G ∈ LV1 ∩LV2 and let S1 : V (G) → Q1 be accepted by V1 and
S2 : V (G) → Q2 be accepted by V2. Then by definition,

S = S1 × S2 : V (G) → Q1 ×Q2

is accepted by V3, thus G ∈ LV3 . □

By definition, if P ⊂ Q, then there exists V such that

P ⊂ LV ⊂ Q

if and only if P can be verified by a PLS in constant-time relative to Q. If P is
a property let Pε be the set of graphs which are at most ε-far in edit-distance
from having the property P . Then P can be verified by an approximate proof
labeling scheme in constant-time if for any ε > 0 there exists a verifier Vε such
that P ⊂ LVε ⊂ Pε.

In the introduction we mentioned a second verification protocol introduced by
Göös and Suomela [12] under the name of locally checkable proofs. Sometimes
a unique identifier is provided for each node of the graph and the verifier can
take the identifiers into consideration as well. Although there are certain
properties for which one can benefit from the existence of the identifiers, it
follows from ([10, Theorem 1.]) that if one cannot verify a monotone property
without identifiers in constant-time, then one cannot verify that property in
constant-time even if unique identifiers are provided.
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3. Hyperfiniteness

First, we recall the notion of hyperfiniteness (see [1]) that plays an important
role in our paper.

For ε > 0 and K ≥ 1, a graph G ∈ Grd is called (ε,K)-hyperfinite if there
exists W ⊂ E(G) such that

• |W | ≤ ε|E(G)|,
• if we remove W from G, in the remaining graph all the components
have size at most K.

A property P ⊂ Grd is (ε,K)-hyperfinite if all G ∈ P are (ε,K)-hyperfinite.
The set of all (ε,K)-hyperfinite graphs of maximum degree at most d is de-
noted by Hd

ε,K .

We call a property P ⊂ Grd hyperfinite, if for any ε > 0 there exists K ≥ 1
such that P ⊂ Hd

ε,K .

The significance of hyperfiniteness in algorithm theory is highlighted by the
following breakthrough result of Benjamini, Schramm and Shapira (Theorem
1.2 [1]): every monotone hyperfinite property is testable in constant-time (see
[11] for property testing). Note that another proof of this statement is given in
[13]. It is important to note that minor-closed families such as planar graphs,
outer-planar graphs or bounded genus graphs are hyperfinite [1].

4. Property A

In order to avoid confusion, in this section we use the phrase ”graph class”
instead of ”graph property”, since we will talk about the notion of Property
A.

First, let us formally define Property A. Let G ∈ Grd be a graph. Then,
Prob(G) is the set of all probability measures on the vertices of G. If f :
V (G) → R and g : V (G) → R are two real functions on the vertices then
their l1-distance is defined as ∥f − g∥1 :=

∑
x∈V (G) |f(x)− g(x)|, also ∥f∥ :=∑

x∈V (G) |f(x)| .

Definition 4.1 (Property A). For ε > 0 and r ≥ 1, a graph G ∈ Grd is
called (ε, r)-uniform if there exists a probability measure valued function

f̃ : V (G) → Prob(G) such that

• for any adjacent pair of vertices x, y ∈ V (G), ∥f̃(x)− f̃(y)∥1 < ε,
• for any x ∈ V (G), we have that

Supp(f̃(x)) ⊂ Br(x,G) ,
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where Supp(f̃(x)) denotes the set of vertices z for which f̃(x)(z) ̸= 0.

We call a class of graphs P (ε, r)-uniform if all G ∈ P are (ε, r)-uniform
and we denote the class of all (ε, r)-uniform graphs by Ad

ε,r. A graph class
P ⊂ Grd is of Property A if for every ε > 0, there exists some r ≥ 1 such
that P ⊂ Ad

ε,r.

Interestingly, Property A can be defined for a single countable infinite graph or
a finitely generated group as well. Actually, the notion of Property A has been
introduced for finitely generated groups by Guoliang Yu [21] in the nineties
with important applications in algebraic topology and operator algebras [18].
It is not hard to see that the set of paths {Pn}∞n=1 forms a class of Property A,
nevertheless later we will see that the class of planar graphs is of Property A
as well.

As we will see in Section 8, for finite graph classes Property A is a strength-
ening of the notion of hyperfiniteness. The proof of our main theorem hinges
on the fact that monotone hyperfinite graph classes are of Property A.

5. Property A and the Proof Labeling Schemes

The sole goal of this section is to prove the following proposition.

Proposition 5.1. For any 0 < ε < ε′ < 1 and r ≥ 1, Ad
ε,r can be verified by

PLS in constant-time relative to Ad
ε′,r.

Proof. A natural approach for such a PLS is to label every vertex x with its
probability distribution, described as a list of f̃(x)(z), and let the vertices
check that the two conditions of Definition 4.1 hold. There are two obstacles
to this approach: the precise value of f̃(x)(z) might need a large number
of bits to be encoded, and the vertices do not agree on which vertex is ”z”
(remember that the vertices do not have identifiers). The first lemma tackles
the first obstacle via discretization. For the second obstacle, we will use a
coloring.

Lemma 5.1. Let G ∈ Grd, r ≥ 1, x ∈ V (G), f : Br(x,G) → R be a
nonnegative function such that

∑
y∈Br(x,G) f(y) = 1. Let α > 3

ε′−ε
Nd

r be a

positive integer (see Section 2 for definition of Nd
r ). Then, there exists a

function g : Br(x,G) → R such that

•
∑

y∈Br(x,G) g(y) = 1,

• for any y ∈ Br(x,G), g(y) = i
α
, where 0 ≤ i ≤ α is an integer,

•
∑

y∈Br(x,G) |f(y)− g(y)| ≤ ε′−ε
3
.

Proof. Let g′, g′′ : Br(x,G) → R be defined in the following way. g′(y) =
i
α
, g′′(y) = i+1

α
, where i

α
≤ f(y) ≤ i+1

α
. Then,

∑
y∈Br(x,G)(f(y) − g′(y)) <

|Br(x,G)| 1
α
≤ ε′−ε

3
. Similarly,

∑
y∈Br(x,G)(g”(y)− f(y)) < ε′−ε

3
.
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Also, ∑
y∈Br(x,G)

g′(y) =
k

α
≤ 1 and

∑
y∈Br(x,G)

g′′(y) =
l

α
≥ 1 ,

where k and l are integers such that k ≤ α ≤ l. Note that for all y ∈ Br(x,G)
we have g′′(y)−g′(y) = 1

α
, hence l−k = |Br(x,G)|. Pick a subset S ⊆ Br(x,G)

such that |S| = α− k.

Let g(y) = g′(y) if y /∈ S and g(y) = g′′(y) if y ∈ S. Then,∑
y∈Br(x,G)

g(y) =
k

α
+

α− k

α
= 1.

Also, ∑
y∈Br(x,G)

|f(y)− g(y)| ≤ |Br(x,G)| 1
α

≤ ε′ − ε

3
. □

Corollary 5.1. Let 0 < ε < ε′ < 1 and G ∈ Ad
ε,r. Then, we have a probability

measure valued function g̃ : V (G) → Prob(G) such that

• for any x ∈ V (G), g̃(x)(z) = i
α
, where 0 ≤ i ≤ α is an integer and α

is the integer defined by the previous lemma.
• for any adjacent pair of vertices x, y ∈ V (G), ∥g̃(x)− g̃(y)∥1 < ϵ′,
• for any x ∈ V (G), we have that Supp(g̃(x)) ⊂ Br(x,G) .

Proof. Let f̃ : V (G) → Prob(G) the probability measure valued function in
Definition 4.1. For each x ∈ V (G) we define gx : V (G) → R in such a way that
gx satisfies the conditions of the previous lemma with respect to the function
f̃(x). Now we define g̃(x) := gx.

Let x ∼ y ∈ V (G). Then,

∥g̃(x)− g̃(y)∥1 ≤ ∥g̃(x)− f̃(x)∥1 + ∥f̃(x)− f̃(y)∥1 + ∥f̃(y)− g̃(y)∥1 ≤

≤ 2
ε′ − ε

3
+ ε < ε′. □

Now we build the proof labeling scheme.

Lemma 5.2. Let Q1 be a finite set such that |Q1| = Nd
r + 1. Then, for any

G ∈ Grd there exists a coloring S1 : V (G) → Q1 such that if dG(x, y) ≤ r,
then S1(x) ̸= S1(y).

Proof. Let Ĝ be the graph with vertex set V (G) such that x, y ∈ V (G) are

adjacent in Ĝ if and only if dG(x, y) ≤ r. Then, the degree of each vertex in

Ĝ is at most Nd
r . Hence by the classical Brooks’ Theorem, there is a proper
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coloring S1 : V (G) → Q1 of the graph Ĝ. By definition, S1 defines a coloring
of G satisfying the condition of our lemma. □

Let Q2 denote the finite set {0, 1, 2, . . . , α}, where α is the integer in Lemma
5.1. Also, let Q3 be the set of all maps φ : Q1 → Q2. Let π1 : Q1×Q3 → Q1 be
the first coordinate projection and π2 : Q1×Q3 → Q3 be the second coordinate
projection. For a Q1 ×Q3-proof T : V (G) → Q1 ×Q3 let T1 : V (G) → Q1 be
defined as π1 ◦ T and let T2 : V (G) → Q3 be defined as π2 ◦ T .

We call T : V (G) → Q1×Q3 proper if T1(x) ̸= T1(y) provided that dG(x, y) ≤
r. If T is proper then we can define a function of two variables T̃ : V (G) ×
V (G) → R in the following way.

• If dG(x, y) ≤ r then T̃ (x, y) = i
α
, where i = T2(y)(T1(x)).

• If dG(x, y) > r then T̃ (x, y) = 0.

Properness is used to break possible symmetries. The verifier V ⊂ Bd
r+1,Q1×Q3

is defined in the following way. Let N be a ball of radius at most r + 1 and
C : V (N) → Q1 × Q3 be a Q1 × Q3-labeling on N . Again, let C1 = π1 ◦ C
and C2 = π2 ◦ C. Then the Q1 ×Q3-labeled ball (N,C) is in the verifier V if
the following conditions are satisfied.

• (Checking properness) If y, z ∈ V (N) and dN(y, z) ≤ r then C1(y) ̸=
C2(z).

• (Checking probability) If x is the center of N then∑
z∈Br(x,N)

(C2(z))(C1(x))

α
= 1 .

• (Checking l1-distance) If x is the center of N and x ∼ y, then∑
z∈V (N)

∣∣∣∣(C2(z))(C1(x))

α
− (C2(z))(C1(y))

α

∣∣∣∣ ≤ ε′.

Therefore, if V accepts the proof T , then

• T is proper.
•
∑

z∈V (G) f̃(x)(z) = 1, where f̃(x)(z) = T̃ (x, z).

• For any adjacent pair x ∼ y ∈ V (G), ∥f̃(x)− f̃(y)∥ ≤ ε′ .

Hence, if V accepts T then G ∈ Ad
ε′,r.

In order to finish the proof of the proposition, we need to prove that ifG ∈ Ad
ε,r

then there exists a proof T : V (G) → Q1 ×Q3 that is accepted by the verifier
V .
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Let g̃ be the probability measure valued function defined in Corollary 5.1.
Let S1 : V (G) → Q1 be the function defined in Lemma 5.2. Finally, let
T : V (G) → Q1 ×Q3 be defined in the following way.

• T1 := S1.
• If z ∈ V (G), q ∈ Q1 and there is no x ∈ Br(z,G) such that S1(x) = q,
then let (T2(z))(q) = 0.

• If z ∈ V (G), q ∈ Q1 and there exists x ∈ Br(z,G) such that S1(x) = q,
let (T2(z))(q) = i, where g̃(x)(z) = i

α
.

Then, V accepts T . Therefore,

Ad
ε,r ⊂ LV ⊂ Ad

ε′,r ,

hence our proposition follows. □

6. Strong hyperfiniteness

In this section we discuss some strengthenings of the notion of hyperfiniteness.

Definition 6.1. G ∈ Grd is uniformly (ε,K)-hyperfinite if for all induced
subgraph F ⊂ G, F is (ε,K)-hyperfinite as well.

We say that a graph property P ⊂ Grd is uniformly (ε,K)-hyperfinite if
all G ∈ P are uniformly (ε,K)-hyperfinite. The set of all uniformly (ε,K)-
hyperfinite graphs will be denoted by UHd

ε,K . We call a graph property P
uniformly hyperfinite if for any ε > 0, there exists K ≥ 1 such that
P ⊂ UHd

ε,K .

Monotone hyperfinite classes are, by definition, uniformly hyperfinite, since
they are closed to taking subgraphs. In our paper, we will use another
strengthening of hyperfiniteness introduced by Romero, Wrochna and Živný
[19] under the name of fractional-cc-fragility. First, we need a definition. For
a graph G ∈ Grd, we call Y ⊂ V (G) a K-separator if by removing Y (and
all the adjacent edges) the components of the remaining graph are of size at
most K. We denote the set of all K-separators of G by Sep(G,K).

Definition 6.2. A graph G ∈ Grd is strongly (ε,K)-hyperfinite if there exists
a probability measure µ on Sep(G,K) such that for any x ∈ V (G)

µ(Y ∈ Sep(G,K) | x ∈ Y ) < ε .

We say that a graph class P ⊂ Grd is strongly (ε,K)-hyperfinite if all G ∈ P
are strongly (ε,K)-hyperfinite. The set of all strongly (ε,K)-hyperfinite
graphs will be denoted by SHd

ε,K . We call a graph class P strongly hy-

perfinite if for any ε > 0, there exists K ≥ 1 such that P ⊂ SHd
ε,K .
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It was first proved by Romero, Wrochna and Živný (Theorem 1.5 ,[19]) that
monotone hyperfinite properties are strongly hyperfinite. The strong hyper-
finiteness of monotone hyperfinite classes plays an important role in the proof
of Theorem 1. Note that the author later proved in [4] that the notions of
Property A, uniform hyperfiniteness and strong hyperfiniteness in fact coin-
cide.

7. Property A implies hyperfiniteness

In this section we continue the study of Property A and prove the central
technical proposition of our paper.

First, let us fix some notation, which will be used in the section. Let G ∈ Grd
and A ⊂ V (G). Then, ∂G(A) is the set of vertices x ∈ A such that there exists
y /∈ A, x ∼ y. Also, ∂e

G(A) is the set of edges e = (x, y), where x ∈ ∂G(A) and
y /∈ A. So, we have that

(1) |∂G(A)| ≤ |∂e
G(A)|.

Proposition 7.1. For any ε > 0 and r ≥ 1,

Ad
ε,r ⊂ Hd

d2ε
2

,Nd
2r

,

where Nd
2r is defined in Section 2.

Proof. First, we need a technical lemma, which is very similar to Proposition
4.2 in [20]. Let G ∈ Grd and F ⊂ G be an induced subgraph. We say that
F is (ε, r)-uniform relative to G if there exists a probability measure valued

function f̃ : V (F ) → Prob(F ) such that for any pair of adjacent vertices
x, y ∈ V (F ),

(2) ∥f̃(x)− f̃(y)∥1 ≤ ε

and for any x ∈ V (F ),

(3) Supp(f̃(x)) ⊂ Br(x,G).

Lemma 7.1. If G is (ε, r)-uniform and F ⊂ G is an induced subgraph, then
F is (ε, 2r)-uniform relative to G.

Proof. For x ∈ V (G), pick τ(x) ∈ V (F ) in such a way that dG(x, τ(x)) =
dG(x, F ). Let g : V (G) → Prob(G) be a probability measure valued function
witnessing the fact that G ∈ Ad

ε,r, that is,

• for any adjacent pair of vertices x, y ∈ V (G)

(4) ∥g̃(x)− g̃(y)∥1 ≤ ε .

• for any x ∈ V (G)

(5) Supp(g̃(x)) ⊂ Br(x,G) .
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We define the function f̃ : V (F ) → Prob(F ) by f̃(x)(z) =
∑

t∈τ−1(z) g̃(x)(t).

Note that τ−1(z) denotes the set of vertices mapped to z by τ . Then by

definition, Supp f̃(x) ⊂ V (F ) and

for all z ∈ V (F ), f̃(x)(z) ≥ 0. Also, since ∪z∈V (F )τ
−1(z) = V (G) we have

that ∑
z∈V (F )

f̃(x)(z) =
∑

t∈V (G)

g̃(x)(t) = 1 ,

hence f̃ : V (F ) → Prob(F ). Also, if x, y are adjacent vertices, then

∥f̃(x)− f̃(y)∥1 ≤ ε.

Indeed,

∥f̃(x)− f̃(y)∥1 =
∑

z∈V (F )

|f̃(x)(z)− f̃(y)(z)| ≤

≤
∑

z∈V (F )

|
∑

t∈τ−1(z)

g̃(x)(t)−
∑

t∈τ−1(z)

g̃(y)(t)| ≤
∑

z∈V (F )

∑
t∈τ−1(z)

|g̃(x)(t)− g̃(y)(t)| =

=
∑

t∈V (G)

|g̃(x)(t)− g̃(y)(t)| = ∥g̃(x)− g̃(y)∥1 ≤ ε.

Also,

(6) Supp(f̃(x)) ⊂ B2r(x,G).

Indeed, if f̃(x)(z) ̸= 0, then there exists t ∈ τ−1(z) such that g̃(x)(t) ̸= 0.
Hence by (5), dG(t, x) ≤ r and also, dG(t, z) ≤ r, since dG(t, z) ≤ dG(t, x) by
the definition of τ . That is, dG(x, z) ≤ 2r, so our lemma follows. □

Lemma 7.2. Let G ∈ Ad
ε,r and let F ⊂ G be an induced subgraph. Then,

there exists a non-empty subset L ⊂ V (F ) such that |∂F (L)| ≤ dε
2
|L| and

|L| ≤ Nd
2r.

Proof. Let f̃ : V (F ) → Prob(F ) be a probability measure valued function
satisfying (2) and (6). Such function exists by the previous lemma. Then,∑

x∈V (F )

∑
x∼y

∥f̃(x)− f̃(y)∥1 ≤
∑

x∈V (F )

dε =

=
∑

x∈V (F )

dε∥f̃(x)∥1 .

Hence, ∑
z∈V (F )

∑
x∈V (F )

∑
x∼y

|f̃(x)(z)− f̃(y)(z)| ≤ dε
∑

z∈V (F )

∑
x∈V (F )

f̃(x)(z) .

Hence, there exists z0 ∈ V (F ) such that∑
x∈V (F )

∑
x∼y

|f̃(x)(z0)− f̃(y)(z0)| ≤ dε
∑

x∈V (F )

f̃(x)(z0) .
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We define the function ζ : V (F ) → [0, 1] by ζ(x) = f̃(x)(z0), and we have
that

(7)
∑

x∈V (F )

∑
x∼y

|ζ(x)− ζ(y)| ≤ dε
∑

x∈V (F )

ζ(x) .

So far, we followed the proof of Proposition 3.2 in [2], however, in order to
avoid some heavy machinery, we now choose a different path. Let us recall the
area and coarea formulas (Lemma 3.6 and Lemma 3.7) from [14]. If F ∈ Grd
and ζ : V (F ) → [0, 1], then we have the following equations:

(8)
∑

x∈V (F )

∑
x∼y

|ζ(x)− ζ(y)| = 2

∫ 1

0

|∂e
F (Ωt(ζ))| dt,

and

(9)
∑

x∈V (F )

ζ(x) =

∫ 1

0

|Ωt(ζ)| dt,

where

Ωt(ζ) = {x ∈ V (G) | ζ(x) > t}.
So, by (7)

2

∫ 1

0

|∂e
F (Ωt(ζ))| dt ≤ dε

∫ 1

0

|Ωt(ζ)| dt.

Thus for some t ≥ 0, we have

(10) |∂e
F (Ωt(ζ))| ≤

dε

2
|Ωt(ζ)|.

Now let L = Ωt(ζ). Then by (10) and (1) we have that |∂F (L)| ≤ dε
2
|L|. Also

by definition, if x ∈ L, then f̃(x)(z0) > 0. Therefore, x ∈ B2r(z0, G). So,
0 < |L| ≤ Nd

2r. Hence, our lemma follows. □

Now we finish the proof of our proposition. Let F1 = G. Using the previous
lemma, we choose L1 ⊂ V (F1) to be a set of size at most Nd

2r such that
|∂F1(L1)| ≤ dε

2
|L1|. Then, we remove from G all the edges outgoing from

L1. The number of such edges is at most d|∂F1(L1)| ≤ d2ε
2
|L1|. Let F2 be

the subgraph of G induced on V (G)\L1. Let L2 ⊂ V (F2) be a set of size
at most Nd

2r such that |∂F2(L2)| ≤ dε
2
|L2|. Again, we remove from G all

the edges outgoing from L2. Inductively, we construct disjoint components
L1, L2, . . . , Ln of size at most Nd

2r such that ∪n
i=1Li = V (G), by removing at

most d2ε
2
|V (G)| edges. Hence, our proposition follows. □

8. Strong hyperfiniteness implies Property A

Proposition 8.1. For any ε > 0 and K ≥ 1,

SHd
ε,K ⊂ Ad

4ε,K .
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Proof. Let G ∈ SHd
ε,K and µ be a probability measure on the set Sep(G,K)

of K-separators of G such that for any x ∈ V (G) we have

µ(Y ∈ Sep(G,K) | x ∈ Y ) ≤ ε .

For a K-separator Y and x ∈ V (G), let the non-negative function fY,x :
V (G) → R be defined in the following way.

• If x ∈ Y , let fY,x(x) = µ(Y ) and if z ̸= x let fY,x(z) = 0.
• If x /∈ Y , then let CY,x be the component of G\Y containing the vertex

x. If z ∈ CY,x let fY,x(z) =
µ(Y )
|CY,x|

. On the other hand, if z /∈ CY,x, let

fY,x(z) = 0.

Then, for any x ∈ V (G) and Y ∈ Sep(G,K) we have that

(11) ∥fY,x∥1 =
∑

z∈V (G)

fY,x(z) = µ(Y ) .

Hence,

f̃(x) =
∑

Y ∈Sep(G,K)

fY,x

defines a probability measure valued function f̃ : V (G) → Prob(G). Then, by
the definition of K-separators, for any x ∈ V (G),

(12) Supp(f̃(x)) ⊂ BK(x,G) .

Also, for any pair of adjacent vertices x ∼ y, we have that

(13) ∥f̃(x)− f̃(y)∥1 ≤ 4ε .

Indeed, if x, y /∈ Y and x ∼ y, then by definition, fY,x = fY,y. If x ∈ Y or
y ∈ Y , then by (11),

∥fY,x − fY,y∥1 ≤ ∥fY,x∥1 + ∥fY,y∥1 ≤ 2µ(Y ) .

Therefore,

∥f̃(x)− f̃(y)∥1 ≤
∑

Y ∈Sep(G,K)

∥fY,x − fY,y∥1 ≤

≤
∑

Y ∈Sep(G,K),x∈Y

2µ(Y )+
∑

Y ∈Sep(G,K),y∈Y

2µ(Y )+
∑

Y ∈Sep(G,K),x,y /∈Y

∥fY,x−fY,y∥1 ≤ 4ε ,

since if x ∼ y and x, y /∈ Y , then fY,x = fY,y. Hence by (12) and (13),
G ∈ Ad

4ε,K . □

Lemma 8.1. For any ε > 0, there exists r > 0 such that P ⊂ Ad
ε,r, where

P ⊂ Grd is a monotone hyperfinite class of graphs.

Proof. By Theorem 1.6 of [19], for any ε > 0, there exists K > 0 such that
P ⊂ SHd

ε,K . Hence our lemma follows, from Proposition 8.1. □
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9. The Proof of the Main Theorem

In this section, we prove Theorem 1. Let P ⊂ Grd be a monotone hyper-
finite property that is closed under taking disjoint unions and let ε > 0. We
need to prove that there exists a verifier Vε such that (using the notation of
Section 2)

(14) P ⊂ LVε ⊂ Pε .

For r > 0, let LPr ⊂ Grd denote the class of r-locally P graphs. That is,
G ∈ LPr if for all x ∈ V (G), Br(x,G) ∈ P . So, by definition, there exists a
verifier BK ⊂ Bd

K,Q such that LPK = LBK
and the finite set Q is empty.

Lemma 9.1. For any ε > 0, there exists Mε > 0 such that if K ≥ Mε, then

P ⊂ Hd
ε,K ∩ LPK ⊂ Pε .

Proof. Pick Mε > 0 such that P ⊂ Hd
ε,Mε

, let K ≥ Mε. Then, we have

P ⊂ Hd
ε,K ∩ LPK . Now, let G ∈ Hd

ε,K ∩ LPK . So, we can remove at most
ε|V (G)| edges from G to obtain a graph having components of size at most K
and by monotonicity, all those components are in P . Also, by our assumption
about P , the disjoint unions of the components are in P as well. Hence,
G ∈ Pε. That is, Hd

ε,K ∩ LPK ⊂ Pε . □

Lemma 9.2. For any ε > 0, there exists Nε > 0 and a verifier Cε such that
if K ≥ Nε, then

P ⊂ LCε ⊂ Hd
ε,K .

Proof. Let r ≥ 1 be an integer such that P ⊂ Ad
ε
d2

,r. Such r exists by Lemma

8.1. Let Nε = Nd
2r. By Proposition 5.1, there exists a verifier Cε such that

Ad
ε
d2

,r ⊂ LCε ⊂ Ad
2ε
d2

,r
.

By Proposition 7.1,

Ad
2ε
d2

,r
⊂ Hd

ε,Nd
2r
= Hd

ε,Nε
.

Therefore,

P ⊂ LCε ⊂ Hd
ε,K . □

Now we finish the proof of Theorem 1. Let Kε = max(Nε,Mε) and Dε = BKε ,
then by our previous lemmas,

P ⊂ LCε ∩ LDε ⊂ Pε .

Hence by Lemma 2.1, we have a verifier Vε satisfying (14). □
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