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INDECOMPOSABLE INVOLUTIVE SOLUTIONS OF

THE YANG-BAXTER EQUATION OF MULTIPERMUTATION LEVEL 2

WITH NON-ABELIAN PERMUTATION GROUP

PŘEMYSL JEDLIČKA AND AGATA PILITOWSKA

Abstract. We give a complete characterization of all indecomposable involutive solutions of the
Yang-Baxter equation of multipermutation level 2. In the first step we present a construction of
some family of such solutions and in the second step we prove that every indecomposable involutive
solution of the Yang-Baxter equation with multipermutation level 2 is a homomorphic image of
a solution previously constructed. Analyzing this epimorphism, we are able to obtain all such
solutions up to isomorphism and enumerate these of small sizes.

1. Introduction

The Yang-Baxter equation is a fundamental equation occurring in mathematical physics. It
appears, for example, in integrable models in statistical mechanics, quantum field theory or Hopf
algebras (see e.g. [20, 22]). Searching for its solutions has been absorbing researchers for many
years.

Let us recall that, for a vector space V , a solution of the Yang–Baxter equation is a linear mapping
r : V ⊗ V → V ⊗ V such that

(id⊗ r)(r ⊗ id)(id ⊗ r) = (r ⊗ id)(id ⊗ r)(r ⊗ id).

Description of all possible solutions seems to be extremely difficult and therefore there were some
simplifications introduced by Drinfeld in [9]. Let X be a basis of the space V and let σ : X2 → X
and τ : X2 → X be two mappings. We say that (X,σ, τ) is a set-theoretic solution of the Yang–

Baxter equation if the mapping

x⊗ y 7→ σ(x, y)⊗ τ(x, y)

extends to a solution of the Yang–Baxter equation. It means that r : X2 → X2, where r = (σ, τ),
is a bijection and satisfies the braid relation:

(1.1) (id× r)(r × id)(id × r) = (r × id)(id × r)(r × id).

A solution is called non-degenerate if the mappings σx = σ(x, ) and τy = τ( , y) are bijections,
for all x, y ∈ X. A solution (X,σ, τ) is involutive if r2 = idX2 , and it is square free if r(x, x) = (x, x),
for every x ∈ X.

Convention 1.1. All solutions, we study in this paper, are set-theoretic, non-degenerate and
involutive, so we will call them simply solutions.

Various algebraic structures are naturally associated with solutions (X,σ, τ). Among others,
there is a group of bijections defined on the set X. The permutation group G(X) = 〈σx : x ∈ X〉 of
a solution is the subgroup of the symmetric group S(X) generated by mappings σx, with x ∈ X. The
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group G(X) is also called the Yang-Baxter group (IYB group) associated to the solution (X,σ, τ).
A solution (X,σ, τ) is indecomposable if the permutation group G(X) acts transitively on X.

A solution with regular permutation group is called uniconnected (see [25]). By definition,
uniconnected solutions are indecomposable.

In [10, Section 3.2] Etingof, Schedler and Soloviev introduced, for each solution (X,σ, τ), the
equivalence relation ∼ on the set X: for each x, y ∈ X

x ∼ y ⇔ τ( , x) = τ( , y).

They showed that the quotient set X/∼ can be again endowed with a structure of a solution
and they call such a solution the retraction of the solution (X,σ, τ) and denote it by Ret(X). A
solution (X,σ, τ) is said to be a permutation solution (or multipermutation solution of level 1) if
|Ret(X)| = 1. A non-permutation solution (X,σ, τ) is said to be a multipermutation solution of

level 2 (or briefly, 2-permutational solution), if |Ret(X)/∼| = 1.
Even describing all set-theoretic solutions still remains a very difficult task. For this reason

it looks fruitful to prospect less complex solutions and, in some sense, treat them as “bricks” to
build new ones. An approach to study solutions is to classify them according to their permutation
groups. Special attention is now paid when such groups are transitive. Clearly, knowledge of
indecomposable solutions could allow one to build all the decomposable ones. For example, Rump
showed in [23] that every finite square free solution admits a nontrivial decomposition.

Cedó and Okniński characterized in [8] so called simple solutions (solutions with only trivial
congruences). In particular, they proved that each finite simple solution (not of a prime order)
is indecomposable. Moreover, by the results from [4], every finite indecomposable solution is a
dynamical extension of a simple solution.

Unfortunately, it is not easy to find, in general, all the indecomposable solutions. The investiga-
tion of indecomposable solutions was initiated by Etingof et. al. in [10]. They showed there that
such solutions of prime cardinality are permutation solutions with cyclic permutation group. In [19]
the authors of this paper together with Zamojska-Dzienio gave a complete system of three invari-
ants for finite non-isomorphic indecomposable solutions with cyclic permutation groups (cocyclic
solutions). Smoktunowicz and Smoktunowicz presented in [26] a construction of all finite indecom-
posable solutions based on one-generated left braces. Also Rump in [25] gave another method of
constructing indecomposable solutions from left braces. Additionally, the results of Bachiller, Cedó
and Jespers [2] allow one to construct all solutions with a given permutation group. But all the
above constructions require being able to construct all (finite) left braces. Moreover, by results
of Smoktunowicz and Smoktunowicz, we know that one-generated left braces, and in consequence,
indecomposable solutions of non-prime cardinality are quite frequent.

In the light of what we know it is reasonable to focus on a smaller class of indecomposable solu-
tions, for instance multipermutation solutions of level 2 with non-abelian permutation group. Note
that study multipermutation solutions of low levels attracts, among others, researchers interested
in the quantum spaces (see e.g. [14]).

By results of Gateva-Ivanova, multipermutation solutions of level 2 can be characterized in an
easy way.

Theorem 1.2. [13, Proposition 4.7] Let (X,σ, τ) be a solution and |X| ≥ 2. Then (X,σ, τ) is a

multipermutation solution of level 2 if and only if the following condition holds for every x, y, z ∈ X:

σσy(x) = σσz(x).(1.2)

All finite indecomposable solutions of the Yang-Baxter equation of multipermutation level at
most 2 with abelian permutation groups were constructed in [18]. Probably the first example of
an indecomposable solution of multipermutation level 2 with non-abelian permutation group was
presented by Etingof et. al. in [10]. In [10, Subsection 3.3.] they constructed all indecomposable
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solutions of multipermutation level 2 of order 6. Later on a new family of such solutions of order
2n, for arbitrary n ∈ N and with the permutation group isomorphic to Zn ⋊ Z2, was presented in
[18, Example 2.6]. Just recently, Castelli characterized in [5] all the uniconnected solutions having
odd size, a Z-group permutation group and having multipermutation level at most 2. He classified
all such solutions with odd square-free order, up to isomorphism [5, Theorem 5.2].

In our paper, we study general indecomposable solutions of multipermutation level 2. In [17]
the authors, together with Zamojska-Dzienio, presented a way how to obtain arbitrary solutions
of multipermutation level 2. Now we apply this method to describe indecomposable ones. We
show that an important rôle is played by one normal abelian subgroup of the permutation group,
called the displacement group. We also find a way how to obtain (in theory) all indecomposable

solutions of multipermutation level 2 of arbitrary size n and we show that there are at least 2n/2−1
such solutions when n is a power of 2. This result has not been expected since the numbers of
indecomposable solutions is known by [1] only up to the size of 11 and we have not have enough
evidence about the growth of the numbers for powers of primes.

The paper is organized as follows. Since the most standard way how to construct solutions is using
braces, in Section 2 we recall that every uniconnected solution can be constructed from a left brace
on the basis of results of Rump and we present some examples of this construction. In Section 3
we recall a connection between solutions of multipermutation level 2 and so-called 2-reductive
solutions and, based on this relationship, we describe the structure of the displacement group.
Section 4 contains a construction of a special class of indecomposable solutions of multipermutation
level 2 (Theorem 4.1). We study properties of the construction. In particular we show that the
permutation group of each such solution is a semidirect product of its displacement group and
a cyclic group and the automorphism group of the solution is transitive. Finally, in Section 5
we characterize all congruence relations of solutions constructed in Section 4, we show that every
indecomposable solution of multipermutation level 2 is an image of one particular solution and also
give a characterization of all the solutions that can be obtained by the construction described in
Theorem 4.1. This allows us to calculate all such solutions up to the size of 17, which is done in
Section 6. Additionally, we prove that the automorphism group of any indecomposable solution of
multipermutation level 2 is regular.

2. Uniconnected 2-permutational solutions

In this section we recall some facts about braces and uniconnected solutions. Rump in [24, Defi-
nition 2] introduced the notion of a brace and showed the correspondence between such structures
and solutions. Here we use an equivalent definition formulated by Cedó, Jespers and Okniński.

Definition 2.1. [7, Definition 2.2] An algebra (B,+, ◦) is called a left brace if (B,+) is an abelian
group, (B, ◦) is a group and the operations satisfy, for all a, b, c ∈ B,

(2.1) a ◦ b+ a ◦ c = a ◦ (b+ c) + a.

The inverse element to a in the group (B, ◦) shall be denoted by a−.
For a left brace (B,+, ◦) there is an action λ : (B, ◦) → Aut (B,+), where λ(a) = λa and for all

b ∈ B, λa(b) = a ◦ b − a. The kernel of the group homomorphism λ is called the socle of the left
brace (B,+, ◦) and denoted by Soc(B), i.e.

Soc(B) = Ker(λ) = {a ∈ B : λa = id} = {a ∈ B : a ◦ b = a+ b for all b ∈ B}.

Soc(B) is a normal subgroup of both: the group (B,+) and (B, ◦). Hence the quotient (B, ◦)/Soc(B)
of the multiplicative group is also the quotient of the additive group (B,+) and the factor left brace
B/Soc(B) := (B,+, ◦)/Soc(B) by Soc(B) is well defined.

A brace is called cyclic if the additive group (A,+) is cyclic, bicyclic if both groups are cyclic
and it is trivial if Soc(B) = B.
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The associated solution (B,σ, τ) to a left brace (B,+, ◦) is defined on a set B as follows: σx(y) :=
λx(y) and τy(x) := λ−1

λx(y)
(x) for x, y ∈ B.

One of methods to construct braces from given ones is by their semidirect product. Let (B1,+1, ◦1)
and (B2,+2, ◦2) be two left braces and let α : (B2, ◦2) → Aut (B1,+1, ◦1) be a homomorphism of
groups. The brace B1 ⋊α B2 = (B1 × B2,+, ◦) with (B1 × B2,+) = (B1,+1) × (B2,+2) and for
(x1, x2), (y1, y2) ∈ B1 ×B2

(x1, x2) ◦ (y1, y2) = (x1 ◦1 α(x2)(y1), x2 ◦2 y2)

is called the semidirect product of the left braces with respect to α. In particular,

λ(x1,x2)((y1, y2)) = (x1 ◦1 α(x2)(y1)− x1, x2 ◦2 y2 − x2).

A subset X of a left brace (B,+, ◦) is called a cycle base if X is a union of orbits of the action λ
and generates the additive group (B,+). A cycle base is transitive if it is a single orbit. Note that
a transitive cycle base always exists in a cycle brace.

In [25, Theorem 4.2] Rump showed that with a left brace (B,+, ◦) with a transitive cycle base
X one can associate a uniconnected solution (B,σ, τ):

σx(y) := (λx(g))
− ◦ y(2.2)

for x, y ∈ B and g ∈ X, such that the permutation group G(B) is isomorphic to the group (B, ◦).
On the other hand, each uniconnected solution can be constructed in this way.

We now present an example of braces which later on will be good illustration of construction
described in Section 4. As usual, we will denote by Zn the group (Zn,+n) = Z/(n).

Example 2.2. Let n ∈ N, (G,+, 0) be an abelian group and α ∈ Aut(G) be of an order dividing n.
Further, let (B,+, ◦) = (G× Zn,+, ◦) be the α-semidirect product of two trivial braces: (G,+,+)
and (Zn,+n,+n). In this case, for (a, i), (b, j) ∈ G× Zn we have

(a, i) ◦ (b, j) = (a+ αi(b), i +n j), (a, i)− = (−α−i(a),−i), and λ(a,i)((b, j)) = (αi(b), j).

Assume now that an element (g, h) ∈ G × Zn lies in a transitive cycle base of (B,+, ◦) (if such
transitive cycle base exists). By Rump’s result, (G× Zn, σ, τ) with

σ(a,i)((b, j)) = (λ(a,i)((g, h)))
− ◦ (b, j) = (−αi−h(g),−h) ◦ (b, j) = (α−h(b)− αi−h(g), j − h),

for (a, i), (b, j) ∈ G×Zn, is a uniconnected solution with the permutation group G(G×Zn) isomor-
phic to the semidirect product G⋊Zn of groups (G,+, 0) and Zn.

Moreover,
σ−1
(a,i)((b, j)) = (αh(b) + αi(g), j + h).

It is worth noticing that the solution satisfies (1.2); for (a, i), (a′, i′), (b, j), (c, k) ∈ G × Zn we
have:

σ−1

σ−1
(a,i)

((b,j))
((c, k)) = σ−1

(αh(b)+αi(g),j+h)
((c, k)) = (αh(c) + αj+h(g), k + h) = σ−1

σ−1
(a′,i′)

((b,j))
((c, k)).

Hence, the solution is 2-permutational.

Example 2.3. Let (G,+, 0) = Z2 × Z2 and let α = ( 0 1
1 1 ) ∈ AutZ2 × Z2 be an automor-

phisms of order 3. Let n = 3 and (g, h) = ((1, 0), 1). Clearly, the set {(αi((1, 0)), 1) | i ∈
Z3} = {((1, 0), 1), ((0, 1), 1), ((1, 1), 1) generates the group Z2 × Z2 × Z3. Hence, by Example 2.2,
(Z2 × Z2 × Z3, σ, τ), with

σ((a1,a2),i)(((b1, b2), j)) = (α−1((b1, b2))− αi−1((1, 0)), j − 1) = ((b1 + b2, b1)− αi−1((1, 0)), j − 1),

is a uniconnected 2-permutational solution with the permutation group G(Z2×Z2×Z3) isomorphic
to (Z2 × Z2)⋊ Z3.
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Straightforward calculations show that all permutations σx are composed of cycles of length 3.
We have also the abelian subgroup ({id, σ1σ

−1
0

, σ2σ
−1
0

, σ1σ
−1
0

σ2σ
−1
0

}, ◦) of G(Z2 × Z2 × Z3) with
0 = ((0, 0), 0), 1 = ((0, 0), 1) and 2 = ((0, 0), 2), which is isomorphic to the group Z2 × Z2 and
〈σ0〉 ∼= Z3.

Example 2.4. According to Rump’s classification of cyclic left braces [?], for a left cyclic brace
(B,+, ◦) with |B| = pm, for some prime p and m ∈ N, the adjoint group (B, ◦) admits a cyclic
subgroup of index less or equal to 2. Hence, if p 6= 2, the group (B, ◦) is cyclic, and consequently
(B,+, ◦) is bicyclic.

In [18, Corollary 4.8.] we, together with Zamojska-Dzienio, have already described all finite
indecomposable solutions of the multipermutation level at most 2 with abelian (cyclic) permutation
group. Since an abelian group acting transitively is regular, all of them are uniconnected.

For a non-abelian cyclic left brace (B,+, ◦), with |B| = 2m, either Soc(B) is of index 2 in (B,+, ◦)
or B/Soc(B) is not bicyclic. In the latter case, the uniconnected solution associated with (B,+, ◦)
is not a multipermutation solution of level at most 2. So, by [?, Proposition 12], to construct
all uniconnected solutions of the multipermutation level at most 2, of size 2m with m > 2, and
originated from a cyclic left brace, we have to consider only two types of such left braces of size 2m.

Case 1. Let (Z2m ,+, ◦) be a cyclic left brace with the adjoint group being a dihedral group. Then,
for a, b ∈ Z2m,

a ◦ b = a+ (−1)ab =

{
a+ b, if a is even,

a− b, if a is odd.

Let g = 1. Hence λa(1) = a ◦ 1− a = (−1)a = (λa(1))
−. Thus (Z2m , σ, τ), with

σa(b) = (λa(1))
− ◦ b = (−1)a + (−1)(−1)ab =

{
1− b, if a is even,

−1− b = (2m − 1)(1 + b), if a is odd

is a uniconnected solution with the permutation group G(Z2m) isomorphic to the dihedral group
D2m . Since the parity of both 1 − b and −1− b is the same for arbitrary b ∈ Z2m , (Z2m , σ, τ) is a
multipermutation solution of level 2.

Case 2. Let (Z2m ,+, ◦) be a cyclic left brace with the adjoint group being a generalized quaternion
group. Then, for a, b ∈ B,

a ◦ b = a+ (2m−1 − 1)ab =

{
a+ b, if a is even,

a+ (2m−1 − 1)b, if a is odd.

For g = 1,

λa(1) = a+ (2m−1 − 1)a − a =

{
1, if a is even,

2m−1 − 1, if a is odd.

The uniconnected solution (Z2m , σ, τ) is defined in the following way:

σa(b) = (λa(1))
− ◦ b =

{
(1− 2m−1)(1− b), if a is even,

−1 + (2m−1 − 1)b, if a is odd.

As in the previous case, it is 2-permutational and its permutation group is isomorphic to the
generalized quaternion group Q2m .

In Section 4 we will show that solutions described in Examples 2.2 - 2.4 are samples of a more
general construction.
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3. Multipermutation solutions of level 2

In [17] the authors, together with Zamojska-Dzienio, presented a method of constructing all the
solutions of multipermutation level 2. These solutions fall into two classes: 2-reductive ones and
not 2-reductive ones. The former ones can be effectively constructed using a set of abelian groups
and a family of constants. The non-2-reductive solutions can be also easily constructed, using a
2-reductive solution and a permutation. Let us shortly remind these constructions.

The less complicated class is formed by so called 2-reductive solutions. Recall that a solution
(X,σ, τ) is called 2-reductive, if it satisfies, for all x, y ∈ X,

(3.1) σσy(x) = σx.

By [17, Lemma 2.7], Condition (3.1) is equivalent to the following one:

(3.2) σσ−1
y (x) = σx.

By [17, Theorem 7.7] each 2-reductive solution is a multipermutation solution of level 2 and note
also ([15, Proposition 8.2], [13, Proposition 4.7]) that a square free solution is of level at most 2 if
and only if it is 2-reductive.

The permutations of the 2-reductive solutions will be in this article, for some reason explained
below, denoted by Lx and Rx. These solutions can be completely characterized as follows:

Theorem 3.1. [17, Theorem 7.8] Each 2-reductive solution (X,L,R) is a disjoint union, over a

set I, of abelian groups (Aj ,+) = 〈{ci,j | i ∈ I}〉, for every j ∈ I, with

(3.3) Lx(y) = y + ci,j ∈ Aj and Ry(x) = x− cj,i ∈ Ai,

where x ∈ Ai and y ∈ Aj .

According to [17, Lemma 3.3], for each 2-reductive solution the group 〈Lx | x ∈ X〉 is always
abelian. Furthermore, by [17, Theorem 6.12] each multipermutation solution of level 2 originates
from some 2-reductive one. The procedure is the following.

Theorem 3.2. [17, Algorithm 7.13] Let (X,L,R) be a 2-reductive solution. Assume that there

exists a ∈ X with La = id and let π be a permutation of the set X satisfying, for x, y ∈ X, the

condition:

Lπ(y)πLx = Lπ(x)πLy.(3.4)

Then (X,σ, τ) with σx = Lxπ and τy = π−1Rπ(y) is a multipermutation solution of level 2.

On the other hand, each multipermutation solution of level 2 defines a 2-reductive one.

Theorem 3.3. [17, Theorem 7.12] Let (X,σ, τ) be a multipermutation solution of level 2 and e ∈ X.

Then (X,L,R), where Lx = σxσ
−1
e and Ry = σeτσ−1

e (y), for x, y ∈ X, is a 2-reductive solution.

We call the solution (X,L,R) from Theorem 3.3 the σ−1
e -isotope of (X,σ, τ). From now on, we shall

assume that one such 2-reductive solution is always associated to our solution of multipermutation
level 2. Moreover, since Le = id, by [17, Theorem 6.12], the solution (X,L,R) satisfies Condition
(3.4) for π = σe, that means σx = Lxπ = Lxσe, for each x ∈ X.

Displacement group. Note that, for every x, y ∈ X,

(3.5) LxL
−1
y = Lxππ

−1L−1
y = σxσ

−1
y and LxL

−1
e = Lx.

This implies that, for a multipermutation solution of level 2, the group

〈σxσ
−1
y | x, y ∈ X〉 = 〈LxL

−1
y | x, y ∈ X〉 = 〈Lx | x ∈ X〉

is an abelian subgroup of G(X).
6



Such groups appear, for example, in the theory of racks and quandles under names: displacement

groups [16] or transvection groups [21]. They play important rôle in the theory since some properties
of racks or quandles may be described by properties of these groups. In Yang-Baxter equation
solutions theory these groups have gained very little attention so far. A probable reason is that,
given a left brace (B,+, ◦), we have λ0 = id and therefore G(B) = 〈σxσ

−1
y | x, y ∈ B〉, for the

associated solution (B,σ, τ). Nevertheless, it turns out that these groups are crucial when studying
indecomposable multipermutation solutions of level 2 (see e.g. Proposition 5.12). Let us then
denote the group by Dis(X) and call it the displacement group of the solution (X,σ, τ).

For the rest of the section we fix the following notation: let us have a solution (X,σ, τ) which is

a multipermutation solution of level 2 and fix an element 0̃ ∈ X. The choice of the element 0̃ might
be of some relevance for decomposable solutions but does not matter at all for indecomposable
solutions because, as we shall see in Proposition 5.18, the automorphism group of such solutions is
transitive. Let us denote π = σ0̃ and let (X,L,R) be the π−1-isotope defined in Theorem 3.3. We

also, for each i ∈ Z, denote ĩ = πi(0̃). The set {̃i | i ∈ Z} is a subset of X only but it turns out
that it may be an important subset of X. We also denote Dx = LxL

−1
π−1(x)

, for each x ∈ X.

Lemma 3.4. Let (X,σ, τ) be a multipermutation solution of level 2. For each x ∈ X and i ∈ Z,
we have

πLx = L−1

1̃
Lπ(x)π(3.6)

Lxπ = πLπ−1(x)L
−1

−̃1
(3.7)

πiLxπ
−i = L−1

ĩ
Lπi(x)(3.8)

πDx = Dπ(x)π(3.9)

σ̃i = σi
1̃
σ1−i
0̃

(3.10)

σα(x) = σx, for all α ∈ Dis(X).(3.11)

Proof. Using Equation (3.4) with y = 0̃ we get

Lπ(x)πL0̃ = L1̃πLx

and since L0̃ = id, we obtain (3.6). Using Equation (3.4) with x = −̃1 and y = π−1(x) we get

L0̃πLπ−1(x) = LxπL−̃1

and thus we obtain (3.7). In particular, by (3.6) and (3.7) we have

πL−1
x = L−1

π(x)L1̃π.

The equation (3.8) is trivial for i = 0, then, by induction and commutativity of the group Dis(X),

ππiLxπ
−iπ−1 = πL−1

ĩ
Lπi(x)π

−1 (3.6)
= L−1

ĩ+1
L1̃πLπi(x)π

−1 (3.6)
= L−1

ĩ+1
L1̃L

−1
1̃

Lπi+1(x) = L−1

ĩ+1
Lπi+1(x),

π−1πiLxπ
−iπ = π−1L−1

ĩ
Lπi(x)π

(3.7)
= L

−̃1L
−1

ĩ−1
π−1Lπi(x)π

(3.7)
= L

−̃1L
−1

ĩ−1
Lπi−1(x)L

−1

−̃1
= L−1

ĩ−1
Lπi−1(x).

Further by commutativity of the group Dis(X),

πDx = πLxL
−1
π−1(x)

(3.6)
= Lπ(x)L

−1
1̃

πL−1
π−1(x)

= Lπ(x)L
−1
1̃

(Lπ−1(x)π
−1)−1 (3.6)

=

Lπ(x)L
−1

1̃
(π−1LxL

−1

1̃
)−1 = Lπ(x)L

−1

1̃
L1̃L

−1
x π = Dπ(x)π.

Then, by an induction on i,

σ
ĩ+1

= L
ĩ+1

π
(3.6)
= L1̃πLĩ = σ1̃σ̃iπ

−1 = σ1̃σ
i
1̃
σ1−i
0̃

σ−1
0̃

= σi+1
1̃

σ−i
0̃
,
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and

σ
ĩ−1

= L
ĩ−1

π
(3.6)
= π−1L−1

1̃
Lĩπ

2 = σ−1

1̃
σ̃iσ0̃ = σ−1

1̃
σi
1̃
σ1−i

0̃
σ0̃ = σi−1

1̃
σ2−i

0̃
.

Finally, for α =
∏

L
εj
j , where εj ∈ {−1, 1}, we obtain σα(x) = L∏

L
εj
j (x)

π
(3.1)+(3.2)

= Lxπ = σx. �

Proposition 3.5. Let (X,σ, τ) be a multipermutation solution of level 2. Then Dis(X) is a normal

abelian subgroup of G(X) and, for each e ∈ X,

G(X) = 〈Dis(X) ∪ {σe}〉.

Moreover,

Dis(X) = 〈σxσ
−1
e | x ∈ X〉 = 〈Lx | x ∈ X〉 =

{∏
σεi
xi

|
∑

εi = 0
}
.

Proof. For x ∈ X, we have
σx = σxσ

−1
e σe ∈ 〈Dis(X) ∪ {σe}〉.

Hence G(X) = 〈Dis(X) ∪ {σe}〉 and Dis(X) is a normal subgroup by Equation (3.8).
Now σxσ

−1
y = σxσ

−1
e (σyσ

−1
e )−1 and therefore Dis(X) is generated by the set {σxσ

−1
e | x ∈ X}.

Setting e = 0̃ we obtain {σxσ
−1
e | x ∈ X} = {Lx | x ∈ X}.

Let A =
{∏

σεi
xi

|
∑

εi = 0
}
. By (3.5), generators of Dis(X) belong to A, so we have Dis(X) ⊆ A.

To prove the converse inclusion, consider α ∈ A written in the following form:

α = σε1
x1
σε2
x2

. . . σεn−1
xn−1

σεn
xn

with
∑

εi = 0 and n being an even natural number.
We will prove by induction on n that α ∈ Dis(X). Clearly, if n = 0 then α = id, hence suppose

n ≥ 2.
If ε1 = εn then there is 1 < m < n such that

∑
i<m εi = 0 and

∑
i≥m εi = 0. Let β = σε1

x1
. . . σ

εm−1
xm−1

and γ = σεm
xm

. . . σεn
xn
. By the induction hypothesis, β, γ ∈ Dis(X), and in consequence α = βγ ∈

Dis(X).
If ε1 = −εn then α = σε1

x1
βσ−ε1

xn
, where β = σε2

x2
. . . σ

εn−1
xn−1 . Since

∑
2≤i≤n−1 εi = 0, once again

by the induction hypothesis, β ∈ Dis(X). Moreover, α = σε1
x1
βσ−ε1

xn
= σε1

x1
βσ−ε1

x1
σε1
x1
σ−ε1
xn

and both
σε1
x1
βσ−ε1

x1
and σε1

x1
σ−ε1
xn

lie in Dis(X) since Dis(X) is a normal subgroup. �

Proposition 3.5 implies that, for x, y ∈ X,

[σx, σy] = σ−1
x σ−1

y σxσy ∈ Dis(X).

Therefore the commutator subgroup G(X)′ = [G(X),G(X)] is a subgroup of Dis(X). In the case
of connected racks, we have G(X)′ = Dis(X). This is not true in the case of solutions, as we shall
see on the following example. Moreover, the example also shows that, Dis(X) and 〈σe〉 may have
a nontrivial intersection.

Example 3.6. [18, Example 3.2] Let X = Zp2 , for some prime p, and let σi(j) = j + pi + 1
and τj(i) = i − 1 − p(j + 1), for all i, j ∈ X. Then (X,σ, τ) is an indecomposable solution of
multipermutation level 2 and G(X) ∼= Zp2 . It is easy to see that Dis(X) = {j 7→ j + pk | k ∈ Z}
and therefore σp

i ∈ Dis(X), for all i ∈ X.

Remark 3.7. Let n ∈ N, (G,+, 0) be an abelian group and α ∈ Aut(G) be of an order dividing n.
Let (B,+, ◦) be a left non-trivial brace with a transitive cycle base X. Let g ∈ X and (B,σ, τ) be
a uniconnected solution with σx(b) := (λx(g))

− ◦ b and σ−1
x (b) = λx(g) ◦ b, for x, b ∈ B. Note that

by [5, Lemma 3.2], in cyclic braces, g is a generator of the additive group (B,+).
It is well known (see e.g. [24, Proposition 7]) that for a non-zero left brace (B,+, ◦), the solution

associated to the factor left brace B/Soc(B) is equal to the retraction of the solution associated to
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(B,+, ◦). Further, by results of Castelli [5, Theorem 3.5], the multipermutation level of the solution
associated with a brace (B,+, ◦) coincides with the multipermutation level of the uniconnected
solution associated with (B,+, ◦). Moreover, by [6, Proposition 6] the multipermutation level

of the solution associated with (B,+, ◦) is equal to 2 if and only if B̃ = B/Soc(B) 6= {0} and

B̃/Soc(B̃) = {0}. This gives that for each x, y ∈ B there exists s ∈ Soc(B) such that x◦y = x+y+s
and in consequence for each x ∈ X there exists sx ∈ Soc(B) such that σxσ

−1
0 (b) = sx ◦ b. Since for

s1, s2 ∈ Soc(B), s1 ◦ s2 = s1 + s2, each γ ∈ Dis(B) = 〈σxσ
−1
0 | x ∈ B〉 may be understood as the

left translation (with respect to the operation +) by some s ∈ Soc(B). Thus, Dis(B) is isomorphic
to a subgroup of (Soc(B),+). If the left brace (B,+, ◦) is cyclic, the group Dis(B) is cyclic too.

Now let γ ∈ Dis(B) ∩ 〈σ0〉. Then there is s ∈ Soc(B) such that γ(b) = s ◦ b. On the other
hand, there exist m ∈ N and s′ ∈ Soc(B) with γ(b) = σm

0 (b) = (−m · g + s′) ◦ b. This implies that
m · g ∈ Soc(B) and σm

0 (b) = s ◦ b, for some s ∈ Soc(B). This gives that the groups Dis(X) and
〈σ0〉 may have a nontrivial intersection.

Since by assumption Soc(B) 6= B and if the group (B,+) is cyclic generated by g then g /∈ Soc(B).
Hence, for example, groups Dis(B) and 〈σ0〉 have a trivial intersection if 〈σ0〉 ∼= Z2.

Example 3.8. Let (B,+, ◦) = (G × Zn,+, ◦) be the α-semidirect product of trivial braces con-
structed in Example 2.2. Let X be a transitive cycle base of (B,+, ◦), (g, h) ∈ X and let
(G× Zn, σ, τ) with

σ(a,i)((b, j)) = (α−h(b)− αi−h(g), j − h),

for (a, i), (b, j) ∈ G× Zn be the uniconnected solution described in Example 2.2.
Thus we have σ(0,0)((b, j)) = (α−h(b)− α−h(g), j − h), and

σk
(0,0)((b, j)) = (α−kh(b)−

k∑

r=1

α−rh(g), j − kh).

Further, for (a, i) ∈ G× Zn,

σ(a,i)σ
−1
(0,0)((b, j)) = σ(a,i)((α

h(b)+g, j+h)) = (b+α−h(g)−αi−h(g), j) = (b, j)+(α−h(g)−αi−h(g), 0).

Since X is a transitive cycle base of (B,+, ◦) and (g, h) ∈ X, the set {αi−h(g) | i ∈ Zn} generates
the group (G,+, 0) and Dis(G × Zn) ∼= (G,+, 0). Moreover, h is a generator of the group Zn. It
is possible to prove that

∑n
i=1 α

i(b) = 0, thus the order of σ(0,0) is equal to n and it is easy to see
that Dis(G× Zn) ∩ 〈σ(0,0)〉 = {id}.

Example 3.9. Let (Z2m , σ, τ) be a uniconnected solution described in Example 2.4 with the per-
mutation group isomorphic to the dihedral group D2m . In this case σ0(b) = 1 − b = σ−1

0 (b),
and

σaσ
−1
0 (b) =

{
b, if a is even,

(2m − 1)(1 − b) = b− 2, if a is odd.

Hence, Dis(Z2m) ∼= (Soc(Z2m),+) = (2Z2m ,+) ∼= Z2m−1 . Moreover 〈σ0〉 ∼= Z2 and Dis(Z2m)∩〈σ0〉 =
{id}. Consequently, G(Z2m) = Dis(Z2m)⋊ 〈σ0〉 ∼= Z2m−1 ⋊ Z2.

Similarly, for a uniconnected solution (Z2m ,+, ◦) with the permutation group isomorphic to the
generalized quaternion group Q2m , we have Dis(Z2m) ∼= (Soc(Z2m),+) = (2Z2m ,+).

But in this case, σ0(b) = (1− 2m−1)(1− b), and

σaσ
−1
0 (b) =

{
b, if a is even,

(2m−1 − 2) + b, if a is odd

which gives 〈σ0〉 ∼= Z4 and Dis(Z2m) ∩ 〈σ0〉 = {id, σ2
0}.
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Note also that σ2
1 = σ2

0 , which implies σ1σ
−2
0 = σ−1

1 and

G(Z2m) = 〈α := σ1σ
−1
0 , β := σ0 | α

2m−1
= id, β2 = α2m−2

, βαβ−1 = α−1〉 ∼= Q2m .

By [18, Proposition 4.1] the abelian permutation group G(X) of an indecomposable multipermu-
tation solution (X,σ, τ) of level 2 is generated by at most two elements and all the permutations
σx, for x ∈ X, have the same order. Surprisingly, the same is also true for any indecomposable
multipermutation solution of level 2.

Proposition 3.10. Let (X,σ, τ) be an indecomposable solution of multipermutation level at most 2.
Then

(1) the permutation group G(X) is generated by at most two elements,

(2) for all x ∈ X, σx have the same order,

(3) Dis(X) = 〈Lĩ | i ∈ Z〉 = 〈Dĩ | i ∈ Z〉.

Proof. Let x ∈ X. The permutation group G(X) is transitive and therefore there exist k ∈ N and
y1, . . . , yk ∈ X, such that

x = σε1
y1σ

ε2
y2 · · · σ

εk
yk
(0̃) = (Ly1π)

ε1(Ly2π)
ε2 · · · (Lykπ)

εk(0̃), with εi ∈ {−1, 1}.

Since the displacement group is a normal subgroup of G(X) there is α ∈ Dis(X), such that

(Ly1π)
ε1(Ly2π)

ε2 · · · (Lykπ)
εk(0̃) = απk(0̃).

Then, by (3.11)

σx = Lxπ = Lαπk(0̃)π = Lπk(0̃)π = σ
k̃

(3.10)
= σk

1̃
σ1−k
0̃

and therefore the permutation group G(X) is generated by σ0̃ and σ1̃, proving (1).
By an easy inductive argument on j, we have, for all integers i ≤ j + 1,

(3.12)

j∏

k=i

D
k̃
= Lj̃L

−1

ĩ−1
.

In particular, for i = 1 and j ≥ 0 we obtain

(3.13) Lj̃ =

j∏

k=1

D
k̃
.

Moreover, for i ≤ 0 and j = 0 we have

(3.14) Lĩ =

0∏

k=1+i

D−1

k̃
.

We have already seen that, for each x ∈ X, there exists k ∈ Z such that σx = σ
k̃
and therefore

Lx = L
k̃
. Hence Dis(X) = 〈Lx | x ∈ X〉 = 〈L

k̃
| k ∈ Z〉 = 〈D

k̃
| k ∈ Z〉, proving (3).

Finally, let πr = id, for some r ∈ N. By (3.8) we have for i, k ∈ Z

πL−1

k̃
L
ĩ+k

= L−1

k̃+1
L ˜i+k+1

π.

Hence we obtain

(σ̃i)
r = (Lĩ π)

r (3.8)
=

r−1∏

k=0

(L−1

k̃
L
ĩ+k

)πr =

r−1∏

k=0

L−1

k̃

r−1∏

k=0

L
ĩ+k

= id

since m̃ = m̃+ r, for all m ∈ Z, and therefore {0̃, . . . , r̃ − 1} = {̃i, . . . , ˜i+ r − 1}. Hence the order

of σ̃i divides the order of σ0̃. But 0̃ was chosen randomly and thus we obtain (2). �
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Let us recall that a mapping Φ: X → X ′ is a homomorphism of two solutions (X,σ, τ) and
(X ′, σ′, τ ′) if, for each x ∈ X,

Φσx = σ′
Φ(x)Φ.

We shall then denote by ΦG the homomorphism from the group G(X) to the group G(X ′) defined by
σx 7→ σ′

Φ(x). And by ΦD we mean the restriction of ΦG to the homomorphism Dis(X) → Dis(X ′).

Note that, for χ ∈ G(X) and x ∈ X,

Φ(χ(x)) = ΦG(χ)Φ(x).

Corollary 3.11. Let (X,σ, τ) and (Y, ρ, υ) be two indecomposable solutions of multipermutation

level 2. Let Φ1 : X → Y and Φ2 : X → Y be two homomorphisms of the solutions. If there exists

e ∈ X such that Φ1(e) = Φ2(e) then Φ1 = Φ2.

Proof. According to Proposition 3.10, the permutation group is generated by σe and σσe(e). Let
now d ∈ X. Since (X,σ, τ) is indecomposable, there exist numbers k and ε1, . . . , εk such that

d = σε1
e σε2

σe(e)
σε3
e σε4

σe(e)
· · · σεk

e (e).

Now

Φ1(d) = Φ1(σ
ε1
e σε2

σe(e)
σε3
e σε4

σe(e)
· · · σεk

e (e)) = ρε1Φ1(e)
ρε2ρΦ1(e)

(Φ1(e))
· · · ρεkΦ1(e)

(Φ1(e)) =

ρε1Φ2(e)
ρε2ρΦ2(e)

(Φ2(e))
· · · ρεkΦ2(e)

(Φ2(e)) = Φ2(σ
ε1
e σε2

σe(e)
σε3
e σε4

σe(e)
· · · σεk

e (e)) = Φ2(d). �

4. A construction of indecomposable solutions of multipermutation level 2 with
non-abelian permutation group

In [18, Example 2.6] we, together with Zamojska-Dzienio, provided an example of an indecom-
posable solution of multipermutation level 2 of even order with non-abelian permutation group.
In this section we extend the idea applied there and we construct a wider class of solutions of
multipermutation level 2 with non-abelian permutation group.

Let us denote the group (Z,+, 0) by Z∞ which will be helpful for our further considerations.
Additionally, in the case n = ∞ we assume that a ≡ b (mod n) if and only if a = b.

Theorem 4.1. Let n ∈ N ∪ {∞} and (G,+, 0) be an abelian group. Further, let c = (ci)i∈Zn ∈ Gn

be a sequence such that c0 = 0 and the group (G,+, 0) is generated by the set {ci | i ∈ Zn}.
Then (G× Zn, σ, τ) with

σ(a,i)((b, j)) = (b+ ci−j−1 − c−j−1, j + 1)

and

τ(a,i)((b, j)) = (b− ci−j+1 + c−j , j − 1)

is an indecomposable solution of multipermutation level 2. Moreover, for any (e, k) ∈ G× Zn,

G(G × Zn) = Dis(G× Zn)⋊ 〈σ(e,k)〉.

Proof. Let us first define a matrix of constants ci,j = ci−j − c−j , for i, j ∈ Zn. Note that, for each
j ∈ Zn, cj,0 = cj , c0,j = 0 and (G,+, 0) = 〈ci,j | i ∈ Zn〉. With this matrix we define, by Theorem
3.1, a 2-reductive solution (G× Zn, L,R) with

L(a,i)((b, j)) = (b+ ci,j , j) and R(a,i)((b, j)) = (b− ci,j, j),

for (a, i), (b, j) ∈ G×Zn. Note that L(a,i) = L(0,i), for every a ∈ G and i ∈ Zn, and that L(0,0) = id.
Now, let π : G× Zn → G× Zn be π((a, i)) = (a, i+ 1). Clearly, this is a permutation on the set

G× Zn with the inverse mapping π−1 : G× Zn → G× Zn given by π−1((a, i)) = (a, i− 1).
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To complete the construction of a solution of multipermutation level 2 we need to check Condition
(3.4). Let us compute, for (a, i), (b, j), (e, k) ∈ G× Zn,

Lπ((a,i))πL(b,j)((e, k)) = L(a,i+1)π((e+ cj,k, k)) = L(a,i+1)((e+ cj,k, k + 1))

= (e+ cj,k + ci+1,k+1, k + 1)

= (e+ cj−k − c−k + ci−k − c−k−1, k + 1),

Lπ((b,j))πL(a,i)((e, k)) = L(b,j+1)π((e+ ci,k, k)) = L(b,j+1)((e + ci,k, k + 1))

= (e+ ci,k + cj+1,k+1, k + 1)

= (e+ ci−k − c−k + cj−k − c−k−1, k + 1).

Then, by Theorem 3.2, the solution (G× Zn, σ, τ) with

σ(a,i)((b, j)) = L(a,i)π((b, j)) = L(a,i)((b, j + 1)) = (b+ ci,j+1, j + 1),

for (a, i), (b, j) ∈ G× Zn, is a 2-permutational solution.
Recall, the solution is indecomposable, if the permutation group G(X) is transitive. Let us have

a ∈ G arbitrary. We first prove that (a+ ci, 0) is in the same orbit as (a, 0), for any i ∈ Zn:

σ(0,i)σ
−1
(0,0)((a, 0))

(3.5)
= L(0,i)((a, 0)) = (a+ ci, 0).

By an induction argument then (a, 0) lies in the same orbit as (0, 0), for any a ∈ G. Now, for any
b ∈ G and j ∈ Zn,

σj
(0,0)((b, 0)) = πj((b, 0)) = (b, j)

and therefore the permutation group G(X) is transitive on G× Zn.
Let (a, i), (b, j) ∈ G× Zn. By the construction of permutations L(a,i) and σ(b,j), the intersection

Dis(G× Zn) ∩ 〈σ(b,j)〉 is trivial. Hence, Proposition 3.5 finishes the proof. �

We will denote the solution described above by S(G×Zn, c), for n ∈ N∪{∞}, a group (G,+, 0)
and c ∈ Gn specified in Theorem 4.1.

Let us note that S(Z1×Zn,0) is a permutation solution. On the other hand, n = 1 forces |G| = 1
and S(Z1 × Z1, 0) is a trivial one element solution. Hence, from now on, we can assume n > 1.

Proposition 4.2. Let (X,σ, τ) = S(G × Zn, c) and let Ψ: Dis(X) → G be defined by
∏

Lpi
(0,i) 7→∑

pi·ci. Then the mapping Ψ is a well-defined epimorphism and KerΨ = Dis(X)(0,0). In particular,

(G,+, 0) ∼= Dis(X)/Dis(X)(0,0).

Proof. Recall, the abelian group Dis(X) is generated by the set {L(0,i) | i ∈ Zn} and the group
(G,+, 0) is generated by the set {ci | i ∈ Zn}. Since L(0,i)((a, 0)) = (a+ci, 0), for all a ∈ G and i ∈ N,
the mapping Ψ can be viewed as the action of Dis(X) on G×{0} and therefore it is a homomorphism
from Dis(X) onto G. Clearly KerΨ = Dis(X)(0,0) and hence (G,+, 0) ∼= Dis(X)/Dis(X)(0,0). �

The following example presents in details the construction described in Theorem 4.1.

Example 4.3. Let n = 4, (G,+, 0) = Z4 × Z2. and let choose c = (c0, c1, c2, c3) ∈ (Z4 × Z2)
4

as: c0 = (0, 0), c1 = (1, 0), c2 = (1, 0) and c3 = (2, 1). Clearly, Z4 × Z2 = 〈ci : i ∈ Z4〉 and the 16
constants ci,j are:

ci,j 0 1 2 3
1 (1, 0) (2, 1) (1, 1) (0, 0)
2 (1, 0) (3, 1) (3, 0) (1, 1)
3 (2, 1) (3, 1) (0, 0) (3, 0)

Then (Z4 × Z2 × Z4, L,R) with

L(a1,a2,i)((b1, b2, j)) = ((b1, b2) + ci,j, j)
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is a 2-reductive solution with an abelian permutation group generated by {L(0,0,i) | i ∈ {1, 2, 3}}.

It is easy to see that the group is isomorphic to the subgroup of the group G4 which is generated
by the vectors ~ci = (ci,0, ci,1, ci,2, ci,3), for i ∈ {1, 2, 3}. Moreover, we see, for each i ∈ {1, 2, 3},
that ci,i is not a linear combination of the other two coefficients in the same column. Hence the
permutation group has no less than three generators. Furthermore, we have 2~c1+2~c2+2~c3 = 0 and
therefore the group is not a free Z4-module. A GAP ([12]) calculation showed us that the order of
the group is 25.

Let us continue: the permutation π : Z4 × Z2 × Z4 → Z4 × Z2 × Z4 is given by

π((a1, a2, i)) = (a1, a2, i+ 1).

Finally, (Z4 × Z2 × Z4, σ, τ) with

σ(a1,a2,i)((b1, b2, j)) = L(a1,a2,i)π((b1, b2, j)) = ((b1, b2) + ci,j+1, j + 1)

is an indecomposable solution S(Z4 × Z2 × Z4, c) of multipermutation level 2 of size 25.
Once again by GAP calculation, the group G(Z4 × Z2 × Z4) is of order 2

7 and is isomorphic to
the group (Z2

4×Z2)⋊Z4. Since the order of G(Z4×Z2×Z4) is greater than the size of Z4×Z2×Z4,
the solution S(Z4 × Z2 × Z4, c) is not uniconnected.

In the sequel, let us have (X,σ, τ) = S(G×Zn, c), for some n ∈ N∪ {∞}, a group (G,+, 0) and
c ∈ Gn.

Proposition 4.4. The permutation group G(X) is abelian if and only if ci mod n = i · c1, for all

i ∈ Z.

Proof. Taking in (3.6), 0̃ = (0, 0), we directly obtain

πL(a,i)π
−1 = L−1

π((0,0))Lπ((a,i)) = L−1
(0,1)L(a,i+1)(4.1)

for a ∈ G and i ∈ Zn.
Recall that the abelian group Dis(X) is generated by the set {L(0,i) | i ∈ Zn}. Then by (4.1),

the group G(X) is abelian if and only if for every (b, j) ∈ G× Zn and all i ∈ Zn

L(0,i)((b, j)) = L(0,i+1)L
−1
(0,1)((b, j)).

This is equivalent to, for all i, j ∈ Zn,

ci+1,j = ci,j + c1,j.

This condition is equivalent to ci+1−j = ci−j + c1−j − c−j, for all i, j ∈ Zn. In particular, for j = 0,
we obtain ci+1 = ci + c1, which, by an easy induction, implies ci mod n = i · c1, for i ∈ Z. On the
other hand, ci mod n = i · c1 implies ci+1−j + c−j = ci−j + c1−j for i, j ∈ Zn. �

Note that by Proposition 4.4, for a solution S(G × Zn, c) with abelian permutation group, the
group (G,+, 0) is cyclic. In a finite case, such solution with c = (ci)i∈Zn = (i)i∈Zn overlaps with
the solution C(m,n, 0) described in [18, Theorem 3.1].

Proposition 4.5. For x ∈ X, the permutation σx ∈ G(X) is composed of cycles of length n.

Proof. Let (a, i), (b, j) ∈ G× Zn. By a straightforward induction we get for any k ∈ N

σk
(a,i)((b, j)) = (b+

k∑

ℓ=1

(ci−j−ℓ − c−j−ℓ) , j + k)(4.2)

and therefore σk
(a,i)((b, j)) 6= (b, j) if k is not a multiple of n. Now

n∑

ℓ=1

(ci−j−ℓ − c−j−ℓ) =
∑

ℓ∈Zn

cℓ −
∑

ℓ∈Zn

cℓ = 0
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and therefore σn
(a,i)((b, j)) = (b, j). �

Proposition 4.6. The automorphism group of the solution S(G× Zn, c) is regular.

Proof. Let g ∈ G and k ∈ Zn. For each i ∈ Zn and a ∈ G, let

Φ((a, i)) = σi
(g,k)((a+ g, k)) = (a+

i∑

ℓ=1

(c−ℓ − c−k−ℓ) + g, k + i).

This mapping is clearly a bijection and we shall now prove that it is a homomorphism of the
solution.

Φ(σ(a,i)((b, j))) = Φ((b+ ci−j−1 − c−j−1, j + 1)) =

(b+ ci−j−1 − c−j−1 +

j+1∑

ℓ=1

(c−ℓ − c−k−ℓ) + g, k + j + 1) =

(b+

j∑

ℓ=1

(c−ℓ − c−k−ℓ) + ci−j−1 − c−j−1 + c−j−1 − c−k−j−1 + g, k + j + 1)

= (b+

j∑

ℓ=1

(c−ℓ − c−k−ℓ) + ci−j−1 − c−k−j−1 + g, k + j + 1) =

σ(anything,k+i)(b+

j∑

ℓ=1

(c−ℓ − c−k−ℓ) + g, k + j) = σΦ((a,i))Φ((b, j)).

Clearly Φ((0, 0)) = (g, k) and hence Aut(X) is transitive and, according to Corollary 3.11, it is
regular. �

It is a question, which choice of parameters in the construction yields the same solution (up to
isomorphism). We show that the obvious choice is the only possibility.

Theorem 4.7. Two solutions (X,σ, τ) = S(G × Zn, c) and (X ′, σ′, τ ′) = S(G′ × Zn′ , c′) are

isomorphic if and only if

(1) n′ = n
(2) there exists a group isomorphism g : G → G′ such that, for each i ∈ Zn

c′i = g(ci).

Proof. “⇒” Let Φ: G × Zn → G′ × Zn′ be an isomorphism of the solutions. According to Propo-
sition 4.5, we have n = n′. According to Proposition 4.6, we may suppose Φ((0, 0)) = (0, 0). Since
σ(0,0)((0, i)) = (0, i + 1), we have Φ((0, i)) = (0, i), for each i ∈ Zn.

By Proposition 4.2, groups Dis(X)/Dis(X)(0,0) and (G,+, 0) and Dis(X ′)/Dis(X ′)(0,0) and (G′,+, 0)
are isomorphic through the isomorphism Ψ : Dis(X)/Dis(X)(0,0) → G such that L(0,i)Dis(X)(0,0) 7→
ci and the isomorphism Ψ′ : Dis(X ′)/Dis(X ′)(0,0) → G′ such that L′

(0,i)Dis(X ′)(0,0) 7→ c′i. Let

g = Ψ′ΦDΨ
−1 and α ∈ Dis(X). Hence ΦD(α)(Φ((0, 0))) = Φ(α((0, 0))). Since Φ((0, 0)) = (0, 0)

this implies that α ∈ Dis(X)(0,0) if and only if ΦD(α) ∈ Dis(X ′)(0,0). Then

g(ci) = Ψ′ΦD(L(0,i)Dis(X)(0,0)) = Ψ′(L′
(0,i)Dis(X ′)(0,0)) = c′i.

“⇐” It is evident by straightforward calculations. �

Example 4.8. By Theorem 4.7, solutions S(Zm × Z2, c = (0, 1)) and S(Zm × Z2, c = (0, g)),
where g ∈ Z∗

m, are isomorphic. Hence there is exactly one non-isomorphic solution of the form
S(Zm × Z2, c). On the other hand, for any prime number p, there are p + 1 non-isomorphic

14



solutions of the form S(Zp × Z3, c): S(Zp × Z3, c = (0, 0, 1)) and S(Zp × Z3, c = (0, 1, g)), for any
g ∈ Zp.

We know that the displacement subgroup Dis(G×Zn) of a solution S(G×Zn, c) is abelian but,
by Proposition 4.2, in general it is larger than the group (G,+, 0). We shall show an example where
this does not happen.

Proposition 4.9. Let r, k ∈ N and let (G,+, 0) be a free Zk-module of rank r. Let e1, . . . , er
be a free basis of (G,+, 0). We set n = 2r, c0 = 0, ci =

∑i
k=1 ek and ci+r =

∑r
k=i+1 ek, for

i ∈ {1, . . . , r}. Then the solution (X,σ, τ) = S(G× Zn, c) is uniconnected, (G,+, 0) ∼= Dis(X) and
G(X) ∼= G⋊α Zn, where α(1)(ei) = ei+1, for i < r, and α(1)(er) = −e1.

Proof. The group generated by {L(0,i) | i ∈ Zn} is clearly a Zk-module. Actually, this module is

generated by {L(0,1), . . . , L(0,r)} since L(0,0) is the identity permutation and L(0,r+i) = L−1
(0,i)L(0,r)

for each 0 < i < r.
By Proposition 4.2, (G,+, 0) ∼= Dis(X)/Dis(X)(0,0) and the stabilizer Dis(X)(0,0) is the kernel of

the group epimorphism Ψ: Dis(X) → G defined by L(0,i) 7→ ci. Then, since for each γ ∈ Dis(X)
there is a ∈ G such that γ((0, 0)) = (a, 0) and e1, . . . , er is a free basis of (G,+, 0), the kernel of Ψ
is trivial and (G,+, 0) ∼= Dis(X).

Clearly, for (b, j) ∈ G× Zn, π((b, j)) = σ(0,0)((b, j)) = (b, j + 1), hence the order of π is equal to

n and by Theorem 4.1, G(X) ∼= G ⋊ Zn. Moreover, Ψ(D(0,i)) = Ψ(L(0,i)L
−1
(0,i−1)) = ci − ci−1 = ei,

for 0 < i ≤ r, and Ψ(D(0,i)) = −ei−r, for r < i ≤ 2r. The rest follows from Equation (3.9). �

Corollary 4.10. Each finite abelian group embeds into the permutation group of an indecomposable

uniconnected solution of multipermutation level 2.

Proof. Let (G,+, 0) be a finite abelian group of an exponent k with r generators. Then (G,+, 0)
embeds into the free Zk-module of rank r. According to the Proposition 4.9, this module embeds
into the permutation group of a uniconnected solution. �

5. Homomorphic images

In this section we focus on homomorphic images of the solutions constructed in the previous
section. It turns out that there exists one universal indecomposable multipermutation solution of
level 2, meaning that every indecomposable multipermutation solution of level 2 is a homomorphic
image of the universal one. Since each image of an indecomposable multipermutation solution of
level 2 is an indecomposable multipermutation solution of level at most 2, we may then conclude
that indecomposable multipermutation solutions of level at most 2 form the class of all the images
of one universal solution. This solution is constructed using the free abelian group of rank ω.

Recall from Section 3 that, for (X,σ, τ) a solution, we choose 0̃ ∈ X. Let π = σ0̃ and let

ĩ = πi(0̃), for each i ∈ N. Let Lĩ = σ̃iπ
−1 and Dĩ = LĩL

−1

ĩ−1
.

Proposition 5.1. Let
⊕

Z Z be the free abelian group of rank ω and let {ei | i ∈ Z} be a free basis of⊕
Z Z. Each indecomposable multipermutation solution of level at most 2 is a homomorphic image

of the solution S((
⊕

Z Z)× Z, c), where

ci =





∑i
k=1 ek for i > 0,

0 for i = 0,∑−i
k=1−e1−k for i < 0.
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Proof. Let (X,σ, τ) be an indecomposable multipermutation solution of level at most 2. It is easy

to see that ci − cj =
∑i

k=j+1 ek, for any i ≥ j. Let us define Φ: (
⊕

Z Z)× Z → X by

Φ((
∑

rk · ek, j)) =
∏

Drk

k̃+j
(j̃).

Now, for i ≥ 0,

Φ(σ(
∑

rk·ek,i)((
∑

sk · ek, j))) = Φ((
∑

sk · ek + ci−j−1 − c−j−1, j + 1)) =

Φ((
∑

sk · ek +

i−j−1∑

ℓ=−j

eℓ, j + 1)) =
∏

Dsk

k̃+j+1

i−j−1∏

ℓ=−j

D ˜ℓ+j+1
(j̃ + 1) =

∏
Dsk

k̃+j+1

i∏

ℓ=1

D
ℓ̃
(j̃ + 1)

(3.13)
= Lĩ

∏
Dsk

k̃+j+1
(j̃ + 1),

σΦ((
∑

rk·ek,i))(Φ((
∑

sk · ek, j))) = σ∏D
rk

k̃+i
(̃i)

∏
Dsk

k̃+j
(j̃)

(3.11)
= σ̃i

∏
Dsk

k̃+j
(j̃) =

Lĩπ
∏

Dsk

k̃+j
(j̃)

(3.9)
= Lĩ

∏
Dsk

k̃+j+1
π(j̃) = Lĩ

∏
Dsk

k̃+j+1
(j̃ + 1).

For i < 0 we use ci−j−1 − c−j−1 = −
∑−j−1

k=i−j ek =
∑0

k=i+1−ek and then instead of (3.13) we apply

(3.14). Hence Φ is a homomorphism which is clearly onto. �

The researchers tend to focus on finite solutions and therefore it is useful to know that a finite
solution is an image of a finite construction.

Proposition 5.2. Let (X,σ, τ) be an indecomposable multipermutation solution of level at most 2.
Then it is a homomorphic image of the solution (Y, ρ, υ) = S(Dis(X)×Zn, c), where n = o(π) and
ci = Lĩ.

Proof. We prove that the mapping Φ: Y → X given by (γ, j) 7→ πjγ(0̃) is a homomorphism of
solutions: (Y, ρ, υ) and (X,σ, τ). Indeed, for (β, i), (γ, j) ∈ Dis(X)× Zn

Φ(ρ(β,i)((γ, j))) = Φ((γL ˜i−j−1
L−1

−̃j−1
, j + 1)) = πj+1L ˜i−j−1

L−1

−̃j−1
γ(0̃)

(3.8)
=

Lĩπ
j+1L−1

π−j−1 (̃i)
L ˜i−j−1

γ(0̃) = Lĩππ
jγ(0̃) = σ̃iπ

jγ(0̃)
(3.11)
= σπiβ(0̃)π

jγ(0̃) = σΦ((β,i))(Φ((γ, j))).

The homomorphism Φ is onto since the permutation group G(X) is transitive. �

We can see in the proof that we can replace the group Dis(X) by the group Dis(X)/Dis(X)0̃
and it works as well. This gives us a characterization of all the solutions that can be obtained by
the construction described in Theorem 4.1.

Corollary 5.3. An indecomposable multipermutation solution (X,σ, τ) of level at most 2 is iso-

morphic to the solution of the form S(G×Zn, c), for some n ∈ N, a group (G,+, 0) and a sequence

c ∈ Gn, if and only if Dis(X) ∩ 〈π〉 = {id} and G(X)0̃ ⊆ Dis(X).

Proof. “⇐” By Proposition 5.2 it is sufficient to show that for solutions (X,σ, τ) with Dis(X) ∩
〈π〉 = {id} and G(X)0̃ ⊆ Dis(X), the mapping Φ: X → Dis(X)/Dis(X)0̃ given by (γ, j) 7→

πjγ(0̃)/Dis(X)0̃ is an injection. Let (γ, j), (γ′, j′) ∈ Dis(X) × Zn. Then

πjγ(0̃) = πj′γ′(0̃) ⇔ (γ′)−1πj−j′γ(0̃) = 0̃ ⇔ (γ′)−1πj−j′γ ∈ G(X)0̃.

The assumption G(X)0̃ ⊆ Dis(X) forces πj−j′ to belong to Dis(X). Further, by Dis(X)∩〈π〉 = {id},

we obtain πj−j′ = id. Hence, (γ′)−1γ ∈ Dis(X)0̃, which proves that γ ≡ γ′ (mod Dis(X)0̃).
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“⇒” It follows from the construction of the solution S(G× Zn, c). �

In particular, whenever (X,σ, τ) is uniconnected and Dis(X)∩〈π〉 is trivial, the mapping Φ from
the proof of Proposition 5.2 is an isomorphism. One such example comes from Example 3.8.

Remark 5.4. Let us consider the solution (G× Zn, σ, τ) from Example 3.8. In this case Dis(G×
Zn) ∼= (G,+, 0),

π((b, j)) = σ(0,0)((b, j)) = (α−h(b)− α−h(g), j − h),

and for i ∈ Zn

Lĩ((b, j)) = Lπi((0,0))((b, j)) = σπi((0,0))σ
−1
(0,0)((b, j)) = σ(−

∑i
r=1 α

−rh(g),−ih)σ
−1
(0,0)((b, j)) =

(b+ α−h(g)− α−ih−h(g), j).

Therefore, we obtain that (G×Zn, σ, τ) is isomorphic to the solution S(G×Zn, c), for c = (ci)i∈Zn =

(α−h(g)−α−(i+1)h(g))i∈Zn ∈ Gn . Clearly, by Theorem 4.7 this solution is isomorphic to the solution

S(G× Zn, c), for c = (−α−(i+1)h(g))i∈Zn ∈ Gn.

Example 5.5. By Remark 5.4 the solution (Z2 × Z2 × Z3, σ, τ), with

σ((a1,a2),i)(((b1, b2), j)) = (α2((b1, b2)) + αi−1((1, 0)), j − 1) = ((b1 + b2, b1) + αi−1((1, 0)), j − 1),

and α = ( 0 1
1 1 ), described in Example 2.3, is isomorphic to the solution:

S(Z2 × Z2 × Z3, c = ((0, 0), (1, 0), (0, 1))).

In this case c0,j = (0, 0), c1,j = (1, 0) and c2,j = (0, 1) and

σ((a1,a2),i)(((b1, b2), j)) = ((b1, b2) + ci,j+1, j + 1).

Congruences. In the sequel we focus on homomorphic images of the solutions. It is well known
that homomorphisms of solutions and equivalence relations preserving the structure of solutions
are closely related: let (X,σ, τ) be a solution. An equivalence relation ≍ ⊆ X × X such that for
x1, x2, y1, y2 ∈ X

x1 ≍ x2 and y1 ≍ y2 ⇒ σε
x1
(y1) ≍ σε

x2
(y2),(5.1)

where ε ∈ {−1, 1}, is called a congruence of the solution (X,σ, τ).
If Φ: X → X ′ is a homomorphism from a solution (X,σ, τ) to a solution (X ′, σ′, τ ′) then the

kernel of Φ, defined by

x1 ker Φ x2 ⇔ Φ(x1) = Φ(x2)

is a congruence of (X,σ, τ). On the other hand, for a congruence ≍ of the solution (X,σ, τ),
let χ : X → X/≍ defined by (a, i) 7→ (a, i)/≍ be the natural projection from the solution to the
quotient one. Clearly, χ is onto and kerχ = ≍.

Moreover, for any epimorphism Φ: X → X ′, the solution (X ′, σ′, τ ′) is isomorphic to the quotient
solution (X,σ, τ)/ker Φ. Hence, a solution is a homomorphic image of a solution (X,σ, τ) if and
only if it is isomorphic to a quotient of (X,σ, τ) by some congruence. Thus the problem of finding
all homomorphic images of (X,σ, τ) reduces to the problem of finding all congruences of (X,σ, τ).

Lemma 5.6. Let (X,σ, τ) = S(G× Zn, c) and ≍ be a congruence of the solution (X,σ, τ). Then

(1) there exists H, a subgroup of (G,+, 0) such that, for all a, b ∈ G and each i ∈ Zn,

(a, i) ≍ (b, i) if and only if a− b ∈ H;

(2) there exists m ∈ N ∪ {∞} such that

• m is a divisor of n, if n is finite,

• if (a, i) ≍ (b, j), for some a, b ∈ G and i, j ∈ Zn, then i− j ≡ 0 (mod m),
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• if m is finite then ci − ci+m ∈ H, for all i ∈ Zn.

Proof. Recall that, for (a, i), (b, j) ∈ G×Zn, L(a,i)((b, j)) = (b+ ci−j − c−j , j), π((b, j)) = (b, j +1)
and σ(a,i)((b, j)) = (b+ ci−j−1 − c−j−1, j + 1).

(1) By definition, the group (G,+, 0) is generated by the set {ci : i ∈ Zn}. It simply means that,
for each g ∈ G and i ∈ Zn, there exists a permutation α ∈ Dis(G× Zn) such that, for every a ∈ G,

(a+ g, i) = α((a, i)).(5.2)

Hence, for each a, b ∈ G, i ∈ Zn and g ∈ G,

(a, i) ≍ (b, i) ⇒ α((a, i)) ≍ α((b, i)) ⇒ (a+ g, i) ≍ (b+ g, i).

Analogously, using πk we prove, for a, b ∈ G and i, j, k ∈ Zn,

(5.3) (a, i) ≍ (b, j) ⇒ (a, i+ k) ≍ (b, j + k).

Let (a, i), (b, i), (a′ , i), (b′, i) ∈ G× Zn be such that (a, i) ≍ (b, i) and (a′, i) ≍ (b′, i). Hence

(a+ a′, i) ≍ (b+ a′, i) ≍ (b+ b′, i).

Therefore, for each i ∈ Zn, Hi = {a ∈ G | (a, i) ≍ (0, i)} is a subgroup of (G,+, 0) and

a, a′ ∈ Hi ⇔ (a, i) ≍ (a′, i) ⇔ (0, i) ≍ (a− a′, i)

⇔ (0, 0) ≍ (a− a′, 0) ⇔ a− a′ ∈ H0.

In particular, for each i ∈ Zn, Hi = H0.
(2) If (a, i) ≍ (a′, i′) always implies i = i′ then we can take m = n and the proof is finished.

Suppose hence, for the rest of the proof, that there exist (a, i), (a′, i′) ∈ G × Zn such that (a, i) ≍
(a′, i′) and i 6= i′.

Let m be the smallest positive integer such that there exists d ∈ G with (0, 0) ≍ (d,m). Let
γ ∈ Dis(X) be such that γ((0,m)) = (d,m). Then (0, 0) ≍ γπm((0, 0)) and, by induction, (0, 0) ≍
(γπm)k((0, 0)), for any k ∈ Z. If n is finite then we can set k = ⌈ n

m⌉ and we see that there exists
some b ∈ G such that (0, 0) ≍ (b, km) = (b, km − n). Since 0 ≤ km − n < m and m is minimal,
necessarily m divides n.

Let again (a, i) ≍ (a′, i′) for some a, a′ ∈ G and i, i′ ∈ Zn. Let β ∈ Dis(X) be such that
β((0, 0)) = (a, 0). Then by (5.3),

(a, i) ≍ (a′, i′) ⇔ (a, 0) ≍ (a′, i′ − i) ⇔ (0, 0) ≍ β−1((a′, i′ − i)).

Hence i′ ≡ i (mod m).
Finally, for each i ∈ Zn,

(5.4) (0, 0) ≍ (d,m) ⇔ (0, i) ≍ (d,m+ i) ⇒ L(0,i)((0, 0)) ≍ L(d,m+i)((0, 0))

⇔ (ci, 0) ≍ (cm+i, 0) ⇔ ci − cm+i ∈ H0. �

Lemma 5.7. Let (X,σ, τ), ≍, H and m be as in Lemma 5.6. Let m be finite and let Φ: X → X/≍
be the natural projection. Then [πm,Dis(X)] ⊆ KerΦD.

Proof. For all b ∈ G and i, j ∈ Zn we have

π−mL−1
(0,i)π

mL(0,i)((b, j)) = π−mL−1
(0,i)π

m((b+ ci−j − c−j , j)) =

π−mL−1
(0,i)((b+ ci−j − c−j , j +m)) = π−m((b+ ci−j − c−j − (ci−j−m − c−j−m), j +m)) =

(b+ ci−j − ci−j−m + c−j−m − c−j , j) = (b+ h, j)

for some h ∈ H, according to Lemma 5.6 (2). Hence, by Lemma 5.6 (1),

(b, j) ≍ (b+ h, j) = [πm, L(0,i)]((b, j)).
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This gives Φ((b, j)) = ΦG([π
m, L(0,i)])Φ((b, j)) and therefore [πm, L(0,i)] ∈ Ker(ΦG). Since Dis(X)

is a normal subgroup of G(X), we obtain [πm, L(0,i)] ∈ Dis(X). Because Dis(X) = 〈L(0,i) | i ∈ Zn〉,
this completes the proof. �

Proposition 5.8. An equivalence relation ≍ is a congruence of the solution (X,σ, τ) = S(G×Zn, c)
if and only if there exist a subgroup H of (G+, 0), m ∈ N ∪ {∞} and r ∈ G such that:

i) m divides n, if n is finite;

ii) if m is finite then ci − ci+m ∈ H, for each i ∈ Zn;

iii) if n and m are finite then n
m · r ∈ H;

iv) for all a, a′ ∈ G and i, i′ ∈ Zn

(5.5) (a, i) ≍ (a′, i′) ⇔ i− i′ ≡ 0 (mod m) and

{
a′ − a ≡ i−i′

m · r (mod H) if m < ∞

a′ − a ∈ H if m = ∞.

Proof. Let≍ be a congruence of the solution (X,σ, τ). The items (i) and (ii) were proved in Lemma 5.6.
If n = m then (iii) and (iv) also follow from Lemma 5.6. Suppose hence m < n.

Recall that, if n is finite, m is the smallest positive integer such that there exists d ∈ G with
(0, 0) ≍ (d,m). Let now γ ∈ Dis(X) be such that (0, 0) ≍ πmγ(0, 0) and denote by r the element
from G such that γ((0, 0)) = (r, 0). Let ι = [γ, πm]. By Lemma 5.7, ι((0, 0)) ≍ (0, 0). By
Lemma 5.6, there exists h ∈ H such that ι((0, 0)) = (h, 0).

Then

(πmγ)n/m((0, 0)) = πnγn/mι(
n/m
2 )((0, 0)) = ( n

m · r +
(n/m

2

)
· h, 0).

Since πmγ((0, 0)) ≍ (0, 0), then by Lemma 5.6 we obtain r · n
m ∈ H.

Further, we will show that for a, b ∈ G and k ∈ Zn with m | k, if (a, 0) ≍ (b, k) then (0, 0) ≍
(b − a, k). Let χ ∈ Dis(X) be such that χ((a, 0)) = (0, 0). Assume χ = Lp1

(0,i1)
. . . Lps

(0,is)
for some

numbers i1, . . . , is ∈ Zn and p1, . . . , ps ∈ Z. This implies

χ((a, 0)) = Lp1
(0,i1)

. . . Lps
(0,is)

((a, 0)) = (a+

s∑

ℓ=1

pℓ · ciℓ , 0) = (0, 0)

and therefore
∑

pℓ · ciℓ = −a. Hence,

χ((b, k)) = Lp1
(0,i1)

. . . Lps
(0,is)

((b, k)) = (b+

s∑

ℓ=1

pℓ · ciℓ,k, k) = (b+

s∑

ℓ=1

pℓ · (ciℓ−k − c−k), k).

Since m | k then, by Lemma 5.6, ciℓ − ciℓ−k ∈ H and c−k ∈ H. So, there is h ∈ H such that

χ((b, k)) = (b+
s∑

ℓ=1

pℓ · ciℓ + h, k) = (b− a+ h, k) ≍ (b− a, k).

Now, let a, a′ ∈ G and i 6= i′ ∈ Zn be such that (a, i) ≍ (a′, i′). Then, m | (i′ − i) by Lemma 5.6
and, by (5.3), (a, 0) ≍ (a′, i′ − i). Hence, (0, 0) ≍ (a′ − a, i′ − i). Now

(0, 0) ≍ (πmγ)
i′−i
m ((0, 0)) = πi′−iγ

i′−i
m ι(

(i′−i)/m
2 )((0, 0)) = ( i

′−i
m · r +

((i′−i)/m
2

)
· h, i′ − i).

Hence, once again by Lemma 5.6

a′ − a− i′−i
m · r +

((i′−i)/m
2

)
· h ∈ H

which is equivalent to

a′ − a+ i′−i
m · r ≡ 0 (mod H).

Conversely, we will show that an equivalence relation ≍ defined by (5.5) is a congruence of the
solution (X,σ, τ). Suppose m < ∞.
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Let (a, i) ≍ (a′, i′) and (b, j) ≍ (b′, j′). By definition, (j′ + 1) ≡ (j + 1) (mod m) and b − b′ +
j′−j
m · r ≡ 0 (mod H). Further, by Lemma 5.6,

b− b′ + j′−j
m · r = b+ ci−j−1 − c−j−1 − b′ − ci−j−1 + c−j−1 +

j′−j
m · r ≡

b+ ci−j−1 − c−j−1 − b′ − ci′−j′−1 + c−j′−1 +
j′−j
m · r =

b+ ci−j−1 − c−j−1 − b′ + ci′−j′−1 − c−j′−1 +
(j′+1)−(j+1)

m · r ≡ 0 (mod H).

Since

σ(a,i)((b, j)) = (b+ ci−j−1 − c−j−1, j + 1), and

σ(a′,i′)((b
′, j′)) = (b′ + ci′−j′−1 − c−j′−1, j

′ + 1),

this finishes the proof for m < ∞. But the case m = ∞ is similar. �

Let θ(m,H, r) denote the congruence relation of a solution S(G × Zn, c) specified by the triple
m, H and r from Proposition 5.8. By (5.5), θ(m,G, r) = θ(m,G, s), whenever r ≡ s (mod H). In
Theorem 5.19 we will show that this is the only possibility how to obtain isomorphic solutions.

Example 5.9. Let us consider the 12-element solution S(Z2 × Z6, c = (0, 1, 1, 0, 1, 1)). Since,
ci = ci+3, for each i ∈ Z6, by Proposition 5.8 there are seven different congruences of the solution:
θ(6, {0}, 0), θ(3, {0}, 0), θ(3, {0}, 1), θ(6,Z2, 0), θ(3,Z2, 0), θ(2,Z2, 0) and θ(1,Z2, 0)

The congruence θ = θ(3, {0}, 1) induces the quotient solution (Y, σ, τ), where Y = {0,1,2,3,4,5}
is defined by:

0 = (0, 0)/θ = (1, 3)/θ 1 = (1, 0)/θ = (0, 3)/θ 2 = (0, 1)/θ = (1, 4)/θ ,

3 = (1, 1)/θ = (0, 4)/θ 4 = (0, 2)/θ = (1, 5)/θ 5 = (1, 2)/θ = (0, 5)/θ .

It is then possible to compute the permutations:

σ0 = σ1 = (024135); σ2 = σ3 = (035124); σ4 = σ5 = (025134).

Hence G(Y ) is a non-abelian group of order 24, Dis(Y ) = {id, (23)(45), (01)(45), (23)(01)} and
Dis(Y ) ∩ 〈σ0〉 = {id} with |Dis(Y )0| = 2. But the solution (Y, σ, τ) is not isomorphic to a solution
S(G × Zn, c) for any (G,+, 0), n and c. Indeed, by Proposition 4.2, such a group (G,+, 0) would
be a two-element group and, by Proposition 4.5, n would be equal to 6 and we would obtain a
12-element solution.

Example 5.10. By Proposition 5.2, the solution (Z2m , σ, τ) from Example 2.4 Case 1 is isomorphic
to the solution S(2Z2m × Z2, c = (0,−2)). The isomorphism Φ: 2Z2m × Z2 → Z2m is given by
(s, 0) 7→ s and (s, 1) 7→ s+ 1, and clearly ker Φ = θ(2, {0}, 0).

On the other hand, the solution (Z2m , σ, τ) from Case 2 is the homomorphic image of the solution
S(2Z2m × Z4, c = (0, 2m−1 − 2, 0, 2m−1 − 2)). The homomorphism Φ: 2Z2m × Z4 → Z2m is given
by (s, 0) 7→ s, (s, 1) 7→ s + 1 + 2m−1, (s, 2) 7→ s + 2m−1 and (s, 3) 7→ s + 1. In this case,
ker Φ = θ(2, {0}, 2m−1).

By Proposition 5.8, for each indecomposable solution of multipermutation level 2 there are a
solution (X,σ, τ) = S(G × Zn, c), a subgroup H of the group (G,+, 0), a number m, an element
r ∈ G and a congruence θ = θ(m,H, r) determined by (5.5) such that the solution is isomorphic
to the quotient solution of S(G× Zn, c) by the relation θ. Hence, each indecomposable solution of
multipermutation level 2 is of the form (X,σ, τ)/θ = (X/θ, θσ, θτ).

Let Y = X/θ. Clearly, for each y ∈ Y , there is (a, i) ∈ G × Zn such that y = (a, i)/θ. In
particular, for y1 = (a1, i1)/θ and y2 = (a2, i2)/θ ∈ Y , the equality y1 = y2 implies i1 − i2 ≡ 0

(mod m) and, for i ∈ N, the element ĩ ∈ Y corresponds to the congruence class πi(0̃)/θ = (0, i)/θ.
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In the sequel (until Proposition 5.18) we suppose the following situation: we have (Y, ρ, υ), an
indecomposable solution of multipermutation level 2 and we know, according to Propositions 5.1
and 5.2, that there exist a solution (X,σ, τ) = S(G× Zn, c) and a congruence θ = θ(m,H, r) such
that (Y, ρ, υ) ∼= (X/θ, θσ, θτ).

As the first application of the characterization of congruences of a solution S(G×Zn, c) we prove
the analogy of Proposition 4.5 for all indecomposable solutions.

Proposition 5.11. Let (Y, ρ, υ) be a finite indecomposable solution of multipermutation level 2.
Each permutation ρy, for y ∈ Y , is composed of cycles of length ℓ.

Proof. We shall prove that ℓ = km, where k is the smallest positive integer such that k · r ∈ H.
Let (a, i), (b, j) ∈ G×Zn and we shall compute the smallest ℓ such that σℓ

(a,i)((b, j))/θ = (b, j)/θ.

By (4.2), we have

σℓ
(a,i)((b, j)) = (b+

ℓ∑

j′=1

(ci−j−j′ − c−j−j′) , j + ℓ)

and therefore m | ℓ. Moreover, since ci′ − ci′+ℓ ∈ H, for each i′, this implies that there exists h ∈ H

such that
∑ℓ

j′=1 ci−j−j′ − c−j−j′ = h. Now from σℓ
(a,i)((b, j))/θ = (b, j)/θ we obtain

b+ h− b+ j−j−ℓ
m · r ∈ H

which is equivalent to ℓ
m · r ∈ H. �

In the sequel we shall show several properties of the image determined by the parameters of the
congruence.

Proposition 5.12. Let (Y, ρ, υ) be an indecomposable solution of multipermutation level 2 and e ∈
Y . Then Dis(Y )/Dis(Y )e ∼= G/H.

Proof. We can suppose, without loss of generality, that e = (0, 0)/θ. Clearly, each permutation
δ ∈ G(X) induces the permutation θδ ∈ G(Y ). In particular, θL(a,i)/θ((b, j)/θ) = L(a,i)((b, j))/θ and,

for each γ ∈ Dis(X)(0,0),
θγ(e) = θγ((0, 0)/θ) = γ((0, 0))/θ = (0, 0)/θ = e. Hence, the mapping

γ 7→ θγ is a well defined homomorphism from Dis(X)/Dis(X)(0,0) onto Dis(Y )/Dis(Y )e.

By Remark 4.2 we know that Ψ: Dis(X) → G defined by
∏

Lpi
(0,i) 7→

∑
pi · ci is a well-defined

epimorphism with KerΨ = Dis(X)(0,0) and G ∼= Dis(X)/Dis(X)(0,0). Hence there exists a ho-
momorphism Φ from (G,+, 0) onto Dis(Y )/Dis(Y )e. Let us now compute KerΦ. An element∏

θLpk
(ak ,ik)/θ

lies in Dis(Y )e if and only if
∏

Lpk
(ak ,ik)

((0, 0)) = (h, 0), for some h ∈ H. Since∏
Lpk
(ak ,ik)

((0, 0)) = (
∑

pk · cik , 0), this is equivalent to
∑

pk · cik ∈ H and therefore also to

Ψ(
∏

Lpk
(ak ,ik)

) ∈ H. Hence KerΦ = H, which finishes the proof. �

Lemma 5.13. Let (G, ·, 1) be a group that acts on a set X. Then 〈
⋃

Gx〉 is a normal subgroup

of (G, ·, 1).

Proof. Let g ∈ Gx, for some x ∈ X, and let h ∈ G. Then hgh−1(h(x)) = hg(x) = h(x) and
therefore hgh−1 ∈ Gh(x). �

Lemma 5.14. Let (Y, ρ, υ) be an indecomposable solution of multipermutation level 2 and let e ∈ Y .

Then G(Y )eDis(Y ) = 〈
⋃

G(Y )y〉Dis(Y ) and it is a normal subgroup of G(Y ).

Proof. Let α ∈ G(Y )y, for some y ∈ Y . Let β ∈ G(Y ) send e to y. Then β−1αβ ∈ G(Y )e and
α = β−1αβ[β, α] ∈ G(Y )eDis(Y ). Hence

⋃
G(Y )y ⊆ G(Y )eDis(Y ).

Now 〈
⋃

G(Y )y〉Dis(Y ) is normal since it is a product of two normal subgroups. �
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Proposition 5.15. Let (Y, ρ, υ) be an indecomposable solution of multipermutation level 2 and let

e ∈ Y . Then G(Y )/(G(Y )eDis(Y )) ∼= Zm.

Proof. Let Φ: X → Y be the natural projection from (X,σ, τ) onto (Y, ρ, υ). This homomorphism
induces the onto group homomorphism ΦG : G(X) → G(Y ) with ΦG(ν)(x/θ) = ν(x)/θ, for ν ∈
G(X). Further, let Ψ be the natural projection from the group G(Y ) onto G(Y )/(〈

⋃
G(Y )y〉Dis(Y )).

This means that KerΨ = 〈
⋃

G(Y )y〉Dis(Y ) and G(Y )/KerΨ ∼= G(X)/Φ−1
G [KerΨ].

Recall that m is the smallest positive integer such that there exists a ∈ G with (0, 0)/θ =
(a,m)/θ. Clearly, ΦG(Dis(X)) ⊆ KerΨ. Now let γ ∈ Dis(X) be such that γ((0,m)) = (a,m). We
then know that ΦG(γπ

m) ∈ G(Y )Φ((0,0)). Hence ΦG(γπ
m) ∈ KerΨ and therefore Dis(X)〈πm〉 ⊆

Φ−1
G [KerΨ]. On the other hand, let γπk ∈ G(X) and ΦG(γπ

k) ∈ GΦ((0,0)). Hence (0, 0)/θ =

Φ((0, 0)) = ΦG(γπ
k)(Φ((0, 0))) = Φ(γπk((0, 0))) = γπk((0, 0))/θ = γ((0, k))/θ. So, (0, 0)/θ =

γ((0, k))/θ and m|k. Therefore, πk ∈ 〈πm〉 which implies Φ−1
G [KerΨ] ⊆ Dis(X)〈πm〉.

Finally, G(Y )/KerΨ ∼= G(X)/Φ−1
G [KerΨ] = Dis(X)〈π〉/Dis(X)〈πm〉 = 〈π〉/〈πm〉 ∼= Zm. �

Corollary 5.16. Let (Y, ρ, υ) be an indecomposable solution of multipermutation level 2. Then

|Y | = m · [G : H].

Proof. Choose e ∈ Y and

|Y | = [G(Y ) : G(Y )e] = [G(Y ) : G(Y )eDis(Y )] · [G(Y )eDis(Y ) : G(Y )e] =

[G(Y ) : G(Y )eDis(Y )] · [Dis(Y ) : Dis(Y )e] = m · [G : H]. �

Lemma 5.17. Let (Y, ρ, υ) be an indecomposable solution of multipermutation level 2. For each x, y ∈
Y , ρmx = ρmy .

Proof. By Proposition 5.8, for each i ∈ Zn, there exists some h ∈ H, such that, for (a, i), (b, j) ∈
G× Zn,

σm
(a,i)((b, j)) = (b+

m∑

ℓ=1

(ci−j−ℓ − c−j−ℓ), j +m) = (b+ h, j +m).

Since σm
(0,0)((b, j)) = (b, j+m), by (5.5) we have that σm

(a,i)((b, j))/θ = σm
(0,0)((b, j))/θ, which means

that, for all y ∈ Y , ρmy = ρm(a,i)/θ = ρm(0,0)/θ . �

Proposition 5.18. Let (Y, ρ, υ) be an indecomposable solution of multipermutation level 2. The

automorphism group Aut(Y ) is regular.

Proof. Let γ ∈ Dis(Y ), π = ρ(0,0)/θ and k ∈ N. For each i ∈ N and α ∈ Dis(Y ), let

Φ(α(̃i)) = ρi
k̃
πk−iαπi−kγ(k̃).

We want to show that Φ is an automorphism of the solution (Y, ρ, υ) but first we have to show

that Φ is well defined since each element α(̃i) may admit several representations. Let α,α′ ∈ Dis(Y )
and i, i′ ∈ N. First note that πk−iαπi−kγ ∈ Dis(Y ). Further, if i − i′ = mℓ, for some ℓ ∈ N, then
by Lemma 5.17 we have

α(̃i) = α′(ĩ′) ⇔ απi−k(k̃) = α′πi′−k(k̃) ⇔ γπk−iαπi−k(k̃) = γπ−mℓπk−i′α′πi′−k(k̃) ⇔

ρi
k̃
πk−iαπi−kγ(k̃) = ρi

k̃
ρ−mℓ

k̃
πk−i′α′πi′−kγ(k̃) ⇔ ρi

k̃
πk−iαπi−kγ(k̃) = ρi

′

k̃
πk−i′α′πi′−kγ(k̃) ⇔

Φ(α(̃i)) = Φ(α′(ĩ′)).

Hence, the mapping Φ is well-defined since α(̃i) = α′(ĩ′) implies m | (i− i′). Conversely, necessarily

ρi
k̃
πk−iαπi−kγ(k̃) = ρi

′

k̃
πk−i′α′πi′−kγ(k̃) implies m | (i− i′), and therefore Φ is injective.
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Moreover, Φ(0̃) = γ(k̃) and Φ is clearly onto. We shall now prove that it is endomorphism of the
solution. Note that ρi

k̃
γπk−iαπ−k = ρi

k̃
π−iπkαπ−kγ ∈ Dis(Y ). This implies, for β ∈ Dis(Y ),

Φ(ρα(̃i)(β(j̃)))
(3.11)
= Φ(Lĩπβ(j̃)) = Φ(Lĩπβπ

−1(j̃ + 1))

= ρj+1

k̃
πk−j−1Lĩπβπ

−1π1+j−kγ(k̃)
(3.8)
= ρj+1

k̃
L−1

k̃−j−1
L ˜i+k−j−1

πk−j−1πβπj−kγ(k̃)

(3.8)
= L−1

k̃
L
ĩ+k

ρj+1

k̃
πk−jβπj−kγ(k̃) = L

ĩ+k
πρj

k̃
πk−jβπj−kγ(k̃)

= ρ
ĩ+k

Φ(β(j̃))
(3.11)
= ρ

ρi
k̃
πk−iαπi−kγ(k̃)

Φ(β(j̃)) = ρΦ(α(̃i))Φ(β(j̃))

and hence Aut(Y ) is transitive. And, according to Corollary 3.11, Aut(Y ) is semi-regular. �

Theorem 5.19. Let (X,σ, τ) = S(G×Zn, c). Let θ1 = θ(m1,H1, r1) and θ2 = θ(m2,H2, r2). Then

the solutions (X,σ, τ)/θ1 and (X,σ, τ)/θ2 are isomorphic if and only if m1 = m2, H1 = H2 and

r1 ≡ r2 (mod H2).

Proof. “⇒” Suppose that there is an isomorphism Φ : X/θ1 → X/θ2. Clearly m1 = m2, according
to Proposition 5.12. According to Proposition 5.18, we can suppose, without loss of generality
Φ((0, 0)/θ1) = (0, 0)/θ2. Since σ

i
(0,0)((0, 0)) = (0, i), necessarily Φ((0, i)/θ1) = (0, i)/θ2, for each i ∈

Z. Now, for each a ∈ G and i ∈ Zn, there exist j1, . . . , jk ∈ Zn and p1, . . . , pk ∈ Z such that

(a, i) =
∏

Lpℓ
(0,jℓ)

((0, i)) =
∏

(σ(0,jℓ)σ
−1
(0,0))

pℓ((0, i))

and therefore Φ((a, i)/θ1) = (a, i)/θ2.
Suppose h ∈ H1. Then by (5.5), (h, 0)/θ2 = Φ((h, 0)/θ1) = Φ((0, 0)/θ1) = (0, 0)/θ2 and therefore

h ∈ H2 and H1 ⊆ H2. Analogously H2 ⊆ H1. Now, once again by (5.5)

(r2,m2)/θ2 = (0, 0)/θ2 = Φ((0, 0)/θ1) = Φ((r1,m2)/θ1) = (r1,m2)/θ2,

which implies r1 ≡ r2 (mod H2).
“⇐” If m1 = m2, H1 = H2 and r1 ≡ r2 (mod H2) then θ1 = θ2. �

6. Enumeration

We have now a theoretic means of constructing all indecomposable solutions of multipermutation
level 2 and we shall explicitly do so in some particular cases. Every such solution is a homomorphic
image of the solution S((

⊕
Z Z) × Z, c) from Proposition 5.1. To construct all of them we have

to find all congruences θ(m,H, r) of the solution. Then, according to Theorem 5.19, different
congruences give non-isomorphic solutions. If m is finite and H is a subgroup of (G,+, 0) =

⊕
Z Z

then, by Proposition 5.8 (iii),

0 = c0 ≡ cm =

m∑

i=1

ei (mod H)

and also, for each i ∈ Z, ei+m = ci+m − ci+m−1 ≡ ci − ci−1 = ei (mod H). In particular, the group
G/H has at most m− 1 generators.

If we want to construct all finite n-element indecomposable solutions of multipermutation level 2
necessarily, by Corollary 5.16, we have to consider all m which divide n. Moreover we know
[G : H] = n

m .
If m = 1 then G/H has 0 generators and hence G = H. Another trivial case is m = n; then

G = H and S((
⊕

Z Z)× Z, c)/θ(m,G, 0) is a permutation solution.
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If m = 2 then G/H has to be cyclic and there is only one choice of such H. Nevertheless, there
are [G : H] choices of r (one for each coset of H) and hence there are [G : H] non-isomorphic
solutions.

Another easy to calculate case is the case when G/H is essentially a vector space. For this
situation, let us recall that, given a vector space V of dimension n over a field Fq, the number of
all subspaces of V of dimension 0 < k ≤ n is equal to

(qn − 1)(qn − q) · · · (qn − qk−1)

(qk − 1)(qk − q) · · · (qk − qk−1)
=

(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.(6.1)

Proposition 6.1. Let p be a prime number, (A,+, 0) be an elementary abelian group of order pk

and let m ∈ N. Then the number n(A,m) of indecomposable solutions (X,σ, τ) of multipermutation

level 2 such that Dis(X)/Dis(X)e ∼= A and [G(X) : G(X)eDis(X)] = m is

n(A,m) =





pk · (pm−1−1)(pm−2−1)···(pk+1−1)
(pm−k−1−1)(pm−k−2−1)···(p−1)

if m > k + 1,

pk if m = k + 1,

0 if m ≤ k.

Proof. Every indecomposable solution (X,σ, τ) of multipermutation level 2 can be obtained as
a quotient of the solution S(G, c) with G = (

⊕
Z Z) × Z via a congruence θ(m,H, r), for some

subgroup H with G/H ∼= A and r ∈ G. According to Theorem 5.19, different choices of H and r
(mod H) yield non-isomorphic solutions. Let us count the number of such choices of H.

According to Proposition 5.8,
∑m

i=1 e
i ∈ H and also ei+m − ei ∈ H, for each i ∈ Z. Let now

N =

〈
m∑

i=1

ei, ei+m − ei, p · ei | i ∈ Z

〉
.

Clearly, G/N is an elementary abelian group of order pm−1 and N ≤ H. If we treat G/N as a
vector space over Fp of dimension m−1 then H/N is a subspace of dimension m−1−k. According
to (6.1), for k < m− 1, there are

(pm−1 − 1)(pm−2 − 1) · · · (pk+1 − 1)

(pm−k−1 − 1)(pm−k−2 − 1) · · · (p− 1)

such choices of H/N and therefore as many choices of H. If k = m− 1 there is exactly 1 subspace
of dimension 0. If k > m− 1 then there is no such subspace.

Now, for each choice of H, there are pk cosets of H and therefore there are pk choices of r. �

Remark 6.2. For k = 1, the expression for the number n(A,m) simplifies to
pm − p

p− 1
.

Remark 6.3. By Proposition 6.1 there are exactly 1 + pp−p
p−1 indecomposable solutions of multi-

permutation level 2 of order p2, for a prime p. Exactly pp−1 of them are composed of cycles of
length p2. For example, there are 13 indecomposable solutions of multipermutation level 2 of order
9 and 9 of them are cycles of length 9.

Let 2 < p < q be two different primes. There are 1 + pq−p
p−1 + qp−q

q−1 indecomposable solutions

of multipermutation level 2 of order pq. For example, there are 151 indecomposable solutions of
multipermutation level 2 of order 15. Or, another example, there are 2p + p − 1 indecomposable
solutions of multipermutation level 2 of order 2p > 4.

Since the work of Etingof, Schedler and Soloviev [10] the researchers ask themselves a question
about the proportion of the numbers of the indecomposable solutions with respect to the decom-
posable ones. And it was conjectured by Vendramin that the limit towards infinity of the ratio
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indecomposables/decomposables goes to 0. The result of Blackburn [3] about the numbers of racks

can be easily adapted to solutions and therefore we know that there are at least 2O(n2) decompos-
able solutions for each size n. Now it turns out that there are exponentially many indecomposable
solutions as well.

Corollary 6.4. Let s ∈ N. Then there are at least 2n/2−1 indecomposable solutions of size n = 2s.

Proof. For s = 1 there exists exactly one solution, namely the permutation one. Hence suppose

s > 1. According to Proposition 6.1 and Remark 6.2, there are 22
s−1

− 2 solutions of size 2s with
m = 2s−1. Plus there is one solution with m = 2s. �

Regardless of the exponential growth, still 2O(n) ≪ 2O(n2). Of course, we have a lower bound for
the number of indecomposables only but the experience from other types of algebraic structures
suggests that the upper bound might be similar.

Conjecture 6.5. There is a constant c ∈ Q+ such that the number of indecomposable solutions of

size n is less then 2cn, for each n ∈ N.

Proposition 6.1 may be generalized to the case when A is a free Zt-module, for some number t.
However, the expression would be too complicated and hence we give a special case only, namely
with a group (A,+, 0) cyclic of size pk.

Proposition 6.6. Let p be a prime number, let (A,+, 0) be a cyclic group of order pk and let m > 1.
Then the number n(A,m) of indecomposable solutions (X,σ, τ) of multipermutation level 2 such that

Dis(X)/Dis(X)e ∼= A and [G(X) : G(X)eDis(X)] = m is

n(A,m) = pkm−m−k+2 ·
pm−1 − 1

p− 1
.

Proof. The proof is the same as for Proposition 6.1, with the exception that N is a free Zpk-module
of rank m−1 and we count the number of its hyperplanes (free submodules of rank m−2). It is well
known that each hyperplane corresponds to a line in the dual free module and hence the number
of hyperplanes is equal to the number of lines. Each line is generated by a vector with at least one
coordinate invertible. There are (pk)m−1 − (pk−1)m−1 such vectors. There are pk − pk−1 multiples

of the vector that generate the same submodule. Hence there are (pk)m−1−(pk−1)m−1

pk−pk−1 choices of H.

For each such H, there are pk choices of r. �

Example 6.7. Let us compute the number of all indecomposable solutions of multipermutation
level 2 of size 16:

• 8 solutions with m = 2 and G/H ∼= Z8,
• 112 solutions with m = 4 and G/H ∼= Z4,
• 28 solutions with m = 4 and G/H ∼= Z2

2,
• 254 solutions with m = 8 and G/H ∼= Z2,
• 1 solution with m = 16 and G/H ∼= Z1.

Analogously, just using the ideas from the beginning of the section and Propositions 6.1 and 6.6,
we are able to compute the numbers of indecomposable solutions of multipermutation level 2 up to
the size of 17. We can also compare our numbers with the results from [1] (the numbers from the
first three rows of Table 1).

Well known results of Etingof, Schedler, Soloviev [10] and Etingof, Guralnick, Soloviev [11] say
that indecomposable solutions of prime cardinality are affine and have cyclic permutation group.
Smoktunowicz and Smoktunowicz investigated in [26] whether an analogous characterization for
indecomposable solutions of arbitrary cardinality also exists and they concluded that with high
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
solutions 1 2 5 23 88 595 3456 34530 321931 4895272
2-permut. 1 2 5 19 70 359 2095 16332
indecom. 1 1 1 5 1 10 1 100 16 36 1 1

2-permut. ind. 1 1 1 3 1 10 1 19 13 36 1 136 1 134 151 403
2-per. ind. abel. 1 1 1 3 1 1 1 3 4 1 1 3 1 1 1 7
2-per. ind. cycl. 1 1 1 2 1 1 1 2 3 1 1 2 1 1 1 4

Table 1. The number of 2-permutational indecomposable solutions of size n, up to isomorphism.

probability to obtain similar results are not possible. But perhaps not all is lost and some analogies
may be achieved.

In [5, Proposition 6.1] Castelli showed that each uniconnected solution of square-free odd order
is always of multipermutation level at most 2. On the other hand by Example 5.9 there is 2-
permutational indecomposable solution of size 6 which is not uniconnected. According to Table 1
the following natural question arises:

Question 6.8. Is it true that each indecomposable solution of square-free order is always of mul-

tipermutation level at most 2?
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