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STIRLING PERMUTATION CODES

SHI-MEI MA, HAO QI, JEAN YEH, AND YEONG-NAN YEH

Abstract. The development of the theories of the second-order Eulerian polynomials began

with the works of Buckholtz and Carlitz in their studies of an asymptotic expansion. Gessel-

Stanley introduced Stirling permutations and presented combinatorial interpretations of the

second-order Eulerian polynomials. The Stirling permutations have been extensively studied by

many researchers. The aim of this paper is to give substantial generalizations of the second-

order Eulerian polynomials. We develop a general method for finding equidistributed statistics

on Stirling permutations. Firstly, we show that the up-down-pair statistic is equidistributed

with ascent-plateau statistic, and that the exterior up-down-pair statistic is equidistributed

with left ascent-plateau statistic. Secondly, we introduce the Stirling permutation codes. Several

equidistribution results follow from simple applications. In particular, we find that six bivariable

set-valued statistics are equidistributed on the set of Stirling permutations. As applications, we

extend a classical result independently established by Dumont and Bóna. Thirdly, we explore

bijections among Stirling permutation codes, perfect matchings and trapezoidal words. We

then show the e-positivity of the enumerators of Stirling permutations by left ascent-plateaux,

exterior up-down-pairs and right plateau-descents. In the final part, the e-positivity of the

multivariate k-th order Eulerian polynomials is established, which improves a result of Janson-

Kuba-Panholzer and generalizes a recent result of Chen-Fu.

Keywords: Stirling permutations; Set-valued statistics; e-Positivity; Symmetric functions

2010 Mathematics Subject Classification. Primary 05A19; Secondary 05E05.

1

http://arxiv.org/abs/2210.11372v2


2 S.-M. MA, H. QI, JEAN YEH, AND Y.-N. YEH

Contents

1. Introduction 2

1.1. Notation and preliminaries 2

1.2. Motivation and the organization of the paper 5

2. The ascent-plateau and up-down-pair statistics 6

3. Problem 3 and the Stirling permutation code (SP-code for short) 8

4. Bijections among SP-codes, trapezoidal words and perfect matchings 15

5. The e-positivity of the enumerators by (lap , eud, rpd) 17

5.1. Preliminary 17

5.2. Proof of Theorem 22 19

6. The e-positivity of multivariate k-th order Eulerian polynomials 21

References 25

1. Introduction

1.1. Notation and preliminaries.

The development of the theories of the second-order Eulerian polynomials began with the

works of Buckholtz [3] and Carlitz [4] in their studies of an asymptotic expansion. Further

developments continued with the contributions of Riordan [30], Gessel-Stanley [15], Dumont [11],

Park [32], Bóna [1], Janson-Kuba-Panholzer [19], Haglund-Visontai [16] and Chen-Fu [7, 8]. The

aim of this paper is to give substantial generalizations of these polynomials.

Put

enx =

n∑

r=0

(nx)r

r!
+

(nx)n

n!
Sn(x). (1)

where n is a positive integer and x an arbitrary complex number. The study of (1) was initiated

by Ramanujan, see [29]. Buckholtz [3] found that

Sn(x) =

k−1∑

r=0

1

nr
Ur(x) +O(n−k),

where

Ur(x) = (−1)r
(

x

1− x

d

dx

)r x

1− x
= (−1)r

Cr(x)

(1− x)2r+1
.

Subsequently, Carlitz [4] discovered that

Cn(x) = (1− x)2n+1
∞∑

k=0

{
n+ k

k

}

xk,

where
{n
k

}
are the Stirling numbers of the second kind. The polynomials Cn(x) are now known

as the second-order Eulerian polynomials and they satisfy the recurrence relation

Cn+1(x) = (2n+ 1)xCn(x) + x(1− x)
d

dx
Cn(x), C0(x) = 1.

The first few Cn(x) are

C1(x) = x,C2(x) = x+ 2x2, C3(x) = x+ 8x2 + 6x3.
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In [30], Riordan found that Cn(x) are the enumerators of Riordan trapezoidal words of length

n by number of distinct numbers. Subsequently, Gessel-Stanley [15] discovered that Cn(x) are

the descent polynomials of Stirling permutations in Qn. The Stirling permutations have been

extensively studied by many researchers, see [8, 13, 22, 23, 27, 32] and references therein.

For m = (m1,m2, . . . ,mn) ∈ Nn, let n = {1m1 , 2m2 , . . . , nmn} be a multiset, where i appears

mi times. A multipermutation of n is a sequence of its elements. Denote by Sn the set of

multipermutations of n. We say that the multipermutation σ of n is a Stirling permutation if

σs > σi as soon as σi = σj and i < s < j. Denote by Qn the set of Stirling permutations of n.

When m1 = · · · = mn = 1, the set Qn reduces to the symmetric group Sn, which is the set of

permutations of [n] = {1, 2, . . . , n}. When m1 = · · · = mn = 2, the set Qn reduces to Qn, which

is the set of ordinary Stirling permutations of [n]2 = {12, 22, . . . , n2}. Except where explicitly

stated, we always assume that all Stirling permutations belong to Qn, and for σ ∈ Qn, we set

σ0 = σn+1 = 0. For example,

Q1 = {11}, Q2 = {1122, 1221, 2211}.

Definition 1. For σ ∈ Sn, any entry σi is called

(i) an ascent (resp. descent, plateau) if σi < σi+1 (resp. σi > σi+1, σi = σi+1), where

i ∈ {0, 1, 2, . . . ,m1 +m2 + · · ·+mn} and we set σ0 = σm1+m2+···+mn+1 = 0, see [1, 15];

(ii) an ascent-plateau (resp. plateau-descent) if σi−1 < σi = σi+1 (resp. σi−1 = σi > σi+1 ),

where i ∈ {2, 3, . . . ,m1 +m2 + · · · +mn − 1}, see [24, 26];

(iii) a left ascent-plateau if σi−1 < σi = σi+1, where i ∈ [m1+m2+ · · ·+mn− 1] and σ0 = 0,

see [24, 26];

(iv) a right plateau-descent if σi−1 = σi > σi+1, where i ∈ {2, 3, . . . ,m1+m2+ · · ·+mn} and

we set σm1+m2+···+mn+1 = 0, see [23, 27].

Let asc (σ) (resp. des (σ), plat (σ), ap (σ), pd(σ), lap (σ), rpd(σ)) denotes the number of

ascents (resp. descents, plateaux, ascent-plateaux, plateau-descents, left ascent-plateaux, right

plateau-descents) of σ. The reverse bijection σ → σr on Qn defined by σr
i = σ2n+1−i shows that

∑

σ∈Qn

xasc (σ) =
∑

σ∈Qn

xdes (σ),

∑

σ∈Qn

xap (σ) =
∑

σ∈Qn

xpd(σ),

∑

σ∈Qn

xlap (σ) =
∑

σ∈Qn

xrpd(σ).

In [1], Bóna introduced the plateau statistic plat and discovered that

Cn(x) =
∑

σ∈Qn

xplat (σ),

which leads to a remarkable equidistributed result on Qn:

∑

σ∈Qn

xasc (σ) =
∑

σ∈Qn

xplat (σ) =
∑

σ∈Qn

xdes (σ). (2)
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It should be noted that the plateau statistic has been considered by Dumont [11] in the name

of the repetition statistic, and it went unnoticed until it was independently studied by Bóna. A

trivariate version of the second-order Eulerian polynomial is defined by

Cn(x, y, z) =
∑

σ∈Qn

xasc (σ)ydes (σ)zplat (σ). (3)

Dumont [11, p. 317] found that

Cn+1(x, y, z) = xyz

(
∂

∂x
+

∂

∂y
+

∂

∂z

)

Cn(x, y, z), C1(x, y, z) = xyz. (4)

which implies that Cn(x, y, z) is symmetric in the variables x, y and z, and so (2) holds. The

symmetry of Cn(x, y, z) was rediscovered by Janson [18, Theorem 2.1] by constructing an urn

model. In [16], Haglund and Visontai introduced a refinement of the polynomial Cn(x, y, z) by

indexing each ascent, descent and plateau by the values where they appear. Recently, using the

theory of context-free grammars, Chen and Fu [8] found that Cn(x, y, z) is e-positive, i.e.,

Cn(x, y, z) =
∑

i+2j+3k=2n+1

γn,i,j,k(x+ y + z)i(xy + yz + zx)j(xyz)k, (5)

where the coefficient γn,i,j,k equals the number of 0-1-2-3 increasing plane trees on [n] with k

leaves, j degree one vertices and i degree two vertices.

A rooted tree of order n with the vertices labelled 1, 2, . . . , n, is an increasing tree if the

node labelled 1 is distinguished as the root, and the labels along any path from the root are

increasing. An increasing plane tree, usually called plane recursive tree, is an increasing tree

with the children of each vertex are linearly ordered (from left to right, say). A 0-1-2-· · · -k

increasing plane tree on [n] is an increasing plane tree with each vertex with at most k children.

The degree of a vertex in a rooted tree is meant to be the number of its children (sometimes

called outdegree). The depth-first walk of a rooted plane tree starts at the root, goes first to the

leftmost child of the root, explores that branch (recursively, using the same rules), returns to

the root, and continues with the next child of the root, until there are no more children left.

The following definition will be used repeatedly.

Definition 2 ([11]). A ternary increasing tree of size n is an increasing plane tree with 3n+ 1

nodes in which each interior node has label and three children (a left child, a middle child and a

right child), and exterior nodes have no children and no labels.

Let Tn denote the set of ternary increasing trees of size n, see Figure 1 for instance. For any

T ∈ Tn, it is clear that T has exactly 2n + 1 exterior nodes. Let exl(T ) (resp. exm(T ), exr(T ))

denotes the number of exterior left nodes (resp. exterior middle nodes, exterior right nodes) in

T . Using a recurrence relation that is equivalent to (4), Dumont [11, Proposition 1] found that

Cn(x, y, z) =
∑

σ∈Qn

xasc (σ)yplat (σ)zdes (σ) =
∑

T∈Tn

xexl(T )yexm(T )zexr(T ). (6)
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Figure 1. The ternary increasing trees of order 2 encoded by 2211, 1221, 1122,

and their SP-codes are given by ((0, 0), (1, 1)), ((0, 0)(1, 2)) and ((0, 0)(1, 3)), re-

spectively .

1
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3

4
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Figure 2. An order 3 ternary increasing tree encoded by 22114433, and its

SP-code is ((0, 0), (1, 1), (1, 3), (3, 1)).

1.2. Motivation and the organization of the paper.

In [18], Janson gave a bijection between plane recursive trees and Stirling permutations,

which has previously been used by Koganov [20]. Subsequently, Janson-Kuba-Panholzer [19,

Section 3] gave a detailed proof of the bijection between (k + 1)-ary increasing trees and k-

Stirling permutations, which was independently introduced by Gessel [32, p46]. Following the

proof of [19, Theorem 1], let φ be the bijection between ternary increasing trees and Stirling

permutations that is defined as follows:

(i) Given T ∈ Tn. Between the 3 edges of T going out from a node labelled v, we place 2

integers v. Now we perform the depth-first walk and code T by the sequence of the labels

visited as we go around T . Let φ(T ) be the code. In particular, the ternary increasing

tree of order 1 is encoded by 11. A ternary increasing tree of order n is encoded by a

string of 2n integers, where each of the labels 1, 2, . . . , n appears exactly 2 times. It is

clear that for each i ∈ [n], the elements occurring between the two occurrences of i are

larger than i, since we can only visit nodes with higher labels. Hence the code φ(T ) is

a Stirling permutation, see Figures 1 and 2 for illustrations;

(ii) The inverse of φ can be described as follows. Given σ ∈ Qn. We proceed recursively

starting at step one by decomposing σ as u11u21u3, where the ui’s are again Stirling

permutations. The smallest label in each ui is attached to the root node labelled 1. One

can recursively apply this procedure to each ui to obtain the tree representation, and

φ−1(σ) is a ternary increasing tree.

Motivated by the work of Bóna [1], Dumont [10], Haglund-Visontai [16] and Janson-Kuba-

Panholzer [19, Section 3], this paper is devoted to the following problem.
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Problem 3. Give some applications of the bijection φ and develop a general method for finding

equidistributed statistics on Stirling permutations.

In Section 2, we introduce the up-down-pair statistic ud and the exterior up-down-pair statis-

tic eud on Stirling permutations, and we show that ud is equidistributed with ap and eud is

equidistributed with lap . Therefore, we get

∑

σ∈Qn

xap (σ) =
∑

σ∈Qn

xud(σ) =
∑

σ∈Qn

xpd(σ),

∑

σ∈Qn

xlap (σ) =
∑

σ∈Qn

xeud(σ) =
∑

σ∈Qn

xrpd(σ). (7)

In Section 3, by introducing the Stirling permutation code, we present various results concerning

Problem 3. In particular, in Theorems 13 and 14, we present several bivariate generalizations

of (2). The last two identities in Theorem 14 give the generalizations of (2) and (7) simulta-

neously. In Section 4, we establish bijections among SP-codes, trapezoidal words and perfect

matchings. In Section 5, we show the e-positivity of the enumerators of Stirling permutations

by (lap , eud, rpd). In Section 6, we show the e-positivity of the multivariate k-th order Eulerian

polynomials, which generalizes (5) and improves a classical result of Janson-Kuba-Panholzer [19].

2. The ascent-plateau and up-down-pair statistics

The number of elements in a set C is called the cardinality of C, written #C. The type A

Eulerian polynomials An(x) [17], the type B Eulerian polynomials Bn(x) [2], the ascent-plateau

polynomials (they aso also known as 1/2-Eulerian polynomials) Mn(x) [24, 31] and the left

ascent-plateau polynomials Nn(x) [24] can be respectively defined as follows:

An(x) =
∑

π∈Sn

xdes (π), Bn(x) =
∑

π∈Bn

xdesB(π),

Mn(x) =
∑

σ∈Qn

xap (σ), Nn(x) =
∑

σ∈Qn

xlap (σ),

where Bn denotes the the hyperoctahedral group of rank n,

desB(π) = #{i ∈ {0, 1, 2, . . . , n− 1} | π(i) > π(i+ 1)}, and we set π(0) = 0.

These polynomials share several similar properties, including recursions [15, 24], real-rootedness [1,

16], combinatorial expansions [8, 10, 22, 27, 34] and asymptotic distributions [17]. For conve-

nience, we collect the recurrence relations of these polynomials:

An+1(x) = (n+ 1)xAn(x) + x(1− x)
d

dx
An(x),

Bn+1(x) = (2nx+ 1 + x)Bn(x) + 2x(1 − x)
d

dx
Bn(x),

Mn+1(x) = (2nx+ 1)Mn(x) + 2x(1 − x)
d

dx
Mn(x),

Nn+1(x) = (2n + 1)xNn(x) + 2x(1 − x)
d

dx
Nn(x),
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with A0(x) = B0(x) = C0(x) = M0(x) = N0(x) = 1. There are close connections among these

polynomials (see [25] for details):

2nAn(x) =

n∑

i=0

(
n

i

)

Ni(x)Nn−i(x),

Bn(x) =
n∑

i=0

(
n

i

)

Mi(x)Nn−i(x).

(8)

Let Q
(1)
n be the set of Stirling permutations of the multiset {1, 22, 32, . . . , n2, (n + 1)2}, i.e.,

this multset has exactly one 1 and two copies of i for all 2 6 i 6 n+ 1. In particular,

Q
(1)
2 = {12233, 12332, 13322, 33122, 22133, 22331, 23321, 33221}.

By considering the position of the entry 1 in a Stirling permutation σ ∈ Q
(1)
n , the following

result immediately follows from (8).

Proposition 4. For n > 1, we have

2nAn(x) =
∑

σ∈Q
(1)
n

xlap (σ),

Bn(x) =
∑

σ∈Q
(1)
n

xap (σ).

Definition 5. Let σ ∈ Qn. An entry σi is called an up-down-pair entry if σi−1 < σi = σj > σj+1,

where i < j. The two equal entries σi and σj may appear arbitrarily far apart. The up-down-pair

statistic ud and the exterior up-down-pair statistic eud are respectively defined as follows:

ud(σ) = #{i ∈ [2n− 2] : σi is an up-down-pair entry, and we set σ0 = 0},

eud(σ) = #{i ∈ [2n− 1] : σi is an up-down-pair entry, and we set σ0 = σ2n+1 = 0}.

Example 6. We have

ud(123321) = ud(0123321) = 2,ud(331221) = ud(0331221) = 2,

eud(123321) = eud(01233210) = 3, eud(331221) = eud(03312210) = 2.

The main result of this section is given as follows.

Theorem 7. We have
∑

σ∈Qn

xap (σ) =
∑

σ∈Qn

xud(σ),

∑

σ∈Qn

xlap (σ) =
∑

σ∈Qn

xeud(σ).
(9)

Proof. Let

Mn(x) =
∑

σ∈Qn

xap (σ) =

n−1∑

i=0

Mn,ix
i,

Nn(x) =
∑

σ∈Qn

xlap (σ) =

n∑

i=1

Nn,ix
i.
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Then the numbers Mn,i and Nn,i respectively satisfy the recurrence relations

Mn+1,i = (2i + 1)Mn,i + (2n − 2i+ 2)Mn,i−1,

Nn+1,i = 2iNn,i + (2n − 2i+ 3)Nn,i−1,
(10)

with M0,0 = N0,0 = 1 and M0,i = N0,i = 0 if i > 0, see [24].

Let mn,i = #{σ ∈ Qn : ud(σ) = i}. It is clear that m1,0 = M1,0 = 1, since ud(11) =

ud(011) = 0. There are two ways to obtain an element σ′ ∈ Qn+1 with ud(σ′) = i from an

element σ ∈ Qn by inserting two copies of n into consecutive positions:

(c1) If ud(σ) = i, then we can insert the two copies of n before an up-down-pair entry or

right after the second appearance of it. Moreover, we can insert the two copies of n at

the end of σ. This accounts for (2i+ 1)mn,i possibilities;

(c2) If ud(σ) = i−1, then we insert the two consecutive copies of n into one of the remaining

2n + 1 − (2(i − 1) + 1) = 2n − 2i + 2 positions. This accounts for (2n − 2i + 2)mn,i−1

possibilities.

Thus the numbers mn,i satisfy the same recursion and initial conditions as Mn,i, so they agree.

Define nn,i = #{σ ∈ Qn : eud(σ) = i}. Clearly, n1,1 = N1,1 = 1, since eud(0110) = 1.

Similarly, there are two ways to obtain an element σ′ ∈ Qn+1 with eud(σ′) = i from an element

σ ∈ Qn by inserting two copies of n into consecutive positions:

(c1) If eud(σ) = i, then we can insert the two copies of n before an up-down-pair entry or

right after the second appearance of it. This accounts for 2inn,i possibilities;

(c2) If eud(σ) = i−1, then we insert the two consecutive copies of n into one of the remaining

2n+1−2(i−1) = 2n−2i+3 positions. This accounts for (2n−2i+3)nn,i−1 possibilities.

Thus the numbers nn,i satisfy the same recursion and initial conditions as Nn,i, so they agree. �

3. Problem 3 and the Stirling permutation code (SP-code for short)

Recall that a sequence (e1, e2, . . . , en) is an inversion sequence if 0 6 ei < i for all i ∈ [n].

It is well known that inversion sequences of length n are in bijection with permutations in Sn.

As a dual of inversion sequence, by using the bijection φ, we shall introduce a common code for

ternary increasing trees and Stirling permutations.

Recall that for any ternary increasing tree T ∈ Tn, each interior node has label and three

children (one at the left, a middle child and a right child), and exterior nodes have no children

and no labels. For convenience, we introduce the following definition.

Definition 8. A simplified ternary increasing tree is a ternary increasing tree with no exterior

nodes. The degree of a vertex in a ternary increasing tree is meant to be the number of its

children in the simplified ternary increasing tree.

In fact, a simplified ternary increasing tree is the same as the ordinary ternary increasing tree,

it is only a simplified version. A node in a simplified ternary increasing tree with no children

is called a leaf, and any interior node has at most three children (left child, middle child or

right child). For example, Figure 3 gives the set of simplified ternary increasing trees of order 2.

In the following discussion, a ternary increasing tree is always meant to be a simplified ternary
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Figure 3. The simplified ternary increasing trees of order 2.

increasing tree. A ternary increasing tree of size n can be built up from the root 1 by successively

adding nodes 2, 3, . . . , n. Clearly, node 2 is a child of the root 1 and the root 1 has at most three

children (a left, a middle or a right child), see Figure 3 for illustartions. For 2 6 i 6 n, when

node i is inserted, we distinguish three cases:

(c1) if it is the left child of a node v ∈ [i− 1], then the node i is coded as [v, 1];

(c2) if it is the middle child of a node v ∈ [i− 1], then the node i is coded as [v, 2];

(c3) if it is the right child of a node v ∈ [i− 1], then the node i is coded as [v, 3].

Thus the node i is coded as a 2-tuple (ai−1, bi−1), where 1 6 ai−1 6 i − 1, 1 6 bi−1 6 3

and (ai, bi) 6= (aj , bj) for all 1 6 i < j 6 n − 1. By convention, the root 1 is coded as

(0, 0). Therefore, a ternary increasing tree of size n corresponds naturally to a build-tree code

((0, 0), (a1 , b1), . . . , (an−1, bn−1)). Using the bijection φ between ternary increasing trees and

Stirling permutations, one can see that the build-tree code is the same as the Stirling permutation

code, which is defined as follows.

Definition 9. A 2-tuples sequence Cn = ((0, 0), (a1 , b1), (a2, b2) . . . , (an−1, bn−1)) of length n is

a Stirling permutation code (SP-code for short) if 1 6 ai 6 i, 1 6 bi 6 3 and (ai, bi) 6= (aj , bj)

for all 1 6 i < j 6 n− 1.

Let CQn be the set of SP-codes of length n. In particular, CQ1 = {(0, 0)} and CQ2 =

{(0, 0)(1, 1), (0, 0)(1, 2), (0, 0)(1, 3)}, see Figure 1.

Theorem 10. The set CQn is in a natural bijection with the set Qn, i.e., CQn
∼= Qn.

Proof. For n > 2, there are three cases to obtain an element of Qn from an element σ ∈ Qn−1

by putting the two copies of n between σi and σi+1: σi < σi+1, σi = σi+1, σi > σi+1. Set

Γ(11) = (0, 0). When n > 2, the bijection Γ : Qn → CQn can be defined as follows:

(c1) σi < σi+1 if and only if (an−1, bn−1) = (σi+1, 1);

(c2) σi = σi+1 if and only if (an−1, bn−1) = (σi+1, 2);

(c3) σi > σi+1 if and only if (an−1, bn−1) = (σi, 3).

See Figure 1 and Example 11 for illustrations. �
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Example 11. Given σ = 551443312662 ∈ Q5. We give the procedure of creating its SP-code:

11 ⇔ (0, 0),

1122 ⇔ (0, 0)(1, 3),

133122 ⇔ (0, 0)(1, 3)(1, 2),

14433122 ⇔ (0, 0)(1, 3)(1, 2)(3, 1),

5514433122 ⇔ (0, 0)(1, 3)(1, 2)(3, 1)(1, 1),

551443312662 ⇔ (0, 0)(1, 3)(1, 2)(3, 1)(1, 1)(2, 2).

Thus Γ(σ) = (0, 0)(1, 3)(1, 2)(3, 1)(1, 1)(2, 2). Conversely, we get Γ−1(Γ(σ)) = σ.

For σ ∈ Qn, let

Asc(σ) = {σi | σi−1 < σi},

Plat(σ) = {σi | σi = σi+1},

Des(σ) = {σi | σi > σi+1},

Lap(σ) = {σi | σi−1 < σi = σi+1},

Rpd(σ) = {σi | σi−1 = σi > σi+1},

Eud(σ) = {σi | σi−1 < σi = σj > σj+1, i < j},

Dasc(σ) = {σi | σi−1 < σi < σi+1},

Dplat(σ) = {σi | σi−1 > σi = σi+1},

Ddes(σ) = {σi | σi−1 > σi > σi+1},

Pasc(σ) = {σi | σi−1 = σi < σi+1},

Apd(σ) = {σi | σi−1 < σi = σi+1 > σi+1},

Uu(σ) = {σi | σi−1 < σi = σj < σj+1, i < j},

Dd(σ) = {σi | σi−1 > σi = σj > σj+1, i < j}

denote the sets of ascents, plateaux, descents, left ascent-plateaux, right plateau-descents, ex-

terior up-down-pais, double ascents, descent-plateaux, double descents, plateau-ascents, ascent-

plateau-descents, up-up-pairs and down-down-pairs of σ, respectively. We use dasc (σ), dplat(σ),

ddes (σ), pasc(σ), apd(σ), uu(σ) and dd(σ) to denote the number of double ascents, descent-

plateaux, double descents, plateau-ascents, ascent-plateau-descents, up-up-pairs and down-down-

pairs of σ, respectively, i.e., dasc (σ) = #Dasc(σ), dplat(σ) = #Dplat(σ), ddes (σ) = #Ddes (σ),

pasc(σ) = #Pasc(σ), apd(σ) = #Apd(σ), uu(σ) = #Uu(σ) and dd(σ) = #Dd(σ).

Using the bijection φ, it is easily seen that the set-valued statistics on Stirling permutations

listed in Table 1 correspond to the given set-valued statistics on SP-codes. We illustrate these

correspondences in Example 12. By Table 1, a large number of properties of Stirling permuta-

tions can be easily deduced.
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Statistics on Stirling permutation Statistics on SP-code

Asc (ascent) [n]− {ai | (ai, 1) ∈ Cn}

Plat (plateau) [n]− {ai | (ai, 2) ∈ Cn}

Des (descent) [n]− {ai | (ai, 3) ∈ Cn}

Lap (left ascent-plateau) [n]− {ai | (ai, 1) or (ai, 2) ∈ Cn}

Rpd (right plateau-descent) [n]− {ai | (ai, 2) or (ai, 3) ∈ Cn}

Eud (exterior up-down-pair) [n]− {ai | (ai, 1) or (ai, 3) ∈ Cn}

Dasc (double ascent) {ai | (ai, 1) /∈ Cn & (ai, 2) ∈ Cn}

Dplat (descent-plateau) {ai | (ai, 1) ∈ Cn & (ai, 2) /∈ Cn}

Ddes (double descent) {ai | (ai, 2) ∈ Cn & (ai, 3) /∈ Cn}

Pasc (plateau-ascent) {ai | (ai, 2) /∈ Cn & (ai, 3) ∈ Cn}

Apd (ascent-plateau-descent) {ai | (ai, 1) /∈ Cn & (ai, 2) /∈ Cn & (ai, 3) /∈ Cn}

Uu (up-up-pair) {ai | (ai, 1) /∈ Cn & (ai, 3) ∈ Cn}

Dd (down-down-pair) {ai | (ai, 1) ∈ Cn & (ai, 3) /∈ Cn}

Table 1. The correspondences of statistics on Stirling permutations and SP-codes

Example 12. Let σ = 77441223315665. The corresponding SP-code is given by

C7 = (0, 0)(1, 2)(2, 3)(1, 1)(1, 3)(5, 2)(4, 1).

Then we have

Asc(σ) = [7]− {ai | (ai, 1) ∈ C7} = {2, 3, 5, 6, 7},

Plat(σ) = [7]− {ai | (ai, 2) ∈ C7} = {2, 3, 4, 6, 7},

Des(σ) = [7]− {ai | (ai, 3) ∈ C7} = {3, 4, 5, 6, 7},

Lap(σ) = [7]− {ai | (ai, 1) or (ai, 2) ∈ C7} = {2, 3, 6, 7},

Rpd(σ) = [7]− {ai | (ai, 2) or (ai, 3) ∈ C7} = {3, 4, 6, 7},

Eud(σ) = [7]− {ai | (ai, 1) or (ai, 3) ∈ C7} = {3, 5, 6, 7},

Dasc(σ) = {ai | (ai, 1) /∈ C7 & (ai, 2) ∈ C7} = {5},

Dplat(σ) = {ai | (ai, 1) ∈ C7 & (ai, 2) /∈ C7} = {4},

Ddes(σ) = {ai | (ai, 2) ∈ C7 & (ai, 3) /∈ C7} = {5},

Pasc(σ) = {ai | (ai, 2) /∈ C7 & (ai, 3) ∈ C7} = {2},

Apd(σ) = {ai | (ai, 1) /∈ C7 & (ai, 2) /∈ C7 & (ai, 3) /∈ C7} = {3, 6},

Uu(σ) = {ai | (ai, 1) /∈ C7 & (ai, 3) ∈ C7} = {2},

Dd(σ) = {ai | (ai, 1) ∈ C7 & (ai, 3) /∈ C7} = {4}.

The following two results give several generalizations of (2), which can be proved by switching

some 2-tuples in the corresponding SP-codes.
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Theorem 13. The six bivariable set-valued statistics are all equidistributed on Qn:

(Asc,Dasc) , (Plat,Dplat) , (Des,Ddes) ,

(Asc,Uu) , (Plat,Pasc) , (Des,Dd) .

So we get the following four identities:
∑

σ∈Qn

xasc (σ)ydasc (σ) =
∑

σ∈Qn

xplat (σ)ydplat(σ) =
∑

σ∈Qn

xdes (σ)yddes (σ),

∑

σ∈Qn

xasc (σ)ydasc (σ) =
∑

σ∈Qn

xplat (σ)ypasc(σ) =
∑

σ∈Qn

xdes (σ)yddes (σ),

∑

σ∈Qn

xasc (σ)yuu(σ) =
∑

σ∈Qn

xplat (σ)ypasc(σ) =
∑

σ∈Qn

xdes (σ)ydd(σ),

∑

σ∈Qn

xasc (σ)yuu(σ) =
∑

σ∈Qn

xplat (σ)ydplat(σ) =
∑

σ∈Qn

xdes (σ)ydd(σ).

Proof. Consider Table 1. For Cn ∈ CQn, if we switch the 2-tuples (ai, 1) and (ai, 2) for all i (if

any), then we see that the following bivariable set-valued statistics are equidistributed on CQn:

([n]− {ai | (ai, 1) ∈ Cn}, {ai | (ai, 1) /∈ Cn & (ai, 2) ∈ Cn}) ,

([n]− {ai | (ai, 2) ∈ Cn}, {ai | (ai, 1) ∈ Cn & (ai, 2) /∈ Cn}) .

which yields (Asc,Dasc) and (Plat,Dplat) are equidistributed on Qn.

If we switch the 2-tuples (ai, 1) and (ai, 3) for all i (if any), then we find that the following

bivariable set-valued statistics are equidistributed on CQn:

([n]− {ai | (ai, 1) ∈ Cn}, {ai | (ai, 1) /∈ Cn & (ai, 2) ∈ Cn}) ,

([n]− {ai | (ai, 3) ∈ Cn}, {ai | (ai, 2) ∈ Cn & (ai, 3) /∈ Cn}) ,

which yields (Asc,Dasc) and (Des,Ddes) are equidistributed on Qn.

If we switch the 2-tuples (ai, 1) and (ai, 2) for all i (if any), then we see that the following

bivariable set-valued statistics are equidistributed on CQn:

([n]− {ai | (ai, 1) ∈ Cn}, {ai | (ai, 1) /∈ Cn & (ai, 3) ∈ Cn}) ,

([n]− {ai | (ai, 2) ∈ Cn}, {ai | (ai, 2) /∈ Cn & (ai, 3) ∈ Cn}) ,

which yields (Asc,Uu) and (Plat,Pasc) are equidistributed on Qn.

If we switch the 2-tuples (ai, 1) and (ai, 3) for all i (if any), then we find that the following

bivariable set-valued statistics are equidistributed on CQn:

([n]− {ai | (ai, 1) ∈ Cn}, {ai | (ai, 1) /∈ Cn & (ai, 3) ∈ Cn}) ,

([n]− {ai | (ai, 3) ∈ Cn}, {ai | (ai, 1) ∈ Cn & (ai, 3) /∈ Cn}) ,

which yields (Asc,Uu) and (Des,Dd) are equidistributed on Qn.

If we switch the 2-tuples (ai, 2) and (ai, 3) for all i (if any), then we find that the following

bivariable set-valued statistics are equidistributed on CQn:

([n]− {ai | (ai, 2) ∈ Cn}, {ai | (ai, 1) ∈ Cn & (ai, 2) /∈ Cn}) .

([n]− {ai | (ai, 3) ∈ Cn}, {ai | (ai, 1) ∈ Cn & (ai, 3) /∈ Cn}) ,
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which yields (Plat,Dplat) and (Des,Dd) are equidistributed on Qn.

In conclusion, the proof is completed by using transitivity. �

Theorem 14. The six bivariable set-valued statistics are equidistributed on Qn:

(Asc,Lap) , (Plat,Lap) , (Des,Rpd) ,

(Asc,Eud) , (Plat,Rpd) , (Des,Eud) .

So we get the following six identities:
∑

σ∈Qn

xasc (σ)ylap(σ) =
∑

σ∈Qn

xplat (σ)ylap(σ) =
∑

σ∈Qn

xdes (σ)yrpd(σ),

∑

σ∈Qn

xasc (σ)ylap(σ) =
∑

σ∈Qn

xplat (σ)yrpd(σ) =
∑

σ∈Qn

xdes (σ)yrpd(σ),

∑

σ∈Qn

xasc (σ)yeud(σ) =
∑

σ∈Qn

xplat (σ)yrpd(σ) =
∑

σ∈Qn

xdes (σ)yeud(σ),

∑

σ∈Qn

xasc (σ)yeud(σ) =
∑

σ∈Qn

xplat (σ)ylap(σ) =
∑

σ∈Qn

xdes (σ)yeud(σ),

∑

σ∈Qn

xasc (σ)ylap(σ) =
∑

σ∈Qn

xplat (σ)yrpd(σ) =
∑

σ∈Qn

xdes (σ)yeud(σ),

∑

σ∈Qn

xasc (σ)yeud(σ) =
∑

σ∈Qn

xplat (σ)ylap(σ) =
∑

σ∈Qn

xdes (σ)yrpd(σ),

where the last two identities give the generalizations of (2) and (7) simultaneously.

Proof. Consider Table 1. For Cn ∈ CQn, if we switch the 2-tuples (ai, 1) and (ai, 2) for all i (if

any), then we see that the following bivariable set-valued statistics are equidistributed on CQn:

([n]− {ai | (ai, 1) ∈ Cn}, [n] − {ai | (ai, 1) or (ai, 2) ∈ Cn}),

([n]− {ai | (ai, 2) ∈ Cn}, [n] − {ai | (ai, 1) or (ai, 2) ∈ Cn}),

which yields (Asc,Lap) and (Plat,Lap) are equidistributed on Qn.

If we switch the 2-tuples (ai, 1) and (ai, 3) for all i (if any), then we see that the following

bivariable set-valued statistics are equidistributed on CQn:

([n]− {ai | (ai, 1) ∈ Cn}, [n] − {ai | (ai, 1) or (ai, 2) ∈ Cn}),

([n]− {ai | (ai, 3) ∈ Cn}, [n] − {ai | (ai, 2) or (ai, 3) ∈ Cn}),

which yields (Asc,Lap) and (Des,Rpd) are equidistributed on Qn.

If we switch the 2-tuples (ai, 1) and (ai, 2) for all i (if any), then we see that the following

bivariable set-valued statistics are equidistributed on CQn:

([n]− {ai | (ai, 1) ∈ Cn}, [n] − {ai | (ai, 1) or (ai, 3) ∈ Cn}),

([n]− {ai | (ai, 2) ∈ Cn}, [n] − {ai | (ai, 2) or (ai, 3) ∈ Cn}),

which yields (Asc,Eud) and (Plat,Rpd) are equidistributed on Qn.

If we switch the 2-tuples (ai, 1) and (ai, 3) for all i (if any), then we see that the following

bivariable set-valued statistics are equidistributed on CQn:

([n]− {ai | (ai, 1) ∈ Cn}, [n] − {ai | (ai, 1) or (ai, 3) ∈ Cn}),
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([n]− {ai | (ai, 3) ∈ Cn}, [n] − {ai | (ai, 1) or (ai, 3) ∈ Cn}),

which yields (Asc,Eud) and (Des,Eud) are equidistributed on Qn.

If we switch the 2-tuples (ai, 2) and (ai, 3) for all i (if any), then we see that the following

bivariable set-valued statistics are equidistributed on CQn:

([n]− {ai | (ai, 1) ∈ Cn}, [n] − {ai | (ai, 1) or (ai, 2) ∈ Cn}),

([n]− {ai | (ai, 1) ∈ Cn}, [n] − {ai | (ai, 1) or (ai, 3) ∈ Cn}),

which yields (Asc,Lap) and (Asc,Eud) are equidistributed on Qn.

In conclusion, the proof is completed by using transitivity. �

We say that a joint distribution of (set-valued) statistics or a multivariate polynomial is

symmetric if it is invariant under any permutation of its indeterminates. We can now present

the following two results, and the proofs follow in the same way as the proof of Theorem 14.

Theorem 15. The six set-valued statistics are all equidistributed on Qn:

Dasc,Dplat,Ddes,Pasc,Uu, Dd .

Moreover, if one select any two set-valued statistics from these six set-valued statistics, then the

selected two set-valued statistics are symmetric on Qn.

Theorem 16. The following triple set-valued statistics are all symmetric on Qn:

(Asc(σ),Plat(σ),Des(σ)), (Lap(σ),Rpd(σ),Eud(σ)),

(Dasc(σ),Pasc(σ),Dd(σ)), (Ddes(σ),Dplat(σ),Uu(σ)).

We now give an example to illustrate the proof of the symmetric of (Ddes,Pasc).

Example 17. Let σ and C7 be the given in Example 12. Then we have Ddes(σ) = {5} and

Pasc(σ) = {2}. Let Φ be the bijection on CQ7 that is defined by

(ai, 2) ↔ (ai, 3), where 1 6 i 6 6.

In other words, we just switch the 2-tuples (ai, 2) and (ai, 3) for all i (if any). Thus

Φ ((0, 0)(1, 2)(2, 3)(1, 1)(1, 3)(5, 2)(4, 1)) = (0, 0)(1, 3)(2, 2)(1, 1)(1, 2)(5, 3)(4, 1).

It is routine to verify that φ−1 (Φ(C7)) = 77441556612332. Therefore, we have

Ddes
(
φ−1 (Φ(C7))

)
= {2}, Pasc

(
φ−1 (Φ(C7))

)
= {5}.

Corollary 18. For n > 1, both of the following two polynomials are symmetric in their variables:

Cn(x, y, z) =
∑

σ∈Qn

xasc (σ)yplat (σ)zdes (σ),

Nn(x, y, z) =
∑

σ∈Qn

xlapσ)yrpd(σ)zeud(σ).

As discussed in introduction, the symmetry of Cn(x, y, z) has been extensively studied, see [8,

16] and references therein. In Section 5, we shall show the e-positivity of Nn(x, y, z).
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4. Bijections among SP-codes, trapezoidal words and perfect matchings

Following Riordan [30], we say that a word t = t1t2 · · · tn is a Riordan trapezoidal word if the

element ti takes the values 1, 2, . . . , 2i − 1. Let RTn be the set of Riordan trapezoidal words of

length n. In particular,

RT1 = {1}, RT2 = {11, 12, 13}.

Besides (6), Dumont [11] gave another two interpretations of Cn(x, y, z) in terms of Dumont

trapezoidal words and perfect matchings. The Dumont trapezoidal word [11] is a variant Riordan

trapezoidal word. We say that a word w = w1w2 · · ·wn is a Dumont trapezoidal word of length n

if 0 6 |wi| < i, where wi are all integers. Let DTn denote the set of Dumont trapezoidal words

of length n. For convenience, we set i = −i. In particular,

DT1 = {0}, DT2 = {00, 01, 01}.

Given w ∈ DTn. Let dist(w) be the number of distinct elements in w, and we define

nneg(σ) = n− {wi | wi < 0}, npos(σ) = n− {wi | wi > 0}.

Dumont [11, Section 2.3] found that

Cn(x, y, z) =
∑

w∈∈DTn

xdist(w)ynneg(σ)znpos(σ).

A perfect matching of [2n] is a set partition of [2n] with blocks (disjoint nonempty subsets) of

size exactly 2. Let M2n be the set of perfect matchings of [2n], and let M ∈ M2n. The standard

form of M is a list of blocks

{(i1, j1), (i2, j2), . . . , (in, jn)}

such that ir < jr for all 1 6 r 6 n and 1 = i1 < i2 < · · · < in. As usual, we always write M in

standard form. It is well known that M can be regarded as a fixed-point-free involution on [2n].

In particular,

M2 = {(1, 2)}, M4 = {(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.

Motivated by Theorem 10, it is natural to explore the bijections among SP-codes, trapezoidal

words and perfect matchings.

Theorem 19. For n > 1, we have

CQn
∼= DTn

∼= RTn
∼= M2n. (11)

Proof. (i) Let ϕ1 : DTn → RTn be the bijection defined by

ϕ1(wi) =







1, if wi = 0;

2k, if wi = k > 0;

2k + 1, if wi = k < 0,

(12)

which yields that DTn
∼= RTn.

(ii) Now we start to construct a bijection, denoted by ϕ2, from RTn to M2n. When n = 1,

we have RTn = {1}. Set ϕ2(1) = (1, 2). When n = 2, we have RT2 = {11, 12, 13}. We set

ϕ2(11) = (1, 4)(2, 3), ϕ2(12) = (2, 4)(1, 3), ϕ2(13) = (3, 4)(1, 2).
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We proceed by induction. Let n = m. Suppose that ϕ2 is a bijection from RTm to M2m. Given

M = (i1, j1)(i2, j2) · · · (im, jm) ∈ M2m. Suppose that ϕ2(t) = M, where t = t1t2 · · · tm ∈ RTm.

For 1 6 i 6 2m+1, we let ϕ2 be the following algorithm, which can be used to generate perfect

matchings in M2m+2:

• ϕ2(t1t2 · · · tmi) = (i, 2m + 2)(i′1, j
′
1)(i

′
2, j

′
2) · · · (i

′
m, j′m), where (i′1, j

′
1)(i

′
2, j

′
2) · · · (i

′
m, j′m) is

a perfect matching of the elements in [2m + 2] − {i, 2m + 2} such that the elements in

(i′1, j
′
1) · · · (i

′
m, j′m) keeps the same order relationships they have in (i1, j1) · · · (im, jm).

Clearly, ϕ2 is the desired bijection. See Example 20 for an illustration.

(iii) Now we start to construct a bijection, denoted by ϕ3, from DTn to CQn. When n = 1,

we set ϕ3(0) = (0, 0). When n = m, suppose ϕ3 is a bijection from DTm to CQm. Consider

the case n = m + 1. Let w = w1w2 · · ·wm+1 ∈ DTm+1. Then w′ = w1w2 · · ·wm ∈ DTm and

ϕ3(w
′) = ((0, 0), (a1, b1), (a2, b2) . . . , (am−1, bm−1)) ∈ CQm. We distinguish three cases:

(c1) wm+1 = k and k ∈ {w1, w2, . . . , wm} if and only if

(am, bm) = (j, 1), where j = max{i | wi = k, 1 6 i 6 m};

(c2) wm+1 = −j and j /∈ {w1, w2, . . . , wm} if and only if (am, bm) = (j, 2), where 1 6 j 6 m;

(c3) wm+1 = j and j /∈ {w1, w2, . . . , wm} if and only if (am, bm) = (j, 3), where 1 6 j 6 m.

It is routine to check that ϕ3 is the desired bijection. In particular, when n = 2, 3, we have

ϕ3(00) = (0, 0)(1, 1), ϕ3(01) = (0, 0)(1, 2), ϕ3(01) = (0, 0)(1, 3);

ϕ3(000) = (0, 0)(1, 1)(2, 1), ϕ3(001) = (0, 0)(1, 1)(1, 2), ϕ3(001) = (0, 0)(1, 1)(1, 3),

ϕ3(002) = (0, 0)(1, 1)(2, 2), ϕ3(002) = (0, 0)(1, 1)(2, 3), ϕ3(010) = (0, 0)(1, 2)(1, 1),

ϕ3(011) = (0, 0)(1, 2)(1, 3), ϕ3(01 1) = (0, 0)(1, 2)(2, 1), ϕ3(01 2) = (0, 0)(1, 2)(2, 2),

ϕ3(012) = (0, 0)(1, 2)(2, 3), ϕ3(010) = (0, 0)(1, 3)(1, 1), ϕ3(011) = (0, 0)(1, 3)(1, 2),

ϕ3(011) = (0, 0)(1, 3)(2, 1), ϕ3(012) = (0, 0)(1, 3)(2, 2), ϕ3(012) = (0, 0)(1, 3)(2, 3).

This completes the proof. �

As illustrations of ϕ2(w) and ϕ3(w), we give another two examples.

Example 20. Given t = 1 - 1 - 1 - 3 - 2 - 10. We give the procedure of creating ϕ2(t).

1 ⇔ (1, 2),

1 -1 ⇔ (1, 4)(2, 3),

1 - 1 -1 ⇔ (1, 6)(2, 5)(3, 4),

1 - 1 - 1 -3 ⇔ (3, 8)(1, 7)(2, 6)(4, 5),

1 - 1 - 1 - 3 -2 ⇔ (2, 10)(4, 9)(1, 8)(3, 7)(5, 6),

1 - 1 - 1 - 3 - 2 - 10 ⇔ (10, 12)(2, 11)(4, 9)(1, 8)(3, 7)(5, 6).

Thus ϕ2(t) = (10, 12)(2, 11)(4, 9)(1, 8)(3, 7)(5, 6). Conversely, we get ϕ−1
2 (ϕ2(t)) = t.
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Example 21. Given w = 0 - 0 - 0 - 1 - 1 - 5 - 1. We give the procedure of creating ϕ3(w).

0 ⇔ (0, 0),

0 -0 ⇔ (0, 0)(1,1),

0 - 0 -0 ⇔ (0, 0)(1, 1)(2,1),

0 - 0 - 0 -1 ⇔ (0, 0)(1, 1)(2, 1)(1,2),

0 - 0 - 0 - 1 -1 ⇔ (0, 0)(1, 1)(2, 1)(1, 2)(1,3),

0 - 0 - 0 - 1 - 1 - 5 ⇔ (0, 0)(1, 1)(2, 1)(1, 2)(1, 3)(5,3),

0 - 0 - 0 - 1 - 1 - 5 -1 ⇔ (0, 0)(1, 1)(2, 1)(1, 2)(1, 3)(5, 3)(5,1).

Thus ϕ3(w) = (0, 0)(1, 1)(2, 1)(1, 2)(1, 3)(5, 3)(5, 1). Conversely, we get ϕ−1
3 (ϕ3(w)) = w.

5. The e-positivity of the enumerators by (lap , eud, rpd)

5.1. Preliminary.

Let Xn = {x1, x2, . . . , xn} be a set of commuting variables. Define

Sn(x) =

n∏

i=1

(x− xi) =

n∑

k=0

(−1)kekx
n−k.

Then the k-th elementary symmetric function associated with Xn is defined by

ek =
∑

16i1<i2<···<ik6n

xi1xi2 · · · xik .

In particular,

e0 = 1, e1 =
n∑

i=1

xi, en = x1x2 · · · xn.

A function f(x1, x2, . . .) ∈ R[x1, x2, . . .] is said to be symmetric if it is invariant under any

permutation of its indeterminates. We say that a symmetric function is e-positive if it can be

written as a nonnegative linear combination of elementary symmetric functions.

For an alphabet A, let Q[[A]] be the rational commutative ring of formal power series in

monomials formed from letters in A. Following Chen [6], a context-free grammar over A is a

function G : A → Q[[A]] that replaces each letter in A by a formal function over A. The formal

derivative DG with respect to G satisfies the derivation rules:

DG(u+ v) = DG(u) +DG(v), DG(uv) = DG(u)v + uDG(v).

So the Leibniz rule holds:

Dn
G(uv) =

n∑

k=0

(
n

k

)

Dk
G(u)D

n−k
G (v).

See [12, 27] for some examples of context-free grammars.

Recently, two methods are developed in the theory of context-free grammars, i.e., grammatical

labeling and the change of grammars. A grammatical labeling is an assignment of the underlying

elements of a combinatorial structure with variables, which is consistent with the substitution

rules of a grammar (see [7] for details). A change of grammars is a substitution method in

which the original grammars are replaced with functions of other grammars. In particular,
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the following type of change of grammars can be used to study the γ-positivity and partial

γ-positivity of several enumerative polynomials (see [8, 27, 28] for details):

{

u = xy,

v = x+ y.

Let G be the following grammar

G = {x → xyz, y → xyz, z → xyz}. (13)

It has been shown by Dumont [11], Haglund-Visontai [16] and Chen etal. [9] that

Dn
G(x) = Cn(x, y, z).

Very recently, Chen-Fu [8] introduced a new type of change of grammars:







u = x+ y + z,

v = xy + yz + zx,

w = xyz.

(14)

Combining (13) and (14), one can easily verify that DG(u) = 3w, DG(v) = 2uw, DG(w) = vw,

which yield a new grammar

H = {u → 3w, v → 2uw, w → vw}. (15)

For any n > 1, Chen-Fu [8, ] discovered that

Cn(x, y, z) = Dn
G(x) = Dn−1

H (w) =
∑

i+2j+3k=2n+1

γn,i,j,ku
ivjwk, (16)

which leads to the e-positive expansion (5).

We can now present the main result of this section.

Theorem 22. Let

Nn(x, y, z) =
∑

σ∈Qn

xlap (σ)yeud(σ)zrpd(σ). (17)

Then we have

Nn(x, y, z) =
∑

i+2j+3k=2n+1

3iγn,i,j,k(x+ y + z)j(xyz)k, (18)

where γn,i,j,k is the same as in (16), i.e., γn,i,j,k equals the number of 0-1-2-3 increasing plane

trees on [n] with k leaves, j degree one vertices and i degree two vertices.

Throughout this section, we always let

w1 = x+ y + z, w2 = xy + yz + zx, w3 = xyz.
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1

2

[p1]

[p3]

=

1

2
or

1

2
or

1

2

Figure 4. N2(x, y, z) = (x+ y + z)xyz.

Below are the polynomials Nn(x, y, z) for n 6 6:

N1(x, y, z) = w3,

N2(x, y, z) = w1w3,

N3(x, y, z) = w2
1w3 + 6w2

3,

N4(x, y, z) = w3
1w3 + 24w1w

2
3 + 6w3

3,

N5(x, y, z) = w4
1w3 + 66w2

1w
2
3 + 42w1w

3
3 + 144w3

3 ,

N6(x, y, z) = w5
1w3 + 156w3

1w
2
3 + 192w2

1w
3
3 + 1224w1w

3
3 + 540w4

3 .

Example 23. For the elements in Q2, we have

lap (1122) = lap (011220) = 2, eud(1122) = eud(011220) = 1, rpd(1122) = rpd(011220) = 1,

lap (1221) = lap (012210) = 1, eud(1221) = eud(012210) = 2, rpd(1221) = rpd(012210) = 1,

lap (2211) = lap (022110) = 1, eud(2211) = eud(022110) = 1, rpd(2211) = rpd(022110) = 2.

Thus N2(x, y, z) = xyz(x+ y + z) = w1w3. See Figure 4 for an illustration.

5.2. Proof of Theorem 22.

As discussed in Section 3, we shall use simplified ternary increasing trees for convenience.

See Figure 4 for an illustration, where the left figure represents the three different figures in the

right. The weights of σ ∈ Qn and Cn ∈ CQn are respectively defined as follows:

E1(σ) = xlap (σ)yeud(σ)
zrpd(σ),

E2(Cn) = xn−#{ai|(ai,1) or (ai,2)∈Cn}yn−#{ai|(ai,1) or (ai,3)∈Cn}zn−#{ai|(ai,2) or (ai,3)∈Cn}. (19)

From Table 1, we see that E1(σ) = E2(Cn), where Cn is the corresponding SP-code of σ. When

n = 1, the SP-code (0, 0) corresponds to the Stirling permutation 11. Clearly,

E1(11) = E2((0, 0)) = xyz = w3.

When n = 2, the weights of elements in Q2 and CQn are given as follows:

2211 ↔ (0, 0)(1, 1)
︸ ︷︷ ︸

xyz2=w3z

, 1221 ↔ (0, 0)(1, 2)
︸ ︷︷ ︸

xy2z=w3y

, 1122 ↔ (0, 0)(1, 3)
︸ ︷︷ ︸

x2yz=w3x

,

and the sum of weights is given by w3(x+ y + z) = w3w1.

Given Cn = (0, 0)(a1, b1)(a2, b2) · · · (an−1, bn−1) ∈ CQn. Consider the elements in CQn+1

generated from Cn by appending the 2-tuples (an, bn), where 1 6 an 6 n and 1 6 bn 6 3. Let

T be the corresponding ternary increasing tree of Cn. We can add n + 1 to T as a child of a

vertex, which is not of degree three. Let T ′ be the resulting ternary increasing tree. We first
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give a labeling of T as follows. Label a leaf by p3, a degree one vertex by p1, a degree two vertex

by p2 and a degree three vertex by 1.

1

2

3

[p1]

[p1]

[p3]

+

1

2 3

[p2]

[p3] [p3]

+

1

3 2

[p2]

[p3] [p3]

+

1

2 3

[p2]

[p3] [p3]

+

1

3 2

[p2]

[p3] [p3]

+

1

2 3

[p2]

[p3] [p3]

+

1

3 2

[p2]

[p3] [p3]

Figure 5. N3(x, y, z) = (x+ y + z)2xyz + 6(xyz)2

[p3]

,

[p1]

= or or

[p2]

,

[p2]

,

[p2]

,

[1]

Figure 6. Labeling schemes of simplified ternary increasing trees.

The 2-tuples (an, bn) can be divided into three classes:

• if an 6= ai for all 1 6 i 6 n − 1, then we must add n + 1 to a leaf of T . This operation

corresponds to the change of weights

E2(Cn) → E2(Cn+1) = E2(Cn)(x+ y + z), (20)

which yields the substitution p3 → p1p3, see Figure 4 and the first case in Figure 5 for

illustrations. Thus the contribution of any leaf to the weight is xyz and that of a degree

one vertex is x + y + z (represents this vertex may has a left, middle or right child).

When we compute the corresponding enumerative polynomials of Stirling permutations,

it follows from (20) that we need to set

p1 = x+ y + z, p3 = xyz; (21)

• if there is exactly one 2-tuple (ai, bi) in Cn such that an = ai, then we must add n + 1

to T as a child of the node ai. Note that the node ai already has one child i + 1, and

n+ 1 becomes the second child of ai. There are six cases to add n+ 1. As illustrations,

the last six cases in Figure 5 are the total possibilities when we add 3 to the simplified

ternary increasing trees in Figure 4 as the second child of the node 1. This operation
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corresponds to the substitution p1 → 6p2p3. From (19), we see that each degree two

vertex makes no contribution to the weight. Thus we need to set p2 = 1 when we compute

the corresponding enumerative polynomial of the joint distribution of (lap , eud, rpd);

• if there are exactly two 2-tuples (ai, bi) and (aj, bj) in Cn such that an = ai = aj and

i < j, then we must add n + 1 to T as the third child of ai, and n + 1 becomes a leaf

with label p3. This operation corresponds to the substitution p2 → p3. From (19), we

see that each degree three vertex makes no contribution to the weight, and so we label

all degree three vertices by 1.

The aforementioned three cases exhaust all the possibilities to construct a SP-code of length n+1

from a SP-code of length n by appending 2-tuples (an, bn). In conclusion, each case corresponds

to an application of a substitution rule in the following grammar:

I = {p3 → p1p3, p1 → 6p2p3, p2 → p3}, (22)

and the corresponding labeling schemes are illustrated in Figure 6.

We can now conclude the following lemma.

Lemma 24. Let I be the context-free grammar given by (22). For any n > 1, we have

Dn−1
I (p3) |p1=x+y+z,p2=1,p3=xyz= Nn(x, y, z).

In particular, DI(p3) = p1p3, D
2
I (p3) = p21p3 + 6p2p

2
3 and D3

I (p3) = p31p3 + 24p1p2p
2
3 + 6p33.

A proof Theorem 22:

Proof. Consider a change of the grammar H, which is given by (15). Setting w = p3, v = p1 and

u = 3p2, we get

DH(p3) = p1p3, DH(p1) = 6p2p3,DH(p2) = p3,

which yield the grammar I. It follows from (16) that

Dn−1
I (p3) = Dn−1

H (w) |w=p3,v=p1,u=3p2=
∑

i+2j+3k=2n+1

γn,i,j,k3
ipi2p

j
1p

k
3.

By (21) and Lemma 24, we obtain

Nn(x, y, z) =
∑

i+2j+3k=2n+1

3iγn,i,j,k(x+ y + z)j(xyz)k.

This completes the proof of Theorem 22. �

6. The e-positivity of multivariate k-th order Eulerian polynomials

A bivariate version of the Eulerian polynomial over the symmetric group is given as follows:

An(x, y) =
∑

π∈Sn

xasc (π)ydes (π).

Clearly, An(x, 1) = An(1, x) = An(x). Carlitz and Scoville [5] showed that

An+1(x, y) = xy

(
∂

∂x
+

∂

∂y

)

An(x, y), A1(x, y) = xy.
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Foata and Schützenberger [14] found that An(x, y) has the gamma-expansion

An(x, y) =

⌊(n+1)/2⌋
∑

k=1

γ(n, k)(xy)k(x+ y)n+1−2k,

where γ(n, k) counts permutations in Sn with k descents, but with no double descents.

In this section, we always let k be a given positive integer. A k-Stirling permutation of order

n is a multiset permutation of {1k, 2k, . . . , nk} with the property that all elements between two

occurrences of i are at least i, where i ∈ [n], see [22, 23, 33] for the recent study on k-Stirling

permutations and their variants. Let Qn(k) be the set of k-Stirling permutations of order n. It

is clear that Qn(1) = Sn, Qn(2) = Qn.

Let σ ∈ Qn(k). The ascents, descents and plateaux of σ of are defined as before, where we

always set σ0 = σkn+1 = 0. More precisely, an index i is called an ascent (resp. descent, plateau)

of σ if σi < σi+1 (resp. σi > σi+1, σi = σi+1). It is clear that asc (σ) + des (σ) + plat (σ) =

kn+ 1. As a natural refinement of ascents, descents and plateaux, Janson-Kuba-Panholzer [19]

introduced the following definition, and related the distribution of j-ascents, j-descents and

j-plateaux in k-Stirling permutations with certain parameters in (k + 1)-ary increasing trees.

Definition 25 ([19]). An index i is called a j-plateau (resp. j-descent, j-ascent) if i is a plateau

(resp. descent, ascent) and there are exactly j − 1 indices ℓ < i such that aℓ = ai.

Let platj(σ) be the number of j-plateaux of σ. For σ ∈ Qn(k), it is clear that platj(σ) 6 k−1.

Example 26. Consider the 4-Stirling permutation σ = 111223333221. The set of 1-plateaux is

given by {1, 4, 6}, the set of 2-plateaux is given by {2, 7}, and the set of 3-plateaux is given by

{8, 10}. Thus plat1(σ) = 3 and plat2(σ) = plat3(σ) = 2.

The multivariate k-th order Eulerian polynomials Cn(x1, . . . , xk+1) are defined by

Cn(x1, x2, . . . , xk+1) =
∑

σ∈Qn(k)

x1
plat1(σ)x2

plat2(σ) · · · xk−1
platk−1(σ)xk

des(σ)xk+1
asc(σ).

In particular, when x1 = z, x2 = · · · = xk−1 = 0, xk = y and xk+1 = x, the polynomials

Cn(x1, x2, . . . , xk+1) reduce to Cn(x, y, z); when x1 = x2 = · · · = xk−1 = 0, xk = 1 and

xk+1 = x, the polynomials Cn(x1, x2, . . . , xk+1) reduce to the Eulerian polynomials An(x).

In the following, we always set Xk+1 = {x1, x2, . . . , xk+1}. Let ei be the i-th elementary

symmetric function associated with Xk+1. In particular,

e0 = 1, e1 = x1 + x2 + · · ·+ xk+1, ek =

k∑

i=1

ek+1

xi
, ek+1 = x1x2 · · · xk+1.

Lemma 27. Let G1 = {x1 → ek+1, x2 → ek+1, . . . , xk+1 → ek+1} be a grammar, where

ek+1 = x1x2 · · · xk+1. For n > 1, one has Dn
G1

(x1) = Cn(x1, x2, . . . , xk+1).

Proof. We shall show that the grammar G1 can be used to generate k-Stirling permutations.

We first introduce a grammatical labeling of σ ∈ Qn(k) as follows:

(L1) If i is an ascent, then put a superscript label xk+1 right after σi;

(L2) If i is a descent, then put a superscript label xk right after σi;
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(L3) If i is a j-plateau, then put a superscript label xj right after σi.

The weight of σ is defined as the product of the labels, that is

w(σ) = x1
plat1(σ)x2

plat2(σ) · · · xk−1
platk−1(σ)xk

des(σ)xk+1
asc(σ).

Recall that we always set σ0 = σkn+1 = 0. Thus the index 0 is always an ascent and the index

kn is always a descent. Thus Q1(k) = {xk+11x11x21x3 · · · 1xk}. There are k+1 elements in Q2(k)

and they can be labeled as follows, respectively:

xk+11x11x2 · · · 1xk−11xk+12x12x2 · · · 2xk−12xk ,

xk+11x11x2 · · · 1xk−21xk+12x12x2 · · · 2xk−12xk1xk , · · ·

xk+12x12x2 · · · 2xk−12xk1x11x2 · · · 1xk−11xk .

Note that DG1(x1) = ek+1 and D2
G1

(x1) = ekek+1. Then the weight of the element in Q1(k)

is given by DG1(x1), and the sum of weights of the elements in Q2(k) is given by D2
G1

(x).

Hence the result holds for n = 1, 2. We proceed by induction on n. Suppose we get all labeled

permutations in Qn−1(k), where n > 3. Let σ′ be obtained from σ ∈ Qn−1(k) by inserting the

string nn · · ·n with length k. Then the changes of labeling are illustrated as follows:

· · · σ
xj

i σi+1 · · · 7→ · · · σ
xk+1

i nx1nx2 · · ·nxkσi+1 · · · ;

σxk 7→ σxk+1nx1nx2 · · ·nxk ; xk+1σ 7→xk+1 nx1nx2 · · ·nxkσ.

In each case, the insertion of the string nn · · ·n corresponds to one substitution rule in G1. Then

the action of DG1 on the set of weights of all elements in Qn−1(k) gives the set of weights of all

elements in Qn(k). Therefore, we get the desired description of Cn(x1, x2, . . . , xk+1). �

It should be noted that in [19], there is no explicit connection to the k-th order Eulerian poly-

nomials is brought up. By combining an urn model for the exterior leaves of (k+1)-ary increasing

trees and a bijection between (k + 1)-ary increasing trees and k-Stirling permutations, Janson-

Kuba-Panholzer [19, Theorem 2, Theorem 8] found that the variables in Cn(x1, x2, . . . , xk+1)

are exchangeable. We can now present the main result of this section.

Theorem 28. For n > 2 and k > n− 2, we have

Cn(x1, x2, . . . , xk+1) =
∑

γ(n; i1, i2, . . . , in)e
in
k−n+2e

in−1

k−n+3 · · · e
i2
k e

i1
k+1, (23)

where the summation is over all sequences (i1, i2, . . . , in) of nonnegative integers such that i1 +

i2 + · · · + in = n, 1 6 i1 6 n − 1, in = 0 or in = 1. When in = 1, one has i1 = n − 1. The

coefficients γ(n; i1, i2, . . . , in) equal the numbers of 0-1-2-· · · -k-(k+1) increasing plane trees on

[n] with ij degree j − 1 vertices for all 1 6 j 6 n.

Proof. Let G1 be the grammar given in Lemma 27. Consider a change of G1. Note that

DG1(x1) = ek+1, DG1(ei) = (k − i+ 2)ei−1ek+1 for 1 6 i 6 k + 1. Thus we get a new grammar

G2 = {x1 → ek+1, ei → (k − i+ 2)ei−1ek+1 for 1 6 i 6 k + 1}, (24)

Note that G2(x1) = ek+1, G2
2(x1) = ekek+1, G3

2(x1) = e2kek+1 + 2ek−1e
2
k+1,

D4
G2

(x1) = e3kek+1 + 8ek−1eke
2
k+1 + 6ek−2e

3
k+1,
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D5
G2

(x1) = e4kek+1 + 22e2kek−1e
2
k+1 + 16e2k−1e

3
k+1 + 42ek−2eke

3
k+1 + 24ek−3e

4
k+1.

By induction, we assume that

Gn
2 (x1) =

∑

γ(n; i1, i2, . . . , in)e
in
k−n+2e

in−1

k−n+3 · · · e
i2
k e

i1
k+1. (25)

Note that

Gn+1
2 (x1) = G2

(∑

γ(n; i1, i2, . . . , in)e
in
k−n+2e

in−1

k−n+3 · · · e
i2
k e

i1
k+1

)

=
∑

ninγ(n; i1, i2, . . . , in)ek−n+1e
in−1
k−n+2e

in−1

k−n+3 · · · e
i2
k e

i1+1
k+1 +

∑

(n− 1)in−1γ(n; i1, i2, . . . , in)e
in+1
k−n+2e

in−1−1
k−n+3 · · · e

i2
k e

i1+1
k+1 + · · ·+

∑

2i2γ(n; i1, i2, . . . , in)e
in
k−n+2e

in−1

k−n+3 · · · e
i3+1
k−1 e

i2−1
k ei1+1

k+1 +
∑

i1γ(n; i1, i2, . . . , in)e
in
k−n+2e

in−1

k−n+3 · · · e
i2+1
k ei1k+1,

which yields that the expansion (25) holds for n+1. Combining Lemma 27 and (25), we get (23).

By induction, one can verify that i1 + i2 + · · ·+ in = n, 1 6 i1 6 n− 1, in = 1 or in = 0.

Using (24), the combinatorial interpretation of γ(n; i1, i2, . . . , in) can be proved along the same

lines as the proof of [8, Theorem 4.1]. However, we give a direct proof of it for our purpose.

Let T be a 0-1-2-· · · -k-(k+1) increasing plane tree on [n]. The labeling of T is given by labeling

a degree i vertex by ek−i+1 for all 0 6 i 6 k + 1. In particular, label a leaf by ek+1 and label

a degree k + 1 vertex by 1. Let T ′ be a 0-1-2-· · · -k-(k+1) increasing plane tree on [n + 1] by

adding n + 1 to T as a leaf. We can add n+ 1 to T only as a child of a vertex v that is not of

degree k + 1. For 1 6 i 6 k + 1, if the vertex v is a degree k − i + 1 vertex with label ei, there

are k − i + 2 cases to attach n + 1 (from left to right, say). In either case, in T ′, the vertex

v becomes a degree k − i + 2 with label ei−1 and n + 1 becomes a leaf with label ek+1. Hence

the insertion of n+ 1 corresponds to the substitution rule ei → (k − i+ 2)ei−1ek+1. Therefore,

G2(x1) equals the sum of the weights of 0-1-2-· · · -(k+1) increasing plane trees on [n], and the

combinatorial interpretation of γ(n; i1, i2, . . . , in) follows. This completes the proof. �

By using Gn+1
2 (x1) = G2 (G

n
2 (x1)), it is routine to verify that

γ(n+ 1; 1, n, 0 . . . , 0) = γ(n; 1, n − 1, 0, . . . , 0) = 1,

γ(n+ 1;n, 0, . . . , 0, 1) = nγ(n;n− 1, 0, . . . , 0, 1) = n!,

γ(n+ 1; i1, i2, . . . , in, 0) = i1γ(n; i1, i2 − 1, i3, . . . , in)+

n−1∑

j=2

j(ij + 1)γ(n; i1 − 1, i2, . . . , ij−1, ij + 1, ij+1 − 1, ij+2 . . . , in).

Note that γ(3; 2, 0, 1, 0, . . . , 0) = 2, γ(4; 2, 1, 1, 0, . . . , 0) = 8 and

γ(n+ 1; 2, n − 2, 1, 0, . . . , 0) = 2γ(n; 2, n − 3, 1, 0, . . . , 0) + 2(n− 1)γ(n; 1, n − 1, 0, . . . , 0).

By induction, it is easy to verify that

γ(n; 2, n − 3, 1, 0, . . . , 0) = 2n − 2n for n > 3. (26)
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Recall that the second-order Eulerian numbers Cn,j satisfy the recurrence relation

Cn+1,j = jCn,j + (2n + 2− j)Cn,j−1,

with the initial conditions C1,1 = 1 and C1,j = 0 if j 6= 1 (see [1, 15]). In particular,

Cn,2 = 2n+1 − 2(n+ 1).

Comparing this with (26), we see that γ(n; 2, n − 3, 1, 0, . . . , 0) = Cn−1,2 for n > 3. Following

Janson [18], the number Cn,j equals the number of increasing plane trees on [n+1] with j leaves.

So we immediately get the following result.

Proposition 29. For n > 2 and 1 6 j 6 n− 1, we have

Cn−1,j =
∑

i2+i3+···+in=n−j

γ(n; j, i2, . . . , in−1, in).
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