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MONOCHROMATIC ARITHMETIC PROGRESSIONS IN AUTOMATIC

SEQUENCES WITH GROUP STRUCTURE

IBAI AEDO, UWE GRIMM, NEIL MAÑIBO, YASUSHI NAGAI, AND PETRA STAYNOVA

Abstract. We determine asymptotic growth rates for lengths of monochromatic arithmetic

progressions in certain automatic sequences. In particular, we look at (one-sided) fixed points

of aperiodic, primitive, bijective substitutions and spin substitutions, which are generalisations

of the Thue–Morse and Rudin–Shapiro substitutions, respectively. For such infinite words,

we show that there exists a subsequence {dn} of differences along which the maximum length

A(dn) of a monochromatic arithmetic progression (with fixed difference dn) grows at least

polynomially in dn. Explicit upper and lower bounds for the growth exponent can be derived

from a finite group associated to the substitution. As an application, we obtain bounds for a

van der Waerden-type number for a class of colourings parametrised by the size of the alphabet

and the length of the substitution.

“Here the Maestro laid down his pen.”

This paper is dedicated to our late friend and colleague, Uwe Grimm.

1. Introduction

The study of Ramsey-type properties of morphic words has a long history, spanning from the

classic theorem of Graham and Rothschild [25] to more recent advances such as antipowers [17]

and monochromatic factorisations [32,42] in infinite words. A subset of Ramsey-type properties

which has also gathered interest is a consideration of the arithmetic subsequences of automatic

or morphic words. In [5], Avgustinovich and Frid show that any binary word occurs as an

arithmetic subsequence of the Thue–Morse sequence (or more generally, a fixed point of any

primitive bijective binary constant-length substitution), and go on to investigate properties of

the arithmetic complexity of certain words over arbitrary finite alphabets. If we instead consider

monochromatic arithmetic subsequences of a given substitutive word and fix the difference of

the arithmetic progressions, we note that the length is bounded in the case of the Thue–Morse

and more general Thue–Morse-like sequences, as shown, respectively, in [33] and, by the present

authors, in [2]; see also [27,28] for results regarding arithmetic progressions in model sets.

While van der Waerden’s theorem ensures the existence of arbitrarily long arithmetic pro-

gressions within any finite colouring of N, it does not immediately provide an estimate for the

initial segment within which these can be found. The van der Waerden numbers were initially

introduced to study this, and are defined as the minimal initial segment of the integers such

that any colouring with n colours will give an arithmetic progression of length ℓ. Only a handful

of van der Waerden numbers are known, and Gowers [24] gives hyper-exponential upper bounds

for the rest.
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Here, we pursue the line of enquiry that expands on results by Frid et al [5, 6, 21], Parshina

[35–37], and the present authors [2,34]. We focus on fixed points of constant-length substitutions

over finite alphabets, and their images under codings.

Let w be a fixed point of a substitution ̺ over a finite alphabet A. Fix a difference d > 1. We

denote by Aw(d) the maximum length of a monochromatic arithmetic progression of difference

d which occurs in w. When the context is clear, we make w implicit and just refer to A(d). We

restrict to classes of substitutions which possess an explicit group structure, which provides di-

rect access to bounding A(d) for some specific values of d and allows some asymptotic estimates.

This work expands the results in [2, 36, 37] to a more general setting, giving upper bounds of

A(d) for a larger class of automatic sequences over arbitrary finite alphabets. The following

result establishes an asymptotic lower bound for A(d) along a subsequence of differences for

bijective substitutions.

Theorem 1. Let ̺ be an aperiodic primitive bijective constant-length substitution on a finite

alphabet A and let w ∈ AN be a one-sided fixed point of ̺. There exists an increasing sequence

{dn} ⊂ N such that A(dn) & dαn, for some 0 < α 6 1.

We introduce the notion of g-palindromicity, and show that this implies α = 1 (i.e., there is

a subsequence where A(d) grows linearly); see Proposition 12. In particular, this holds for the

family of cylic Thue–Morse substitutions on L letters; see Section 3.4.1 below. We also deal

with non-bijective substitutions with a supersubstitution structure and show that they satisfy

bounds similar to those for bijective substitutions. For Vandermonde substitutions, which can

be constructed from Vandermonde matrices, one has the following result.

Theorem 2. Let ̺ be a constant-length spin substitution arising from a Vandermonde matrix

and let w = πG(v) ∈ AN be the spin coding of a fixed point v of ̺. There exists an increasing

sequence {dn} ⊂ N such that A(dn) & dαn/L, for some 0 < α 6 1.

Under some mild assumptions on the substitution, one can also obtain upper bounds for

A(d). In particular, sufficient conditions for A(d) < ∞ to hold are given in Propositions 6 and

41. For a subclass of bijective substitutions, a d-dependent computable upper bounds are given

in Corollary 26 and Proposotion 27.

The bounds used to prove Theorem 1 only depends on the size c of the alphabet and the

length L of the substitution. This allows one to associate a van der Waerden-type constant

W (B(c, L),M) to a family of bijective substitutions sharing these same attributes; see Proposi-

tion 21 for an general upper bound and Corollary 28 for lower bounds.

The paper is organised as follows. In Section 2, we provide some basic notions on combina-

torics on words and substitutions. In Section 3, we focus on bijective substitutions, extending

results on the lower bounds in [2,36,37] to this family. Note that this includes the class of sym-

metric morphisms in [22] and group substitutions in [23]. We prove Theorem 1 in Section 3.1. In

Section 3.2, we develop the notion of a van der Waerden type-constant for bijective substitution

and provide explicit upper bounds. We use recurrence properties for substitutive words and the

results obtained in Section 3.1 to compute these bounds. Section 3.3 deals with upper bounds

for A(d) for bijective substitutions with additional properties. Poignant examples, including

the family of cyclic Thue–Morse substitutions, are given in Section 3.4. We show that some of

the results can be partially extended to the non-bijective case in Section 3.5 for substitutions

admitting a supersubstitution structure. In Section 4, we deal with spin substitutions. We begin
2



with the case of the Rudin–Shapiro substitution in Sections 4.1 and 4.2 where we derive lower

bounds using two combinatorial approaches, namely via the spin matrix and via the stagerred

substitution approach. At this point, we would like to mention that the same bounds have

been found for the Rudin–Shapiro sequence in [39] using a different method. The novelty of

the approach we use in this work is that it extends to other automatic sequences derived from

other spin matrices. We carry this out in Section 4.3 in the case where the relevant matrix is an

L × L-Vandermonde or discrete Fourier transform (DFT) matrix, where we prove Theorem 2.

Finally, in Section 5, we end with some open questions and illustrate potential ways of extending

our results to the non-bijective constant length case through a concrete example.

2. Preliminaries

2.1. Combinatorics on words and substitutions. Throughout this work, an alphabet A

will be a finite collection of symbols called letters. We denote by A∗ and A+ the sets of all finite

words and non-empty finite words over A, respectively. The sets of all one-sided and two-sided

infinite words over A are denoted by AN and AZ, respectively. These are also called sequences

over A. Here Z is the set of integers and N = Z>0.

The length of a word w ∈ A+ is denoted by |w|. For each 0 6 i < |w|, we write wi to denote

the ith letter of w. A subword of w is a word of the form wiwi+1 · · ·wj, for some 0 6 i 6 j < |w|.

A substitution ̺ on A is a map ̺ : A → A+, which extends to a map on A+ by concatenation.

This allows one to define ̺n inductively via ̺n(a) := ̺n−1(̺(a)) for n > 2. We call ̺n(a) a

level-n superword of type a. We say that ̺ is primitive if there exists an n ∈ N such that, for

every a ∈ A, the word ̺n(a) contains all the letters in A. A word w ∈ A+ is legal with respect

to ̺ if there exists n ∈ N and a letter a such that w is a subword of ̺n(a). We denote by Ln(̺)

the set of all legal words of length n. The set L(̺) :=
⋃

n>1Ln(̺) of all legal words is called

the language of ̺.

If there exists an L ∈ N such that, for all a ∈ A, the word ̺(a) has length L, we say that ̺

is a substitution of constant length L. Such maps are also called uniform morphisms. For each

0 6 i 6 L−1 and a ∈ A, we define ̺i(a) to be the ith letter of ̺(a). We call the map ̺i : A → A

the ith column of ̺. If ̺i is a bijection of A, we call it a bijective column. If ̺i(a) = b for some

fixed b ∈ A for all a ∈ A, we call ̺i a coincidence. If 1 < |̺i(A)| < |A|, we call ̺i a partial

coincidence.

One can find the columns of a power ̺n of ̺ via the following well-known result.

Fact 3. Let n ∈ N and let ̺ be a substitution of constant length L. Let 0 6 k 6 Ln − 1. Then

the kth column of the substitution ̺n is given by the functional composition

(̺n)k = ̺k0 ◦ ̺k1 ◦ · · · ◦ ̺kn−1
,

where [kn−1, . . . , k1, k0] is the base-L expansion of k. �

To continue, let C be another finite alphabet. A letter-to-letter map τ : A → C is called a

coding, which extends to a map τ : AN → CN. We say that w ∈ AN is a fixed point of ̺ if

̺(w) = w. A fixed point w of ̺ is called aperiodic if there does not exist a finite word v such

that w = v∞, i.e., w is not a concatenation of infinite copies of v. We call a substitution ̺

aperiodic if it does not admit any periodic fixed point.

Remark 4. Cobham’s little theorem then implies that these infinite words are actually L-

automatic (where L is the length of ̺). An automatic sequence is one which can be retrieved
3



as an output of a deterministic finite state automaton with output (DFAO). We do not define

what a DFAO here and refer the reader to [4] instead. ♦

2.2. Monochromatic arithmetic progressions in substitution fixed points. Consider

w ∈ AN. One can view w as an |A|-colouring of N, where the colours are in one-to-one corre-

spondence with the elements of A. Fix d,M > 1. We say that w contains a monochromatic

arithmetic progression of difference d and length M if there exists a starting position k ∈ N such

that wk = wk+dn, for 0 6 n 6 M − 1. The monochromatic arithmetic progression is infinite if

wk = wk+dn, for all n ∈ N. Monochromatic arithmetic progressions in two-sided infinite words

are similarly defined in the obvious way.

Definition 5. Let w ∈ AN and d ∈ N. We denote by Aw(d) the maximum length of a

monochromatic arithmetic progression of difference d that can be found in w.

Next, we define the height of the substitution ̺. Note that this definition does not depend

on the fixed point w; see [13]. Let ̺ be an aperiodic, primitive, constant-length substitution.

Let w be a one-sided fixed point of (possibly some power of) ̺. The height h(̺) is given by

h(̺) := max {n > : gcd(n,L) = 1, n divides gcd {w0 = wa}}

We have the following sufficient condition for the finiteness of A(d), for all d ∈ N, for a fixed

point w in terms of the columns of ̺; compare [2, Prop. 8].

Proposition 6. Let ̺ be an aperiodic, primitive, constant-length substitution with height 1. Let

w be a fixed point of any power of ̺. Then A(d) < ∞ for all d > 1 if and only if ̺ does not

have a coincidence column. �

This finiteness result carries over to codings of certain substitution fixed points; see Section 4

below for the treatment of the Rudin–Shapiro substitution and its generalisations.

2.3. Notation. Here, we recall some standard notation concerning asymptotics of non-negative

functions; compare [29, Ch. 1]. For functions f, g : N → R>0, we write

• f(n) ∼ g(n), if limn→∞ |f(n)/g(n)| = 1,

• f(n) & g(n), if there exists h(n) : N → R>0 with f(n) > h(n) and h(n) ∼ g(n).

3. Bijective automata

A substitution ̺ of constant length L is called bijective if every column ̺i of ̺ is a bijection.

We denote by G = G(1) = 〈̺i〉06i6L−1 the group generated by the columns of ̺, seen as a

subgroup of the symmetric group S|A|. Throughout this section, ̺ will be a length-L substitution

satisfying the following assumptions, which we denote by (∗) for brevity,

aperiodic, primitive, bijective, ̺0 = id. (∗)

Note that the condition of the zeroth column being the identity is natural for bijective substi-

tutions and can be achieved by taking a suitable power. We refer the reader to [38, Ch. 9] for

a comprehensive treatment of bijective substitutions; see also [18,26].

Let w be a fixed point of (a power of) a constant-length substitution ̺ which satisfies (∗).

The following proposition is a version of Proposition 6 for bijective substitutions that does not

need the height-1 condition.
4



Proposition 7. Let ̺ be an aperiodic, primitive and bijective substitution. Any fixed point w

of a power of ̺ satisfies A(d) < ∞, for all d > 1.

Proof. If w is not periodic, then by Lee-Moody-Solomyak’s overlap algorithm [30, Theorem 4.7,

Lemma A.9], the corresponding self-similar tiling is not pure point and does not admit infinite

arithmetic progressions by [34, Theorem 5.1]. �

In the next section, we provide lower bounds for A(d) for specific values of d and prove

Theorem 1.

3.1. Lower bounds and polynomial growth of A(d). The following result shows that, for

the fixed points of a primitive bijective substitution, we can find a sequence of differences d for

which A(d) grows polynomially in d.

Proposition 8. Let ̺ be a length-L substitution satisfying (∗), and let G be the group generated

by the columns of ̺. Then any fixed point of ̺ satisfies, for every k > 1,

Lk 6 A

(
Lk|G| − 1

Lk − 1

)
< ∞.

Proof. Let k = 1. Consider the substitution ̺|G|, which is of length L|G|. Let i0, i1, . . . , iL−1 be

the arithmetic progression of difference d(1) =
∑|G|−1

j=0 Lj with i0 = 0. For every 0 6 m 6 L− 1,

im =
∑|G|−1

j=0 mLj , which has base-L expansion [m,m, . . . ,m]. Then, for every 0 6 m 6 L− 1,

the imth column of ̺|G| is equal to the identity. Indeed,
(
̺|G|

)
im

= ̺m ◦ · · · ◦̺m = (̺m)|G| = id,

where the first equality holds by Fact 3, and the last equality holds because g|G| = id, for every

group element g ∈ G. Since ̺|G| has L columns equal to the identity substitution distributed

in arithmetic progression of difference d, any fixed point of ̺ has a monochromatic arithmetic

progression of difference d and length at least L. This completes the proof for k = 1. This

proof extends to every positive integer k because, since ̺ has a column which is equal to the

identity substitution (the leftmost column), the group generated by the columns of ̺ is equal

to the group generated by the columns of ̺k [9]. This means for a fixed k > 1, one can take

̺k|G| and construct d(k), this time with 0 6 m 6 Lk − 1. The finiteness of A(d) follows from

Proposition 7. �

Remark 9. Note that one can replace |G| with lcm {ord(g) : g ∈ G} in Proposition 8 and get

the same lower bound. ♦

The following is immediate from Proposition 8.

Corollary 10. For all d = Lk|G|−1
Lk−1

with k > 1, A(d) & dα, where α = (|G| − 1)−1.

Theorem 1 follows directly from Corollary 10. Note that when |G| = 2, then there exists

a subsequence of distances for which A(d) grows linearly in d. This is exactly the subfamily

treated in [2]. Below, we provide another sufficient condition for a bijective substitution (now

on a possibly larger alphabet) to admit an infinite subsequence of differences along which A(d)

grows linearly in d. We begin with the following definition.

Definition 11. Let ̺ be a length-L substitution satisfying (∗), and let G be the group generated

by the columns of ̺. If there exists g ∈ G such that ̺i · ̺L−1−i = g, for all 0 6 i 6 L − 1, we

say that ̺ is g-palindromic. If g = id, we say that ̺ is inverse palindromic.
5



Proposition 12. Let ̺ be a length-L substitution satisfying (∗). Suppose further that

(1) the group G generated by the columns of ̺ is Abelian,

(2) ̺ is g-palindromic, for g ∈ G.

Then any fixed point of ̺ satisfies, for every n > 1 and even ℓ > 2,

Ln 6 A

(
Lnℓ − 1

Ln + 1

)
< ∞.

Proof. To prove the lower bound for n = 1 and an even ℓ > 2, we consider the substi-

tution ̺ℓ, which has length Lℓ. Let i1, i2, . . . , iL be an arithmetic progression of difference

d = (Lℓ − 1)/(L + 1) =
∑ℓ−1

j=0(−1)j+1Lj, where ik = k d, for each 1 6 k 6 L. Using the identity

k

ℓ−1∑

j=0

(−1)j+1Lj = (k − 1)

ℓ−2

2∑

j=0

L2j+1 + (L− k)

ℓ−2

2∑

j=0

L2j,

we see that the base-L representation of ik is [k − 1, L − k, . . . , k − 1, L − k], with all the even

digits equal to L− k, and all the odd digits equal to k− 1. Then, the ikth column of ̺ℓ is given

by

(̺ℓ)i
k

= ̺L−k ◦ ̺k−1 ◦ · · · ◦ ̺L−k ◦ ̺k−1 =

= ̺L−k ◦ ̺L−1−(L−k)

=g

◦ · · · ◦ ̺L−k ◦ ̺L−1−(L−k)

=g

= g
ℓ
2 ,

where the first equality holds by Fact 3, and the last equality holds because ̺ is g-palindromic.

This implies that A(d) > L, as required.

To prove the claim for an integer n > 2, it suffices to show that ̺n is gn-palindromic when ̺ is

g-palindromic. Notice that ̺n has length Ln. Let [in−1, . . . , i1, i0] be the base-L representation

of an integer 0 6 i 6 Ln − 1. It is easy to check that the base-L representation of Ln − 1− i is

[L− 1− in−1, . . . , L− 1− i1, L− 1− i0]. Then,

(̺n)i ◦ (̺
n)Ln−1−i =

(
̺i

0
◦ · · · ◦ ̺in−1

)
◦
(
̺L−1−i

0
◦ · · · ◦ ̺L−1−in−1

)
=

= ̺i
0
◦ ̺L−1−i

0

=g

◦ · · · ◦ ̺in−1
◦ ̺L−1−in−1

=g

= gn,

where the first equality holds by Fact 3, the second equality holds because G is Abelian, and

the last equality holds because ̺ is g-palindromic. So ̺n is gn-palindromic. Similar to the n = 1

case, this implies that, for all integers n > 2, A(d) > Ln, as required. Finally, the finiteness of

A(d) follows by Proposition 7, for every positive integer n. �

Notice that if we pick ℓ = 2|G| in Proposition 12, we get an analogue of Proposition 8 for

another family of differences.

Remark 13. We observe also that, for inverse palindromic substitutions, the monochromatic

arithmetic progression found in Proposition 12 can be extended by two. Indeed, from the base-L

representations of 0d and (L + 1)d, it is easy to see that (̺ℓ)0d = id and (̺ℓ)(L+1)d = ̺ℓL−1.

Since, for inverse palindromic substitutions g = ̺L−1 = id, this implies that A(d) > Ln + 2. ♦

The following is immediate from Proposition 12.

Corollary 14. For all d = Lnℓ−1
Ln+1 with n > 1 and even ℓ > 2, A(d) & dα, where α = (ℓ− 1)−1.

In particular, A(d) & d for differences d = Ln − 1.
6



3.2. Van der Waerden-type numbers. Van der Waerden’s theorem [40] states that, for

every c,M > 1, there exists an n > 1 such that any colouring of {0, 1, . . . , n − 1} with c many

colours contains a monochromatic arithmetic progression of length M . The smallest threshold

of n, for given values of c and M , is the van der Waerden number W (c,M). In this subsection,

we define van der Waerden-type numbers for automatic sequences arising from substitutions ̺

satisfying condition (∗), i.e., ‘aperiodic, primitive, bijective, with ̺0 = id’, and provide explicit

upper bounds.

A word x ∈ AN is called linearly recurrent if there exists a positive constant Rx, such that the

distance between any two consecutive occurrences of a finite subword u of x is at most Rx|u|.

We say that Rx is a linear recurrence constant for x. Since the fixed points of a primitive

substitution ̺ are linearly recurrent (see [4, 14, 15]), and moreover, one can find an Rx that is

independent of x and depends only on ̺ (see [14, Thm. 18]), we can associate a linear recurrence

constant to ̺, and denote it by R = R̺. Let u ∈ L. A return word v to u is a legal word

such that (i) vu ∈ L, (ii) u is a prefix of v, and (iii) u occurs exactly once in v. Below, we

mention some well-known results on the linear recurrence constant for primitive substitutions;

compare [14–16].

Proposition 15. Let ̺ be a primitive constant-length substitution on a finite alphabet.

(1) The substitution ̺ is linearly recurrent for the constant R = Lζ2, where ζ2 is the

maximum length of a return word for a legal word of length 2 in L.

(2) All legal words of length N appear in any legal word of length (R+ 1)N .

Definition 16. Consider the class of length-L substitutions on c letters that satisfy the (∗)

condition. We denote by B(c, L) the set of all fixed points of substitutions from this class.

One can compute R that works for all x ∈ B(c, L) by computing an upper bound for ζ2 that

depends only on c and L. We obtain an upper bound for this gap using the level-2 induced

substitution on L2, where L2 is the set of all length-2 legal words.

First, we identify L2 with the set of right-collared words of the form ab, where ab ∈ L. The

level-2 induced substitution ̺(2) : L2 → (L2)
+ is then the substitution arising from the original

̺ which respect the collaring. As an example, the level-2 induced substitution for Thue–Morse

is given by

̺(2) : 00 7→ 0110 10 7→ 1000 01 7→ 0111 11 7→ 1001.

It is well known that ̺(2) is also primitive whenever ̺ is primitive; see [7, Sec. 4.8.3]. Combining

(1) in Proposition 15 with Wielandt’s bound [41] for the index of primitivity yields the following

result.

Lemma 17. For given c, L > 2 and x ∈ B(c, L), a linear recurrence constant for x is

R = 2Lc4−2c2+3 − L.

Proof. The index of primitivity of a c×c primitive matrixM is bounded from above by c2−2c+2,

i.e., M c2−2c+2 > 0 (seen entry-wise). Let ̺ be a substitution satisfying the conditions in

Definition 16, ̺(2) the level-2 induced substitution, and M (2) be the substitution matrix of ̺(2).

Note that there are at most |A|2 = c2 length-2 legal words for ̺. This means the size of M (2)

is at most c2 × c2. Applying Wielandt’s bound [41], we get that
(
M (2)

)c4−2c2+2
is a strictly

positive matrix. It follows that
(
̺(2)
)c4−2c2+2

(ab) contains all collared words in L2.
7



Fix ab ∈ L2. We know that x can be written as a concatenation of level-(c4 − 2c2 + 2)

superwords of ̺, all of which admitting at least one occurrence of ab (possibly at the border) by

the argument above. It follows that, for any ab ∈ L2, the longest return word to ab has length

at most 2Lc4−2c2+2 − 1. A direct application of (1) in Proposition 15 proves the claim. �

Remark 18. We comment on the generality of the proof of the previous lemma. First, note

that it only depends on the size c of the alphabet and the length L of the alphabet, and hence

it gives a linear recurrence constant for all substitutions in the class considered in this section,

parametrised by c and L. Second, since bijectivity is invoked nowhere in the proof, such a

bound can be used for extensions to more general classes. ♦

Note that the set B(c, L) is a non-empty proper subset of AN. As a direct consequence of

van der Waerden’s theorem, we have the following.

Proposition 19. Given c, L > 2 and M > 1, there exists a positive integer n such that every

length-n subword of every element of B(c, L) contains a length-M monochromatic arithmetic

progression.

Definition 20. Given c, L > 2 and M , we call the smallest threshold of the number n pre-

dicted by Proposition 19 a van der Waerden-type number for B(c, L), and we denote it by

W (B(c, L),M).

It is clear that W (B(c, L),M) 6 W (c,M).

Proposition 21. For c, L > 2 and M > 1 , one has

W (B(c, L),M) 6 (R+ 1)Lkc!,

where k = ⌈logLM⌉ and R = 2Lc4−2c2+3 − L.

Proof. By Proposition 8, we know that, for any n > 1, the maximum length of monochromatic

arithmetic progressions in any element in B(c, L) satisfies,

A(dn) > Ln , where dn =
Ln|G| − 1

Ln − 1
.

Let k be the least non-negative integer such that Lk > M , which one can write as k = ⌈logLM⌉.

Then, A(dk) > Lk > M . Since the arithmetic progression from Proposition 8 starts at 0, every

fixed point x of ̺ has a prefix y of length 1 + (Lk − 1) · dk = Lk|G| containing a monochromatic

arithmetic progression of difference dk and length M .

From the discussion above, x is linearly recurrent for some constant Rx > 0. By Property 2

in Proposition 15, all subwords of x of length Lk|G| (in particular the subword y) appear in

every subword of length (Rx +1)Lk|G|. So, every subword of x of length (Rx +1)Lk|G| contains

a monochromatic arithmetic progression of difference dk and length M . From Lemma 17, one

can choose Rx to be 2Lc4−2c2+3 − L. To complete the proof, notice that |G| 6 |Sc| = c!. �

Proposition 21 can be reformulated as follows: if ̺ is a length-L substitution on c letters

which satisfies (∗) and M > 1, every legal word of ̺ of length at least (R + 1)Lkc! contains a

monochromatic arithmetic progression of length M .

Example 22. Consider the case c = L = 2, which is generated by the Thue–Morse substitution

̺ :
a 7→ ab

b 7→ ba
.
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The substitution ̺ has two fixed points. The methods in [15] yield R̺ 6 16, which can be

further improved to R̺ = 9 using the software Walnut; see [16, Ex. 3.13]. Using this result we

obtain W (B(2, 2),M) 6 10 · 4k, where k = ⌈log2M⌉. Thus the bounds for the first few van der

Waerden-type numbers are

W (B(2, 2),M) 6 640 for M = 6, 7, 8,

W (B(2, 2),M) 6 2560 for 8 < M 6 16,

W (B(2, 2),M) 6 10240 for 16 < M 6 32,

W (B(2, 2),M) 6 40960 for 32 < M 6 64,

which are significantly lower than the respective bounds for the general van der Waerden num-

bers. ♦

The bound for R established in Proposition 21 is far from optimal. For example, for the

family B(2, 2) studied in Example 22, we obtain R 6 212 − 2 = 4094 and consequently,

where W (B(2, 2),M) 6 4095 · 4k, k = ⌈log2M⌉,

which is a weaker bound than the bound obtained in Example 22 using the optimal value of

the recurrence constant (R = 9). It would be interesting to obtain a better method to compute

the constant R in Proposition 21 and hence improve the upper bound of W (B(c, L),M).

3.3. Upper bounds of A(d) for Abelian bijective substitutions. Throughout the whole

Section 3, we consider substitutions ̺ satisfying condition (∗). In this subsection, we add

the additional assumption that the group G generated by the columns of ̺ is Abelian. From

Lemma 17, there exists a positive integer N such that for any a ∈ A, ̺N (a) contains all legal

words of length 2, i.e., N := min{n : L2 ⊆ L(̺n(a)), a ∈ A}, where L(̺n(a)) is the set of all

words appearing in ̺n(a). Let v ∈ AN be a fixed point of ̺. The goal of this section is to

provide an upper bound on A(d) for v.

We begin with the following results regarding certain columns of ̺N+M under the existence

of certain progressions in v, where M > 1.

Lemma 23. Let d,M > 1, with d < LN+M . Let ℓ := gcd(d, LN+M ) and assume that there

exists a non-negative integer n such that vn = vn+jd, for j = 0, 1, . . . , LN+M/ℓ. Then for all

k ∈ Z such that 0 6 n+ kℓ < n+ kℓ+ d < LN+M , one has
(
̺N+M

)
n+kℓ

=
(
̺N+M

)
n+kℓ+d

.

Proof. We have a trivial inclusion

{[n + id]LN+M | i = 0, 1, . . . , LN+M/ℓ− 1} ⊂ {[m]LN+M | m ∈ Z,m ≡ n mod ℓ},

where [·]LN+M denotes the equivalence class of natural numbers mod LN+M . For 0 6 i < j <
LN+M

ℓ , we have n + id 6≡ n + jd mod LN+M by the definition of ℓ. This means the two sets

above have the same cardinality, and hence are the same set.

We see for each k satisfying the condition above, there exists i ∈
{
0, 1, . . . , (LN+M/ℓ)− 1

}

such that n+ kℓ ≡ n+ id (mod LN+M). This implies there is a positive integer s for which

n+ kℓ+ sLN+M = n+ id and n+ kℓ+ d+ sLN+M = n+ (i+ 1)d.

By assumption, vn+id = vn+(i+1)d. Note that vn+id is the (n + kℓ)th letter in ̺N+M (vs) and

vn+(i+1)d is the (n+kℓ+d)th letter in ̺N+M (vs). This means in the (n+kℓ)th and (n+kℓ+d)th
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columns of ̺N+M , the images of one letter vs are the same. Since the column group G is Abelian

and acts on A transitively, we see that the columns
(
̺N+M

)
n+kℓ

and
(
̺N+M

)
n+kℓ+d

(seen as

permutations of A) must coincide, thus proving the claim. �

We now relate the column equality result in Lemma 23 to existence of infinitely long progres-

sions in v.

Lemma 24. Let M > 1, d 6 LM , and ℓ = gcd(LM , d). Let n be a non-negative integer such that(
̺N+M

)
n+kℓ

=
(
̺N+M

)
n+kℓ+d

for each integer k satisfying 0 6 n+ kℓ < n + kℓ+ d < LN+M .

Then, we have vn = vn+jd for all j ∈ N. That is, there exists an arithmetic progression of

infinite length and difference d starting at n.

Proof. For each j ∈ N, vn+jd and vn+(j+1)d are included either in a supertile of length LM

or two consecutive such supertiles. This means there exists a t > 0 such that vn+jd is the

(n + jd − LM t)th letter in ̺M (vtvt+1) and vn+(j+1)d is the (n + (j + 1)d − LM t)th letter in

̺M (vtvt+1). By assumption, the word vtvt+1 appears in ̺N (a), for each a ∈ A. There is an s

such that the sth letter in ̺N (a) is vt and the (s+1)th letter is vt+1. This means that vn+jd is

the (n+jd−LMs−LMt)th letter in ̺N+M (a) and vn+(j+1)d is the (n+(j+1)d−LMs−LM t)th

letter in ̺N+M (a). By the definition of ℓ and the assumption on the columns for ̺N+M , the

(n+ jd− LMs− LM t)th column and the (n+ (j + 1)d− LMs− LM t)th column are the same,

and we have vn+jd = vn+(j+1)d. Since j is arbitrary, the claim follows. �

Proposition 25. Let ̺ be a length-L substitution which satisfies (∗) and whose column group

G is Abelian. Let v be a fixed point of ̺. Fix a difference d and let M be a positive integer such

that d 6 LM . Suppose gcd(d, LM ) = gcd(d, LN+M ) =: ℓ. We then have A(d) 6 LN+M

ℓ .

Proof. Suppose there exists n > 1 such that vn = vn+jd, for j = 0, 1, . . . , LN+M/ℓ. It follows

from Lemmas 23 and 24 that vn = vn+jd, for all j ∈ N. This contradicts Proposition 7 stating

that v does not admit infinitely long monochromatic progressions, which immediately implies

the claim on A(d). �

Combining Proposition 25 with Proposition 8, we get the following.

Corollary 26. Let v be a fixed point of an Abelian, length-L substitution ̺ which satisfies (∗).

Then, for all k > 1,

Lk 6 A

(
Lk|G| − 1

Lk − 1

)
6 Lk|G|+N ,

where G is the group generated by the columns of ̺ and N = min{n : L2 ⊆ L(̺n(a))}.

Note that from Lemma 17, N is bounded from above by c4 − 2c2 + 3, where c is the size of

the alphabet (this is one more than the bound for the index of primitivity for M (2) to include

the case when a length-2 legal word appears at the boundary).

One of the restrictions in Proposition 25 is that, for an arbitratry L, one is only able to give

upper bounds for A(d) for differences which satisfy the gcd-condition. In what follows, we give

a subclass of lengths for which it is possible to give an upper bound for A(d) for all d.

Proposition 27. Let ̺, v, and L be as in Proposition 25. Let L = pn1

1 pn2

2 · · · pnt
t be the prime

factorisation of L with p1 < p2 < · · · < pt and assume n1 6 n2 6 · · · 6 nt. Then, for each

d > 1 there exist M > 1 with d 6 LM such that gcd(d, LN+M ) = gcd(d, LM ). Moreover, we
10



have A(d) 6 LN+1dB, where B = logL
n1 log p1

. In particular, if t = 1, (that is, L is a power of a

prime), A(d) . LN+1d.

Proof. Choose M ∈ N such that p
n1(M−1)
1 6 d < pn1M

1 . The equality of the greatest common

divisors follows from pniM
i ∤ d, for all 1 6 i 6 t. Set B = logL

n1 log p1
. By Proposition 25, we have

A(d) 6
LN+M

ℓ
=

LN+1

ℓ
(pn1B

1 )M−1 =
LN+1

ℓ
(p

n1(M−1)
1 )B 6

LN+1

ℓ
dB 6 LN+1dB .

The last claim follows since L = pn1

1 implies B = 1. �

One can leverage the previous proposition to obtain lower bounds for van der Waerden-type

numbers W (B(c, L),M), for certain values of L and M .

Corollary 28. Let c,m > 1 and assume L admits the same form as in Proposition 27, i.e., it

has prime factorisation L = pn1

1 pn2

2 · · · pnt
t , where p1 < p2 < · · · < pt are such that n1 ≦ n2 ≦

· · · ≦ nt. Then we have

W (B(c, L), LN0+1m⌈B⌉ + 1) > LN0+1m⌈B⌉+1 + 1,

where N0 = c4 − 2c2 + 3 and B = logL
n1 log p1

.

Proof. We will prove a stronger statement that there exists an x ∈ B(c, L) such that any of its

subwords of length LN0+1m⌈B⌉+1 + 1 does not contain monochromatic arithmetic progressions

of length LN0+1m⌈B⌉ + 1.

Take a ̺, which is a primitive, aperiodic, bijective substitution of length L such that its

column group is abelian and ̺0 = id. Such a substitution always exists. Fix a length L and

the size of the alphabet c. Without loss of generality, one can force the column group to be the

cyclic group G = Cc of order c, which is Abelian and acts transitively on A = {0, . . . , c− 1}.

Transitivity is already sufficient to ensure primitivity; see [9, Prop. 2.3].

It remains to construct an aperiodic substitution with that group profile, for any given length.

Here, we use a criterion for aperiodicity provided in [26, Prop. 4.1], which states that a sufficient

condition for aperiodicity for primitive and bijective substitutions is the existence of two length-

two legal words which share either the same starting letter or the same ending letter; see

also [9, Prop. 2.5].

We first handle the case when L > 3. For such lengths, we choose ̺0 = ̺1 = id and

̺2 = (12 · · · 0), where ̺2 generates G, and we fill the other positions with permutations from

Cc. From construction, we immediatelty see that 00 and 01 are both legal, and hence implies

aperiodicity.

For the case L = 2, we pick ̺0 = id and ̺1 = (12 · · · 0) and show that this substitution is

aperiodic. Note that, under ̺, 0 7→ 01 and (c − 1) 7→ (c − 1)0. Applying ̺2 to (c − 1) yields

̺2(c − 1) = (c − 1)001, which means 00 and 01 are both legal with respect to ̺. By the same

argument for the previous cases, we obtain aperiodicity for all such substitutions.

Let N be a natural number such that for any alphabet a, ̺N (a) contains all of the two-letter

legal words for ̺. By the argument of Lemma 17, we have N 6 N0. Let x be a fixed point for

̺.

If d′ 6 m, by Proposition 27, the maximal length of monochromatic arithmetic progression

is less than or equal to LN0+1(d′)⌈B⌉, which is less than or equal to LN0+1m⌈B⌉. There are no

monochromatic arithmetic progressions of difference d′ and length LN0+1m⌈B⌉ + 1 anywhere in

x, and so anywhere in its subwords.
11



If d′ > m, the progressions of difference d′ and length LN0+1m⌈B⌉ + 1 span as long as

LN0+1m⌈B⌉d′ + 1 and cannot be contained in a subword of length LN0+1m⌈B⌉+1 + 1. In either

case, the subwords of x with length LN0+1m⌈B⌉+1+1 do not contain monochromatic arithmetic

progressions of length LN0+1m⌈B⌉ + 1. �

3.4. Examples.

3.4.1. Thue–Morse sequence over L letters. The Thue–Morse sequence over the alphabet AL =

{0, 1, . . . , L − 1} is the infinite word v = v0v1v2 · · · , where vi is given by the sum (modulo L)

of the digits in the base-L representation of i; see [11]. This sequence can also be defined to be

the fixed point, with first letter 0, of the primitive, length-L, bijective substitution ϕ defined

as [8]

ϕ(a) = ϕ0(a) ϕ1(a) · · · ϕL−1(a), where ϕi(a) = a+ i (mod L). (1)

The exact values of A(Ln − 1) for L = 2 and L = 3 where obtained (in [35] and [36],

respectively), and it was shown that the same arguments can be used for any prime number L

(see [37]). The result for L = 2 was reestablished in [2] using a different approach. The key

argument of this approach can be easily generalised for all L, giving Proposition 30 below as a

result.

The group G generated by the columns of ϕ is the cyclic group CL of order L. We write

CL = 〈g〉 multiplicatively, where g corresponds to adding 1 (mod L). We can easily see that

ϕℓ, the ℓ-th column of ϕ, is given by gℓ. We next show that ϕ is actually gL−1-palindromic and

so, Proposition 12 can also be directly applied to get a subsequence along which A(d) grows

faster.

Proposition 29. Let ϕ be the generalised Thue–Morse substitution over L letters from Eq. (1).

Then, ϕ is gL−1-palindromic. Consequently, for any fixed point of ϕ one has

A(Ln − 1) > Ln, (2)

for all n > 1.

Proof. It suffices to show that, for each 0 6 i 6 L − 1, one has ϕi · ϕL−(i+1) = gL−1. This

follows immediately from ϕi = gi. The lower bound for A(Ln − 1) follows from Proposition 12

by choosing ℓ = 2. �

Note that we can improve the lower bounds given in Eq. (2) when n ≡ 0 mod L by looking at

the concatenation of three level-n superwords, which we carry out below. As mentioned earlier,

this result generalises that in [2] for L = 2 to any arbitrary L.

Proposition 30. Let ϕ be the generalised Thue–Morse substitution over L letters from Eq. (1).

For any fixed point of ϕ, one has

A(Ln − 1) >




Ln + 2L, if n ≡ 0 mod L,

Ln, otherwise.

Proof. The case when n 6≡ 0 mod L is already covered in Proposition 29 so we assume from

hereon that n ≡ 0 mod L. From the proof of Proposition 12, we have that, for ϕn, one has

(ϕn)i · (ϕ
n)Ln−(i+1) =

(
gL−1

)n
= id, for all 0 6 i 6 Ln − 1. This means, if we now look

at ϕ2n, we get
(
ϕ2n
)
im

= id with im = m(Ln − 1) and 1 6 m 6 Ln. Note further that(
ϕ2n
)
i
0

=
(
ϕ2n
)
i
Ln+1

= id. Altogether, this yields a monochromatic arithmetic progression of
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as of length Ln + 2 within the superword ϕ2n(a). The goal is now to look at progressions of as

in ϕ2n(a−1) and ϕ2n(a+1) of the same difference. We then extend the progression from ϕ2n(a)

to a longer progression in ϕ2n((a− 1)(a)(a+1)). Note that the word (a− 1)(a)(a+1) ∈ L3(ϕ),

for any a ∈ A.

We first look at the supertile ϕ2n(a − 1). We show that for 0 6 m 6 L − 2, at positions

im = L2n−(m+1)Ln+(m+1), one has
(
ϕ2n
)
im

= g. These are the positions which correspond

to the continuation of the progression from ϕ2n(a) with difference d = Ln − 1; see Figure 1.

One can check that the L-ary expansion of im reads

[

n digits

L− 1, L− 1, . . . , L− (m+ 1),

n digits

0, 0, . . . ,m+ 1 ]

From Fact 3, we get that

(
ϕ2n
)
im

= (ϕL−1 ◦ ϕ0)
n−1 ◦ (ϕL−(m+1) ◦ ϕm+1) = (gL−1)n−1(gL−1 · g)

= (gL−1)n · g = g,

where the second equality holds since ϕ is g-palindromic and the last equality holds since

n ≡ 0 mod L. Note that this is only true for 0 6 m 6 L − 2, since for m = L − 1, one

gets im = [L − 1, L − 1, . . . , L − 1, 0, 0, . . . , 1, 0]. Carrying out the same calculation, we get(
ϕ2n
)
im

= (gL−1)n−2 · (g · gL−1) = g · (gL−1)n−1 6= g, since n− 1 is coprime with L. This means

the extension of the arithmetic progression in ϕ2n(a− 1) has length at most L− 1.

One can do an analogous analysis for the supertile on the right, which is ϕ2n(a + 1). Here

the relevant positions are of the form jm = (m+ 1)Ln − (m + 2), and one needs to show that(
ϕ2n
)
jm

= gL−1. Since the proof uses the same arguments above, we leave it to the reader.

Note that here, one can also show that, for m = L− 1,
(
ϕ2n
)
jm

6= gL−1, which implies that the

extension to the right also has length at most L − 1. Considering the progression of as which

straddles across these three supertiles verifies the claim. �

ϕ2n(a–1) ϕ2n(a) ϕ2n(a+1)

ϕ2(a)

ϕ2(a+2)

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a–1

a–1

a–1

a–1

a–1

a+1

a+1

a+1

a+1

a+1a+2

Figure 1. A monochromatic arithmetic progression of as of length Ln + 2L accommodated

within the supertiles ϕ2n(a− 1), ϕ2n(a) and ϕ2n(a+1). Here level-2n supertiles are written as

Ln × Ln blocks, which are read from left to right, and then top to bottom. The bottom-most

shaded square in ϕ2n(a− 1) corresponds to i0 = L2n−Ln+1 while the top-most shaded square

in ϕ2n(a+ 1) is at j0 = Ln − 2.

We conjecture that the lower bounds given in Proposition 30 are actually exact values. This

has been settled when n is prime in [37]. We now look at other differences d. From Proposition 8,
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we directly obtain the lower bound

A

(
LLn − 1

Ln − 1

)
> Ln,

for all n > 1. This result can also be geometrically visualised as in the previous proposition.

Example 31 (Ternary Thue–Morse). We fix L = 3 and consider the ternary Thue–Morse

sequence, which is the fixed point v = 012 · · · of the substitution

ϕ :

0 7→ 012

1 7→ 120

2 7→ 201

.

For differences of the form d = 3n − 1, Proposition 30 and Corollary 26 imply that, for all

n > 1, we have 3n 6 A(3n − 1) 6 3n+4. For differences of the form d = 32n + 3n + 1, it follows

directly from Proposition 8 that, for all n > 1, we have

A
(
32n + 3n + 1

)
> 3n;

see Figure 3 for a plot of A(d) for differences up to 2200, for the ternary Thue–Morse sequence.

We can give an alternative visual approach by identifying a long monochromatic arithmetic

progression across a diagonal of a block substitution, as in the proof of Proposition 30, but now

in three dimensions. As in Figure 1, we can consider the word ϕ3n(0) and arrange it inside a

block. The only difference is now we arrange it in a three-dimensional cube of side-length 3n.

There is no fixed choice of fitting the word inside a cube, and one must only be consistent when

going up and through a layer.

In our choice depicted in Figure 2 below, we start from the lower left corner of the cube,

traverse along the x-direction, then go up the next row. Once all rows in the bottom-most

layer are filled, one moves one layer up and starts directly above the point where the origin is.

The red shaded squares precisely correspond to the monochromatic arithmetic progression that

starts at the origin, with difference d = 32n + 3n + 1 and has length 3n. ♦

Figure 2. A monochromatic arithmetic progression of difference d = 32n +3n +1 in the word

ϕ3n(0), with n = 2.
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34 35 2 · 35 36 2 · 36 37

34
35

36

37

(

34 − 1, 34
)

(

35 − 1, 35
)

(

36 − 1, 36 + 6
)

(

2(36 − 1), 1

2
(36 + 11)

)

(

37 − 1, 37
)

d

A

Figure 3. Plot of the exact values of A(d) for 1 6 d 6 2200 for the ternary Thue–Morse

sequence.

3.4.2. Other bijective substitutions. Below, we give more examples of bijective substitutions and

the corresponding explicit bounds from the results in the previous sections.

Example 32 (G = A4). Consider the following substitution of length L = 3,

̺ :

0 7→ 011

1 7→ 120

2 7→ 203

3 7→ 332

,

with ̺0 = id, ̺1 = (012) and ̺2 = (01)(23). The group G generated by ̺1 and ̺2 is the

alternating group A4, which consists of |G| = 12 elements. Proposition 8 then implies that

A(d) > 3k > d1/11, for all k ∈ N and all d = (312k−1)/(3k −1). However, Remark 9 shows that,

instead of the group order |G|, we can use the least common multiple of |̺1| = 3 and |̺2| = 2,

which is 6. Consequently, A(d) > 3k > d1/5, for all k ∈ N and all d = (36k − 1)/(3k − 1). ♦

Example 33 (Inverse-palindromic Abelian). Consider the three-letter substitution

̺ :

0 7→ 02010

1 7→ 10121

2 7→ 21202

,

with ̺0 = ̺2 = ̺4 = id, ̺1 = (021) and ̺3 = (012) = ̺−1
1 , and hence ̺ is inverse palindromic.

The group generated by the columns is G = C3, which is Abelian. It follows from Proposition 12

and Remark 13 that A(5k−1) > 5k+2, for k ∈ N. Corollary 26 with L = 5, |G| = 3 and N = 2

yields, for every positive integer k,

5k 6 A(25k + 5k + 1) 6 25 · 53k.

♦
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Example 34 (Inverse-palindromic non-Abelian). Here we demonstrate why the Abelian as-

sumption is necessary in Proposition 12. Consider

̺ :

0 7→ 01120

1 7→ 12001

2 7→ 20212

.

This substitution is inverse palindromic with ̺0 = id = ̺4, ̺2 = (01) and ̺1 = (012) = ̺−1
3

and G = S3, which is non-Abelian. Consider ̺2 and let us compute (̺2)7 and (̺2)17. Since

7 = [2, 1], we have (̺2)7 = ̺2̺1 = (12). Similarly 17 = [2, 3] so (̺2)17 = ̺2̺3 = (02). Since

(̺2)7 6= (̺2)−1
17 , ̺

2 is not inverse palindromic. ♦

3.5. Non-bijective substitutions with super-substitution structure.

Definition 35. Let A be a finite alphabet and consider a constant-length substitution ̺ of

length L over A. A partition

A = A1 ∪ A2 ∪ · · · ∪ An

of A is said to induce a supersubstitution for ̺ if, for each ℓ ∈ {0, 1, . . . L− 1} , i ∈ {1, 2, . . . , n}

and a, b ∈ Ai, there exists j ∈ {1, 2, . . . , n} such that ̺ℓ(a) and ̺ℓ(b) are both in Aj. In such a

case, we can define a map θ : A → {1, 2, . . . , n} by defining θ(a) = i, where a ∈ Ai.

This allows one to define a substitution ξ of length L on the alphabet {1, 2, . . . , n} via ξℓ(i) = j

for each ℓ ∈ {0, 1, . . . , L− 1} and i ∈ {1, 2, . . . , n}, where j is such that ̺ℓ(a) ∈ Aj for each

a ∈ Ai. By definition, we have θ ◦ ̺ = ξ ◦ θ.

In what follows, we let ̺ be a constant-length substitution of length L over A which admits a

partition A = A1∪A2∪ · · · ∪An that induces a supersubstitution ξ. Without loss of generality,

let v be the fixed point for ̺ starting with some a1 ∈ A1 and w be the fixed point of ξ starting

with 1. We have θ(v) = w, because we have θ ◦ ̺ = ξ ◦ θ and so

θ ◦ ̺n(a1) = ξn ◦ θ(a1) = ξn(1)

for each n > 1.

Proposition 36. Suppose A1 is singleton {a1} and that ξ satisfies property (∗) in Section 3

with column group G. Then we have

Av

(
Lk|G| − 1

Lk − 1

)
> Lk,

for all k > 1.

Proof. By Proposition 8, there is an arithmetic progression of A1 of difference Lk|G|−1

Lk−1
of length

Lk in w. In the preimage v, there is an arithmetic progression of a1 of the same difference and

length, since θ−1(1) = {a1}. �

Example 37. Consider the alphabet A = {a, b, c, d, e} with the partition A1 = {a}, A2 =

{b, c},A3 = {d, e}. Let G = S3. We start with a bijective substitution ξ with letters A1,A2,A3

such that

ξ :

A1 7→ A1A2A3A1A3A2

A2 7→ A2A1A2A3A1A3

A3 7→ A3A3A1A2A2A1 .
16



We then construct a substitution ̺ on A which is compatible with the supersubstitution ξ. For

example, consider

̺ :

a 7→ acdaec

b 7→ babead

c 7→ bacead

d 7→ ddabca

e 7→ edabca

.

By Proposition 36, for the fixed point v of ̺ starting with a, one has A
(
L6k−1
Lk−1

)
> Lk. ♦

One can relax the singleton criterion in Proposition 36 and replace it with some restrictions

on the columns of the original substitution.

Proposition 38. Let ̺ be a length-L substitution with a supersubstitution structure ξ. Assume

there are 0 6 c1 < c2 < · · · < ck < L such that ̺cj (a) = a1 for each j, for all a ∈ A1. Consider

n > 1 with L-adic expansion n = [nm, nm−1, . . . , n1, n0], with n0 ∈ {c1, c2, . . . , ck}. Set n′ to be

n′ = [nm, nm−1, . . . , n1]. If wn′ = 1, then vn = a1.

Proof. Since θ(vn′) = wn′ = 1, vn′ ∈ A1 and we have vn = ̺n0
(vn′) = a1. �

The previous result allows one to construct differences which correspond to long arithmetic

progressions.

Example 39. Consider A = {a, b, c, d, e, f} with A1 = {a, b},A2 = {c, d},A3 = {e, f}. Fix the

length of the substitution to be L = 6 and consider the substitution ̺ given by

a 7→ abbabd c 7→ cddcce e 7→ effeea

b 7→ aabaac d 7→ dccddf f 7→ fefefb.

We see that, here k = 2 and c1 = 0, c2 = 3. The supersubstitution is

ξ :

A1 7→ A1A1A1A1A1A2

A2 7→ A2A2A2A2A2A3

A3 7→ A3A3A3A3A3A1

.

For each n > 1, set

dn = 3 + 3 · 6n + 3 · 62n = [3, 0, 0, . . . , 0, 0, 3, 0, 0, . . . , 0, 0, 3],

where [·] is the base-6 expansion. If 0 6 k 6 4 · 6n−1 − 1, then 3k < 2 · 6n and the base-6

expansion for 3k is [in, in−1, · · · , i0] with in < 2 and i0 ∈ {0, 3}. For all such k, the base-6

expansion of kdn = 3k + 3k · 6n + 3k · 62n is

[in, in−1, . . . , i1, i0 + in, in−1, . . . i1, i0 + in, . . . in−1, . . . i1, i0].

We now consider k′n := (kdn)
′ to be the number whose base-6 expansion is the same as kdn with

the last digit i0 omitted. Let w be the fixed point of ξ starting at 1. We show that wk′n
= 1 for

all 0 6 k 6 4 · 6n−1 − 1. From the supersubstitution, we get that

wk′n
=
(
ξinξ

2
i
0
+in

n−1∏

j=1

ξ3i
1

)
(1) = 1.

Here, ξin = id because in < 2, ξi
0
+in

= id because i0+ in < 5, and the last factor in the product

is also the identity because all ξi are cube roots of unity. We can now apply the previous result

to the original sequence kdn. Since i0 ∈ {0, 3}, by Proposition 38, the (kdn)th letter in the fixed
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point v starting with a is ̺i
0
(A1) = a, which yields an arithmetic progression of as with length

4 · 6n−1. ♦

Remark 40. Example 39 shows how Proposition 38 can be used to establish lower bounds for

A(d) for some differences d appropriately chosen. For differences of the form d = Lk|G|−1
Lk−1

, one

can use Propositions 36 and 38 to show that Av(Ld) > Lk, for all k > 1. Furthermore, if we

assume that c1 = 0 in Proposition 38, then Av(L
md) > Lk, for every m > 1 and all k > 1

(see [1] for details). ♦

4. Spin substitutions

We consider monochromatic arithmetic progressions in infinite words arising from spin sub-

stitutions, which are generalisations of the Rudin–Shapiro substitution. A spin substitution θ

is a special type of constant-length substitution. A finite set D of digits is considered, each

of which, carrying a spin, can be in a finite number of distinct states. The spin states are

represented using a finite Abelian group G, called the spin group. This results in the alphabet

A = D×G. The substitution θ is then completely determined using a |D| × |D| matrix V with

entries in G, which is called the spin matrix. The matrix V encodes, for each digit d ∈ D,

the spin state of the letters of the image of d under the substitution. For background on spin

substitutions and generalisations, we refer the reader to [3, 10,20,38].

In Sections 4.1 and 4.2, we study A(d) for the Rudin–Shapiro sequence. We give lower

bounds for A(d) for two sequences of differences along which A(d) grows at least linearly in

d, in analogy to the classical Thue–Morse case studied in [2]. In Section 4.3 we extend these

results to Vandermonde sequences.

4.1. The Rudin–Shapiro sequence. Consider a spin substitution θ with digit set D = {0, 1},

spin group G = C2 and spin matrix V =
(
1 1
1 −1

)
. The resulting alphabet is A = D × G =

{0, 1, 0̃, 1̃}, where ‘tilded’ letters have non-trivial spin. The spin matrix determines the positions

of the tildes in θ(0) and θ(1); the positions of the tildes in θ(0̃) and θ(1̃) are determined via

the invariance relation θ(ã) = θ̃(a) with number of tildes modulo 2, for a ∈ D. The resulting

substitution is

θ :
0 7→ 01

1 7→ 01̃

0̃ 7→ 0̃1̃

1̃ 7→ 0̃1
.

The Rudin–Shapiro sequence u over the alphabet {1,−1} is obtained from the fixed point of

θ starting with 0 under the projection

πG : 0, 1 7→ 1, 0̃, 1̃ 7→ −1;

see [7, Section 7.7.1]. The first few terms of u (with commas inserted for the sake of clarity) are

u = 1, 1, 1,−1, 1, 1,−1, 1, 1, 1, 1,−1,−1,−1, 1,−1, · · · .

The nth element of u can be derived from V as

un =

k−1∏

i=0

V (ni+1, ni) = V (nk, nk−1) · · · V (n2, n1) V (n1, n0), (3)

where [nk, . . . , n1, n0] is the binary representation of n with n0 the least significant digit and nk

the most significant digit, and V (i, j) is the (i, j)th entry of V [3, 20]. Alternatively, un can be

obtained as un = (−1)t(n), where t(n) counts the number of (possibly overlapping) occurrences
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of the word 11 in the binary representation of the integer n; see [4]. The following recurrence

relations can easily be obtained from Eq. (3)

u2n = un, u2n+1 = (−1)n un. (4)

The following simple argument invoking Proposition 6 shows that A(d) < ∞, for all d ∈ N,
for the sequence u.

Proposition 41. There is no infinite monochromatic arithmetic progression in the sequence u.

Proof. Let v be the fixed point of θ starting with 0. It follows from the definition of θ that

v2n+a ∈ {a, ã}, for all a ∈ D and n ∈ N. Then, since u = πG(v), we know that u2n+a = 1

(resp. −1) implies v2n+a = a (resp. ã), for all a ∈ D and n ∈ N. The proof is by contradiction.

Assume there exist s ∈ N and d > 1 such that us+nd = 1 (resp. −1), for all n ∈ N. This implies

that vs+nd = a (resp. ã) for all n ∈ 2N, where a ≡ s mod 2. But this is a contradiction because

θ is an aperiodic, primitive, constant-length substitution of height 1 and so, by Proposition 6,

v does not contain infinite monochromatic arithmetic progressions. �

It is not difficult to show that A(2nd) = A(d), for all d, n > 1 (similar to the Thue–Morse

case [2]), and from here that A(2n) = 4, for all n ∈ N. The next two propositions, where we

find sequences of long monochromatic arithmetic progressions for differences of the form 2n±1,

are an analog of Proposition 8 for bijective substitutions.

Proposition 42. The sequence u satisfies A(2n + 1) > 2n−1 + 2, for all n > 1.

Proof. It is easy to see, by direct inspection of u, that the result holds for n = 1. For n > 1,

we will show that uk = 1 with k = 22n+1 + m(2n + 1), for all −1 6 m 6 2n−1. Fix n. For

m = −1, k = 22n+1− 2n− 1 with binary representation given by [1, . . . , 1, 0, 1, . . . , 1], consisting

of two sequences of n consecutive 1’s separated by a single 0. Then, by Eq. (3), uk = 1. For

0 6 m 6 2n−1, let the binary representation of m be [mr, . . . ,m1,m0], where 0 6 r 6 n − 1.

Then the binary representation of k = 22n+1 +m(2n + 1) is

[ 1,

n−r

0, . . . , 0,mr, . . . ,m1,m0,

n−r−1

0, . . . , 0,mr, . . . ,m1,m0 ].

For 0 6 r < n − 1, we have n − r − 1 > 1 and then, by Eq. (3), uk = 1. For r = n − 1, we

have n − r − 1 = 0 and then, by Eq. (3), uk = V (m0,mr). But, for r = n − 1, we also have

m = 2n−1 = [1, 0, 0, . . . , 0] and so, uk = V (m0,mr) = V (0, 1) = 1. �

Proposition 43. The sequence u satisfies, for all n > 1,

A(2n − 1) >




2n−1 + 1, if n is even,

2n−1 + 3, otherwise.

Proof. The result holds if n = 1, so we assume that n > 2. We will first show that, for ev-

ery n > 2 and all 0 6 m 6 2n−1, there exists a ∈ {1,−1} such that uk = a, where k =

22n+(m+1)(2n−1). Fixing n and writing the binary representation of m as [mn−1, . . . ,m1,m0],

where mi ∈ {0, 1} for all 0 6 i 6 n − 1, the binary representation of k takes the form

[1,mn−1, . . . ,m1,m0,mn−1, . . . ,m1,m0], where mi = 1 − mi. By Eq. (3) and given that, for

each 0 6 i 6 n − 2, V (mi+1,mi)V (mi+1,mi) is equal to −1 if mi+1 = mi, and to 1 otherwise,

we see that

uk = V (1,mn−1) V (m0,mn−1) (−1)n−1+mn−1−m0
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If mn−1 6= m0, uk = (−1)n−1. If mn−1 = m0, mn−1 = m0 = 0 because m 6 2n−1, and again

uk = (−1)n−1. If n is even, this implies that uk = −1, which completes the proof for the even

cases. If n is odd, it implies that uk = 1. In this case, one can easily further check that uk = 1

for m = −1 and m = −2, which completes the proof for the odd cases. �

Corollary 44. For all d = 2n ± 1 with n > 1, the sequence u satisfies A(d) & d/2.

Proof. The claim follows directly from Propositions 42 and 43. �

By computer experiments we have verified the preceding results for 1 6 d 6 4200. In fact, we

have seen that the inequalities in Propositions 42 and 43 are equalities, if n > 4 and if n > 5,

respectively. Moreover, the differences of the form 2n±1 are those for which the Rudin–Shapiro

sequence has the longest monochromatic arithmetic progressions, in the sense that A(d) has

local maxima at these differences. A plot of A(d) similar to that in [2] for the Thue–Morse

sequence can be obtained in this case for the Rudin–Shapiro sequence.

Remark 45. Sobolewski’s paper [39] concerns the computation of upper bounds of Aw(d), for

sequences w ∈ AN defined using a block-counting function. More precisely, given a binary block

v ∈ A+, the digit wn is given by the sum mod 2 of (possibly overlapping) occurrences of v in

the binary representation of n, for all n ∈ N. The author focuses most of his attention on the

v = 11 case, for which w is the Rudin–Shapiro sequence. In this case, an upper bound of the

maximum length of monochromatic arithmetic progressions starting at position 0 is given, and

exact values of A(d) are determined for differences of the form 2n ± 1. ♦

Remark 46. The arguments for the Rudin–Shapiro sequence can be extended to the case when

the spin matrix is the Hadamard matrix [19]

V =




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




and hence, θ is a substitution of the eight-letter alphabet A = D × C2, where D = {0, 1, 2, 3}.

The studied sequence u arises as the image of the fixed point of θ starting with 0 under the

coding πG mapping untilded letters to 1 and tilded letters to −1. In this case A(4nd) = A(d);

in particular, A(4n) = 6 for all n ∈ N. Results similar to Propositions 42 and 43 can also be

derived. On the one hand, A(4n + 1) > 4n−1 + 2, for all n > 1, the proof of which is similar

to the proof of Proposition 42. More precisely, it can be shown that, for all −1 6 m 6 4n−1,

uk = 1 with k = 42n+1 +m(4n + 1). On the other hand, A(4n − 1) > 4n−1 + 3, for all n > 1,

the proof of which is analogous to the proof of Proposition 43. More precisely, it can be shown

that, for all −2 6 m 6 4n−1, uk = 1 with k = 3 · 42n+2 + 4n − 1 +m(4n+1 − 1). ♦

4.2. An alternative approach for the Rudin–Shapiro sequence. The Rudin–Shapiro

sequence can alternatively be obtained from a staggered substitution or by a substitution acting

on an alphabet consisting of pairs of letters in {1,−1}, say {v, ṽ, w, w̃} with v = 11, w = 1−1,

where 1̃ = −1 and −̃1 = 1 swaps the two letters. The substitution reads

̺ :
v 7→ vw

w 7→ vw̃

w̃ 7→ ṽw

ṽ 7→ ṽw̃
.
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n = 2

1 1 1 -1

1 1 -1 1

1 1 1 -1

-1 -1 1 -1

n = 3

1 1 1 -1

1 1 1 -1

1 1 1 -1

1 1 1 -1

1 1 1 -1

1 1 1 -1

-1 -1 -1 1

-1 -1 -1 1

-1 -1 1 -1

-1 -1 1 -1

-1 -1 1 -1

-1 -1 1 -1

1 1 -1 1

1 1 -1 1

1 1 -1 1

1 1 -1 11

1

1

1

1

1

1

1

n = 4

-1 -1 -1 1 -1 -1 1 -1

-1 -1 -1 1 -1 -1 1 -1

-1 -1 -1 1 -1 -1 1 -1

-1 -1 -1 1 -1 -1 1 -1

-1 -1 -1 1 -1 -1 1 -1

-1 -1 -1 1 -1 -1 1 -1

1 1 1 -1 1 1 -1 1

1 1 1 -1 1 1 -1 1

1 1 1 -1 1 1 -1 1

1 1 1 -1 1 1 -1 1

1 1 1 -1 1 1 -1 1

1 1 1 -1 1 1 -1 1

1 1 1 -1 1 1 -1 1

1 1 1 -1 1 1 -1 1

1 1 1 -1 1 1 -1 1

1 1 1 -1 1 1 -1 1

1 1 1 -1 -1 -1 1 -1

1 1 1 -1 -1 -1 1 -1

1 1 1 -1 -1 -1 1 -1

1 1 1 -1 -1 -1 1 -1

1 1 1 -1 -1 -1 1 -1

1 1 1 -1 -1 -1 1 -1

1 1 1 -1 -1 -1 1 -1

1 1 1 -1 -1 -1 1 -1

1 1 1 -1 -1 -1 1 -1

1 1 1 -1 -1 -1 1 -1

-1 -1 -1 1 1 1 -1 1

-1 -1 -1 1 1 1 -1 1

-1 -1 -1 1 1 1 -1 1

-1 -1 -1 1 1 1 -1 1

-1 -1 -1 1 1 1 -1 1

-1 -1 -1 1 1 1 -1 1

1

1

1

1

1

1

1

1

-1

-1

-1

-1

-1

-1

-1

-1

Figure 4. The square array of letters in v(2n−1), for n ∈ {2, 3, 4}. The highlighted letters on

the diagonals form arithmetic progressions of length 2n−1 for distances d = 2n + 1 (upper left

quadrant) or d = 2n − 1 (upper right quadrant).

Note that this substitution is exactly the same as the original four-letter substitution, except

that we now interpret v and w as two-letter words in {1,−1}.

Note that the substitution is invariant under the letter exchange in the sense that ̺(ã) = ˜̺(a)
for all a ∈ {v,w, w̃, ṽ}. Moreover, the first part of ̺(a) for any a ∈ {v,w, w̃, ṽ} is either v or ṽ,

and the last is either w or w̃. By induction, this structure is preserved for larger superwords as

follows.

Lemma 47. Let n > 1 and set v(0) = v, w(0) = w, v(n) := ̺n(v), and w(n) := ̺n(w). Then,

v(n) = v(n−1)w(n−1) and w(n) = v(n−1)w̃(n−1).

Proof. Clearly, this is true for n = 1. Assuming the structure holds for n, we find that

v(n+1) = ̺(v(n)) = ̺(v(n−1)w(n−1)) = ̺(v(n−1))̺(w(n−1)) = v(n)w(n)

and

w(n+1) = ̺(w(n)) = ̺(v(n−1)w̃(n−1)) = ̺(v(n−1)) ˜̺(w(n−1)) = v(n)w̃(n),

which completes the proof. �

For the rest of the section, we consider the superword v(2n−1) = ̺2n−1(v) for n > 2, and write

the resulting word in the alphabet {1,−1}, which has 22n letters, as a square array of letters with

2n rows of length 2n. For n ∈ {2, 3, 4}, they are shown in Figure 4. Let us denote the (i, j)th

entry of this matrix by ai−1,j−1. With this notation, one has v(2n−1) = a0,0, a0,1 . . . a2n−1,2n−1.

In particular, the sequence a0,0, a0,1 . . . a0,2n−1 corresponds to the topmost row of the block (or

the first row of the matrix). In what follows, v
(n)
j (resp. w

(n)
j ) denotes the jth letter of v(n)

(resp. w(n)) seen as a word over {1,−1}.

Lemma 48. Let v(n) and w(n) be as in Lemma 47. We then have the following.
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(1) v
(n)
0 = v

(n)
2n = 1, v

(n)
2n−1 =




−1, n ∈ 2Z

1, n ∈ 2Z+ 1
, v

(n)
2n+1−1

=




1, n ∈ 2Z

−1, n ∈ 2Z+ 1
.

(2) w
(n)
0 = 1, w

(n)
2n = −1, w

(n)
2n−1 =




−1, n ∈ 2Z

1, n ∈ 2Z + 1
, w

(n)
2n+1−1

=




−1, n ∈ 2Z

1, n ∈ 2Z+ 1
.

Proof. Note that the word v(n) always starts with 1, and ends with 1 if n is even or −1 if n is

odd. Similarly, the word w(n), starts with 1 and ends with −1 if n is even or 1 is n is odd. The

properties above then follow from Lemma 47 by induction. �

From the substitution structure, one has

̺n(a0,2ia0,2i+1) = a2i,0a2i,1 · · · a2i,2n−1a2i+1,0a2i+1,1 · · · a2i,2n−1.

Together with Lemma 48, we get the following.

Lemma 49. Let v(2n−1) = a0,0, a0,1 . . . a2n−1,2n−1 as above.

(1) (From top to left) If a0,2ia0,2i+1 = v, then a2i,0a2i+1,0 = v. If a0,2ia0,2i+1 = w, then

a2i,0a2i+1,0 = w.

(2) (From top to right) If a0,2ia0,2i+1 = v, then a2i,2n−1a2i+1,2n−1 is w if n is odd and w̃ if

n is even. If a0,2ia0,2i+1 = w, then a2i,2n−1a2i+1,2n−1 is v if n is odd and ṽ if n is even.

with obvious extensions to the case when a0,2ia0,2i+1 is ṽ or w̃.

The previous lemma relates words in the topmost row of the matrix to words found along

the leftmost and the rightmost columns. We can define the following maps which convert words

in the topmost row in the matrix to the words along the rightmost column. Note that v read

backwards is still v and that w read backwards is w̃.

Definition 50. Let

Iodd :
v 7→ w̃

ṽ 7→ w

w 7→ v

w̃ 7→ ṽ
, Ieven :

v 7→ w

ṽ 7→ w̃

w 7→ ṽ

w̃ 7→ v
,

and set

I∗(b1b2 · · · bn) = I∗(bn)I∗(bn−1) · · · I∗(b1)

for bi ∈ {v,w, ṽ, w̃} and ∗ ∈ {even, odd}.

From (2) in Lemma 49, the rightmost column, read from bottom to top, is Ieven(v
(n−1)) if n

is even and Iodd(v
(n−1)) if n is odd. We now express I∗(v

(n−1)) as a level-n superword.

Lemma 51. We have

I∗(v
(n−1)) = ̺n−1(w̃) and I∗(w

(n−1)) = ̺n−1(v)

for ∗ ∈ {even, odd}.

Proof. Since the proof for the case ∗ = odd is similar, we omit it and only present the one for

the even case. We proceed by induction. The statement is clear for n = 2. If the statement
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holds for some even n, then for n+ 2 we have:

Ieven(̺
n+1(v)) = Ieven(̺

n−1̺2(v))

= Ieven(̺
n−1(vwvw̃))

= Ieven(̺
n−1(w̃))Ieven(̺

n−1(v))Ieven(̺
n−1(w))Ieven(̺

n−1(v))

= ̺n−1(ṽ)̺n−1(w̃)̺n−1(v)̺n−1(w̃)

= ̺n−1(ṽw̃vw̃)

= ̺n+1(w̃).

By a similar computation, we have Ieven̺
n−1(w) = ̺n−1(v). �

We now have the following result.

Proposition 52. The word which appears on the leftmost column of the top left quadrant is

always v(n−2). The word on the rightmost column of the top-right quadrant, read from bottom

to top, is w(n−2).

Proof. The first claim follows immediately from (1) of Lemma 49. The second claim follows from

(2) of Lemma 49 , Lemma 51 and the fact that the word on the upper half of the rightmost quad-

rant (read from bottom to top) is the second half of ̺n−1(w̃) = ̺n−2(ṽw) = ̺n−2(ṽ)̺n−2(w),

which is w(n−2); see Figure 5 for an illustration. �

n odd

ṽ
(n−2) w

(n−2)

︸ ︷︷ ︸
w̃

(n−1)

v
(n−2)

w
(n−2)

v
(n−1)

︷ ︸︸ ︷

v
(n−2)

w
(n−2)

w
(n−2)

ṽ
(n−2)

v
(n−1)









w̃
(n−1)

n even

v
(n−2)

w̃
(n−2)

︸ ︷︷ ︸
w

(n−1)

v
(n−2)

w
(n−2)

v
(n−1)

︷ ︸︸ ︷

v
(n−2)

w
(n−2)

w
(n−2)

ṽ
(n−2)

v
(n−1)









w̃
(n−1)

Figure 5. Schematic representation of block arrangement of the superword v(2n−1). The

dashed lines indicate the reflection symmetries of the upper left and upper right quadrants.

Now we can prove the existence of monochromatic diagonal and anti-diagonals.

Proposition 53. We have aj,j = 1 for 0 6 j 6 2n−1 − 1.

Proof. Each left half-row ai,0ai,1 · · · ai,2n−1−1 is either v(n−2) or ṽ(n−2) and the topmost half-row

(with i = 0) is always v(n−2). If a0,j = 1, then by Proposition 52, aj,0 = 1, which implies

that the jth row is v(n−2). This implies aj,j = a0,j = 1. If a0,j = −1, then by Proposition 52,

aj,0 = −1, which implies that the jth row is ṽ(n−2). We see aj,j = ã0,j = 1. �

Proposition 54. If n is odd, then we have aj,2n−j−1 = 1 for 0 6 j 6 2n−1 − 1. If n is even,

then we have aj,2n−j−1 = −1 for 0 6 j 6 2n−1 − 1.
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Proof. The ith right half-row ai,2n−1ai,2n−1+1 · · · ai,2n−1 is either w(n−2) or w̃(n−2) and the top-

most right half-row is always w(n−2). Assume that n is odd. We have a0,2n−1 = 1. If

a0,2n−j−1 = 1, then by Proposition 52, aj,2n−1 = 1, which implies that the jth right half-row is

w(n−2) and is the same as the topmost right half-row. It follows that aj,2n−j−1 = a0,2n−j−1 = 1.

If a0,2n−j−1 = −1, then by Proposition 52, aj,2n−1 = −1, which implies that the jth right

half-row is w̃(n−2). We then have aj,2n−j−1 = ˜a0,2n−j−1 = 1. The case when n is even admits a

completely analogous proof, which we leave to the reader. �

Note that Proposition 53 proves the existence of a monochromatic arithmetic progression of

difference d = 2n + 1 while Proposition 54 yields one with difference d = 2n − 1. We conclude

with the following comparable version of Propositions 42 and 43 in the previous section.

Corollary 55. For the binary Rudin–Shapiro sequence, one has

A(2n − 1) > 2n−1 and A(2n + 1) > 2n−1.

4.3. Vandermonde sequences. In this section, we consider general Vandermonde substitu-

tions, the simplest of which is the Rudin–Shapiro substitution. Let be a spin substitution with

digit set D = {0, 1, . . . , L − 1} and spin group G = {1, ω, ω2, . . . , ωL−1}, where ω = e−2πi/L,

resulting in the alphabet A = D×G. We will consider the digit projection πD : A → D, defined

by πD(a) to be the digit of a, and the spin projection πG : A → G, defined by πG(a) to be spin

of a. For each letter a ∈ A, let sa ∈ {0, 1, . . . , L − 1} ⊆ N be the spin number of a, given by

the exponent of ω in πG(a). Let the spin matrix V of the spin substitution be a Vandermonde

matrix, given by V (i, j) = ωij mod L, for 0 6 i, j 6 L− 1. In matrix form

V =




1 1 1 · · · 1 1

1 ω ω2 · · · ωL−2 ωL−1

1 ω2 ω4 · · · ω2(L−2) ω2(L−1)

...
...

...
. . .

...
...

1 ωL−1 ω(L−1)2 · · · ω(L−1)(L−2) ω(L−1)(L−1)




.

Now, let the spin substitution θ : A → AL be defined, for each a ∈ A, by θ(a) = a0a1 · · · aL−1,

where, for each 0 6 i 6 L− 1, ai ∈ A is such that πD(ai) = i and πG(ai) = V (i, πD(a))πG(a) =

ωi·πD(a)+sa mod L. We call θ a Vandermonde substitution, and the infinite word u obtained from

the fixed point of θ starting with 0 under the projection πG a Vandermonde sequence. The first

few terms of u (with commas inserted for the sake of clarity) are

u =

L

1, 1, . . . , 1, 1, ω, ω2, . . . , ωL−2, ωL−1, 1, ω2, ω3, . . . , ωL−1, ω, 1, ω3, ω4, · · · .

The nth entry of u can be obtained from V using again Eq. (3), namely, un =
∏k−1

i=0 V (ni+1, ni),

where [nk, . . . , n1, n0] is now the base-L representation of n. Using this, one can easily prove

the following lemma (the proof of which we omit), which gives analogous recurrence relations

to those in Eq. (4).

Lemma 56. The Vandermonde sequence u satisfies, for all n ∈ N and each 0 6 a 6 L− 1, the

recurrence relation uLn+a = V (a, b)un, where 0 6 b 6 L− 1 is such that n ≡ b mod L.

A simple argument, similar to that used in Proposition 41, can be used to show that the

Vandermonde sequence u satisfies A(d) < ∞, for all d > 1.
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Proposition 57. There is no infinite monochromatic arithmetic progression in the sequence u.

Proof. Assume there exist r ∈ N and d > 1 such that ur+nd = g ∈ G, for all n ∈ N. Then

ur+nLd = g, for all n ∈ N, and writing r as mL + k, where m ∈ N and 0 6 k 6 L − 1, we

have usL+k = g, where s = m+ nd, for all n ∈ N. Let v ∈ AN be the fixed point of θ starting

with 0, hence u = πG(v). Then πG(vsL+k) = g and, by the definition of θ, πD(vsL+k) = k,

for all s. Therefore, v contains an infinite monochromatic arithmetic progression. But, since θ

is an aperiodic, primitive, constant-length substitution of height 1, this is a contradiction, by

Proposition 6. �

It can be shown that A(Lnd) = A(d) for all n ∈ N and, in particular, A(Ln) = A(1) = L+2.

As an analogy with the Rudin–Shapiro sequence, in the following proposition we look at the

differences of the form LnL−1
Ln−1 = L(L−1)n + L(L−2)n + . . .+ Ln + 1.

Proposition 58. The sequence u satisfies A
(
LnL−1
Ln−1

)
> Ln−1 + 1, for all n > 1.

Proof. We omit the details for the case n = 1. Let be n > 1. To prove the claim, we will show

that uk = 1 with k = LLn+1 +m(L(L−1)n + . . .+Ln +1), for all 0 6 m 6 Ln−1. Let the base-L

representation of m be [mr, . . . ,m1,m0], where 0 6 r 6 n − 1. The base-L representation of k

is then given by

[ 1, 0,

L times

n−r−1

0, . . . , 0,mr, . . . ,m1,m0, . . . . . . ,

n−r−1

0, . . . , 0,mr, . . . ,m1,m0 ].

For 0 6 m 6 Ln−1 − 1, we have n− r − 1 > 1 and, by Eq. (3), uk =
∏r−1

i=0 (V (mi+1,mi))
L = 1.

For m = Ln−1, we have n− r− 1 = 0, but also mi = 0, for all 0 6 i 6 r− 1. Consequently, the

base-L representation of k consists of L+1 isolated digits equal to 1 separated by sequences of

digits equal to 0, which, by Eq. (3), implies that uk = 1. �

It is easy to check that the arithmetic progression of 1’s found in the proof of Proposition 58

cannot be extended to the right, and that it can neither be extended to the left, except if L = 2

(thus yielding as a corollary Proposition 42 for the Rudin–Shapiro sequence). The following is

immediate from Proposition 58 and it implies Theorem 2.

Corollary 59. For all d = LkL−1
Lk−1

with k > 1, A(d) & dα

L , where α = (L− 1)−1.

Note that if L = 2, we recover Corollary 44 for the Rudin–Shapiro sequence, for which A(d)

grows linearly in d.

5. Outlook

It is not obvious how to extend Proposition 8 to the general constant-length case. Unlike

in the bijective setting, the columns generate a semigroup rather than a group, and we no

longer necessarily have an identity column. Even the task of finding a suitable subsequence

with growing arithmetic progressions becomes nontrivial, as the following example illustrates.

Let A be the 6-letter alphabet and ̺ be the length 2 substitution

a 7→ ad c 7→ ea e 7→ bf (5)

b 7→ bc d 7→ ab f 7→ ba.

The graph of sets in Figure 6 traces which letters occur in the columns. This follows a modified

version of the graph in [12] and incorporates the subsets of A which appear as columns. The
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sets which appear at the lowermost level are called minimal sets; see also [31]. These are the

subsets of the alphabet that appear as columns in a large enough power of the substitution.

Thus, the size of the minimal sets corresponds to the column number c(̺). In this example,

c(̺) = 2.

{a, b, c, d, e, f}

{a, b, c, d, f}

{a, b, c, d}

{c, d, f} {a, b, e}

{a, b} {c, d} {e, a} {f, d}

0

1

0

1

0

1

0

1
0

1

0

1 0

0

1

0

1

Figure 6. Graph of sets for ̺

This graph incorporates many interesting paths. Any path starting from a minimal set

leads only to other minimal sets. The relation between this graph and arithmetic progressions

found within the fixed points of the substitution can be seen through the following observations

together with Fact 3, which does not require the substitution to be bijective. The graph helps

narrow down the scope of differences d for which suitable long arithmetic progressions may be

found. For example, there is no arithmetic progression that includes both positions 4 and 37.

Converting to binary and following the path from the topmost level, we obtain the disjoint

minimal sets {a, b} and {f, d}; see the columns highlighted in blue in Figure 7.

For the next example, let us restrict ourselves to the minimal set {a, b} to illustrate how

the paths in the graph represent the columns. Note that for a difference d = 4 = [1, 0, 0], the

path indexed by d, 2d, 3d, . . . always returns to the minimal set {a, b}. However, this condition

does not guarantee a large arithmetic progression at these positions, as the corresponding letter

might be b, instead, as the following picture illustrates via the columns highlighted in red.

a d a b a d b c a d a b b c e a a d a b a d b c b c e a b f a d a d a b a d b c
b c e a b f a d b c b a a d a b b c e a b c a d a d a b a d b c b c e a b f a d

Figure 7. The fixed points of ̺ starting from the seeds a and b, with positions 0, 4, 8, 12

highlighted in red and places 4 and 37 highlighted in blue.

Since the substitution is primitive, the subgraph of minimal sets is strongly connected; in

particular we can find a cycle starting from the set {a, b} that visits every other minimal set.

This path is indexed by the edges 1, 0, 1, 0 and might be a natural candidate for difference of

a long arithmetic progression.

It would be interesting to find out if one can use these graphs to bound A(d) or gather more

information on its behaviour. In particular, it is currently not certain whether there exist a

sequence of differences for which A(d) grows polynomially. Numerical data suggests that A(d)

grows polynomially along the subsequence dn = 2n + 2; see Figure 8.
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(130, 35)
(258, 67)

(514, 131)

(1026, 259)

(2050, 515)

(4098, 1027)

d

A

Figure 8. A(d) for 1 6 d 6 2300, for the substitution in Eq (5).

References

[1] I. Aedo, Forward limit sets of semigroups of substitutions and arithmetic progressions in automatic sequences,

PhD thesis, The Open University, in preparation.

[2] I. Aedo, U. Grimm, Y. Nagai, P. Staynova, Monochromatic arithmetic progressions in binary Thue–Morse-

like words, Theor. Comp. Sci. 934 (2022), 65–80.

[3] J.-P. Allouche, P. Liardet, Generalized Rudin–Shapiro sequences, Acta Arith. 60 (1991) 1–27.

[4] J.-P. Allouche, J. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge Univer-

sity Press, Cambridge, 2003.

[5] S.V. Avgustinovich, J. Cassaigne, A.E. Frid, Sequences of low arithmetical complexity, RAIRO-Theor. Inf.

Appl. 40 (2006) 569–582.

[6] S.V. Avgustinovich, D.G. Fon-Der-Flaass, A.E. Frid, Arithmetical complexity of infinite words, in: M. Ito,

T. Imaoka (eds.), Words, Languages & Combinatorics III, World Scientific, Singapore, 2003, pp. 51–62.

[7] M. Baake, U. Grimm, Aperiodic Order. Vol. 1: A Mathematical Invitation, Cambridge University Press,

Cambridge, 2013.

[8] M. Baake, J. A. G. Roberts, R. Yassawi, Reversing and extended symmetries of shift spaces, Discrete Contin.

Dynam. Syst. 38 (2018) 835–866.
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