
ar
X

iv
:1

61
1.

04
07

9v
4 

 [
m

at
h.

C
O

] 
 1

0 
O

ct
 2

02
2

COLORING COMPLEXES AND COMBINATORIAL HOPF

MONOIDS

JACOB A. WHITE

Abstract. We generalize the notion of a coloring complex of a graph to
linearized combinatorial Hopf monoids. We determine when a linearized
combinatorial Hopf monoid has such a construction, and discover some
inequalities that are satisfied by the quasisymmetric function invariants
associated to the combinatorial Hopf monoid. We show that the collec-
tion of all such coloring complexes forms a linearized combinatorial Hopf
monoid, which is the terminal object in the category of combinatorial
Hopf monoids with convex characters. We also study several examples
of combinatorial Hopf monoids.

1. Introduction

In their landmark paper, Aguiar, Bergeron and Sottile [ABS06] proved
that QSym, the Hopf algebra of quasisymmetric functions, forms the termi-
nal combinatorial Hopf algebra. They showed how many well-known exam-
ples of quasisymmetric generating functions came from combinatorial Hopf
algebras that had very simple characters. A fundamental example is the
combinatorial Hopf algebra of graphs, where the resulting quasisymmetric
function is Stanley’s chromatic symmetric function [Sta95]. Other exam-
ples include quasisymmetric generating functions for P -partitions [Ges84],
and the Billera-Jia-Reiner quasisymmetric function associated to matroids
[BJR09]. The goal of this paper is to show a similar type of result for
linearized combinatorial Hopf monoids in species, and deduce some conse-
quences of that result. Our terminal object is a species whose structures
we refer to as abstract relative coloring complexes. First, we discuss some
background regarding coloring complexes of graphs, and applications of our
new results to graph theory.

The chromatic polynomial can be studied using geometry: given a graph
G, then up to a shift, the chromatic polynomial of G, denoted χ(G,x),
is the Hilbert polynomial of an ideal [Ste01] which arises from a relative
simplicial complex Φ(G) which is the set difference of the Coxeter complex of
type A and a subcomplex Γ(G), usually referred to as the coloring complex.
The coloring complex Γ(G) has been used to find several new inequalities

Date: October 11, 2022.
2020 Mathematics Subject Classification. 18D10, 18D35.
Key words and phrases. Chromatic Polynomials, Quasisymmetric Functions, Combi-

natorial Species, Combinatorial Hopf Algebras, Balanced Simplicial Complexes.

1

http://arxiv.org/abs/1611.04079v4
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regarding the coefficients of the chromatic polynomial [HS08, Hul07]. For
this paper, we refer to the relative simplicial complex Φ(G) as the coloring
complex, and show how Φ(G) can be used to learn information about the
chromatic symmetric function of G, denoted X(G,x). If V is the vertex
set of G, then the vertex set of Φ(G) is 2V \ {∅, V }, the collection of all
non-empty proper subsets of V. A collection {V1, . . . , Vk} is a face of Φ(G)
if the following conditions are satisfied:

(1) We have Vi ( Vi+1 for all i ∈ [k − 1].
(2) We have Vi+1 \Vi is an independent set of G for all i ∈ [k+1], where

Vk+1 = V and V0 = ∅.

We briefly review the definitions of quasisymmetric functions, integer
compositions, and monomial and fundamental quasisymmetric functions;
see Section 7.19 of [Sta99] for relevant definitions. Let x = x1, x2, . . . be a
sequence of commuting indeterminates. Recall that an integer composition

α of a positive integer n is a sequence (α1, . . . , αk) of positive integers such
that α1 + · · · + αk = n. We write ℓ(α) = k, and α |= n. Let n ∈ N and
let F (x) ∈ C[[x]] be a homogeneous formal power series in x, where the
degree of every monomial in F (x) is n. Then F (x) is a quasisymmetric

function if it satisfies the following property: for every α |= n and every

i1 < i2 < · · · < iℓ(α), we have [
∏ℓ(α)
j=1 x

αj

ij
]F (x) = [

∏ℓ(α)
j=1 x

αj

j ]F (x).

Given an integer composition α = (α1, α2, . . . , αk) of n, we let

Mα =
∑

i1<···<ik

k
∏

j=1

x
αj

ij
.

These are the monomial quasisymmetric functions, which form a basis for
the ring of quasisymmetric functions. We will often express elements of
QSym as generating functions in x, or in terms of the monomial quasisym-
metric functions. Given a quasisymmetric function f and an integer compo-
sition α, let [Mα]f be the coefficient of Mα in the monomial quasisymmetric
expansion of f .

The second basis we focus on is the basis of fundamental quasisymmetric
functions, first introduced by Gessel [Ges84]. The set of integer compositions
is partially ordered by refinement: we write α ≤ β if β is a refinement of α.
Note that this order is dual to the typical order studied in the literature.
With respect to this partial order, the set of integer compositions forms a
lattice. The fundamental quasisymmetric functions Fα are defined by:

Fα =
∑

β≥α

Mβ .

Let G be a graph with vertex set V . The complex Φ(G) is a balanced

relative simplicial complex of dimension |V |−2, which means that it is pure
and comes with a coloring κ : V (Φ(G)) → [|V | − 1] such that every facet
has exactly one vertex of each color. Given any balanced relative simplicial
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complex Φ on vertex set N of dimension d and S ⊆ [d+ 1], we define

fS(Φ) = |{σ ∈ Φ(G) : {κ(v) : v ∈ σ} = S}|.

This is the flag f -vector of Φ. If we write S = {s1, s2, . . . , sk}, with s1 <
· · · < sk, then we define α(S) = (s1, s2 − s1, . . . , sk − sk−1, |V | − sk). In
Corollary 41, we show that

X(G,x) =
∑

σ∈Φ

Mα(κ(σ))(1)

=
∑

S⊂[|V |−1]

fS(Φ(G))Mα(S).(2)

Thus fS(Φ(G)) = [Mα(S)]X(G,x) and we can use the relative coloring com-
plex to understand the chromatic symmetric function, similar to how the
coloring complex was used to study the chromatic polynomial.

In order to get new information using this perspective, we prove new
results about balanced relative simplicial complexes. In Section 2, we study
flag f -vectors of balanced relative simplicial complexes, as well as the f -
vector of pure relative simplicial complexes. We also study colored relative
simplicial complexes, which are relative simplicial complexes Φ equipped
with a coloring function κ : V (Φ) → [k] with the property that no two
vertices of a face σ ∈ Φ receive the same color. In Subsection 2.1, we review
the definition of pure relative simplicial complexes, and f -vectors.

Definition 1. Given a sequence (a0, . . . , ak), we say the sequence is strongly
flawless if the following two systems of inequalities are satisfied:

(1) We have a0 ≤ a1 ≤ · · · ≤ a⌊k/2⌋.
(2) We have ai ≤ ak−i for 0 ≤ i ≤ ⌊k/2⌋.

Examples of strongly flawless sequences include pure O sequences [Hib89]
and the h-vectors of broken circuit complexes of matroids [JKL18]. Re-
cently, the Whitney numbers of the second kind of a realizable matroid have
been shown to be strongly flawless [HW17], solving the top-heavy conjecture
[DW75].

We show that the f -vector of a pure relative simplicial complex is also
strongly flawless. In fact, we show more is true. We say that a sequence
(a0, . . . , an) is super flawless if, for all i, we have (n − i)ai ≤ (i + 1)ai+1.
We show in Proposition 9 that every super flawless sequence is a strongly
flawless sequence.

We present the following result.

Proposition 2. Let (f−1, f0, . . . , fd) be the f -vector of a pure relative sim-

plicial complex Φ. Then (f−1, . . . , fd) is super flawless.

The proof is immediately given after the proof of Proposition 9. In Sub-
section 2.2, we study balanced relative simplicial complexes, and their flag
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f -vectors. The flag f -vector is a refinement of the f -vector, as we have

fi−1(Φ) =
∑

S⊆[d]:|S|=i

fS(Φ).

We present the following result.

Proposition 3. Let Φ be a balanced relative simplicial complex of dimension

d-1. Let S ⊆ T ⊆ [d]. Then fS(Φ) ≤ fT (Φ).

The proof is given immediately after Examples 12. Since the chromatic
symmetric function of a graph is related to the flag f -vector of Φ(G), we ob-
tain inequalities about chromatic symmetric functions and chromatic poly-
nomials. Moreover, since χ(G,x) can be obtained from X(G,x) by principal
specialization, the f -vector of Φ(G) can be used to obtain inequalities about
χ(G,x) as well. Using Equation (2), Proposition 2 and Proposition 3, one
can prove the following:

Proposition 4. Let G be a graph on n vertices. For α ≤ β |= n in the

refinement order, we have

(3) [Mα]X(G,x) ≤ [Mβ ]X(G,x).

Moreover, if we write χ(G, c) =
∑n

i=0 fi
(c
i

)

, then f0 = 0 and (f1, . . . , fn)
is super flawless.

We refer to a quasisymmetric function which satisfies the inequality in
Equation (3) as beingM -increasing. In this paper, we use Proposition 2 and
3 in the proof of Theorem 5 below, from which Corollary 41 and Proposition
4 follows.

Our primary goal in this paper is to generalize the construction of the col-
oring complex of a graph to other combinatorial objects and quasisymmetric
functions. Given a collection C of combinatorial objects, and a quasisym-
metric function Ψ(O,x) for each O ∈ C, we wish to find balanced relative
simplicial complexes Φ(O) such that an analogue of Equation (2) holds,
with X(G,x) replaced by Ψ(O,x). Whenever we can show that such a
construction exists, then we know that the quasisymmetric functions are
M -increasing, and that the corresponding polynomials are strongly flawless.

We observe that the definition of the coloring complex of G involves flags
V1 ( V2 ( · · · ( Vk such that G restricted to Vi \ Vi−1 is 1-colorable. In
general, we see that, given a combinatorial object O with a vertex set V ,
and a notion of 1-colorable, we want flags V1 ( V2 ( · · · ( Vk ( V such that
restricting O to Si \ Si−1 results in something 1-colorable. One well-known
setting for discussing combinatorial objects with vertex sets (or labels), is
the setting of combinatorial species. It is also well-known that coalgebras
are a useful way to study the notion of restriction. Hence, if we work with
combinatorial Hopf monoids in species, we will have a general notion of
restriction and label set.

Our focus will be on combinatorial objects that form a linearized com-
binatorial Hopf monoid, and where the quasisymmetric function is induced
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by a linearized character. In Section 3, we define linearized combinatorial
Hopf monoids in species. Roughly speaking, we start with a linear species
H, also known in the literature as a vector species or species. For each finite
set N , we have a vector space HN . We require H to be a Hopf monoid object
in the category of linear species equipped with a character ϕ, where each
vector space HN comes with a distinguished basis HN (which we refer to as
H-structures), such that:

(1) The product of basis elements is a basis element.
(2) When the coproduct of a basis element is nonzero, then it is a simple

tensor of basis elements.
(3) The character takes on values 0 or 1 on basis elements.

Our notion of linearization is more general than in [AM13, Mar15], because
we are linearizing pointed set species, and regarding the base points as being
the zero vector. For example, the Hopf monoid of posets discussed in this
paper is linearized in our sense, but not linearized from set species, because
the coproduct of a poset might be zero. Our decision to study linearized
characters is motivated by the fact that many examples of characters studied
in the literature are linearized from pointed set species. In Subsection 3.1, we
discuss the linearized Hopf monoids of graph KG•, posets KP•, and matroids
KM•. All three examples have appeared in [AM10, AM13, AA17].

For a Hopf monoid H in species, given a finite set N , the coproduct map ∆
decomposes as a direct sum

⊕

S⊔T ∆S,T where ∆S,T : HN 7→ HS⊗HT where ⊔
denotes disjoint union. Informally, we will think of ∆S,T (h) as decomposing
h into disjoint label sets. The axioms of a Hopf monoid ensures that, given
N = C1 ⊔ C2 ⊔ · · · ⊔ Ck, the expression ∆C1,C2,...,Ck

(h) is well-defined. We
discuss this in more detail in Section 3.

We also discuss the ϕ-chromatic quasisymmetric function, Ψϕ(h,x), which
is an invariant associated to any H-structure h in a linearized combinatorial
Hopf monoid H. The definition is given in Equation (4). The existence of
this invariant comes from the work of Aguiar and Mahajan [AM10] and
Aguiar, Bergeron, and Sottile [ABS06], although in Theorem 26 we give an
alternative combinatorial description of the invariant in terms of ϕ-proper
colorings. Our primary focus will be on the chromatic character χ which
we introduce in this paper in Definition 25. It is defined for any linearized
Hopf monoid, and generalizes well-known characters for graphs, posets, ma-
troids, and generalized permutohedra. We describe the character in detail
for the Hopf monoid of graphs, posets, and matroids, and derive the re-
sulting chromatic quasisymmetric function. For example, from our general
theory, X(G,x) = Ψχ(g,x), where χ is the chromatic character on the Hopf
monoid of graphs.

Given a linearized Hopf monoid H with character ϕ, we want to associate
a balanced relative simplicial complex Φϕ(h) to each H-structure h ∈ HN
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such that
Ψϕ(h,x) =

∑

S⊆[|N |−1]

fS(Φϕ(h))Mα(S).

Given a pointed set species H such that the linearization KH is a linearized
Hopf monoid with linearized character ϕ, we wish to find a set species K,
and a natural transformation Φ : H → K, such that:

(1) Every non-zero K-structure kN is a colored relative simplicial com-
plex on N , and

(2) For every non-zero H-structure h, we have

Ψϕ(h,x) =
∑

S⊆[|V |−1]

fS(Φϕ(h))Mα(S).

We refer to Φ as the geometric realization of H. In Section 4, we give sufficient
conditions on the linearized character ϕ of a linearized combinatorial Hopf
monoid that ensures that H has a geometric realization. The conditions
require notation from Section 3; see Definition 27. Characters which satisfy
the conditions listed in Definition 27 are called convex characters. We define
the ϕ-coloring complex Φϕ(h) in Definition 33. We define

Φϕ(h) = {F1 ( F2 ( · · · ( Fk : ϕ
⊗k+1 ◦∆F1,F2\F1,...,N\Fk

(h) = 1}

where ϕ⊗k+1 = ϕ⊗ϕ⊗· · ·⊗ϕ where there are k+1 terms. Informally, we are
looking at flags where ‘restricting’ h to Fi\Fi−1 is 1-colorable for all i, where
‘restriction’ comes from the coproduct, and saying k is ‘1-colorable’ means
that ϕ(k) = 1. We show that the coloring complexes do form a geometric
realization for H whenever ϕ is a convex character.

We also give sufficient conditions on when a linearized combinatorial Hopf
monoid KH has a geometric realization Φ such that, for every non-trivial H-
structure h ∈ HN , the complex Φ(h) is balanced of dimension |N | − 2. We
refer to the corresponding characters as balanced convex characters. Let ∆
be the coproduct. We say ϕ is a balanced convex character if it satisfies the
following conditions for all N and h ∈ HN :

(1) If |N | = 1, then ϕ(h) = 1.
(2) If |N | > 1, then ∆(h) 6= 1⊗ h+ h⊗ 1.

(3) If ϕ(h) = 1, and we write ∆(h) =
∑k

i=1 xi ⊗ yi where ∆ is the
coproduct, then ϕ(xi) = ϕ(yi) = 1 for all i.

We present the following result, which is a combination of Theorem 35 and
Theorem 39.

Theorem 5. Let (KH,K(ϕ)) be a linearized combinatorial Hopf monoid with

a convex character ϕ. Given an H-structure h, let Φϕ(h) be the ϕ-coloring
complex of h. Then

Ψϕ(h,x) =
∑

S⊆[|N |−1]

fS(Φϕ(h))Mα(S),

where N is the vertex set of h.
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If ϕ is a balanced convex character, then Φϕ(h) is balanced for all non-

trivial h. In that case, Ψϕ(h,x) is M -increasing. If we write χϕ(h, x) =
∑|N |

i=0 fi
(x
i

)

, then f0 = 0 and (f1, . . . , f|N |) is super flawless.

In Theorem 31, we show that the chromatic character χ is always convex,
and give conditions under which it is a balanced convex character. We show
that these conditions are met for the Hopf monoids of graphs, posets, and
matroids, and describe the corresponding geometric realizations. In the case
of graphs, we show that Φχ(g) is the relative coloring complex described in
this introduction. We also show how Theorem 5 implies inequalities for the
chromatic symmetric function of a graph, the P -partition enumerator of
a poset, and the Billera-Jia-Reiner quasisymmetric function of a matroid.
These inequalities can also be derived from the fact that the correspond-
ing quasisymmetric functions are all F -positive. However, our approach
generalizes to other invariants for mixed graphs and double posets, where
F -positivity no longer holds.

Thus, we have a vast generalization of the coloring complex of a graph.
A natural problem is to classify the possible coloring complexes that can
arise from our construction. That is, given a relative simplicial complex Φ,
does it arise as Φϕ(h) for some combinatorial Hopf monoid (KH,K(ϕ)) and H-
structure h? In Section 5, we define an abstract relative coloring complex; see
Definition 45. The motivation comes from the observing another property
of coloring complexes of graphs Φ(G). Given two flags

F1 ( · · · ( Fk

and

G1 ( · · · ( Gm

in Φ(G) with Fi = Gj for some i and j, then

F1 ( · · · ( Fi ( Gj+1 ( · · · ( Gm

is also a face of Φ(G). We refer to this new face as an exchange, and say
that a complex that is closed under exchanges satisfies the flag exchange
condition (see Definition 44). An abstract relative coloring complex on N
is a balanced relative subcomplex of the Coxeter complex ΣN of dimension
|N | − 2 satisfying the flag exchange condition. We show that, if H is a
linearized combinatorial Hopf monoid with a convex character ϕ, then the ϕ-
coloring complex of an H-structure h is an abstract relative coloring complex.
Then we show that the collection of abstract relative coloring complexes
forms a pointed set species C. Moreover, KC is also a linearized combinatorial
Hopf monoid. In Theorem 55, we show that KC is the terminal object in the
category of linearized combinatorial Hopf monoids with convex characters.
In particular, the map Φ : H → C that sends h to Φ(h) is a geometric
realization, and gives rise to a Hopf monoid homomorphism K(Φ) : KH →
KC. This will be a foundation for future papers: in order to prove a geometric
result about realizations of Hopf monoids, it suffices to prove the result
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for the Hopf monoid of coloring complexes, or some corresponding Hopf
submonoid.

Throughout the paper we study familiar examples of graphs, posets, and
matroids. In Section 6, we focus on several other examples. In Subsection
6.1, we study a new character for graphs that was recently studied by Aval,
Bergeron, and Machacek [ABM20]. It forms the only prior example of a
character we have found that is convex but not balanced. Then we classify
all the balanced convex characters of graphs.

Then we study examples of Hopf monoids related to mixed graphs, double
posets, rooted connected graphs, antimatroids, and generalized permutohe-
dra. In Subsection 6.2, we study a Hopf monoid related to mixed graphs,
along with two balanced convex characters. Mixed graphs were introduced
in [BBP12]. In Subsection 6.3, we study a Hopf monoid related to rooted
connected graphs. Here the invariant appears to be entirely new. In Subsec-
tion 6.4, we study a Hopf monoid related to double posets. The Hopf alge-
bra of double posets was introduced by Malvenuto and Reutenauer [MR11],
and one of our quasisymmetric functions was previously studied by Grin-
berg [Gri17]. The examples of mixed graphs and double posets are inter-
esting because the resulting ϕ-chromatic quasisymmetric functions are not
always F -positive. Thus our results about quasisymmetric functions being
M -increasing does yield non-trivial results in some cases. In Subsection
6.5, we study a Hopf monoid related to antimatroids. Antimatroids were
introduced in [Jam80].

Finally, in Subsection 6.6, we study the Hopf monoid of generalized per-
mutohedra that was introduced by Aguiar and Ardila [AA17]. Many combi-
natorial Hopf monoids in the literature have morphisms to the Hopf monoid
of extended generalized permutohedra (examples are discussed in detail in
[AA17]). This is an interesting phenomenon that is addressed in [AS20].
This motivates us to wonder how coloring complexes compare to general-
ized permutohedra. We show that the Hopf monoid of antimatroids do

not have injective linearized morphisms to the Hopf monoid of generalized
permutohedra, despite having injective morphisms to the Hopf monoid of
coloring complexes. Thus we see that coloring complexes are a more general
object that contain interesting submonoids.

2. Balanced Relative Simplicial Complexes

In this section, we discuss balanced relative simplicial complexes. We
prove some new results about their flag f -vectors, and we show that the
f -vector of a pure relative simplicial complex is strongly flawless.

2.1. Relative Simplicial Complexes and face vectors.

Definition 6. A relative simplicial complex on a vertex set S is a collection
Φ of subsets of S with the following property:

• For every ρ ⊆ σ ⊆ τ , if ρ, τ ∈ Φ, then σ ∈ Φ.
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a

b c

d

e

a

b c

d

Figure 1. Two examples of pure relative simplicial complexes.

The name comes from the fact that there exists simplicial complexes (Γ,Σ)
with Γ ⊆ Σ, and Φ = Σ \ Γ. We do not require that every vertex appear in
some face. The void complex on S is Φ = ∅, while the empty complex on S
is Φ = {∅}. To be consistent with later algebraic structures, we shall denote
the void complex by 0S and the empty complex by 1S .

Given Φ with vertex set S = {s1, . . . , sk}, we let C[xs1 , . . . , xsk ] be the
polynomial ring with indeterminates xs1 , . . . , xsk . The Stanley-Reisner ideal
for Σ, denoted IΣ, is generated by 〈

∏

s∈σ xs : σ 6∈ Σ〉, and the Stanley-

Reisner module for (Γ,Σ) is IΓ/IΣ. The module is graded by total degree,
and its Hilbert function Hilb(Φ, n) is the number of monomials of degree n in
the module. It is known that the Hilbert function is eventually a polynomial
in n, and that it is an invariant of Φ, despite being defined in terms of (Γ,Σ):
details can be found in [Sta84].

The dimension of a face σ ∈ Φ is |σ| − 1, and the dimension of Φ is the
maximum dimension of a face of Φ. By convention, the dimension of the
void simplicial complex, 0S , is −∞. A maximal face is called a facet. A
complex is pure if all the facets have the same dimension. Note that if we
write Φ = Σ \ Γ for a pair of simplicial complexes Γ ⊆ Σ, then the facets of
Φ are the facets of Σ that are not contained in Γ.

Examples 7. For the following examples, we use abc to denote the set
{a, b, c}. Let Φ be the relative simplicial complex on {a, b, c, d, e} given
by faces {e, ad, de, be, bc, ce, ae, ade, cde, bce, abe}. This relative simplicial
complex appears on the left in Figure 1. In our figures for relative simplicial
complexes, we use dashed lines to indicate subsets σ of a face τ ∈ Φ where
σ 6∈ Φ. For instance, since {a, d} ∈ Φ, there is a solid edge between a and d.
Since {a} ⊆ {a, d} but {a} 6∈ Φ, there is a dashed circle around the vertex
a.

If we let Ξ be the relative simplicial complex on {a, b, c, d} with faces
{d, ad, bc, bd, cd, abd, acd, bcd}, then Ξ appears on the right in Figure 1.

Now we discuss inequalities involving the f -vectors of relative simplicial
complexes. Our proofs are similar to ones appearing in work of Hibi [Hib89].
Suppose Φ is pure and has dimension d−1, where d is a nonnegative integer.
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For i ≥ −1, let fi(Φ) be the number of faces of Φ of dimension i. The
f -vector is defined by f(Φ) = (f−1(Φ), . . . , fd−1(Φ)). Recall that, if ∅ ∈ Φ,
then ∅ has dimension −1, and this is why we start the f -vector with f−1(Φ).
First, it is well-known ([Sta79]) that we have

Hilb(Φ, n) =







f−1(Φ) n = 0
d
∑

i=1
fi−1(Φ)

(n−1
i−1

)

n > 0.

Thus, determining the f -vector determines the Hilbert function.
Recall that the f -vector is strongly flawless if the following two systems

of inequalities are satisfied:

(1) f−1 ≤ f0 ≤ · · · ≤ f⌊(d−1)/2⌋.
(2) fi−1 ≤ fd−i−1 for 0 ≤ i ≤ ⌊d/2⌋.

This is just a translation of the definition of strongly flawless sequence to the
sequence (f−1, . . . , fd), to accommodate the fact that we start the indexing
at −1. A sequence that only satisfies the second set of inequalities is called
flawless.

Example 8. Let Φ be the relative simplicial complex in Example 7. Then
f(Φ) = (0, 1, 6, 4).

If we let Ξ be the relative simplicial complex in Example 7, then f(Ξ) =
(0, 1, 4, 3). Both f -vectors are strongly flawless. However, if we modified Ξ
by adding four new disjoint, isolated vertices, the new f -vector would be
(0, 5, 4, 3), which is no longer strongly flawless.

Similarly, a sequence (f−1, . . . , fd−1), where the indexing starts at −1, is
super flawless if for all i we have

(d− i)fi−1 ≤ (i+ 1)fi.

Proposition 9. Let (f−1, . . . , fd−1) be super flawless. Then (f−1, . . . , fd−1)
is strongly flawless.

Proof. First, we show that (f−1, . . . , fd−1) is flawless. Since our sequence is
super flawless, we see that, for j ≥ 1, we have (d− i)(d− i−1) · · · (d− i− j+

1)fi−1 ≤ (i+1)(i+2) · · · (i+ j)fi+j−1. Hence
(d−i
j

)

fi−1 ≤
(i+j
j

)

fi+j−1. If we

set j = d− 2i, we obtain
( d−i
d−2i

)

fi−1 ≤
( d−i
d−2i

)

fd−i−1, and thus fi−1 ≤ fd−i−1.
Hence the sequence is flawless.

Now we show that it is strongly flawless. Let i ≤ ⌊(d − 1)/2⌋. Then
d ≥ 2i + 1, so (d− i) ≥ (i + 1). Thus (i + 1)fi−1 ≤ (d − i)fi−1 ≤ (i + 1)fi,
and thus fi−1 ≤ fi. �

Proof of Proposition 2. Let {F1, . . . , Fm} be the set of facets of Φ, and let
V be the vertex set of Φ. If m = 0, then there are no facets, and Φ = Σ \ Γ
for a pair of simplicial complexes where Σ = Γ, and thus fi(Φ) = 0 for all
i. Then the f -vector is trivially super flawless. So we suppose m ≥ 1. Let
Σ = 〈F1, . . . , Fm〉, and let Γ = Σ \ Φ. We prove that f(Φ) is super flawless
by induction on m.
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1

2 1

2
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Figure 2. Two examples of colored relative simplicial complexes.

First, suppose m = 1. Then Σ is a simplex. Let i ≤ d. We see that
(d − i)fi−1(Φ) is the cardinality of the set Ai(Φ) = {(S, x) : S ∈ Φ, |S| =
i, x ∈ V \ S}. Meanwhile, (i + 1)fi(Φ) is the cardinality of the set Bi(Φ) =
{(T, x) : T ∈ Φ, |T | = i + 1, x ∈ T}. The function ψi : Ai → Bi given by
ψi(S, x) = (S ∪ {x}, x) is well-defined because we know that S ∪ {x} ∈ Φ
whenever S ∈ Φ and x ∈ V \S, because S ⊆ S∪{x} ⊆ F1 ∈ Φ. Clearly ψi is
injective. Thus (d− i)fi−1(Φ) ≤ (i+ 1)fi(Φ). Hence f(Φ) is super flawless.

Now suppose m > 1. Let Φ1 = 〈Fm〉 ∩ Φ, and let Φ2 = Φ \ Φ1. Clearly
Φ1 is a pure relative simplicial complex. Every face in Φ that is contained
in Fm is a face of Φ1. Hence every face in Φ2 must be contained in some
facet in {F1, . . . , Fm−1}, as otherwise it would be a face of Φ1. Thus Φ2 is a
pure relative simplicial complex. We see that fi(Φ) = fi(Φ1) + fi(Φ2). By
induction, both f(Φ1) and f(Φ2) are both super flawless, and the sum of
two super flawless sequences of the same dimension is also super flawless.
Thus, f(Φ) is super flawless. �

2.2. Balanced and Colored Relative Simplicial Complexes. A col-

ored relative simplicial complex is a triple (Φ, k, κ), where Φ is a relative
simplicial complex, k ∈ N, and κ : S → [k] is a coloring of vertices of Φ with
the property that no two vertices of a face of Φ receive the same color. We
shall call such a function κ a geometric coloring, to distinguish from other
uses of the word coloring that will appear in this paper.

For a colored relative simplicial complex Φ with a fixed geometric coloring
κ, we can define the flag f -vector. Given S ⊆ [k], we let fS(Φ, κ) denote
the number of faces {i1, . . . , im} such that {κ(i1), . . . , κ(im)} = S. Often
we will write fS(Φ) instead of fS(Φ, κ), as we usually will be working with
various relative simplicial complexes with respect to a fixed vertex set V
and geometric coloring κ : V → [k]. Given S = {i1, . . . , im} ⊆ [k], with
i1 < i2 < · · · < im, we define the integer composition α(S) |= (k + 1) by
α(S) = (i1, i2 − i1, . . . , im − im−1, k + 1− im). We encode the flag f -vector
with a quasisymmetric function of degree k + 1, by defining

Hilb(Φ,x) =
∑

S⊆[k]

fS(Φ)Mα(S).
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A flag f -vector is weakly increasing if fS(Φ) ≤ fT (Φ) for all S ⊆ T ⊆
[k]. Equivalently, a flag f -vector is weakly increasing if Hilb(Φ,x) is M -
increasing.

Example 10. Let P be a graded poset with bottom element 0̂ and top
element 1̂, and let ∆(P̄ ) be the order complex of P \ {0̂, 1̂}, which consists
of sets {x1, . . . , xk} such that x1 < x2 < · · · < xk in P . Then ∆(P̄ ) is a
balanced simplicial complex, where we define κ(x) to be its rank in P .

Then

Hilb(∆(P̄ ),x) =
∑

x1<···<xk

Mα({κ(x1),κ(x2),...,κ(xk)}).

This is the F -quasisymmetric function of a graded poset introduced by
Ehrenborg [Ehr96]. As explained in Example 37, the F -quasisymmetric
function of a graded poset is a generalization of the P -partition enumerator.

Example 11. Let Φ and Ξ be the relative simplicial complexes given in
Example 7. Define geometric colorings for both complexes as indicated in
Figure 2. For example, we have κ(e) = 3 for Φ. Then we see that both
complexes are colored relative simplicial complexes with respect to their
respective geometric colorings.

We calculate Hilb(Φ,x) = M3,1 + 2(M1,1,2 +M1,2,1 +M2,1,1) + 4M1,1,1,1,
which isM -increasing. On the other hand, f{4}(Ξ) = 1, but f{1,2,3,4}(Ξ) = 0.
Thus, the flag f -vector of Ξ is not weakly increasing.

Suppose that Φ = 0V or Φ = 1V , the void or empty complexes. Then
regardless of the vertex set V , or the function κ : V → [k], we see that (Φ, κ)
is a colored relative simplicial complex.

Naturally, there is also a flag h-vector, given by:

fS(Φ) =
∑

T⊆S

hT (Φ) or hS(Φ) =
∑

T⊆S

(−1)|S|−|T |fT (Φ).

The flag h-vector also depends upon the geometric coloring function κ. It
holds that Hilb(Φ,x) =

∑

S⊆[k] hS(Φ)Fα(S), so the flag h-vector expresses

Φ in the basis of fundamental quasisymmetric functions.
We say a flag h-vector is positive if hS(Φ) ≥ 0 for all S ⊆ 0. Suppose that

the flag h-vector of Φ is positive, and let S ⊆ T ⊆ [k]. Then

fS(Φ) =
∑

R⊆S

hR(Φ) ≤
∑

R⊆T

hR(Φ) = fT (Φ).

Hence, if the flag h-vector of Φ is positive, then the flag f -vector of Φ is
weakly increasing. The converse does not necessarily hold. For example, for
Φ in Example 11, we have h{1,2,3}(Φ) = −1, even though the flag f -vector
is weakly increasing.

A colored relative simplicial complex Φ with geometric coloring κ : V (Φ) →
[k] is balanced if Φ is pure, and k = d, where d − 1 is the dimension of the
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complex. The definition of balanced we give here is equivalent to the defini-
tion of totally balanced in [Sta79]. However, it has become more common to
use the phrase balanced in place of totally balanced. We show that balanced
relative simplicial complexes form a class of colored simplicial complexes
whose flag f -vectors are weakly increasing.

Examples 12. We regard the empty complex 1∅ with coloring κ : ∅ → [0]
as a balanced simplicial complex over ∅ of dimension −1. We regard the
void complex 0N as not being balanced on any ground set N . The colored
simplicial complex Φ appearing in Example 11 is balanced. The colored
complex Ξ in that same example is not. In fact, since every pair of vertices
of Ξ is contained in some facet of Ξ, we see that any geometric coloring of
Ξ must use four colors, so there is no geometric coloring κ for which Ξ is
balanced.

Proof of Proposition 3. We prove that the flag f -vector of Φ is weakly in-
creasing by induction on the number of facets of Φ. Let F1, F2, . . . , Fm be
the facets of Φ.

First, suppose m = 1. Φ has exactly one facet σ. Then f[d](Φ) = 1.
In fact, by replacing vertex i with f(i), we can assume that our simplicial
complex has vertex set [d], and σ = [d]. We also see that fS ≤ 1 for all
S ⊆ [d].

Let S ⊆ T . If fS = 0, then fS ≤ fT . So suppose fS = 1. Then S ∈ Φ.
Since [d] is also an element of Φ and Φ is a relative simplicial complex, we
conclude that T ∈ Φ. Hence fT = 1.

Now assume m > 1. Let Φ1 = Φ ∩ 〈Fm〉, and let Φ2 = Φ \ Φ1. Then the
flag f -vector satisfies the following:

fS(Φ) = fS(Φ1) + fS(Φ2)

for every S ⊆ [d]. Moreover, both Φ1 and Φ2 are balanced. By induction,
the flag f -vectors of Φ1 and Φ2 are both weakly-increasing. Thus the flag
f -vector of Φ is also weakly increasing. �

As a corollary, the F -quasisymmetric function of a graded poset is M -
increasing. The fact that the flag f -vector of a graded poset is weakly
increasing can also be proven using Theorem 2.1 of [BH00].

Finally, we mention the relationship between Hilb(Φ,x) and Hilb(Φ, n).
Recall that the double cone of Φ is the relative simplicial complex dcone(Φ)
with vertex set V (Φ) ∪ {−∞,∞} given by:

dcone(Φ) = {σ ∪ τ : σ ∈ Φ, τ ⊆ {−∞,∞}}

Given a quasisymmetric function f , the principal specialization psn(f) is
obtained by setting xi = 1 for i ≤ n, and xi = 0 otherwise. The invariant
psn(f) is a polynomial in the variable n.

Lemma 13. Let Φ be a colored relative simplicial complex. Then

psn+1Hilb(Φ,x) = Hilb(dcone(Φ), n).
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Proof. Observe that psn+1Mα =
(

n+1
ℓ(α)

)

. Thus,

psn+1 Hilb(Φ,x) =
∑

S⊆[d]

fS(Φ)

(

n+ 1

|S|+ 1

)

=
d
∑

k=0

fk−1(Φ)

(

n+ 1

k + 1

)

.

In particular, psn+1Hilb(Φ,x) counts pairs (σ, S) where σ ∈ Φ and S ⊆
[n+1] with |S| = |σ|+1. We write dcone(Φ) = Σ\Γ for simplicial complexes
Γ ⊆ Σ. We give a bijection between the pairs (σ, S) and the monomials of
degree n in IΓ/IΣ.

Given σ ∈ Φ, we write σ = {v1, . . . , vk} where κ(vi) < κ(vj) whenever
i < j. Similarly, we write S = {s1, . . . , sk+1} with 1 ≤ s1 < s2 < · · · <

sk+1 ≤ n + 1. We define F (σ, S) = xs1−1
−∞ x

n+1−sk+1
∞

∏k
i=1 x

si+1−si
vi . We see

that the result is a monomial of degree n. Moreover, since σ ∈ Φ, then for
any T ⊆ {−∞,∞}, we have σ ∪ T 6∈ Γ, and thus F (σ, S) ∈ IΓ. We also
see that F (σ, S) 6∈ IΣ, so F (σ, S) corresponds to a monomial of degree n in
IΓ/IΣ.

Conversely, given a monomial m in IΓ/IΣ of degree n, we may write it in

the form m = xe0−∞x
ek+1
∞

∏k
i=1 x

ei
vi where:

(1) e0 + · · ·+ ek+1 = n,
(2) ei > 0 for 1 ≤ i ≤ k,
(3) {v1, . . . , vk} ∈ Φ, and
(4) κ(vi) < κ(vj) for i < j.

Note that we are allowing e0 = 0 or ek+1 = 0 as possibilities. Then let
G(m) = ({v1, . . . , vk}, {e0 + 1, e0 + e1 + 1, . . . , e0 + · · · + ek + 1}). Then F
and G are inverse bijections. �

2.3. Coxeter Complex of type A and Convex Albums. In this section,
we discuss relative simplicial complexes Φ that are subcomplexes of the
Coxeter complex of type A. These form a key class of relative complexes in
this paper.

Given a finite set N , let P (N) be the collection of proper subsets of N .
We define the Coxeter complex of the type A, denoted ΣN , as follows:

ΣN = {{F1, F2, . . . , Fk} : ∅ ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fk ⊂ N}

The faces of ΣN are flags of proper subsets of N . We denote the faces by
F• and write F• : F1 ⊂ F2 ⊂ · · · ⊂ Fk to mean F• = {F1, . . . , Fk} and
F1 ⊂ F2 ⊂ · · · ⊂ Fk. Given a flag F• : F1 ⊂ F2 ⊂ · · · ⊂ Fk, we write
ℓ(F•) = k + 1.

There is another combinatorial description of a face of the Coxeter com-
plex. Given a finite set N , a set composition of N is a sequence (C1, . . . , Ck)
of disjoint non-empty subsets whose union is N . We denote set compositions



COLORING COMPLEXES AND COMBINATORIAL HOPF MONOIDS 15

as C1|C2| · · · |Ck, and refer to the sets Ci as blocks. We let C |= N to denote
that C is a set composition of N , and let ℓ(C) = k be the length of the
composition.

To every set composition C |= N , there is an associated flag F (C) =

{F1, . . . , Fℓ(C)−1}. We define Fi =
⋃i
j=1Cj . Note that F (C) ∈ ΣN . Simi-

larly, if F• ∈ ΣN , and ℓ(F•) = k, then there is an associated set composition
C(F•), defined by:

(1) C1 = F1,
(2) Ci = Fi \ Fi−1 for 2 ≤ i ≤ k − 1, and
(3) Ck = N \ Fk−1.

For example, to the set composition 13|2|45, the associated edge in the
complex Σ{1,2,3,4,5} is the flag {1, 3} ⊂ {1, 2, 3}. Hence, we can denote faces
of the Coxeter complex by flags of subsets or by set compositions.

Since there is a partial order on the faces of ΣN given by containment, we
also have a partial order on set compositions: we say C ≤ C ′ if every block
of C ′ is a subset of a block of C, and, for each block Ci of C, the blocks of
C ′ that are contained in Ci appear consecutively in C ′. This partial order
is known as refinement. Moreover, the maps F and C are order-preserving
bijections.

An album A is a collection of set compositions. To every album A, we
can define a collection of flags F (A) = {F (C) : C ∈ A}. Similarly, given a
collection F of faces of the Coxeter complex ΣN , we can associate an album
A(F) = {C(F•) : F• ∈ F}. This defines a correspondence between albums
and collections of flags.

Example 14. As an example, if we let F be the collection of all flags in
Σ{a,b,c}, then

A(F) = {abc, a|b|c, ab|c, b|a|c, b|ac, b|c|a, bc|a, c|b|a, c|ab, c|a|b, ac|b, a|c|b, a|bc}.

Now we discuss how to determine if F (A) is a relative simplicial complex.
An album is convex if, whenever C,C ′′ ∈ A and there exists C ′ with C ≤
C ′ ≤ C ′′, we have C ′ ∈ A. Since the functions F and A are order-preserving,
we arrive at the following:

Proposition 15. An album A is convex if and only if F (A) is a relative

simplicial complex.

Example 16. As an example, let

A = {a|c|b|d, c|a|b|d, c|a|d|b, a|c|d|b, a|c|bd, ac|b|d,

c|a|bd, ac|d|b, a|bc|d, c|ad|b, ac|bd}.

The reader can check that this is a convex album. Hence F (A) is a relative
simplicial complex, which is given on the left in Figure 3. In that image, we
label the vertex correspond to {a, c} as ac, and so on. Let A′ = A∪{abc|d}.
Then A′ is no longer convex, as abc|d ≤ c|ab|d ≤ c|a|b|d, but c|ab|d 6∈ A′.
The set F (A′) appears on the right in Figure 3. We see that there is a vertex
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abc

c acd

a

ac

abc

c acd

a

ac

Figure 3. Two examples of F (A).

{a, b, c} contained in a triangle, and yet contained in a dashed edge. Hence
F (A′) is not a relative simplicial complex.

3. Combinatorial Hopf monoids

In this section, we define combinatorial Hopf monoids. First, we define
the notion of Hopf monoid in the category of linear species. A linear species

is a functor F : Set → V ec from the category of finite sets with bijections
to the category of finite dimensional vector spaces over a field K and linear
transformations. Sometimes linear species are called vector species, or just
species. In this paper, we also use set species and pointed set species. We
adopt the following notation: for a given (linear, pointed set, set) species Q,
and a finite set N , we let QN denote the corresponding vector space, pointed
set, or set.

3.1. Linearized Hopf Monoids. Given any braided monoidal category
C, there is a notion of a Hopf monoid object H in C, which is an object H
together with several morphisms satisfying several axioms. The notion of
braided monoidal category is studied in Section 1.1 of [AM10], and the full
list of axioms for a Hopf monoid object appears in Section 1.2 of loc. cit.

Let L be the category of linear species, with natural transformations as
morphisms. Then L has the structure of a braided monoidal category with
respect to the Cauchy product. Given two species Q and R, and a finite set
N , we define

(Q · R)N =
⊕

N=S⊔T

QS ⊗ RT

where ⊔ denotes disjoint union. Given a bijection σ :M → N , and S ⊆M ,
we let σ|S : S → σ(S) be the restriction of σ to S. We define

(Q · R)σ =
⊕

N S⊔T

Qσ|S ⊗ Rσ|T .

Thus Q · R is a species, known as the Cauchy product of Q and R. More
terminology about species and the Cauchy product are found in Section 8.1
of [AM10].

For the category of linear species L, Aguiar and Mahajan have described
the axioms for a Hopf monoid object in terms of an equivalent set of axioms
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in Section 8.3 of [AM10]. We give some of the structural definition and
axioms related to associativity and compatibility for a Hopf monoid object in
the category of linear species with respect to the Cauchy product, and defer
to Secion 8.3 of [AM10], Section 2 of [AM13] or Section 2 of [AA17] for the
full definition and axioms. For every pair of disjoint finite sets M,N , there
are linear transformations µM,N : HM ⊗ HN → HM⊔N and ∆M,N : HM⊔N →
HM⊗HN . We refer to µ asmultiplication and ∆ as comultiplication. We focus
only on connected species, where dim H∅ = 1. Recall that idX : HX → HX is
the identity function. We require several axioms, including:

(1) (associativity) For every triple L,M , and N of disjoint sets, we have
µL,M⊔N ◦ (idL⊗µM,N) = µL⊔M,N ◦ (µL,M ⊗ idN ).

(2) (identity) There exists 1 ∈ H∅ such that, for every finite set N , and
x ∈ HN , we have µ∅,N (1⊗ x) = x = µN,∅(x⊗ 1).

(3) (coassociativity) For every triple L,M , and N of disjoint sets, we
have (idL⊗∆M,N ) ◦∆L,M⊔N = (∆L,M ⊗ idN ) ◦∆L⊔M,N .

(4) (counit) For every finite set N , and x ∈ HN , we have ∆∅,N (x) = 1⊗x
and ∆N,∅(x) = x⊗ 1.

(5) (compatibility) for every quadruple A,B,C and D of disjoint sets,
we have

∆A⊔C,B⊔D ◦µA⊔B,C⊔D = (µA,C⊗µB,D)◦(idA⊗τB,C⊗ idD)◦(∆A,B⊗∆C,D),

where τB,C : HB⊗HC → HC⊗HB is the linear map satisfying τB,C(x⊗
y) = y ⊗ x.

Note that these are equalities of functions. We let ∆L,M,N = idL⊗∆M,N ◦
∆L,M⊔N , and x · y = µM,N(x ⊗ y). Finally, many naturality conditions
are required for the unit, counit, multiplication, and comultiplication maps.
We use the naturality condition for comultiplication for some proofs. Given
N = S⊔T , where ⊔ denotes disjoint union, and given a bijection σ :M → N ,
we require

∆S,T ◦ Hσ = Hσ|
σ−1(S)

⊗ Hσ|
σ−1(T )

◦∆σ−1(S),σ−1(T ).

Remark 17. Our counit axiom is not the usual one presented in [AM10],
but for connected species, our axiom is equivalent. We assume the reader
is familiar with the usual notion of Hopf monoid in the category of linear
species, and with the Cauchy product. If we define I by

IN =

{

{~0} N 6= ∅

K N = ∅

then we obtain the unit for the monoidal category L. For every species H

and finite set N , we let

ρN : HN →
⊕

N=S⊔T

IS ⊗ HT
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be given by ρN (x) = 1⊗x, viewed as an element of I∅ ⊗ HN . Then ρN is an
isomorphism, and ρ is an ismorphism. Similarly, we let

λN : HN →
⊕

N=S⊔T

HS ⊗ IT

be given by λN (x) = x⊗ 1, viewed as an element of HN ⊗ I∅.Then λN is an
isomorphism, and λ is an ismorphism.

The unit of a Hopf monoid is a morphism ι : I → H while the counit is
a morphism ǫ : H → I. We refer to ι∅(1) as 1 ∈ H∅. One of the axioms for
a Hopf monoid object in a monoidal category is that ιǫ = idI . Since H is
connected, it follows from this axiom that

ǫN (x) =

{

0 N 6= ∅

x N = ∅

for every finite set N and every x ∈ HN .
The usual counit axiom is that

(ǫ · id) ◦∆ = ρ

and
(id ·ǫ) ◦∆ = λ.

For a given finite set N, and h ∈ HN , we see that (ǫ · id)◦∆(h) = ∆∅,N (h),
while ρ(h) = 1⊗ h. Thus ∆∅,N (h) = 1⊗ h. A similar argument shows that
∆N,∅(h) = h⊗ 1.

Now we discuss the notion of a pointed set species and its lineariza-
tion. Most of our Hopf monoids come from this construction. A pointed

set consists of a pair (A, x) where x is an element of a set A. A morphism
ϕ : (A, x) → (B, y) between pointed sets consists of a function ϕ : A → B
such that ϕ(x) = y. An isomorphism is a bijective morphism. Unless we
need to be careful, we will refer to the base point as 0. So all of our pointed
sets can be denoted by (A, 0).

Given two pointed sets (A, 0) and (B, 0), their wedge product, denoted
by A ∧B, is the pointed set (A× B/ ∼, (0, 0)), where ∼ is the equivalence
relation induced by requiring (a, 0) ∼ (0, 0) ∼ (0, b) for all a ∈ A, b ∈
B. A pointed set species is a functor F : Set → PSet from the category
of finite sets with bijections, to the category of pointed finite sets with
isomorphisms. A morphism between two pointed set species Q and R is a
natural transformation ϕ : Q → R.

Given a pointed set species F, there is an associated linear species KF

called the linearization: we define (KF)N to be the vector space with basis
FN \ {0}. We refer to f 6= 0 as an F-structure if there exists a finite set N
such that f ∈ FN \ {0}.

Given a morphism of pointed set species ϕ : F → G, the lineariza-

tion K(ϕ) : K(F) → K(G) is the natural transformation obtained by ex-
tending ϕN : FN → GN by linearity to induce a linear transformation
K(ϕ)N : K(F)N → K(G)N . We refer to a morphism of linear species as
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linearized if it is the linearization of a morphism of pointed set species.
Thus linearization is a functor from the category of pointed set species and
natural transformations to L.

Let H be a pointed set species. We say that KH is a linearized Hopf monoid
if KH is a Hopf monoid in the category of linear species, and:

(1) For every pair of disjoint finite sets M,N , the multiplication map
µM,N on KH is linearized from a morphism µM,N : HM∧HN → HM⊔N .
This means that for every x ∈ HM , y ∈ HN , we have x · y ∈ HM⊔N . If
x = 0 or y = 0, then x · y = 0.

(2) For every pair of disjoint finite sets M,N , the comultiplication map
∆M,N on KH is linearized from a morphism ∆M,N : HM⊔N → HM ∧
HN . Thus, for every x ∈ HM⊔N , if ∆M,N(x) 6= 0 then there exists
x|M ∈ HM \ {0} and x/M ∈ HN \ {0} with ∆M,N (x) = x|M ⊗ x/M .

Our notion of linearization is more general than the usual one found in the
literature, because we are working with pointed set species. The advantage
is that we view the species of posets as a linearized species, despite the fact
that the coproduct is sometimes zero. When we write ‘let KH be a linearized
Hopf monoid’, then H is the underlying pointed set species.

Proposition 18. Let H be a pointed set species. Suppose that KH is a

linearized Hopf monoid, and that KH is connected. Let M and N be disjoint

finite sets with x ∈ HM and y ∈ HN . Suppose that x · y = 0. Then x = 0 or

y = 0.

Proof. Consider αM,N := ∆M,N ◦ µM,N : HM ∧ HN → HM ∧ HN . From the
compatibility axiom for products and coproducts, we know that

∆M,N ◦ µM,N = (µM,∅ ⊗ µ∅,N ) ◦ (idM ⊗τ∅,∅ ⊗ idN ) ◦ (∆M,∅ ⊗∆∅,N )

is an equality of functions for the linearization K(αM,N ). Hence, we have
K(αM,N )(x⊗ y) = (µM,∅ ⊗ µ∅,N )(x⊗ 1⊗ 1⊗ y) = x⊗ y.

Thus αM,N (x, y) = (x, y). On the other hand, ∆M,N(x·y) = ∆M,N(0) = 0,
since ∆M,N is a function of pointed sets, and hence must preserve basepoints.
Thus (x, y) = 0, which by definition of wedge product, means that x = 0 or
y = 0. �

Most Hopf monoids that have been studied in the literature are linearized
Hopf monoids, the duals of linearized Hopf monoids, or Hadamard products
of such Hopf monoids. The Hadamard product is another product on species
defined in Section 8.1 of [AM10], and also covered in Section 3 of [AM13].
Examples of linearized Hopf monoids include the Hopf monoid of graphs,
posets, matroids, hypergraphs, set partitions, linear orders, and generalized
permutohedra. In fact, almost every Hopf monoid studied in [AA17] is a
linearized Hopf monoid.

Recall that a set species is an endofunctor Q on the category of finite sets
with bijections. A morphism between two set species Q and R is a natural
transformation. There is a functor from the category of set species with
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natural transformations to the category of pointed set species. Given a set
species Q, and a finite set N , we let Q•N = QN ⊔ {0}. Given a bijection
σ :M → N , we let Q•σ : Q•M → Q•N be given by:

Q•σ(x) =

{

0 x = 0

Qσ(x) x 6= 0

We refer to Q• as the pointing of Q. Most of our linearized species will be of
two forms:

(1) They will be of the form KH•, where H is a set species.
(2) They will be of the form KK, where the elements of KN are relative

simplicial complexes, and the base point of KN is the void complex
0N . Examples of pointed set species of this form appear in Section
4.

Given a natural transformation of set species ϕ : Q → R, we can also define
a morphism ϕ• : Q• → R• by

ϕ•
N (x) =

{

0 x = 0

ϕ(x) otherwise

for every finite set N and every x ∈ Q•N . Thus we have a functor from
set species and morphisms to pointed set species and morphisms. We now
list several examples of linearized Hopf monoids. These examples have all
appeared in [AM10].

Example 19. Given a finite set N , let EN = {1}. This gives rise to a
set species, called the exponential species. Then KE• is a linearized Hopf
monoid, with multiplication maps µM,N (1 ⊗ 1) = 1, and comultiplication
maps ∆M,N (1) = 1⊗ 1.

Example 20. Given a finite set N , we let SN denote the collection of set
compositions with ground set N . This forms the set species of set composi-
tions. Given a set decomposition N = S⊔T , if C |= S is given by C1| · · · |Ck
and C ′ |= T is given by C ′

1| · · · |C
′
r, then their product C ·C ′ is the set com-

position C1| · · · |Ck|C
′
1| · · · |C

′
r. Given a set composition C |=M ⊔N , we let

C|M = C1∩M |C2∩M | · · · |Ck∩M and C/M = C1∩N | · · · |Ck∩N , where it
is understood that we remove any empty blocks from the composition. For
example, ∆{1,3,5},{2,4,6}(12|35|46) = 1|35 ⊗ 2|46.

Then KS• is a linearized Hopf monoid.

Example 21. Given a finite set N , let GN denote the collection of graphs
with vertex set N . Given a bijection σ : M → N , and a graph g ∈ GM ,
define Gσ(g) to be the graph on N with edges ij if and only if σ−1(i)σ−1(j)
is an edge of g. Then this gives rise to the set species of graphs G.

The species of graphs KG• is a linearized Hopf monoid. The product is
given by g · h = g ⊔ h, the disjoint union of graphs. Given a graph g, and
S ⊆ N , g|S is the induced subgraph on S, and g/S is the induced subgraph
on N − S.
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Example 22. Given a finite set N , let PN denote all partial orders on N .
Given a bijection σ : M → N , and a partial order p ∈ PM , define Pσ(g) to
be the partial order on N given by x ≤ y if and only if σ−1(x) ≤p σ

−1(y).
Then this gives rise to a set species P, the species of posets. The species of
posets KP• is a linearized Hopf monoid. The product is given by p ·R = p⊔R,
the disjoint union of partial orders. Given a partial order p, and S ⊆ N , we
define p|S = p/S = 0 if S is not an order ideal of p. If S is an order ideal,
then p|S and p/S are the induced subposets on S and N − S respectively.

Example 23. Given a finite set N , let MN denote the collection of matroids
with ground set N . Given a bijection σ : M → N , and a matroid m ∈ MM ,
define Mσ(m) to be the matroid on N where a set S is a basis if and only if
σ−1(S) is a basis of m. Then this gives rise to a set species M, the species
of matroids. The species of matroids KM• forms a linearized Hopf monoid.
The product is given by the direct sum operation. Given a matroid m, and
S ⊂ N , we define m|S to be the restriction, and m/S to be the contraction of
matroids.

3.2. Characters and Combinatorial Hopf Monoids. Recall that a mor-
phism of (set, pointed set, linear) species ϕ : F → G is a natural transforma-
tion between F and G, where F and G are (set, pointed set, linear) species.

A morphism ϕ : H → KE•, where H is a Hopf monoid in species, is a
character if for all disjoint finite sets M and N , and all x ∈ HM and all
y ∈ HY , we have ϕN (x) · ϕM (y) = ϕM⊔N (x · y). By an abuse of notation,
we will write ϕ(h) in place of ϕN (h), when no confusion will arise. Given a
a linearized Hopf monoid K(H), and a morphism ϕ : H → E• such that K(ϕ)
is a character, then we shall refer to K(ϕ) as a linearized character.

Now we define a linearized combinatorial Hopf monoid. A linearized com-

binatorial Hopf monoid is a linearized Hopf monoid KH with a linearized

character K(ϕ). This means that ϕ(h) = 0 or ϕ(h) = 1 for every H-structure.
The motivation is that many combinatorial Hopf algebras are studied where
the character ϕ only takes on the values 0 and 1.

First, we mention two examples of characters that are defined for every
linearized Hopf monoid.

Example 24. Let KH be a linearized Hopf monoid. Given a finite set N ,
and h ∈ HN , we define

ζN (h) =

{

0 h = 0

1 otherwise

for every H-structure h. Then K(ζ) is a linearized character, which we call
the zeta character. Thus, for every linearized Hopf monoid KH, we see that
(KH,K(ζ)) is a linearized combinatorial Hopf monoid.

Definition 25. Let KH be a linearized Hopf monoid. Given a finite set N ,
we say an H-structure h ∈ HN \ {0} is totally reducible if |N | = 1, or there
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exists a nontrivial decomposition N = S ⊔T , and totally reducible elements
x ∈ HS and y ∈ HT such that h = x · y. We define

χN (h) =

{

1 if h is totally reducible

0 otherwise.

We call K(χ) the chromatic character. Thus, for every linearized Hopf
monoidKH, we see that (KH,K(χ)) is a linearized combinatorial Hopf monoid.

For instance, if we let H = G, then a graph g is totally reducible if and only
if it is edgeless. If we let H = P, then a poset p is totally reducible if and only
if it is an antichain. Finally, if H = M, then a matroid m is totally reducible if
and only if is a direct sum of loops and coloops, which means m has a unique
basis. These characters were studied in context of Hopf algebras in [ABS06],
and in the context of Hopf monoids in [AA17]. These characters give rise
to the chromatic symmetric function, Gessel’s P -partition enumerator, and
the Billera-Jia-Reiner invariant of a matroid, as we discuss below.

3.3. Hopf submonoids. Finally, given a species Q, a species R is a sub-

species of Q if the following two conditions are satisfied:

(1) For every finite set N , we have RN ⊆ QN .
(2) For every bijection σ :M → N , and every r ∈ RN , we have Rσ(r) =

Qσ(r).

Suppose that KQ is a linearized Hopf monoid. Then KR is a linearized
Hopf submonoid if R is subspecies of Q such that KR is a linearized Hopf
monoid, where the product and coproduct on KR agrees with the corre-
sponding structures on KQ. This is equivalent to requiring the following two
conditions:

(1) For every pair of disjoint finite setsM and N , and structures p ∈ RM
and r ∈ RN , we have p · r ∈ RM⊔N .

(2) For every pair of disjoint finite sets M and N , and every R structure
q ∈ RM⊔N , if ∆M,N (q) 6= 0, then q|S and q/S are both non-zero R

structures.

If KQ is a linearized combinatorial Hopf monoid with linearized character
K(ϕ), and KR is a linearized Hopf submonoid, then KR is a combinatorial
Hopf submonoid with character K(ϕ) as well.

3.4. The chromatic quasisymmetric function. Recall that a combina-

torial Hopf algebra is a graded connected Hopf algebra H with finite graded
dimension, equipped with with a linear multiplicative map ϕ : H → K,
which is called a character. Aguiar, Bergeron, and Sottile [ABS06] showed
that there was a unique Hopf algebra homomorphism from any combinato-
rial Hopf algebra H to the combinatorial Hopf algebra of quasisymmetric
functions. In this section we review a construction that associates a Hopf
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algebra to a Hopf monoid. The end result is that, given a linearized com-
binatorial Hopf monoid H, and an H-structure h, there is a quasisymmetric
function invariant Ψϕ(h,x) associated to h. The advantage of working with
species is that we are able to describe this invariant as enumerating color-

ings. We shall refer to this invariant as the ϕ-chromatic quasisymmetric
function of H.

In Chapter 15, Section 1 of [AM10], Aguiar and Mahajan define the Full
Fock functor F , which sends linear species to graded vector spaces. Given
a linear species Q, we define F(Q) =

⊕

n≥0 Q[n]. This defines a functor.

Let k and n be positive integers. We define [k+1, k+n] = {k+i : i ∈ [n]}.
Given two linearly ordered sets S = {s1, . . . , sn} and T = {t1, . . . , tn} with
s1 < · · · < sn and t1 < · · · < tn, we define canoTS : S → T by cano(si) = ti.

Given two species Q and R, we note that F(Q) · F(R) is isomorphic to
⊕

n≥0

⊕

n=s+t

Q[s] ⊗ R[t].

We define
ϕQ,R : F(Q) · F(R) → F(Q · R),

by

ϕQ,R =
⊕

n≥0

⊕

s+t=n

Qid ⊗ R
cano

[s+1,n]
[t]

.

We also define
ψQ,R : F(Q · R) → F(Q) · F(R),

by

ψQ,R =
⊕

n≥0

⊕

S⊔T=[n]

Q
cano

[|S|]
S

⊗ R
cano

[|T |]
T

.

In Proposition 15.25 of [AM10], Aguiar and Mahajan show that, if H is
a Hopf monoid, then F(H) is a Hopf algebra, with multiplication given by
F(µ) ◦ ϕH,H, and comultiplication given by ψH,H ◦ F(∆).

Suppose that we have a character K(ϕ) : KH → KE. Given a H-structure
h ∈ H[n], we can define a character ϕ̂ : F(KH) → K by ϕ̂(h) = ϕ(h). Thus
(F(KH), ϕ̂) is a combinatorial Hopf algebra.

We recall the quasisymmetric function associated to a character on a
combinatorial Hopf algebra (H,ϕ). Given h ∈ Hn, with n ≥ 1,

(4) Ψϕ(h,x) =
n
∑

k=1

∑

α1+α2+···+αk=n

(ϕ⊗k◦(ρα1⊗ρα2⊗· · ·⊗ραk
)◦∆k−1)(h)Mα

where ρn is the projection map from H to Hn, and the summation is over
all integer compositions α of n. For h ∈ H0, we define Ψϕ(h,x) = ǫ(h)M∅,
where ǫ is the counit of H, and ∅ is the empty integer composition.

Thus, given a linearized combinatorial Hopf monoid KH with linearized
character K(ϕ), there is an associated combinatorial Hopf algebra (F(KH), ϕ̂).
For each finite set N , let σ : N → [n] be any bijection. To every H-structure
h ∈ HN we define Ψϕ(h,x) = Ψϕ̂(Hσ(h),x), which we call the ϕ-chromatic
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quasisymmetric function. We show below that the resulting quasisymmetric
function does not depend on the choice of σ. We will abuse notation and
denote the ϕ-chromatic quasisymmetric function by Ψϕ(h,x).

We also define χϕ(h, n) = psnΨϕ(h,x), where ps is the principal special-
ization. Then χϕ(h, n) is a polynomial in n, which we call the ϕ-chromatic

polynomial.

We give two alternative formulas for Ψϕ(h,x), both of which demonstrate
that Ψϕ(h,x) is well-defined. Let KH be a linearized Hopf monoid with
linearized character K(ϕ). Given a set composition C |= N , we define

∆C = (idC1 ⊗∆C/C1
) ◦∆C1,N\C1

. We also let ϕC = (
⊗k

i=1 ϕCi
) ◦∆C . We

use this notation for various proofs.
Let N be a finite set, and let h ∈ HN . We say a set composition is ϕ-proper

for h if ϕC(h) = 1. Let f : N → N be a function. For i ∈ N, let Ni = {v ∈
N : f(v) ≤ i}. We call f a ϕ-proper coloring of h if ϕ(h|Ni+1/Ni) = 1 for all
i.

Theorem 26. Let KH be a linearized combinatorial Hopf monoid with lin-

earized character K(ϕ). Fix a finite set N , and h ∈ HN . Then

Ψϕ(h,x) =
∑

C is ϕ-proper

Mα(C) =
∑

f is ϕ-proper

∏

n∈N

xf(n).

Similarly, χϕ(h, n) is the number of ϕ-proper colorings f such that f(N) ⊆
[n].

For example, consider the combinatorial Hopf monoid (KG,K(χ)). Then
the resulting invariant Ψϕ(g,x) = X(G,x), the chromatic symmetric func-
tion. The invariant Ψζ(p,x) for the combinatorial Hopf monoid (KP,K(ζ))
enumerates p-partitions. Finally, for the combinatorial Hopf monoid (KM,K(χ)),
the invariant Ψχ(m,x) is the Billera-Jia-Reiner quasisymmetric function of
a matroid [BJR09].

Proof. Let N be a finite set, n = |N |, and let σ : N → [n] be a bijection.

For any S ⊆ N , we define σ
[|S|]
S = cano

[|S|]
σ(S) ◦σ|S . We have

∆k−1(Hσ(h)) =
∑

C1⊔C2⊔···⊔Ck=[n]

(

k
⊗

i=1

H
cano

[|Ci|]
Ci

)

◦∆C1|C2|···|Ck
(Hσ(h))

=
∑

C|=[n]:ℓ(C)=k

(

k
⊗

i=1

H
cano

[|Ci|]
Ci

◦ Hσ|
σ−1(Ci)

)

◦∆σ−1(C)(h)

=
∑

C|=[n]:ℓ(C)=k

(

k
⊗

i=1

H
σ
[|Ci|]

σ−1(Ci)

)

◦∆σ−1(C)(h).

where the first equality is the definition of the coproduct of F(KH) on Hσ(h).
The second equality involves reindexing the summation with set composi-
tions of length k, and applying the naturality of ∆C to Hσ. The third equality
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comes from the definition of σ|
[|S|]
S and the fact that H is a functor. Thus we

have

ϕℓ(α) ◦ ρα ◦∆k−1(Hσ(h)) =
∑

C|=[n]:α(C)=α





ℓ(α)
⊗

i=1

ϕ[|Ci|] ◦ Hσ[|Ci|]

σ−1(Ci)



 ◦∆σ−1(C)(h)

=
∑

C|=[n]:α(C)=α





ℓ(α)
⊗

i=1

ϕσ−1(C)



 ◦∆σ−1(C)(h)

=
∑

C|=N :α(C)=α

ϕC(h)

where the second equality comes from the naturality of ϕ, and the third
equality involves replacing C with σ−1(C). We see that ϕC(h) 6= 0 only
when C is ϕ-proper, in which case ϕC(h) = 1. Thus [Mα]Ψϕ(h,x) is the
number of ϕ-proper compositions of type α. The first equality follows.

To prove the second equality, first let f : N → N be an arbitrary function.
We let B(f) = {i ∈ N : f−1(i) 6= ∅}. Then |B(f)| < ∞, and we write
B(f) = {i1, · · · , ik} with i1 < i2 < · · · < ik. Define the set composition
C(f) = C1|C2| · · · |Ck, where Cj = f−1(ij) and ij ∈ B(f). Then we see that

xf =
∏

v∈N

xf(v) =

k
∏

j=1

x
|Cj |
ij

.

Thus xf appears as a term in Mα(C). We claim that

Mα(C) =
∑

f :C(f)=C

xf .

To see this, let i1 < · · · < ik. Let gi1,...,ik : N → N be defined by gi1,...,ik(u) =
ij where u ∈ Cj. Then gi1,...,ik is a function with C(gi1,...,ik) = C and

xgi1,...,ik =
∏k
j=1 x

αj

ij
. Thus every term in Mα(C) corresponds to a unique

function.
Let f : N → N. We show that f is ϕ-proper if and only if C(f) is

ϕ-proper. Suppose that f is ϕ-proper. Then for all i ∈ N, we see that
ϕ(h|Ni

/Ni−1) = 1. Let C(f) = C1| · · · |Ck. Since C1∪· · ·∪Cj = Ni for some
i, it follows that C(f) is ϕ-proper. Similarly, if ϕ(h|Ni

/Ni−1) = 0 for some
i, then Ni−1 6= Ni, and if Ni−1 = C1 ∪ · · · ∪ Cj , it follows that ϕC(h) = 0,
and C is not ϕ-proper. �

4. Geometric Realization

Now we introduce geometric realizations for a linearized combinatorial
Hopf monoid. Given a linearized combinatorial Hopf monoid (KH,K(ϕ)),
a geometric realization consists of a pair (K,Σϕ), where K is a pointed set
species, and Σϕ : H → K is a natural transformation such that:
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(1) The structures of the pointed set species K are colored relative sim-
plicial complexes (Φ, κ).

(2) For each N , the base point of KN is the void complex 0N .
(3) The natural transformation Σϕ : H → K satisfies the additional prop-

erty that Ψϕ(h,x) = Hilb(Σϕ(h),x) for every H-structure h.

We briefly mention the motivation behind making the void complex the base
point. Given 0 ∈ HN , we see that ∆C(0) = 0 for all C. Thus Ψϕ(0,x) = 0
andHilb(Σϕ(0),x) = 0. This forces Σϕ(0) to be the void complex. Thus the
void complex naturally appears to play the same role as the zero vector. Our
focus will be to describe a geometric realization that comes from a certain
construction which relies on the fact that we already have a description of
Ψϕ(h,x) as a summation over set compositions.

4.1. Convex characters. Given a linearized combinatorial Hopf monoid
(KH,K(ϕ)), and an H-structure h ∈ HN , we let

Aϕ(h) = {C |= N : ϕC(h) = 1}

be the album associated to h. We see that this is a natural album which
arises when studying Ψϕ(h,x). In fact, we have

Ψϕ(h,x) =
∑

C∈Aϕ(h)

Mα(C) =
∑

F•∈F (Aϕ(h))

flags in N

Mα(F•).

Moreover, F (Aϕ(h)) is a collection of sets, and if we define κ : 2N →
[|N | − 1] via κ(S) = |S|, then it is not hard to show that κ is a geometric
coloring for F (Aϕ(h)). So if Aϕ(h) is convex, then F (Aϕ(h)) is a colored
relative complex. Our next goal is to determine precisely when this happens.

Definition 27. Let KH be a linearized Hopf monoid, and let K(ϕ) be a
linearized character. We say that ϕ is a convex character if, for every H-
structure h such that ϕ(h) = 1, and any two set compositions C ≤ C ′ such
that C,C ′ |= N , if ϕC′(h) = 1, then ϕC(h) = 1.

The word convex comes from the following proposition.

Proposition 28. Let (KH,K(ϕ)) be a linearized combinatorial Hopf monoid.

Then the albums Aϕ(h) are convex for all H-structures h if and only if ϕ is

a convex character.

Proof. First, suppose that Aϕ(h) is convex for every H-structure h. Let h

be an H-structure such that ϕ(h) = 1. Let C ≤ C ′ be two set compositions
such that C,C ′ |= N and ϕC′(h) = 1. Then C ′ ∈ Aϕ(h). Since ϕ(h) = 1,
N ∈ Aϕ(h). Since N ≤ C ≤ C ′, it follows that C ∈ Aϕ(h), and hence
ϕC(h) = 1. Therefore ϕ is a convex character.

Now suppose that ϕ is a convex character. LetN be a finite set and let h ∈
HN . Let C ≤ C ′ ≤ C ′′ |= N , with C,C ′′ ∈ Aϕ(h). Let F (C) = S1 ⊂ S2 ⊂
· · · ⊂ Sk. Since ϕC(h) = 1, we know ϕ(h|Si−1/Si) = 1 for all i. We observe
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that ϕC′′|Si−1
/Si

(h|Si−1/Si) = 1 for all i. Since C ′|Si−1/Si ≤ C ′′|Si−1/Si and

ϕ is a convex character, we see that ϕC′|Si−1
/Si

(h|Si−1/Si) = 1 for all i. Then

ϕC′(h) = 1, so C ′ ∈ Aϕ(h). �

Definition 29. Let (KH,K(ϕ)) be a linearized combinatorial Hopf monoid.
We say that ϕ is a balanced convex character if, for every finite set N and
every non-zero H-structure h ∈ HN , the following conditions are satisfied:

(1) If |N | = 1, then ϕ(h) = 1.
(2) If |N | > 1, then there exists non-empty S ( N such that

∆S,N\S(h) 6= 0.

(3) If ϕ(h) = 1, then ϕ(h|S) = ϕ(h/S) = 1 for any S ( N such that
∆S,N\S(h) 6= 0.

Proposition 30. Let (KH,K(ϕ)) be a linearized combinatorial Hopf monoid.

If ϕ is a balanced convex character, then ϕ is a convex character.

Proof. Fix a finite set N with |N | ≥ 1. We prove the following statement
by induction on |N |:

for every h ∈ HN such that ϕ(h) = 1, and any two set compositions C ≤ C ′

such that C,C ′ |= N , if ϕC′(h) = 1, then ϕC(h) = 1.

For the base case, assume |N | = 1, and let h ∈ HN such that ϕ(h) = 1,
Given any compositions C ≤ C ′ |= N , we see that C = C ′, as both have
only one block. Moreover ϕC(h) = ϕ(h) = 1, so the condition is trivially
satisfied.

Suppose |N | > 1. Let h ∈ HN with ϕ(h) = 1. Let C ≤ C ′ |= N be two
compositions with ϕC′(h) = 1. Write C = C1| · · · |Ck. By properties of
coproduct, it follows that

∆C(h) = (idC1 ⊗∆C/C1
) ◦∆C1,N\C1

(h) 6= 0.

Thus ∆C1,N\C1
(h) 6= 0, and so ϕ(h|C1) = ϕ(h/C1) = 1. We see that

C/C1 ≤ C ′/C1 |= N \ C1. Moreover, we have ϕC′/C1
(h/C1) = ϕ(h/C1) = 1,

because ϕC′(h) = 1. Since |N \ C1| < |N |, it follows from induction that
ϕC/C1

(h/C1) = 1. Then ϕC(h) = 1. Thus, ϕ is a convex character. �

Recall that ζ is the character defined in Definition 24 and χ is the char-
acter defined in Definition 25.

Theorem 31. Let KH be a linearized Hopf monoid. Then ζ and χ are

convex characters. Suppose that, for every finite set N , and every h ∈ HN ,

there exists non-empty S ( N such that ∆S,N\S(h) 6= 0. Then ζ and χ are

balanced convex characters.

Proof. First, we show that ζ and χ are convex characters. Let N be a finite
set, and let h ∈ HN , such that ϕ(h) = 1, and let C ≤ C ′ |= N such that
ζC′(h) 6= 0. Then ∆C′(h) 6= 0. This implies that ∆C(h) 6= 0. By definition
of ζ, it follows that ζC(h) = 1. Thus, ζ is a convex character.
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Let h ∈ HN such that χ(h) = 1. Let C ≤ C ′ |= N such that χC′(h) = 1.
Then there exists a linear order ℓ on N , and elements hi ∈ Hℓi such that
h = h1 · · · h|N |. Let F• = F (C). We know Fi \ Fi−1 = {ℓi1 , . . . , ℓik} for some
i1, . . . , ik. Then by compatibility of products and coproducts we have

h|Fi
/Fi−1 = h1|Fi

/Fi−1 · h2|Fi
/Fi−1 · · · h|N ||Fi

/Fi−1.

We see that

hj|Fi
/Fi−1 =

{

1 ℓj 6∈ Fi \ Fi−1

hi ℓj ∈ Fi \ Fi−1

for a given i and j. Thus h|Fi
/Fi−1 = hℓi1

hℓi2
· · · hℓik . Hence χ(h|Fi

/Fi−1) =

1, and χC(h) = 1. Therefore χ is a convex character.
Let N be a finite set, and h ∈ HN . If |N | = 1, then we see that ζ(h) =

χ(h) = 1. Thus ζ and χ both satisfy the first condition to be a balanced
convex character. We see that the second condition is the hypothesis of our
theorem.

So suppose |N | > 1, and let S ( N be such that ∆S,N\S(h) 6= 0. We see
that ζ(h) = ζ(h|S) = ζ(h/S) = 1, and thus ζ is a balanced convex character.

Finally, suppose that χ(h) = 1. Then there exists a linear order ℓ on N ,
and objects hi ∈ H{ℓi} such that h = h1 ·h2 · · · h|N |. By the same argument as
above, h|S =

∏

i∈[|N |]:ℓi∈S
hi and h/S =

∏

i∈[|N |]:ℓi∈N\S hi. Hence χ(h|S) =

χ(h/S) = 1. Thus χ is a balanced convex character. �

Example 32. For the linearized Hopf monoids of graphs KG•, posets KP•,
and matroids KM•, the conditions of Theorem 31 hold. Thus χ and ζ are
balanced convex characters on these linearized Hopf monoids.

4.2. The geometric realization. Now we give the geometric realization.

Definition 33. Let (KH,K(ϕ)) be a linearized combinatorial Hopf monoid.
Let N be a finite set, and let V be the collection of all proper subsets of
N , and define κ : V → [|N | − 1] by κ(S) = |S|. Given h ∈ HN , define the
ϕ-coloring complex of h by

Σϕ(h) = F (Aϕ(h))

=

{

S1 ⊂ S2 ⊂ · · · ⊂ Sk ⊂ N :

(

k
⊗

i=1

ϕSi\Si−1

)

◦∆S1|S2\S1|···|N\Sk
(h) = 1

}

.

Given S1 ⊂ S2 ⊂ · · · ⊂ Sk ⊂ N in Σϕ(h), we have ϕ(h|Si
/Si−1) = 1 for

1 ≤ i ≤ k+1, where we define S0 = ∅ and Sk+1 = N . In our proofs, we often
use this fact, and say ϕ(h|Si

/Si−1) = 1 for all i, with the understanding that
we are including the exceptional cases ϕ(h/Sk) = ϕ(h|S1) = 1.

Lemma 34. Let (KH,K(ϕ)) be a linearized combinatorial Hopf monoid. Let

N be a finite set, and define κ : 2N \{∅, N} → [|N |−1] by κ(S) = |S|. Given

h ∈ HN , let Σϕ(h) be the ϕ-coloring complex. If ϕ is a convex character, then

Σϕ(h) is a colored relative simplicial complex.
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Proof. Since ϕ is a convex character, it follows from Proposition 28 that
Aϕ(h) is a convex album for all h. By Proposition 15 F (Aϕ(h)) is a relative
simplicial complex. Given a flag F• : F1 ⊂ F2 ⊂ · · · ⊂ Fk ∈ Σϕ(h), we
see that κ(F•) = {|F1|, |F2|, . . . , |Fk|}. Hence Σϕ(h) is a colored relative
simplicial complex. �

For a finite set N , let KN denote the set of all colored relative simplicial
complexes (Φ, κ) such that Φ is a subcomplex of the Coxeter complex of
type A and κ is the geometric coloring where κ(S) = |S|. Then K is a set
species. Given a linearized combinatorial Hopf monoid (KH,K(ϕ)), where ϕ
is a convex character, and h ∈ HN , we see that (Σϕ(h), κ) ∈ KN . Thus we
have a natural transformation Σϕ : H → K.

Theorem 35. Let (KH,K(ϕ)) be a linearized combinatorial Hopf monoid.

If ϕ is a convex character, then (K,Σϕ) is a geometric realization of H.

Thus, for every H-structure h, we have

Ψϕ(h,x) = Hilb(Σϕ(h),x).

Proof. Let h ∈ HN for some finite set N . We know from Lemma 34 that
Σϕ(h) ∈ KN . The reader can check that Σϕ : H → K is a natural transforma-
tion.

We show that Ψϕ(h,x) = Hilb(Σϕ(h),x) for every h-structure. We see
that

Ψϕ(h,x) =
∑

C∈Aϕ(h)

Mα(C) =
∑

F•∈F (Aϕ(h))

Mα(F•).

where the first equality comes from Theorem 26, and the second equality
is due to the correspondence between flags and set compositions. Since
α(F•) = α(κ(F•)), and Σϕ(h) = F (Aϕ(h)), we have

Ψϕ(h,x) =
∑

F•∈Σϕ(h)

Mα(κ(F•)) = Hilb(Σϕ(h),x).

�

Example 36. Let KG• be the combinatorial Hopf monoid of graphs. Then
the character χ is balanced convex. We see that Aχ(g) is the collection of set
compositions where each part is an independent set. Then the corresponding
relative simplicial complex Σχ(g) consists of chains S1 ⊂ S2 ⊂ · · · ⊂ Sk ⊂ N
such that Si \ Si−1 is an independent set for all i. One presentation for
Φ(g) is as the pair (Σ,Γ(g)), where Σ is the Coxeter complex of type A, and
Γ(g) is collection of flags S1 ⊂ S2 ⊂ · · · ⊂ Sk ⊂ N where Si+1 \ Si must
contain an edge for some i. The subcomplex Γ(g) is the coloring complex,
as introduced by Steingŕımsson [Ste01].

Example 37. Let KP• be the combinatorial Hopf monoid of posets. Then
the character ζ is balanced convex. We see that Aζ(p) is the collection of set
compositions C1|C2| . . . |Ck where C1 ∪C2 ∪ · · · ∪Ci is an order ideal for all
i. If we let J(p) be the set of order ideals of p ordered by inclusion, and let
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J(p) = J(p)\{∅, p}, then Σζ(p) = ∆(J(p)), the order complex of J(p). Thus

Ψζ(p,x) = Hilb(∆(J(p),x). Since J(p) is a graded poset with a maximum

and minimum element, Hilb(∆(J(p)),x) is the F -quasisymmetric function of
the graded poset J(p). As mentioned in Example 10, the F -quasisymmetric
function of a graded poset is a generalization of the p-partition enumerator.

Example 38. Let KM• be the combinatorial Hopf monoid of matroids. Then
the character χ is balanced convex. Given a matroid m, the corresponding
relative simplicial complex Σχ(m) consists of chains S1 ⊂ S2 ⊂ · · · ⊂ Sk ⊂ N
such that m|Si

/Si−1 has a unique basis for all i.

4.3. Balanced realizations. We also discuss a condition which ensures all
the geometric realizations are balanced complexes.

Theorem 39. Let KH be a linearized combinatorial Hopf monoid with con-

vex character K(ϕ). Then Σϕ(h) is balanced of dimension |N | − 2 for every

non-zero H-structure h ∈ HN with |N | ≥ 1 if and only if K(ϕ) is a balanced

convex character.

Proof. Suppose that Σϕ(h) is balanced for every H-structure h. Let |N | = 1,
and let h ∈ HN . Since Σϕ(h) is balanced of dimension |N |−2 = −1, we have
Σϕ(h) = {∅}, which is a simplicial complex. Thus, ϕ(h) = 1, satisfying the
first condition for being a balanced convex character.

Now let |N | ≥ 2, and let h ∈ HN . Since Σϕ(h) is balanced of dimension
|N | − 2, there exists a facet F1 ⊂ F2 ⊂ · · · ⊂ F|N |−1 in Σϕ(h). This implies
that ∆F1,N\F1

(h) 6= 0. Thus we have the second condition for being a
balanced convex character.

Now suppose that ϕ(h) = 1, and let S ( N such that ∆S,N\S(h) 6= 0. We
know that there are faces E1 ⊂ · · · ⊂ Eℓ ∈ Σϕ(h|S) and F1 ⊂ · · · ⊂ Fk ∈
Σϕ(h/S). Then ϕ((h|S)|Ei

/Ei−1) = 1 for all i, and ϕ((h/S)|Fi
/Fi−1) = 1

for all i. However, this is equivalent to stating that ϕ(h|Ei
/Ei−1) = 1 and

ϕ(h|Fi∪S/(Fi−1 ∪ S)) = 1 for all i. Thus

G• := E1 ⊂ · · · ⊂ Eℓ ⊂ S ⊂ S ∪ F1 ⊂ · · · ⊂ S ∪ Fk

is an element of Σϕ(h). Since ϕ(h) = 1, we know ∅ ∈ Σϕ(h). Since ∅ ⊆
{S} ⊆ G•, and Σϕ(h) is a relative simplicial complex, it follows that {S} ∈
Σϕ(h). By definition of Σϕ(h), we conclude that ϕS|N\S(h) = 1. Thus ϕ is
a balanced convex character.

Now suppose that ϕ is a balanced convex character. Then ϕ is convex, so
Σϕ(h) is a colored relative simplicial complex with geometric coloring given
by κ(S) = |S|. Thus we only need to show that Σϕ(h) is pure of dimension
|N | − 2, when N 6= ∅. If |N | = 1, then ϕ(h) = 1, and thus Σϕ(h) = {∅},
which is pure of dimension −1.

Next we show that Σϕ(h) has dimension |N | − 2 for all non-zero h and
|N | ≥ 2. The proof is by induction on N , with the base case |N | = 1 already
established. Since |N | ≥ 2, there exists S ( N such that ∆S,N\S(h) 6= 0.
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By induction, we know that there are faces E1 ⊂ · · ·E|S|−1 ∈ Σϕ(h|S) and
F1 ⊂ · · · ⊂ F|N\S|−1 ∈ Σϕ(h/S). Note that |Ei \ Ei−1| = 1 for all i, and
|Fi \ Fi−1| = 1 for all i. Then

G• := E1 ⊂ · · · ⊂ E|S|−1 ⊂ S ⊂ S ∪ F1 ⊂ · · · ⊂ S ∪ F|N\S|−1

is a flag such that ∆C(G•)(h) 6= 0. Since |Gi \ Gi−1| = 1 for all i, and
ϕ(h′) = 1 whenever h′ ∈ HM and |M | = 1, it follows that ϕC(G•)(h) = 1.
Thus, G• ∈ Σϕ(h) is of maximum dimension. Hence Σϕ(h) has dimension
|N | − 2.

To show that Σϕ(h) is pure, let F• ∈ Σϕ(h). Suppose that F• does not
have dimension |N |−2. Then there exists i such that |Fi\Fi−1| ≥ 2. LetN ′ =
Fi \Fi−1, and h′ = h|Fi

/Fi−1. Since |N
′| ≥ 2, there exists M ⊆ N ′ such that

∆M,N ′\M (h′) 6= 0. Since F• ∈ Σϕ(h), we see that ϕ(h′) = ϕ(h|Fi
/Fi−1) = 1.

Since ϕ is a balanced convex character, it follows that ϕ(h′|M ) = ϕ(h′/M) =
1. Then ϕ(h|Fi∪M/Fi−1) = 1 and ϕ(h|Fi

/(Fi−1 ∪M)) = 1. Thus

F1 ⊂ · · · ⊂ Fi ⊂ Fi ∪M ⊂ Fi+1 ⊂ · · · ⊂ Fi

is a face of Σϕ(h) that contains F•. Therefore, a face is maximal only if it
has dimension |N | − 2, which means that Σϕ(h) is pure. �

4.4. Some consequences. Now we derive inequalities for the coefficients of
Ψϕ(h,x) and χϕ(h, x) with respect to the basis of monomial quasisymmetric
functions and binomial coefficients, respectively.

Theorem 40. Let (KH,K(ϕ)) be a linearized combinatorial Hopf monoid.

Suppose that ϕ is a balanced convex character. Let N be a finite set and

h ∈ HN be a non-zero H-structure. Then Ψϕ(h,x) is M -increasing. Also, if

we write χϕ(h, x) =
∑n

i=0 fi−2(h)
(x
i

)

, then f−2(h) = 0 and (f−1, . . . , f|N |−1)
is super flawless.

Proof. Since ϕ is convex, we know that Ψϕ(h,x) = Hilb(Σϕ(h),x), where
Σϕ(h) is the ϕ-proper coloring complex of h. Since ϕ is a balanced convex
character, Σϕ(h) is balanced. We know by Proposition 3 thatHilb(Σϕ(h),x)
is M -increasing for any balanced relative simplicial complex.

We write χϕ(h, n) =
∑n

i=0 fi−2(h)
(n
i

)

for integers fi−2(h). We have

χϕ(h, n) = psnΨϕ(h,x)

=
∑

S⊆[n]

fS(Σϕ(h))

(

n

|S|+ 1

)

=

|N |
∑

i=1

fi−2(Σϕ(h))

(

n

i

)

.

Thus, f−2(h) = 0, and fi(h) = fi(Σϕ(h)) for i ≥ −1. Since Σϕ(h) is pure of
dimension |N | − 2, the second result follows from Proposition 2. �
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Figure 4. Two examples of F (A).

Consider a polynomial p(x) =
∑n

i=0 fi
(x
i

)

of degree n. We say p(x) is
super flawless if f0 = 0 and (f1, . . . , fn) is super flawless.

Since we know that χ and ζ are balanced convex characters for the lin-
earized Hopf monoids of graphs KG•, posets KP•, and matroids KM•, we can
apply Theorem 40 to these cases.

Corollary 41. Let G be a graph on a finite set N . Then X(G,x) =
Hilb(Φ(G),x), where Φ(G) is the relative coloring complex of G.

Thus X(G,x) is M -increasing, and χ(G,x) is super flawless.

Corollary 42. Let p be a poset on a finite set N . Let J(P ) be the poset of

order ideals of p, ordered by inclusion. Then Ψζ(p,x) = Hilb(∆(J(p)),x),
where ∆(J(p)) is the order complex of J(p).

Thus Ψζ(p,x) is M -increasing, and χζ(p, x) is super flawless.

Corollary 43. Let m be a matroid on a finite set N . Then Ψχ(m,x) is

M -increasing, and χχ(m, x) is super flawless.

We will give a lot more examples of linearized Hopf monoids in Section
6, along with balanced convex characters for those Hopf monoids. Theorem
40 applies to each example.

5. Coloring complexes

A natural question is to determine what types of relative simplicial com-
plexes arise from our geometric construction. The aim of this section is to
characterize such complexes completely.

Now we define abstract relative coloring complexes. Let N be a finite set.
Given flags E• : E1 ⊂ E2 ⊂ · · · ⊂ Ek ⊆ N and F• : F1 ⊂ F2 ⊂ · · · ⊂ Fm ⊆
N , such that Ea = Fc for some a and c, then we define their exchange with
respect to Ea to be the flag

E• ·a F• : E1 ⊂ · · · ⊂ Ea ⊂ Fc+1 ⊂ Fc+2 ⊂ · · · ⊂ Fm.

Definition 44. Let F be a collection of flags of subsets of N . We say
that F satisfies the flag exchange condition if whenever we have two flags
E•, F• ∈ F such that Ei = Fj for some i and j, then E• ·i F• ∈ F .



COLORING COMPLEXES AND COMBINATORIAL HOPF MONOIDS 33

Definition 45. Recall that the Coxeter Complex ΣN is the set of all flags in
N . It is a balanced simplicial complex, with coloring given by κ(S) = |S| for
all vertices S in ΣN . Then ΣN is a simplicial complex. A relative simplicial
complex Φ is an abstract relative coloring complex if Φ ⊆ ΣN , and where Φ
satisfies the flag exchange condition. An abstract relative coloring complex
is balanced if it is balanced with respect to the coloring κ.

The fact that we require Φ to be balanced with respect to the coloring κ
implies that Φ is pure of dimension |N | − 2. This also implies that any flag
E• ∈ Φ can be refined to a complete flag F•. That is, there is a flag F• with
E• ⊆ F•, and such that |Fi \ Fi−1| = 1 for all i.

The relative simplicial complex on the left in Figure 4 is a balanced
abstract relative coloring complex. The relative simplicial complex Φ on
the right in Figure 4 is not. For example, {a} ⊂ {a, c} ⊂ {a, b, c} and
{c} ⊂ {a, c} ⊂ {a, c, d} are two faces of Φ that share {a, c}, but {a} ⊂
{a, c} ⊂ {a, c, d} is not a face of Φ.

Proposition 46. Let (KH,K(ϕ)) be a linearized combinatorial Hopf monoid,

and suppose that ϕ is a convex character. Let h be an H-structure. Then

Σϕ(h) is an abstract relative coloring complex.

Proof. Let E•, F• ∈ Σϕ(h) such that there exists i with Ei = Fk for some
k. Then ϕ(h|Ej

/Ej−1) = 1 for all j ≤ i. Similarly, ϕ(h|Fj
/Fj−1) = 1 for all

j ≥ k. This implies that E• ·i F• ∈ Σϕ(h). �

Thus, every ϕ-coloring complex is an abstract relative coloring complex.
We show that every abstract relative coloring complex is a ϕ-coloring com-
plex for some combinatorial Hopf monoid H. We do this by showing that
the species of abstract relative coloring complexes is itself a linearized com-
binatorial Hopf monoid.

5.1. Constructions on coloring complexes. Let F• be a flag of subsets
F1 ⊂ F2 ⊂ · · · ⊂ Fk ⊂ N of N . For a subset S ( N , we let F• ∩ S =
F1 ∩ S ⊆ F2 ∩ S ⊆ · · · ⊆ Fk ∩ S ⊆ S. We view this as a proper flag of S by
removing duplicates.

Given an abstract relative coloring complex Σ on N , and a nonempty
subset S ( N , we let

Φ|S = {F• ∩ S : F• ∈ Φ, S ∈ F•}

and

Φ/S = {F• ∩ (N \ S) : F• ∈ Φ, S ∈ F•}.

These two relative complexes are the restriction and contraction with respect
to S. We define Φ|N = Φ/{∅} = Φ, and, when Φ 6= ∅, we define Φ|∅ =
Φ/N = 1∅. If there is no F• ∈ Φ with S ∈ F•, then Φ|S = Φ/S = 0S . Thus,
it is possible for the restriction or contraction of a non-empty complex to be
empty.
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Example 47. Let Φ be the relative simplicial complex from the middle of
Figure 5. We observe that Φ is an abstract relative coloring complex. We
see that Φ|{a,d} = ∅, since {a, d} is not a vertex of Φ. On the other hand,
A(Φ|{a,b,c}) = {abc, a|b|c, a|c|b, c|a|b, ab|c, a|bc, ac|b, c|ab}.

Proposition 48. Let Φ be a non-empty abstract relative coloring complex

on a finite set N , with |N | ≥ 2 and let S ( N be nonempty. Suppose that

there exists H• ∈ Φ with S ∈ H•. Then Φ|S is a non-empty abstract relative

coloring complex on S, and Φ/S is a non-empty abstract relative coloring

complex on N \ S. Moreover, if Φ is balanced, then Φ|S and Φ/S are also

balanced.

Proof. Since there exists H• such that S ∈ H•, we see that Φ|S and Φ/S are
non-empty.

Let E•, F• ∈ Φ|S such that there exists i with Ei ∈ F•. Then there exists
D• ∈ Φ such that S ∈ D• and D• ∩ S = E•. Similarly, there exists G• ∈ Φ
such that S ∈ G• and G• ∩ S = F•. We see that Ei ∈ D• and Ei ∈ G•.
Since Φ is an abstract relative coloring complex, we have D• ·iG• ∈ Φ. Since
S ∈ D• ·i G•, we see that E• ·i F• = (D• ·i G•) ∩ S ∈ Φ|S . Thus Φ|S is an
abstract relative coloring complex.

Let E•, F• ∈ Φ/S such that there exists i with Ei ∈ F•. Then there exists
D• ∈ Φ such that S ∈ D• and D• ∩ (N \ S) = E•. Similarly, there exists
G• ∈ Φ such that S ∈ G• and G• ∩ (N \ S) = F•. We see that Ei ∪ S ∈ D•

and Ei ∪ S ∈ G•. Choose j such that Dj = Ei ∪ S. Since Φ is an abstract
relative coloring complex, we have D• ·j G• ∈ Φ. Since S ∈ D• ·j G•, we see
that E• ·i F• = (D• ·j G•)∩ (N \S) ∈ Φ/S. Thus Φ/S is an abstract relative
coloring complex.

Suppose that Φ is balanced. Let E• ∈ Φ|S . Then there exists a flag
F• ∈ Φ such that S ∈ F• and F• ∩S = E•. Since Φ is balanced, there exists
a refinement G• such that F• ⊂ G• and Gi \ Gi−1 is a singleton for all i.
Then we see that E• ⊂ G• ∩ S ∈ Φ|S . Hence Φ|S is balanced. A similar
argument shows that Φ/S is also balanced. �

Given an abstract relative coloring complex Σ on a finite set M , and an
abstract relative coloring complex Γ on a finite set N , with M ∩N = ∅, we
define the product complex Σ · Γ to be the relative simplicial complex on
M ∪N given by

Σ · Γ = {F• : F• ∩M ∈ Σ and F• ∩N ∈ Γ}.

We see that if Σ = 0M or Γ = 0N , then Σ · Γ = 0M⊔N . Note that the
sets M and N are relevant for the definition of the product: if we pick
Σ = {∅} ∈ C{a}, and Γ = {∅} ∈ C{b}, then Σ · Γ = {∅, {{a}}, {{b}}}.

Example 49. Let Φ be given by A(Φ) = {a|b, ab}, and Σ be given by
A(Σ) = {c|d}. Then Φ · Σ appears in Figure 5. We write Φ = (Γ,Σ),
where Σ consists of all the vertices, edges, and triangles in the figure, while
Γ consists of the dashed vertices and dashed edges.
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Figure 5. A product of two coloring complexes.

Proposition 50. Given an abstract relative coloring complex Σ on a finite

set M , and an abstract relative coloring complex Γ on a finite set N , with

M ∩N = ∅, then Σ · Γ is an abstract relative coloring complex on N ⊔M .

Moreover, if Σ and Γ are balanced, then so is Σ · Γ.

Proof. Let E•, F• ∈ Σ · Γ such that there exists i with Ei ∈ F•. We let
C• = E• ∩M and D• = E• ∩ N . Similarly, we define G• = F• ∩M and
H• = F• ∩N . We see that there exists an integer j such that Cj = Ei ∩M .
Then Cj ∈ G•, and C• ·j G• ∈ Σ. There also exists an integer k such that
Dk = Ei ∩ N . Then Dk ∈ H•, and D• ·k H• ∈ Γ. Finally, we observe that
(E• ·iF•)∩M = C• ·jG• and (E• ·iF•)∩N = D• ·kH•. Thus E• ·iF• ∈ Σ ·Γ.
Therefore Σ · Γ is an abstract relative coloring complex.

Now suppose that Σ and Γ are balanced, and let F• ∈ Σ · Γ. Write
F• : F1 ⊂ F2 ⊂ · · · ⊂ Fk. Suppose that F• is maximal. If |Fi \ Fi−1| = 1
for all i, then F• has dimension (dimΣ + dimΓ) as required. So suppose
|Fi \ Fi−1| ≥ 2 for some i. If Fi−1 \ Fi contains elements from both M and
N , then it is possible to refine F•, contradicting the fact that it is maximal.
Hence, without loss of generality, we may assume that Fi \ Fi−1 ⊂ M . Let
E• = F• ∩M . Choose j such that Ej = Fi ∩M . Then |Ej \ Ej−1| ≥ 2.
Since Σ is balanced, E• is not a facet, and it is possible to refine it further,
by adding a new set E between Ej−1 and Ej . However, then we see that we
can add E ∪ Fi−1 between Fi−1 and Fi, contradicting the assumption that
F• was maximal. Therefore Σ · Γ must be balanced. �

5.2. Hopf monoid structure. For a finite set N , let CN be the set of
coloring complexes on N . We view CN as a pointed set by making the void
complex the base point. Thus C is a pointed set species.

Now we define the multiplication and comultiplication for KC. Given finite
sets M and N , and coloring complexes Σ ∈ CM and Γ ∈ CN , we see from
Proposition 50 that Σ ·Γ ∈ CM⊔N . We define µM,N by µM,N(Σ⊗Γ) = Σ ·Γ.
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Given finite sets M and N , and an abstract relative coloring complex
Φ ∈ CM⊔N , let

∆M,N(Φ) = Φ|M ⊗ Φ/M.

Note that ∆M,N (Φ) = 0M ⊗ 0N if there is no F• ∈ Φ with M ∈ F•.
For a finite set N , with |N | ≥ 1, we let BCN be the set of all balanced

coloring complexes. We let BC∅ consist of the empty complex 1∅. Then BC•

is a subspecies of C, where we are identifying the 0 ∈ BC•N with the void
complex of CN .

Theorem 51. The species KC of coloring complexes is a linearized Hopf

monoid, and the species KBC• of balanced coloring complexes is a Hopf sub-

monoid.

Proof. Given finite sets L,M and N , and abstract relative coloring com-
plexes Π ∈ CL, Σ ∈ CM , and Γ ∈ CN , we see that (Π · Σ) · Γ = Π · (Σ · Γ) =
{E• : E• ∩L ∈ Π, E• ∩M ∈ Σ, E• ∩N ∈ Γ}. Extending by linearity, we see
that multiplication is associative.

Note here that C∅ has one non-zero element, the empty complex 1∅. We
observe that 1∅ · Σ = Σ for all Σ ∈ CN . Hence 1∅ in C∅ is the multiplicative
identity.

Let L,M,N be finite sets, and let Φ ∈ CL⊔M⊔N . Define Φ1 = {F• ∩ L :
F• ∈ Φ, L, L ∪M ∈ F•}, Φ2 = {F• ∩ M : F• ∈ Φ, L, L ∪M ∈ F•}, and
Φ3 = {F• ∩N : F• ∈ Φ, L, L ∪M ∈ F•}. Then we observe that

((∆L,M ⊗ idN ) ◦∆L∪M,N )(Φ) = Φ1 ⊗ Φ2 ⊗ Φ3

= ((idL⊗∆M,N ) ◦∆L,M∪N)(Φ).

Thus, the coproduct is coassociative. We observe that the counit axiom is
also satisfied.

Let A,B,C and D be finite sets, and let Σ ∈ CA⊔B and Γ ∈ CC⊔D. We
show that (Σ · Γ)|A⊔C = Σ|A · Γ|C . Let F• ∈ (Σ · Γ)|A⊔C . Then there exists
E• ∈ Σ ·Γ such that A⊔C ∈ E• and E•∩ (A⊔C) = F•. Since E• ∈ Σ ·Γ, we
know that E•∩(A⊔B) ∈ Σ. Since A⊔C ∈ E•, we see that A ∈ E•∩(A⊔B).
This, together with the fact that E• ∩ (A ⊔ B) ∈ Σ shows that E• ∩ A =
(E•∩ (A⊔B))∩A ∈ Σ|A. Hence E•∩A = E•∩ (A⊔C)∩A = F• ∩A ∈ Σ|A.
By a similar argument, F• ∩ C ∈ Γ|C . Thus, we see that F• ∈ Σ|A · Γ|C .

Let F• ∈ Σ|A · Γ|C . Then F• ∩A ∈ Σ|A. Thus, there exists D• ∈ Σ with
A ∈ D• and D• ∩ A = F• ∩ A. Similarly, there exists E• ∈ Γ with C ∈ E•

and E• ∩ C = F• ∩ C. We see that there exists an i such that Di = A, and
a j such that Ej = C. Let

G• = F• ∪ {Dk ∪A ∪ C : k > i} ∪ {Ek ∪A ∪B ∪ C : k > j}.

By construction, G•∩(A∪B) = D•, and G•∩(C∪D) = E•. Hence G• ∈ Σ·Γ.
Moreover, G•∩(A∪C) = F• and A∪C ∈ G•. Thus F• ∈ (Σ ·Γ)|A∪C . Hence
we have shown that (Σ · Γ)|A⊔C = (Σ|A) · (Γ|C).

A similar proof shows that (Σ · Γ)/(A ⊔ C) = (Σ/A) · (Γ/C). Thus, the
multiplication and comultiplication are compatible.
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For the final claim, it is enough to notice that the set of balanced abstract
relative coloring complexes BCN is a subset of CN , and that this inclusion
induces an inclusion BC ⊂ C of species. We have already shown that the
product and coproduct of balanced abstract relative coloring complexes re-
mains balanced, and hence the result follows. �

Remark 52. If we let KN be the collection of all subcomplexes of the Cox-
eter complex of type A, then KKN is closed under the same product and
coproduct operations as C. However, the coproduct is no longer coassocia-
tive. For example, if we let Σ be the simplicial complex on the right in Figure
4, then Σ|{a,c} = {∅, {a}, {c}}, while (Σ|{a,b,c})|{a,c} = {∅, {a}}. Hence

(∆{a,c},{b} ⊗ id{d}) ◦∆{a,b,c},{d} 6= (id{a,c} ⊗∆{b,d}) ◦∆{a,c},{b,d}.

Let N be a finite set, and let σ : CN → EN be given by

σ(Σ) =

{

1 if ∅ ∈ Σ

0 otherwise.

The reader may check that this is a multiplicative function.

Lemma 53. Let Φ be an abstract relative coloring complex on N . Let

C |= N . Then σC(Φ) = 1 if and only if F (C) ∈ Φ.

Proof. Let C |= N. Let F• = F (C). Suppose that F• ∈ Φ. Recall that
Φ|Fi

/Fi−1 = {E• ∩ Ci : Fi−1, Fi ∈ E•}. We see that F• ∩ Ci = {Ci}, which
implies that ∅ ∈ Φ|Fi

/Fi−1. Hence σC(Φ) = 1.
Now suppose that σC(Φ) = 1 with |C| = k. Then we see that ∅ ∈

Φ|Fi
/Fi−1 for all i. For each i, there exists Ei• and an integer ji such that

Eiji = Fi−1 and Eiji+1 = Fi. Since Φ is closed under exchange operations,

we can define Gi• recursively by letting G0
• = Ek• , and G

i
• = Ek−i• ·jk−i

Gi−1
• .

One can check, using induction, that Gik−j = Fk−j for j ≤ i. Thus Gk• = F•,
and F• ∈ Φ. �

Proposition 54. The morphism σ : KC → KE is a convex character, and

the morphism σ : KBC• → KE is a balanced convex character.

Proof. Let Φ be an abstract relative coloring complex on N and suppose
σ(Φ) = 1. Let C ≤ C ′ |= N , and suppose that σC′(Φ) = 1. Then we see
that Φ is a simplicial complex, since ∅ ∈ Φ. Moreover, by Lemma 53, F (C ′)
is a face of Φ. However, since F (C) ⊆ F (C ′), it follows that F (C) ∈ Φ. By
Lemma 53, σC(Φ) = 1. Therefore σ is a convex character.

We see that σ restricts to a convex character on BC. Thus there is a
geometric realization Σσ : BC → K. Based upon the definition of Σσ, and
Lemma 53, we see that Σσ(Φ) = Φ. In particular, the geometric realization
of a balanced abstract relative coloring complex of dimension |N |−2 is itself,
which is a balanced simplicial complex of dimension |N | − 2. By Theorem
39, it follows that σ is a balanced convex character on BC. �
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Theorem 55. The pair (KC,K(σ)) is the terminal object in the category

of combinatorial Hopf monoids with convex characters. In particular, for

every Hopf monoid H with convex character ϕ, the map Σϕ : H → C given by

Σϕ(h) = F (Aϕ(h)) is a morphism of Hopf monoids.

Similarly, the pair (KBC•,K(ϕ)) is the terminal object in the category of

combinatorial Hopf monoids with balanced convex characters.

Proof. Let (KH,K(ϕ)) be a linearized combinatorial Hopf monoid such that
ϕ is a convex character. Given an H-structure h, we see that Σϕ(h) is an
abstract relative coloring complex. Thus we obtain a map Σϕ,N : HN → CN .
The reader can verify that this map is natural in N , and hence we obtain a
natural transformation Σϕ : H → C. We show that the linearization K(Σϕ)
is a morphism of Hopf monoids.

Let h and h′ be H-structures with h ∈ HM and h′ ∈ HN . Let F• : F1 ⊂
F2 ⊂ · · · ⊂ Fk. Then F• ∈ Σϕ(h · h′) if and only if ϕC(F•)(h · h′) = 1.
Then ϕ((h · h′)|Fi

/Fi−1) = 1 for all i if and only if ϕ(h|Fi∩M/Fi−1 ∩M) =
ϕ(h′|Fi∩N/Fi−1∩N) = 1 for all i. Thus F•∩M ∈ Σϕ(h) and F•∩N ∈ Σϕ(h

′),
which is equivalent to F• ∈ Σϕ(h) · Σϕ(h

′). Thus we have Σϕ(h · h′) =
Σϕ(h) · Σϕ(h

′). Hence the morphism preserves multiplication.
We focus on comultiplication. Let F• ∈ Σϕ(h)|S . Then there exists

E• ∈ Σϕ(h) such that S ∈ E• and E•∩S = F•. We see that (h|S)|Fi
/Fi−1 =

h|Ei
/Ei−1 for i ≤ ℓ(F•). Then ϕ(h|Ei

/Ei−1) = 1 for all i, which implies that
ϕ((h|S)|Fi

/Fi−1) = 1 for all i. Thus F• ∈ Σϕ(h|S). Thus we conclude that
Σϕ(h)|S ⊆ Σϕ(h|S). By a similar argument, Σϕ(h)/S ⊆ Σϕ(h/S).

If Σϕ(h/S) = 0N\S or Σϕ(h|S) = 0S , then we have ∆S,T (Σϕ(h)) = 0 =
Σϕ(h|S) ⊗ Σϕ(h/S). So assume both relative complexes are not the void
complex. Let E• ∈ Σϕ(h|S) and let F• ∈ Σϕ(h/S). Define G• by

G• : E1 ⊂ E2 ⊂ · · · ⊂ Ek ⊂ S ⊂ S ∪ F1 ⊂ S ∪ F2 ⊂ · · · ⊂ S ∪ Fr.

Since E• ∈ Σϕ(h|S), we have 1 = ϕ((h|S)|Ei
/Ei−1) = ϕ(h|Ei

/Ei−1) for all i.
Since F• ∈ Σϕ(h/S), we have 1 = ϕ((h/S)|Fi

/Fi−1) = ϕ(h|S∪Fi
/S ∪ Fi−1)

for all i. We see then that ϕ(h|Gi
/Gi−1) = 1 for all i. Thus G• ∈ Σϕ(h) with

S ∈ G•. Then E• = G• ∩ S ∈ Σϕ(h)|S , and F• = G• ∩ (N \ S) ∈ Σϕ(h)/S.
Hence Σϕ(h|S) = Σϕ(h)|S and Σϕ(h/S) = Σϕ(h)/S. Therefore ∆S,T (Σϕ) =
(Σϕ ⊗ Σϕ) ◦∆S,T , and K(Σϕ) is a morphism of Hopf monoids.

Now we show that K(Σϕ) : KH → KC is the unique Hopf monoid homo-
morphism with the property that σ(Σϕ(h)) = ϕ(h) for every H-structure h.
Let Γ be another such linearized Hopf monoid homomorphism. Let h be an
H-structure. Let F• be a flag. Then by Lemma 53, F• ∈ Σϕ(h) if and only
if ϕC(F•)(h) = 1. Since Γ is a morphism of Hopf monoids which satisfies
σ ◦ Γ = ϕ, then σC(F•)(Γ(h)) = 1. By Lemma 53, this holds if and only if
F ∈ Γ(h). Thus, if ϕC(F•)(h) = 1, then F• is a face of both Σϕ(h) and Γ(h).
On the other hand, if ϕC(F•)(h) = 0, then σC(F•)(Γ(h)) = 0, and F• is not a
face of either of complex. Therefore Σϕ(h) = Γ(h).
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Finally, let KH be a linearized combinatorial Hopf monoid with a balanced
convex character K(ϕ). Then we have a morphism Σϕ : H → C. Moreover, by
Theorem 39, Σϕ(h) is balanced for all h, which means that Σϕ(HN ) ⊆ BCN
for all N . Thus, we have a morphism Σϕ : H → BC, and K(Σϕ) is a morphism
of Hopf monoids. �

6. Applications

6.1. Graphs. We already discussed the standard character that yields the
chromatic symmetric function. Here we detail one more interesting character
that was first studied by Aval, Bergeron, and Machacek [ABM20]. Let

ψ(g) =

{

1 if g is a perfect matching

0 otherwise.

It is clear that ψ is a character. The resulting quasisymmetric function,
Ψψ(g,x), enumerates functions f : V → N such that the induced subgraph
on each color class is a perfect matching.

We show that ψ is a convex character. Let ψ(g) = 1. Then g is a perfect
matching. Let C ≤ C ′ and suppose that ψC′(g) = 1. Hence, g restricted to
each block of C ′ is also a perfect matching. This implies that g|Ci

is also a
perfect matching for each block of C. Hence ψC(g) = 1. Therefore ψ is a
convex character.

We see that Σψ(g) 6= ∅ only when g has a perfect matching. Thus ψ is not
a balanced convex character. However, it does possess similar properties. If
g has a perfect matching, then the facets of Σψ(g) are associated to set com-
positions where each block has size two, corresponding to taking a matching
of g, and putting the edges of the matching in a linear order. Hence, Σψ(g)
is pure, and is balanced with the coloring given by κ′(S) = |S|/2.

Given an integer composition α, we let 2α = (2α1, 2α2, . . . , 2αk). Given
C ∈ Aψ(g) with α(C) = α, and F• = F (C), we have |Fi \ Fi−1| = αi for
all i. However, κ′(F•) = {|F1|/2, |F2|/2, . . . , |N \Fk|/2}. Thus 2α(κ

′(F•)) =
α(C). Since this implies that every block of C has even size, we see that
[Mα]Ψψ(g,x) = 0 if α contains an odd part. Otherwise, we see that, given
S ⊆ [|V |/2 − 1], we have fS(Σψ(g)) = [M2α(S)]Ψψ(g,x). Since Σψ(g) is

balanced with respect to κ′, we see that fS(Σψ(g)) ≤ fT (Σψ(g)) whenever
S ⊆ T ⊆ [|V |/2 − 1]. Thus if α ≤ β and β contains only even parts, it
follows that [Mα]Ψψ(g,x) ≤ [Mβ]Ψψ(g,x).

Moreover, if we write Ψψ(g, x) =
∑n

i=0 fi
(

x
i

)

, then f0 = 0, and fj = 0
for j > n/2. Also, the sequence (f1, . . . , fn/2) is strongly flawless, and
the polynomial has degree |N |/2. Aval, Bergeron, and Machacek [ABM20]
showed that the polynomial can be computed from chromatic polynomials.

They also give a large class of invariants coming from linearized charac-
ters. Let C be a collection of isomorphism classes of connected graphs. Then
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we can define ϕC by

ϕC(g) =

{

1 if every component of g is isomorphic to a graph in C

0 otherwise.

In particular, χ = ϕ{K1} and ψ = ϕ{K2}, where Kn is the complete graph
on n vertices.

We are able to classify the balanced convex characters on graphs.

Theorem 56. Let ϕ be a linearized character on KG•. Then there exists a

collection C of isomorphism classes of connected graphs such that ϕ = ϕC .

Moreover, ϕC is a balanced convex character if and only if C satisfies the

following two properties:

(1) For every g ∈ C, and every induced connected subgraph h of g, we

have h ∈ C.
(2) The collection C contains K1.

Proof. Let K(ϕ) be a linearized character on KG•. Let C be the isomorphism
classes of connected graphs g for which ϕ(g) = 1. We claim that ϕ = ϕC .
Let g ∈ GN . Then there are connected graphs g1, . . . , gk such that g =
g1 · · · gk. By definition, we have ϕC(gi) = ϕ(gi) for all i. Thus ϕ(g) =
ϕ(g1) · · ·ϕ(gk) = ϕC(g1) · · ·ϕC(gk) = ϕC(g).

Let ϕC be a balanced convex character. We denote ϕC by ϕ. Suppose
that K1 6∈ C, and let g ∈ C be a graph of minimum size. Then ϕ(g) = 1.
Since ϕ is balanced, there must be a nontrivial composition C such that
ϕC(g) = 1, which implies that there is a smaller graph in C, a contradiction.
Thus K1 ∈ C.

Let g ∈ C be a graph on N , and let h be an induced connected graph
on vertex set S. We know ∆S,N\S(g) 6= 0. Since ϕ is balanced, it follows
that ϕ(h) = ϕ(g|S) = 1. Thus h ∈ C. Hence C is closed under inclusion of
induced connected subgraphs.

Conversely, suppose that C is closed under inclusion of induced connected
subgraphs, and contains K1. Let g ∈ GN be a graph for which ϕC(g) = 1.
Let N = S ⊔ T . Then we see that g|S is a disjoint union of connected
components hi. Moreover, each is an induced subgraph of a component of
g. Thus hi is isomorphic to a graph in C for all i. Therefore ϕ(g|S) = 1.
Similarly, ϕ(g/S) = 1. By Proposition 30, the character ϕC is balanced and
convex. �

As an example, let d be an integer, and let Cd denote the set of isomor-
phism classes of connected graphs of maximum degree at most d. Then ϕCd
is balanced convex. Let us denote the character as ϕd. Then Ψϕd

(g,x) enu-
merates functions f : N → N such that the induced subgraph on each color
class has degree at most d. Such colorings are called defective [CCW86].

As another example, let K = {K1,K2, . . .}. Then ϕK is balanced convex,
and ΨϕK

(g,x) enumerates functions f : N → N such that the induced
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subgraph on each color class is a disjoint union of cliques. These functions
are called subcolorings [AJHL89].

6.2. Acyclic mixed graphs. Given a finite set N , a mixed graph is a triple
(N,U,D), where U is a set of undirected edges, and D is a set of directed
edges. A mixed graph is acyclic if it does not contain a directed cycle.

There are two well-known polynomial invariants associated to acyclic
mixed graphs: the weak and strong chromatic polynomial, both introduced
in [BBC+15], motivated by work in [BBP12]. Given an acyclic mixed graph
g, a weak coloring is a function f : N → N, subject to:

(1) For every uv ∈ U , we have f(u) 6= f(v).
(2) For every (u, v) ∈ D, we have f(u) ≤ f(v).

If we replace the second condition with strict inequalities, then we obtain the
definition of strong coloring. the weak chromatic polynomial χ(g, k) counts
the number of weak colorings f such that f(N) ⊆ [k]. Similarly, the strong

chromatic polynomial χ̄(g, k) counts the number of strong colorings f with
f(N) ⊆ [k]. Naturally there are quasisymmetric function generalizations of
both these invariants, which we introduce. Moreover, both invariants can
be understood from the theory of combinatorial Hopf monoids, and come
from convex characters, as we now demonstrate.

Let MGN be the set of all acyclic mixed graphs with vertex set N . Given
a bijection σ : N → M , and an acyclic mixed graph g = (N,U,D) ∈ MGN ,
we define MGσ(g) = (M,U ′,D′), where U ′ = {{σ(u), σ(v)} : {u, v} ∈ U} and
D′ = {(σ(u), σ(v)) : (u, v) ∈ D}. We see that we get a map MGσ : MGN →
MGM . Thus MG is a set species.

Now we turn KMG• into a linearized Hopf monoid. Given disjoint sets M
and N , and acyclic mixed graphs g ∈ MGM and d ∈ MGN , we define g · d by
taking disjoint unions of edge sets.

Likewise, given an acyclic mixed graph g = (M ⊔N,U,D) ∈ MGM⊔N , we
define ∆M,N(g) as follows. First, if there exists (n,m) ∈ D with m ∈M,n ∈
N , then ∆M,N(g) = 0. Otherwise, we let g|M be the induced subgraph onM ,
and g/M be the induced subgraph on N , and define ∆M,N(g) = g|M ⊗g/M .

There are two interesting examples of characters we will be interested in.
The first is χ. We see that χ(g) = 1 if and only if g has no edges. We define

ϕ(g) =

{

0 if g has at least one undirected edge

1 otherwise.

The reader may check that this is a multiplicative function.

Theorem 57. The pairs (KMG•,K(ϕ)) and (KMG•,K(χ)) are linearized com-

binatorial Hopf monoids. Moreover, both ϕ and χ are balanced convex char-

acters.

Proof. Let L,M and N be finite sets. Let g ∈ MGL, h ∈ MGM , and k ∈ MGN .
Then (g · h) · k = g · (h · k), as the result in both cases is an acyclic mixed
graph that is the disjoint union of the three individual graphs.
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Let f ∈ MGL⊔M⊔N . If there is a directed edge from a vertex in L to a
vertex in M , or from a vertex in L to a vertex in N , or from a vertex in M
to a vertex in N , then

((∆L,M ⊗ idN ) ◦∆L⊔M,N )(f) = 0

= ((idL⊗∆M,N ) ◦∆L,M⊔N)(f).

If no such directed edges exist, then

((∆L,M ⊗ idN ) ◦∆L⊔M,N )(f) = f|L ⊗ f|M ⊗ f|N

= ((idL⊗∆M,N ) ◦∆L,M⊔N)(f),

and hence we have coassociativity.
Now, we show compatibility. Let A,B,C and D be finite sets, and let

g ∈ MGA⊔B and h ∈ MGC⊔D. If there is a directed edge in g from a vertex in
A to a vertex in B, or there is a directed edge in h from a vertex in C to a
vertex in D, then

∆A⊔C,B⊔D(g · h) = 0

= ((µA,C ⊗ µB,C) ◦ (idA⊗τB,C ⊗ idD) ◦ (∆A,B ⊗∆C,D))(g ⊗ h).

Otherwise,

∆A⊔C,B⊔D(g · h) = g|A · h|C ⊗ g|B · h|D

= ((µA,C ⊗ µB,C) ◦ (idA⊗τB,C ⊗ idD) ◦ (∆A,B ⊗∆C,D))(g ⊗ h).

Thus we see that the product and coproduct are compatible.
Now we show that ϕ and χ are balanced convex characters. It is not hard

to see that ϕ is multiplicative. Given a mixed graph g ∈ MGN , with |N | = 1,
then g is just a vertex, and we have ϕ(g) = 1.

Given g ∈ MGN with |N | ≥ 2, let v be a sink of g with respect to the
directed edges. Then ∆{v},N\{v}(g) 6= 0.

Now suppose that g is an acyclic mixed graph where ϕ(g) = 1. Then g

has no undirected edges. Let V = S ⊔ T , and suppose ∆S,T (g) 6= 0. Then
∆S,T (g) = g|S ⊗ g/S. Both g|S and g/S are induced subgraphs, and hence
have no undirected edges. Thus ϕ(g|S) = ϕ(g/S) = 1. Thus by Proposition
30, the character ϕ is balanced convex.

The fact that χ is balanced convex follows from Theorem 31. �

Given an acyclic mixed graph g with vertex set V , we see that Ψϕ(g,x) is
a summation over all weak colorings of g. Similarly, Ψχ(g,x) is a summation
over strong colorings of g.

As an example, if we let g be the graph on the left in Figure 6, then

Ψϕ(g,x) = 3M2,2 + 4M1,1,2 + 2M1,2,1 + 4M2,1,1 + 6M1,1,1,1

= 3F2,2 + F1,1,2 + 2F1,2,1 + F2,1,1 − F1,1,1,1.

We have that

Ψχ(g,x) =M2,2 + 2M1,1,2 + 2M2,1,1 + 6M1,1,1,1.
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Figure 6. an acyclic mixed graph, and its two coloring com-
plexes with respect to different characters.

Note that Ψϕ(g,x) is not F -positive. The relative simplicial complex in the
middle of Figure 6 is the coloring complex of g with respect to ϕ, while the
relative simplicial complex on the right is the coloring complex of g with
respect to χ.

Corollary 58. For every acyclic mixed graph g, the quasisymmetric func-

tions Ψχ(g,x) and Ψϕ(g,x) are both M -increasing. Moreover, the corre-

sponding weak and strong chromatic polynomials are both super flawless.

We will show in a future paper that Ψχ(g) is F -positive by showing that
the relative simplicial complex is relatively shellable. It is an interesting
problem to determine necessary and sufficient criteria for when Σϕ(g) is
relatively shellable.

6.3. Rooted Connected Graphs. Given a finite set N , a rooted con-
nected graph is a connected graph on N ⊔ {r}. We view r as an extra
vertex, which we call the root.

Let RGN be the set of all rooted connected graphs with vertex set N ⊔{r}.
Given a bijection σ : N →M , we extend to a bijection σ : N⊔{r} →M⊔{r}
by defining σ(r) = r. Given a rooted graph g ∈ RGN , we define RGσ(g) by
E(RGσ(g)) = {{σ(u), σ(v)} : {u, v} ∈ E(g)}. We see that we get a map
RGσ : RGN → RGM . Thus RG is a set species.

Now we turn KRG• into a linearized Hopf monoid. Given disjoint sets
M and N , and rooted connected graphs g ∈ RGM and h ∈ RGN , we define
g · h by taking disjoint unions of edge sets. In this case g · h has vertex set
M ⊔N ⊔ {r}, and we are identifying the roots of g and h. As a result, the
product is a rooted connected graph.

Likewise, let g ∈ RGM⊔N such that g|M∪r, the induced subgraph onM ∪r,
is connected. Let W = {v ∈ N : uv ∈ E(g) for some u ∈ M}. We define a
graph g/M on N ∪ {r} by saying uv ∈ E(g/M) if and only if u, v ∈ N and
uv ∈ E(g) or u = r and v ∈ W . Equivalently, g/M is the graph obtained
from g by contracting all the edges of g|M∪{r}. We claim that g/M ∈ RGN .
To see this, let u ∈ N . Then there is a path u, v1, . . . , vk, r. Let i be the first



44 JACOB A. WHITE

index where vi+1 ∈ M ∪ {r}, if such an index exists. Otherwise, let i = r.
Then we see that u, v1, . . . , vi, r is a path in g/M , and thus every g/M is
connected, and rooted at r.

Given g ∈ RGM⊔N , we define

∆M,N (g) =

{

g|M∪{r} ⊗ g/M g|M∪{r} is connected

0 otherwise

Given a rooted connected graph g, we see that χ(g) = 1 if and only if g
is a star graph rooted at the only nonleaf vertex.

Theorem 59. The pair (KRG,K(χ)) is a linearized combinatorial Hopf

monoid. Moreover, χ is a balanced convex character.

Proof. Let L,M and N be finite sets. Let g ∈ RGL, h ∈ RGM , and k ∈
RGN . Then (g · h) · k = g · (h · k), as the result in both cases is a rooted
connected graph that is the union of the three individual graphs, with the
corresponding roots identified.

Let g ∈ RGL⊔M⊔N . If g|L∪{r} is disconnected, or g|L⊔M⊔{r} is discon-
nected, then

((∆L,M ⊗ idN ) ◦∆L⊔M,N )(g) = 0

= ((idL⊗∆M,N ) ◦∆L,M⊔N)(g).

Otherwise, we can see that

((∆L,M ⊗ idN ) ◦∆L⊔M,N)(g) = g|L⊔{r} ⊗ (g|L⊔M⊔{r})/L⊗ g/(L ⊔M).

Similarly,

((idL⊗∆M,N) ◦∆L,M⊔N)(g) = g|L⊔{r} ⊗ (g/L)|M⊔{r} ⊗ g/(L ∪M).

We see that (g|L⊔M⊔{r})/L = (g/L)|M⊔{r}, as both graphs consist of re-
stricting to M and contracting the vertices in L ⊔ {r}. Hence we have
coassociativity.

Now we show compatibility. Let A,B,C and D be finite sets, and let
g ∈ RGA⊔B and h ∈ RGC⊔D. If g|A∪{r} or h|C∪{r} is disconnected, then

∆A⊔C,B⊔D(g · h) = 0

= ((µA,C ⊗ µB,C) ◦ (idA⊗τB,C ⊗ idD) ◦ (∆A,B ⊗∆C,D))(g ⊗ h).

Otherwise, we see that

∆A⊔C,B⊔D(g · h) = g|A∪{r} · h|C∪{r} ⊗ g/A · h/C

= (µA,C ⊗ µB,C) ◦ (idA⊗τB,C ⊗ idD) ◦ (∆A,B ⊗∆C,D))(g ⊗ h).

Thus we see that the product and coproduct are compatible.
Now we show that χ is a balanced convex character. For g ∈ RGN with

|N | ≥ 2, let v be a vertex that is adjacent to r. Then ∆{v},N\{v}(g) 6= 0. By
Theorem 31, χ is a balanced convex character. �
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Figure 7. A rooted connected graph, and its corresponding
coloring complex.

Given a rooted connected graph g with vertex set V , we see that Ψχ(g,x)
is a summation over proper colorings that have the additional feature that,
for every vertex v, there exists a path r, v1, . . . , vk, v with the property that
f(v1) < f(v2) < · · · < f(vk) < f(v). If there is an edge between r and
every vertex of N , then Ψχ(g,x) is just the chromatic symmetric function
of the unrooted graph g \{r}. However, for other types of rooted connected
graphs, we obtain a new quasisymmetric function.

As an example, if we let g be the graph on the left in Figure 7, then

Ψχ(g,x) =M2,1 + 4M1,1,1.

The relative simplicial complex on the right of Figure 7 is the coloring com-
plex of g with respect to χ.

Corollary 60. For every rooted connected graph g, the quasisymmetric

function Ψχ(g,x) is M -increasing. Moreover, the corresponding chromatic

polynomial is super flawless.

6.4. Double Posets. Now we will discuss double posets. The Hopf alge-
bra of double posets was introduced by Malvenuto and Reutenauer [MR11].
However, we show that double posets also form a linearized combinatorial
Hopf monoid. The associated quasisymmetric function is a generalization
of Gessel’s (P, ω)-partition enumerator for labeled posets (P, ω). The corre-
sponding quasisymmetric function for double posets is studied extensively
by Grinberg [Gri17].

Given a finite set N , a double poset on N is a triple (N,≤1,≤2) where
≤1 and ≤2 are both partial orders on N . Let DPN be the set of all double
posets with vertex set N . Given a bijection σ : N →M , and a double poset
d ∈ DPN , we define DPσ(d) to be the double poset given by declaring x ≤i y
if and only if σ−1(x) ≤i σ

−1(y) for all x, y ∈ N, i ∈ {1, 2}. We see that we
get a map DPσ : DPN → DPM . Thus DP is a set species.

Now we turn KDP• into a linearized Hopf monoid. Given disjoint sets
M and N , and double posets d ∈ DPM and h ∈ DPN , we define two partial
orders on M ⊔N . For x, y ∈ M ⊔N , we say x ≤1 y if one of the following
holds:

(1) x, y ∈M and x ≤1 y in d.
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(2) x, y ∈ N and x ≤1 y in h.

We observe that ≤1 is the disjoint union of two partial orders. For x, y ∈
M ⊔N , we say x ≤2 y if one of the following holds:

(1) x, y ∈M and x ≤2 y in d.
(2) x, y ∈ N and x ≤2 y in h.
(3) x ∈M and y ∈ N .

We observe that ≤2 is the ordinal sum of two partial orders. Then we let
d · h = (M ⊔N,≤1,≤2). Given d ∈ DPM and h ∈ DPN , where M and N are
disjoint sets, we define a double poset d · h = (M ⊔ N,≤1,≤2). Hence we
have a multiplication operation for D.

Now we define the comultiplication. Given a double poset d ∈ DPM⊔N ,
we define d|M by: for x, y ∈ M , we say x ≤i y in d|M if and only if x ≤i y
in d. We define

∆M,N (d) =

{

d|M ⊗ d|N if M is an order ideal of ≤1

0 otherwise.

Since we are going to prove that ∆ is coassociative, it is worth noting that,
given a poset p ∈ PM⊔N , then M is a ≤1-order ideal if and only if N is a
≤1-order filter.

Given a double poset d, a pair (m,m′) ∈ M is an inversion if m <1 m
′

and m′ <2 m. Finally, given a double poset d ∈ DPN , we define

ϕ(d) =

{

0 if d has an inversion

1 otherwise.

The reader may check that this is a multiplicative function.

Theorem 61. The pairs (KDP•,K(ϕ)) and (KDP•,K(χ)) are linearized com-

binatorial Hopf monoids. Moreover, ϕ and χ are balanced convex characters.

Proof. Let L,M and N be finite sets. Let d ∈ DPL, f ∈ DPM , and g ∈ DPN .
Then (d · f) · g = d · (f · g), as the result in both cases is a double poset such
that ≤1 is the disjoint union of the first partial orders for d, f and g, and
≤2 is the ordinal sum of the second partial orders of d, f and g.

Let d ∈ DPL⊔M⊔N . If L is not a ≤1-order ideal of d, or N is not a ≤1-order
filter of d, then

((∆L,M ⊗ idN ) ◦∆L⊔M,N )(f) = 0

= ((idL⊗∆M,N ) ◦∆L,M⊔N)(f).

Otherwise, we see that M is a ≤1-convex subset of d, and we have

((∆L,M ⊗ idN ) ◦∆L⊔M,N )(f) = f|L ⊗ f|M ⊗ f|N

= ((idL⊗∆M,N ) ◦∆L,M⊔N)(f).

Hence we have coassociativity.
Now we show compatibility. Let A,B,C and D be finite sets, and let

d ∈ DPA⊔B and f ∈ DPC⊔D. If A is not a ≤1-order ideal of d or C is not a
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≤1-order ideal of f, then A∪C is not a ≤1-order ideal of d · f. In that case,
we have

∆A⊔C,B⊔D(d · f) = 0

= ((µA,C ⊗ µB,C) ◦ (idA⊗τB,C ⊗ idD) ◦ (∆A,B ⊗∆C,D))(d ⊗ f).

If A and C are ≤1-order ideals of their corresponding posets, then A ∪C is
a ≤1-order ideal of d ·f. Write ∆A⊔C,B⊔D(d ·f) = h⊗ k. Then (h,≤1) is the
disjoint union of (d|A,≤1) and (f|C ,≤1), while (h,≤2) is the ordinal sum of
(d|A,≤2) and (f|C ,≤2). Similarly, (k,≤1) is the disjoint union of (d|B,≤1)
and (f|D,≤1), while (h,≤2) is the ordinal sum of (d|B ,≤2) and (f|D,≤2).
It follows that

h⊗ k = ((µA,C ⊗ µB,C) ◦ (idA⊗τB,C ⊗ idD) ◦ (∆A,B ⊗∆C,D))(d ⊗ f).

Now we show that the characters ϕ and χ are balanced convex. Let
v ∈ N be a minimal element with respect to ≤1. Then ∆{v},N\{v}(d) 6= 0.
By Theorem 31, it follows that χ is balanced convex.

Also, given d ∈ DPN , where |N | = 1, we see that d consists of a single
vertex, and thus ϕ(d) = 1.

Let d be a double poset such that ϕ(d) = 1. Let N = S ⊔ T such that
∆S,T (d) 6= 0. Then ∆S,T (d) = d|S ⊗ d|T , where each factor is the induced
double poset on the corresponding subset. We see that if d has no inversions,
then every induced subposet of d also has no inversions. Hence ϕS|T (d) = 1.
Thus, by Proposition 30, ϕ is a balanced convex character. �

The corresponding quasisymmetric function Ψϕ(d,x) enumerates double
poset partitions. A double poset partition is a function σ : N → N subject
to:

(1) for x, y ∈ N , if x ≤1 y, then σ(x) ≤ σ(y).
(2) for x, y ∈ N , if x ≤1 y and y <2 x, then σ(x) < σ(y).

It is not hard to show that Ψϕ(d,x) =
∑

σ

∏

m∈M xσ(m). This amounts
to showing that a double poset partition is a ϕ-proper function.

As an example, if we let d be the double poset in Figure 8, where the
Hasse diagram on the left is for ≤1 and the Hasse diagram in the middle is
for ≤2. Then

Ψϕ(d,x) =M2,2 + 2M1,1,2 + 2M1,2,1 + 2M2,1,1 + 4M1,1,1,1

= F2,2 + F1,1,2 + 2F1,2,1 + F2,1,1 − F1,1,1,1.

This quasisymmetric function is not F -positive. The relative simplicial com-
plex on the right of Figure 8 is the coloring complex of d with respect to
ϕ.

Corollary 62. For every double poset d, the quasisymmetric functions

Ψϕ(p,x) is M -increasing. Moreover, the corresponding order polynomial

is strongly flawless.
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Figure 8. A double poset, and its coloring complex.

It is an interesting problem to determine necessary and sufficient criteria
for when Σϕ(d) is relatively shellable.

We also briefly mention the character χ. Given a double poset d, define
the mixed graph g(d) as follows:

(1) For u, v ∈ N , we have (u, v) ∈ E(g(d)) if and only if u ≤1 v.
(2) For u, v ∈ N , we have uv ∈ E(g(d)) if and only if u, v are ≤2-

incomparable.

Given a finite set N , let ψ : DPN → MGN be given by ψ(d) = g(d). One can
show that K(ψ) is a morphism of combinatorial Hopf monoids with respect
to the character χ. Thus, while at first glance Ψχ(d,x) appears to be a new
invariant, it is enumerating strong colorings of an associated mixed graph.

6.5. Antimatroids. Given a finite set N , an antimatroid is a non-empty
collection a of subsets of N that satisfies the following conditions:

(1) For every S ∈ a, there exists x ∈ S such that S \ {x} ∈ a.
(2) For every S, T ∈ a, we have S ∪ T ∈ a.

Antimatroids were introduced by Jamison [Jam80]. Given a partially or-
dered set P , let J(P ) be the set of order ideals of P . Then J(P ) is an
antimatroid. Another example of an antimatroid appears on the left in
Figure 9.

Let AN be the set of all antimatroids with vertex set N . Given a bijection
σ : N → M , and an antimatroid a ∈ AN , we define σ(a) = {σ(S) : S ∈ a}.
We see that we get a map Aσ : AN → AM . Thus A is a set species.

Now we turn KA• into a linearized Hopf monoid. Given disjoint sets M
and N , and antimatroids a ∈ AM and b ∈ AN , we define a · b = {X ∪ Y :
X ∈ a, Y ∈ b}.

Likewise, given an antimatroid a ∈ AM⊔N with M ∈ a, we define a|M =
{S : S ∈ a, S ⊆M} and a/M = {T : T ⊆ N,T ∪M ∈ a}. These operations
are called the restriction and contraction, respectively. It is easy to see that
both the restriction and contraction are closed under unions, and that for
S ∈ a|M , there exists x ∈ S such that S \ {x} ∈ a|M . Let S ∈ a/M . Then
S ∪ M ∈ a. There exists x1 ∈ S ∪ M such that S ∪ M \ {x1} ∈ a. If
x1 ∈M , then there exists x2 ∈ S ∪M \{x1} such that S ∪M \{x1, x2} ∈ a.
Continuing, there is a sequence of elements x1, . . . , xi, with x1, . . . , xi ∈ M
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and S ∪M \ {x1, . . . , xi} ∈ a. Since M is a finite set, we see that eventually
we find T ⊆M and x ∈ S such that S ∪M \ (T ∪{x}) ∈ a. Since a is closed
under unions, M ∪ (S ∪M \ (T ∪ {x})) ∈ a. Thus (S \ {x}) ∪M ∈ a and
S \{x} ∈ a/M . Therefore, the restriction and contraction of an antimatroid
is an antimatroid.

For a ∈ AM⊔N , we define

∆M,N(a) =

{

a|M ⊗ a/M if M ∈ a

0 otherwise.

Finally, given an antimatroid a ∈ AN , we see that χ(a) = 1 if and only if
a = 2N .

Theorem 63. The pair (KA,K(χ)) is a linearized combinatorial Hopf monoid.

Moreover, χ is a balanced convex character.

Proof. Let L,M and N be finite sets. Let a ∈ AL, b ∈ AM , and c ∈ AN .
Then (a · b) · c = a · (b · c), as the result in both cases is the antimatroid

a · b · c = {X ∪ Y ∪ Z : X ∈ a, Y ∈ b, Z ∈ c}.

Next, we show coassociativity. Let a ∈ AL⊔M⊔N . If L 6∈ a or L ∪M 6∈ a,
then

((∆L,M ⊗ idN ) ◦∆L⊔M,N)(a) = 0 = ((idL⊗∆M,N) ◦∆L,M⊔N )(a).

Otherwise, we have

((∆L,M ⊗ idN ) ◦∆L⊔M,N)(a) = a|L ⊗ aL,M ⊗ a/(L ∪M)

= ((idL⊗∆M,N) ◦∆L,M⊔N )(a)

where aL,M = {Y ⊆M : Y ∪ L ∈ a}. Hence we have coassociativity.
Now we show compatibility. Let A,B,C and D be finite sets, and let

a ∈ AA⊔B and b ∈ AC⊔D. If A 6∈ a or C 6∈ b, then

∆A⊔C,B⊔D(a · b) = 0

= ((µA,C ⊗ µB,C) ◦ (idA⊗τB,C ⊗ idD) ◦ (∆A,B ⊗∆C,D))(a ⊗ b).

In all other cases, we have

∆A⊔C,B⊔D(a · b) = a|A · b|C ⊗ a/A · b/C

= (µA,C ⊗ µB,C) ◦ (idA⊗τB,C ⊗ idD) ◦ (∆A,B ⊗∆C,D))(a ⊗ b).

Thus we see that the product and coproduct are compatible.
Now we show that χ is a balanced character. Given a ∈ AN with |N | ≥ 2,

there exists a vertex v such that {v} ∈ a. Then ∆{v},N\{v}(a) 6= 0. By
Theorem 31, χ is a balanced convex character. �

As an example, in Figure 9, we have an antimatroid a and the corre-
sponding coloring complex Σχ(a). The resulting quasisymmetric function
is

Ψχ(a,x) = 2M1,2 +M2,1 + 4M1,1,1.
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Figure 9. An antimatroid, and its corresponding coloring complex.

We see that Ψχ(a,x) enumerate all functions f : I → N such that
f−1([i]) ∈ a and f−1(i) is a boolean lattice, for all i. This appears to
be a new invariant.

Remark 64. Consider the function JN : PN → AN given by J(p) = {I ⊆
N : I is an ideal of p}. Then J : P → A is a morphism of Hopf monoids, and
χ ◦ J = χ. Thus Ψχ(J(p),x) = Ψχ(p,x). In this sense, our new invariant
can be regarded as a generalization of the quasisymmetric function which
enumerates strict p-partitions.

Corollary 65. Let a be an antimatroid. Then the invariant Ψϕ(a,x) is

M -increasing. Moreover, Ψϕ(a, x) is strongly flawless.

We did not discuss ζ. However, given an antimatroid a, it is partially
ordered by inclusion, and Σζ(a) = ∆(a \ {∅, N}), the order complex of the
corresponding poset. In particular, Ψζ(a,x) is a F -quasisymmetric function
of a graded poset, as defined in Example 10.

6.6. Generalized Permutohedra. The Hopf monoid of generalized per-
mutohedra can be described in terms of generalized permutohedra, or in
terms of submodular functions. The first description is in Section 5 of
[AA17], while the description in terms of submodular functions is in Section
12. We will focus on the latter description. A submodular function is a
function z : 2N → R which satisfies:

(1) z(∅) = 0,
(2) For A,B ⊆ N , we have z(A ∪B) + z(A ∩B) ≤ z(A) + z(B).

We say z is modular if we have z(A ∪B) + z(A ∩B) = z(A) + z(B).
Let SFN be the set of all submodular functions with vertex set N . Given

a bijection σ : N →M , and a submodular function z ∈ SFN , we define σ(z)
by σ(z) = z ◦ σ−1. We see that we get a map SFσ : SFN → SFM . Thus SF is
a set species.
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Now we turn KSF• into a linearized Hopf monoid. Given disjoint sets M
and N , and submodular functions w ∈ SFM and z ∈ SFN , we define w · z by
(w · z)(X) = w(X ∩M) + z(X ∩N).

Likewise, given a submodular function z ∈ AM⊔N , we define z|M by
z|M (S) = z(S) for S ⊆M . We define z/M by z/M(X) = z(M∪X)−z(M),
for S ⊆ N . Then ∆M,N(z) = z|M ⊗ z/M .

Finally, given a submodular function z ∈ SFN , we see that χ(z) = 1 if
and only if z is modular. This is the same character by Aguiar and Ardila in
Section 17 of [AA17], which they refer to as the basic invariant (they define
it for generalized permutohedra instead).

Theorem 66. The pair (KSF,K(χ)) is a linearized combinatorial Hopf

monoid. Moreover, χ is a balanced convex character. Hence, for every sub-

modular function z, the quasisymmetric function Ψχ(z,x) is M -increasing,

and the polynomial χχ(z,x) is strongly flawless.

Proof. The fact that KSF is a Hopf monoid is Theorem 12.2 in [AA17]. The
fact that χ is balanced and convex follows from Theorem 31. �

The polynomial χχ(z,x) was introduced by Aguiar and Ardila [AA17].
In the context of generalized permutohedra, it counts functions that are
maximized on a unique vertex, while Ψχ(z,x) is a natural quasisymmetric
function generalization of the polynomial.

Finally, Aguiar and Ardila have shown that many Hopf monoids arise as
Hopf submonoids of KSF, or a related Hopf monoid of extended generalized
permutohedra. We show that KA does not correspond to a linearized Hopf
submonoid. This demonstrates that there are examples of Hopf monoids in
the literature that can be studied via coloring complexes but not generalized
permutohedra. An extended generalized permutohedron corresponds to an
extended submodular function z : N → R ∪ {∞} which has the property
that, for any A,B ⊂ N with z(A) < ∞ and z(B) < ∞, we have z(A ∪
B) + z(A ∩ B) ≤ z(A) + z(B). For a finite set N , let ESFN be the set of
extended submodular functiions. The corresponding linear species KESF is
also a linearized combinatorial Hopf monoid, with the rule that ∆S,T (z) =
z|S ⊗ z/S if z(S) <∞, and ∆S,T (z) = 0 otherwise.

For many examples of combinatorial Hopf monoids (KH•, ϕ), Aguiar and
Ardila [AA17] define a linearized morphism ψ : KH• → KESF• such that
ϕ = χ ◦ ψ.

Proposition 67. There is no linearized homomorphism K(ψ) : KA• →
KESF• such that χ ◦ ψ = χ.

There is also no injective linearized homomorphism K(ϕ) : KA• → KESF•.

Proof. Let K(ψ) : KA• → KESF• such that χ ◦ ψ = χ. Given an extended
submodular function z, and sets S, T with z(S) < ∞ and z(T ) < ∞, it
follows that z(S ∩ T ) < ∞. In particular, if we let C(z) be the collection
of sets S with z(S) < ∞, then C(z) is closed under intersections. We know
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that C(z) \ {∅, N} is also the vertex set of Σχ(z). On the other hand, given
an antimatroid a, the vertex set of Σχ(a) are the subsets S ∈ a. Since
χ ◦ ψ = χ, it follows that Σχ(ψ(a)) = Σχ(a). This implies that the subsets
of a are closed under intersection for every antimatroid. However, this is
not true: the antimatroid in Figure 9 is a counterexample. Thus we have
obtained a contradiction.

Suppose that K(ϕ) : KA → KESF is an injective homomorphism. We show
that χ◦ϕ = χ. Then our result follows from the fact that no such linearized
homomorphism exists. Clearly, given an antimatroid a, if χ(a) = 1, then
a = a1 · · · ak for several antimatroids ai, where each ai has a singleton vertex
set. Then ϕ(a) = ϕ(a1) · · ·ϕ(ak). We see each ϕ(ai) is modular, and the
product of two modular functions is modular. Thus χ(ϕ(a)) = 1.

Suppose then that there exists a finite set N and an antimatroid a ∈ A[N ]
with χ(ϕ(a)) = 1. There is a linear order ℓ on N , and modular functions
z1, . . . , zn such that ϕ(a) = z1 · · · zn, where zi ∈ ESF{ℓi}. For each i, we see
that

∆{ℓ1,...,ℓi−1}|ℓi|ℓi+1,...,ℓn(ϕ(a)) = z1 · · · zi−1 ⊗ zi ⊗ zi+1 · · · zn 6= 0.

Since ϕ is a homomorphism, we see that ∆{ℓ1,...,ℓi−1}|ℓi|ℓi+1,...,ℓn(a) 6= 0. Thus
a|{ℓ1,...,ℓi}/{ℓ1, . . . , ℓi−1} exists for all i. Let ai = a|{ℓ1,...,ℓi}/{ℓ1, . . . , ℓi−1}.
Applying coproducts, and the fact that ϕ is a homomorphism, we see that
ϕ(ai) = zi. Then ϕ(a) = ϕ(a1 · · · an). Since ϕ is injective, a = a1 · · · an, and
hence χ(a) = 1. Hence χ ◦ ϕ = χ. �

In particular, there are natural examples of linearized combinatorial Hopf
monoids which are not linearized submonoids of the Hopf monoid of ex-
tended generalized permutohedra, but which may be viewed as submonoids
of the Hopf monoid of coloring complexes. A result similar to Proposition
67 also holds for rooted connected graphs, with a similar proof. That is,
there is no injective linearized homomorphism K(ϕ) : KRG• → KESF•.
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