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1 Introduction

Let us consider a connected (multi)graph1 G = (V,E) as a communications network with
unreliable communication channels, in which edge e is operational with probability pe and
failed with probability 1 − pe, independently for each edge. Let RG(p) be the probability
that every node is capable of communicating with every other node (this is the so-called
all-terminal reliability). Clearly we have

RG(p) =
∑

A ⊆ E

(V,A) connected

∏

e∈A

pe
∏

e∈E\A

(1− pe) , (1.1)

where the sum runs over all connected spanning subgraphs of G, and we have written p =
{pe}e∈E. We call RG(p) the (multivariate) reliability polynomial [7] for the graph G; it
is a multiaffine polynomial, i.e. of degree at most 1 in each variable separately. If the
edge probabilities pe are all set to the same value p, we write the corresponding univariate
polynomial as RG(p), and call it the univariate reliability polynomial. We are interested in
studying the zeros of these polynomials when the variables pe (or p) are taken to be complex
numbers.

Brown and Colbourn [5] studied a number of examples and made the following conjecture:

Univariate Brown–Colbourn conjecture. For any graph G, the zeros of the
univariate reliability polynomial RG(p) all lie in the closed disc |p − 1| ≤ 1. In
other words, if |p− 1| > 1, then RG(p) 6= 0.

Subsequently, one of us [16] proposed a multivariate extension of the Brown–Colbourn con-
jecture:

Multivariate Brown–Colbourn conjecture. For any graph G, if |pe − 1| > 1
for all edges e, then RG(p) 6= 0.

Not long ago, Wagner [18] proved, using an ingenious and complicated construction, that
the univariate Brown–Colbourn conjecture holds for all series-parallel graphs.2 Subsequently,

1Henceforth we omit the prefix “multi”. In this paper a “graph” is allowed to have loops and/or multiple
edges unless explicitly stated otherwise.

2Unfortunately, there seems to be no completely standard definition of “series-parallel graph”; a plethora
of slightly different definitions can be found in the literature [9, 7, 13, 14, 4]. So let us be completely precise
about our own usage: we shall call a loopless graph series-parallel if it can be obtained from a forest by
a finite sequence of series and parallel extensions of edges (i.e. replacing an edge by two edges in series or
two edges in parallel). We shall call a general graph (allowing loops) series-parallel if its underlying loopless
graph is series-parallel. Some authors write “obtained from a tree”, “obtained from K2” or “obtained from
C2” in place of “obtained from a forest”; in our terminology these definitions yield, respectively, all connected
series-parallel graphs, all connected series-parallel graphs whose blocks form a path, or all 2-connected series-
parallel graphs. See [4, Section 11.2] for a more extensive bibliography.
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one of us [16, Remark 3 in Section 4.1] showed, by a two-line induction, that the multivariate
Brown–Colbourn conjecture holds for all series-parallel graphs.3 Both the univariate and
multivariate conjectures remained open for general graphs, but most workers in the field
suspected that they would be true. (At least the present authors did.)

In this short note we would like to report that both the univariate and multivariate
Brown–Colbourn conjectures are false! The multivariate conjecture is false already for the
simplest non-series-parallel graph, namely the complete graph K4. As a corollary we will
deduce that the univariate conjecture is false for a 4-vertex, 16-edge planar graph that can be
obtained from K4 by adding parallel edges, and for a 1512-vertex, 3016-edge simple planar
graph that can be obtained from K4 by adding parallel edges and then subdividing edges.
So the Brown–Colbourn conjecture is not true even for simple planar graphs.

Furthermore, for the multivariate property we are able to obtain a complete character-
ization: a graph has the multivariate Brown–Colbourn property if and only if it is series-
parallel.

It is convenient to restate the Brown–Colbourn conjectures in terms of the generating
polynomial for connected spanning subgraphs,

CG(v) =
∑

A ⊆ E

(V,A) connected

∏

e∈A

ve , (1.2)

where we have written v = {ve}e∈E. This is clearly related to the reliability polynomial by

RG(p) =

[
∏

e∈E

(1− pe)

]
CG

(
p

1− p

)
(1.3)

CG(v) =

[
∏

e∈E

(1 + ve)

]
RG

(
v

1+ v

)
(1.4)

where 1 denotes the vector with all entries 1, and division of vectors is understood compo-
nentwise. The multivariate Brown–Colbourn conjecture then states that if G is a loopless
graph and |1 + ve| < 1 for all edges e, then CG(v) 6= 0. Loops must be excluded because a
loop e multiplies CG by a factor 1 + ve but leaves RG unaffected. Some workers also prefer
to use the failure probabilities qe = 1− pe as the variables.

The plan of this paper is as follows: In Section 2 we show that the multivariate Brown–
Colbourn conjecture fails for the complete graph K4. In Section 3 we review the series and
parallel reduction formulae for the reliability polynomial. In Section 4 we show that the
univariate Brown–Colbourn conjecture fails for certain graphs that are obtained from K4 by
adding parallel edges and then optionally subdividing edges. In Section 5 we complete these
results by showing that a graph has the multivariate Brown–Colbourn property if and only
if it is series-parallel.

3This proof is reproduced here as Theorem 5.6(c) =⇒ (a).
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2 The multivariate Brown–Colbourn conjecture is false

for K4

For the complete graph K4, the univariate polynomial CG(v) is

CK4(v) = 16v3 + 15v4 + 6v5 + v6 . (2.1)

The roots of this polynomial all lie outside the disc |1 + v| < 1, so the univariate Brown–
Colbourn conjecture is true for K4.

Let us now consider the bivariate situation, in which the six edges receive two different
weights a and b. There are five cases:

(a) One edge receives weight a and the other five receive weight b:

CK4(a, b) = (8b3 + 5b4 + b5) + (8b2 + 10b3 + 5b4 + b5)a (2.2)

(b) A pair of nonintersecting edges receive weight a and the other four edges receive weight
b:

CK4(a, b) = (4b3 + b4) + (8b2 + 8b3 + 2b4)a+ (4b+ 6b2 + 4b3 + b4)a2 (2.3)

(c) A pair of intersecting edges receive weight a and the other four edges receive weight b:

CK4(a, b) = (3b3 + b4) + (10b2 + 8b3 + 2b4)a+ (3b+ 6b2 + 4b3 + b4)a2 (2.4)

(d) A 3-star receives weight a and the complementary triangle receives weight b:

CK4(a, b) = (9b2 + 3b3)a+ (6b+ 9b2 + 3b3)a2 + (1 + 3b+ 3b2 + b3)a3 (2.5)

(e) A three-edge path receives weight a and the complementary three-edge path receives
weight b:

CK4(a, b) = b3 + (7b2 + 3b3)a+ (7b+ 9b2 + 3b3)a2 + (1 + 3b+ 3b2 + b3)a3 (2.6)

We have plotted the roots a when b traces out the circle |1 + b| = 1, and vice versa. In
cases (b) and (d) it turns out that the roots can enter the “forbidden discs” |1 + a| < 1
and |1 + b| < 1. This is shown in Figure 1 for case (b); blow-ups of the crucial regions are
shown in Figure 2 both for case (b) and for case (d). As a result, counterexamples to the
multivariate Brown–Colbourn conjecture can be obtained in these two cases: indeed, for any
a lying in the region A+ (resp. A−), there exists b ∈ B− (resp. B+) such that CK4(a, b) = 0,
and conversely.

Let us note for future reference that the endpoint of the region A± (resp. B±) lies at
a = −1 + e±2πiα (resp. b = −1 + e±2πiβ), where α ≈ 0.120692 and β ≈ 0.164868 in case (b),
and α ≈ 0.110198 and β ≈ 0.030469 in case (d).

We can understand this behavior analytically as follows: For each of the five cases, let
us solve the equation CK4(a, b) = 0 for a in terms of b, expanding in power series for b near
0. We obtain:

4



Figure 1: Curves for case (b). First plot shows the a-plane; second plot shows the b-plane.
Dashed magenta curve is the circle |1 + v| = 1; solid blue curve is the locus of root a; solid
red curve is the locus of root b.
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Figure 2: Blow-up of curves to show more clearly the “sliver” regions A+ and B−. Top row
shows the a- and b-planes for case (b); bottom row shows the a- and b-planes for case (d).
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(a) a = −b+ 5
8
b2 +O(b3)

(b) a = −b± 1
2
b3/2 +O(b2)

(c) a = −1
3
b+ 1

8
b2 +O(b3) and a = −3b+ 31

8
b2 +O(b3)

(d) a = −3b± i
√
3b3/2 +O(b2) and a = 0

(e) a = −b+ 3
4
b2 +O(b3) and a = (−3 ± 2

√
2)b+ 9

16
(10∓ 7

√
2)b2 +O(b3)

The behavior is thus different in cases (a,c,e) on the one hand and cases (b,d) on the other:

Cases (a,c,e): Here the solution is of the form

a = γ1b+ γ2b
2 +O(b3) (2.7)

with γ1, γ2 real. Therefore, if we set b = −1 + eiθ and expand in powers of θ, we obtain

|1 + a|2 = 1 + (γ2
1 − γ1 − 2γ2)θ

2 + O(θ4) . (2.8)

Provided that γ2
1 − γ1 − 2γ2 > 0 — as indeed holds for all the roots in cases (a,c,e) — we

have |1 + a| ≥ 1 for small θ, so no counterexample is found (at least for small θ).

Cases (b,d): Here, by contrast, the solution is of the form

a = δ1b+ δ2b
3/2 +O(b2) (2.9)

with δ1 < 0 and δ2 6= 0. Therefore, if we set b = −1 + eiθ and expand as before, we obtain

a = iδ1θ + e±3πi/4δ2θ
3/2 + O(θ2) . (2.10)

Since Re(e±3πi/4δ2) < 0 for at least one of the roots, we have Re a ∝ −| Im a|3/2 for small θ;
in particular, we have |1 + a| < 1 for small θ 6= 0.

In fact, more can be said: suppose that we fix any λ > 0 and set b = λ(−1 + eiθ). Then
we have

a = iδ1λθ + e±3πi/4δ2λ
3/2θ3/2 + O(θ2) , (2.11)

so that once again Re a ∝ −| Im a|3/2 for small θ. In particular, we will have |λ+ a| < λ for
small θ 6= 0, irrespective of how small λ was chosen. This observation will play a crucial role
in Section 5 (see Proposition 5.5).
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3 Series and parallel reduction formulae

Suppose that G contains edges e1, . . . , en (with corresponding weights v1, . . . , vn) in par-
allel between the same pair of vertices x, y. Then it is easy to see that the edges e1, . . . , en
can be replaced by a single edge of weight

v1‖v2‖ · · · ‖vn ≡
n∏

i=1

(1 + vi) − 1 (3.1)

without changing the value of CG(v). [Reason: x is connected to y via this “super-edge” if
and only if x is connected to y by at least one of the edges e1, . . . , en.]

Suppose next that G contains edges e1, . . . , en (with corresponding weights v1, . . . , vn) in
series between the pair of vertices x, y: this means that the edges e1, . . . , en form a path in
which all the vertices except possibly the endvertices x and y have degree 2 in G. Let G′ be
the graph in which the edges e1, . . . , en are replaced by a single edge e∗ from x to y. Then
it is not hard to see that

CG(v) =

(
n∑

j=1

∏

i 6=j

vi

)
CG′(v′) (3.2)

where the edge e∗ is given weight

v′∗ = v1 ⊲⊳ v2 ⊲⊳ · · · ⊲⊳ vn ≡ 1
n∑

i=1

1/vi

(3.3)

and all edges other than e1, . . . , en, e∗ are given weight v′e = ve. [Reason: A connected
spanning subgraph of G can omit at most one of the edges e1, . . . , en, for otherwise at least
one of the internal vertices of the path would be disconnected from both x and y. Moreover,
x is connected to y via the “super-edge” e∗ if and only if none of the edges e1, . . . , en are
omitted. The relative weight of the cases with and without x connected to y via e∗ is thus
(
∏n

i=1 vi)/(
∑n

j=1

∏
i 6=j vi) = v∗; and there is an overall normalization factor

∑n
j=1

∏
i 6=j vi.

See also [7, p. 35] for an equivalent formula.]
The formula for series reduction can be applied immediately to handle arbitrary subdivi-

sions of a graph G. Given a finite graph G = (V,E) and a family of integers s = {se}e∈E ≥ 1,
we define G⊲⊳s to be the graph in which each edge e of G is subdivided into se edges in series.
If s ≥ 1 is an integer, we define G⊲⊳s to be the graph in which each edge of G is subdivided
into s edges in series. All the edges in G⊲⊳s or G⊲⊳s obtained by subdividing the edge e ∈ E
are assigned the same weight ve as was assigned to e in the original graph G. It follows
immediately from (3.2)/(3.3) that

CG⊲⊳s(v) =

(
∏

e∈E

sev
se−1
e

)
CG(v/s) (3.4)

where (v/s)e ≡ ve/se.
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Remarks. 1. Series and parallel reduction formulae can be derived in the more general
context of the q-state Potts model (also known as the multivariate Tutte polynomial): see
e.g. [17, Section 2]. Parallel reduction is always given by (3.1), independently of the value of
the parameter q. Series reduction is given by

v1 ⊲⊳ v2 ⊲⊳ · · · ⊲⊳ vn =
q

n∏
i=1

(1 + q/vi) − 1
. (3.5)

Please note that (3.5) reduces to (3.3) when q → 0, which is precisely the limit in which the
multivariate Tutte polynomial ZG(q,v) tends (after division by q) to CG(v).

2. If one takes in CG(v) the further limit of v infinitesimal, one obtains the generating
polynomial of minimal connected spanning subgraphs, i.e. spanning trees. Now, spanning
trees are intimately related to linear electrical circuits, as was noticed by Kirchhoff in 1847
[10, 12]. For v infinitesimal, the parallel reduction formula (3.1) becomes

v1‖v2‖ · · · ‖vn ≡ v1 + v2 + . . .+ vn , (3.6)

which is precisely the law for putting electrical conductances in parallel. And the series
reduction formula (3.3) is precisely the law for putting electrical conductances in series!

4 The univariate Brown–Colbourn conjecture is false

as well

Let K
(a,p1,p2)
4 be the graph obtained from K4 by replacing one edge by p1 parallel edges

and replacing each of the other five edges by p2 parallel edges. Let K
(b,p1,p2)
4 be the graph

obtained from K4 by replacing each of two nonintersecting edges by p1 parallel edges and
replacing each of the remaining four edges by p2 parallel edges. Define in a similar manner
K

(c,p1,p2)
4 , K

(d,p1,p2)
4 and K

(e,p1,p2)
4 for the cases (c), (d) and (e) discussed in Section 2.

We saw in Section 2 that in cases (b) and (d) one can obtain a counterexample to the
multivariate Brown–Colbourn conjecture by choosing the weight a to lie anywhere in the
region A+; this leads to a root b lying in the region B− (see Figures 1 and 2). Note now that
the pth power of the region 1 + A+ will overlap the region 1 + B− whenever p > (1 − β)/α
[just choose any point b ∈ B− close enough to the endpoint −1 + e−2πiβ = −1 + e2πi(1−β);
then one of the pth roots of 1+b will lie in the region 1+A+]. And (3.1) tells us that p edges
in parallel, each with weight v, are equivalent to a single edge with weight veff satisfying
1 + veff = (1 + v)p. This reasoning suggests that counterexamples to the univariate Brown–

Colbourn conjecture might be found for the graphs K
(b,1,p)
4 and K

(d,1,p)
4 : for all p > (1−β)/α

they should have a root v ∈ A+.
4 Likewise, the graphs K

(b,p,1)
4 and K

(d,p,1)
4 are expected to

4We do not claim that this is a proof, though we suspect that a suitable topological argument might be
able to turn it into a proof.
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Value of p
Graph 6 7 8 9 10 11 12 13 14 15

K
(b,1,p)
4 1 0.999765 0.997818 0.996996 0.996734 0.996749 0.996897 0.997102 0.997326 0.997547

K
(b,p,1)
4 0.998274 0.997234 0.997001 0.997083 0.997284 0.997519 0.997753 0.997971 0.998169 0.998345

K
(d,1,p)
4 1 1 1 0.999956 0.999813 0.999746 0.999718 0.999713 0.999718 0.999730

K
(d,p,1)
4 1 1 1 1 1 1 1 1 1 1

Table 1: Minimum value of |1 + v| for a zero of CG(v) for selected graphs G = K
(b/d,p1,p2)
4 .

For 1 ≤ p ≤ 5 the value equals 1. A value strictly less than 1 indicates a counterexample to
the univariate Brown–Colbourn conjecture. For K

(d,p,1)
4 a counterexample can be found for

p ≥ 30.

have, for all p > (1 − α)/β, a root v ∈ B+. These guesses are in fact correct, and we find
the following counterexamples to the univariate Brown–Colbourn conjecture:

• G = K
(b,1,7)
4 , 30 edges: v ≈ −0.269253± 0.682304i, |1 + v| ≈ 0.999765

• G = K
(b,6,1)
4 , 16 edges: v ≈ −0.405015± 0.801589i, |1 + v| ≈ 0.998274

• G = K
(d,1,9)
4 , 30 edges: v ≈ −0.220759± 0.626655i, |1 + v| ≈ 0.999956

• G = K
(d,30,1)
4 , 93 edges: v ≈ −0.017476± 0.185846i, |1 + v| ≈ 0.999946

Counterexamples are also obtained for each larger p; some typical numbers are shown in
Table 1. Please note that all these counterexample graphs are planar.

The graphs G = K
(b/d,p1,p2)
4 are, of course, non-simple (except when p1 = p2 = 1); so one

might cling to the hope that the univariate Brown–Colbourn conjecture is true at least for
simple graphs (or, weaker yet, for simple planar graphs). But these hopes too are false. To
see why this is the case, consider the following procedure:

1) Choose p1, p2 so that the graph K
(b,p1,p2)
4 has a root v1 satisfying |1 + v1| < 1.

2) Choose any integer s ≥ 2.

3) Find an integer k large enough so that vk ≡ −1 + (1 + v1)
1/k — defined using the root

with | arg[(1 + v1)
1/k]| ≤ π/k — lies in the disc |1/s+ vk| < 1/s. [It is always possible

to find such a k, because the points vk lie on a logarithmic spiral that approaches
the point v = 0 making a nonzero angle with the imaginary axis, while all the circles
|1/s+ v| = 1/s pass through v = 0 tangent to the imaginary axis.]
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Then vk is a root for the graph K
(b,kp1,kp2)
4 , by the rules for parallel reduction; and svk is a

root for the graph (K
(b,kp1,kp2)
4 )⊲⊳s, by the rules for series reduction. And by construction we

have |1 + svk| < 1. Therefore, the graph (K
(b,kp1,kp2)
4 )⊲⊳s, which is simple and planar, is the

desired counterexample.
For example, if we take (p1, p2) = (11, 1) and s = 2, counterexamples can be obtained for

k ≥ 58:

• v1 ≈ −0.140 970 808 664 + 0.507 062 767 880i, |1 + v1| ≈ 0.997 518 822 949

• v58 ≈ −0.000 085 091 565+ 0.009 193 226 407i, |1 + 2v58| ≈ 0.999 998 862 173

This shows that the graph (K
(b,638,58)
4 )⊲⊳2, which has 1512 vertices and 3016 edges, is a

counterexample to the univariate Brown–Colbourn conjecture. Similarly, if we take (p1, p2) =
(1, 12) and s = 2, counterexamples can be obtained for k ≥ 36:

• v1 ≈ −0.112 358 418 620 + 0.453 757 934 703i, |1 + v1| ≈ 0.996 897 106 175

• v36 ≈ −0.000 172 469 038+ 0.013 125 252 246i, |1 + 2v36| ≈ 0.999 999 665 908

Therefore, the graph (K
(b,36,432)
4 )⊲⊳2, which has 1804 vertices and 3600 edges, is a counterex-

ample to the univariate Brown–Colbourn conjecture.
Smaller counterexamples of the forms (K

(b/d,p,1)
4 )⊲⊳(s,1) or (K

(b/d,1,p)
4 )⊲⊳(1,s) can probably

be found by direct search. But the foregoing construction has the advantage that there is no
need to compute the roots of extremely-high-degree polynomials; it suffices to compute the
roots for the base case K

(b/d,p1,p2)
4 (for which the polynomials are large but not huge) and

then make simple manipulations on them.

Methodological remark. In this work we needed to compute accurately the roots of
polynomials of fairly high degree (up to 93) with very large integer coefficients (up to about
1027). To do this we used the package MPSolve 2.0 developed by Dario Bini and Giuseppe
Fiorentino [2, 3]. MPSolve is much faster than Mathematica’s NSolve for high-degree
polynomials (this is reported in [3], and we confirm it); it gives guaranteed error bounds for
the roots, based on rigorous theorems [3]; its algorithms are publicly documented [3]; and
its source code is freely available [2].

Let us mention, finally, that counterexamples with smaller values of |1+ v| can be found.
Consider, for example, the complete graph K6 in which a pair of vertex-disjoint triangles
receives weight a and the remaining nine edges receive weight b. We have

CK6(a, b) =

(81b5 + 78b6 + 36b7 + 9b8 + b9) +

(324b4 + 594b5 + 480b6 + 216b7 + 54b8 + 6b9)a+

(486b3 + 1314b4 + 1665b5 + 1224b6 + 540b7 + 135b8 + 15b9)a2 +

11



(324b2 + 1188b3 + 2160b4 + 2376b5 + 1656b6 + 720b7 + 180b8 + 20b9)a3 +

(81b+ 432b2 + 1134b3 + 1800b4 + 1854b5 + 1254b6 + 540b7 + 135b8 + 15b9)a4 +

(54b+ 216b2 + 504b3 + 756b4 + 756b5 + 504b6 + 216b7 + 54b8 + 6b9)a5 +

(9b+ 36b2 + 84b3 + 126b4 + 126b5 + 84b6 + 36b7 + 9b8 + b9)a6 (4.1)

If we then substitute a = (1+v)p1−1 and b = (1+v)p2−1, counterexamples to the univariate
Brown–Colbourn conjecture can be found for many pairs (p1, p2). For example, for (p1, p2) =
(1, 6) we obtain a 60-edge non-planar graph whose roots include v ≈ −0.357514±0.713815 i,
yielding |1 + v| ≈ 0.960375.

It would be interesting to know whether examples can be found in which |1 + v| is
arbitrarily small. More generally, one can ask:

Question 4.1 What is the closure of the set of all roots of the polynomials CG(v) as G
ranges over all graphs? Over all planar graphs? Over all simple planar graphs?

Brown and Colbourn [5] pointed out that the graphs G = C
(p)
n (the n-cycle with each

edge replaced by p parallel edges) have roots that, taken together, are dense in the region
|1+v| ≥ 1. We have shown here that roots can also enter the region |1+v| < 1. But how far
into this latter region can they penetrate? Might the roots actually be dense in the whole
complex plane? If this is indeed the case, it would mean that the univariate Brown–Colbourn
conjecture is as false as it can possibly be.

Note Added (April 2004). Building on the examples constructed in this section,
Chang and Shrock [6, Sections 5.17 and 5.18] have recently devised families of strip graphs
in which the limiting curve of zeros of CG(v), as the strip length tends to infinity, penetrates
into the “forbidden region” |1 + v| < 1. Some of these families consist of planar graphs.

5 Series-parallel is necessary and sufficient

In this section we shall prove that a graph has the multivariate Brown–Colbourn property
if and only if it is series-parallel.

Let us begin by defining a weakened version of the Brown–Colbourn property:

Definition 5.1 Let G be a graph, and let λ > 0. We say that G

• has the univariate property BCλ if CG(v) 6= 0 whenever |λ+ v| < λ;

• has the multivariate property BCλ if CG(v) 6= 0 whenever |λ+ ve| < λ for all edges e.

Properties BC1 are, of course, the original univariate and multivariate Brown–Colbourn
properties; the properties BCλ become increasingly weaker as λ is decreased.

The properties BCλ are intimately related to subdivisions:

12



Lemma 5.2 Let λ > 0 and let s be a positive integer. Then the following are equivalent for
a graph G:

(a) G has the univariate property BCλ.

(b) G⊲⊳s has the univariate property BCsλ.

Lemma 5.3 Let λ > 0 and let s be a positive integer. Then the following are equivalent for
a graph G:

(a) G has the multivariate property BCλ.

(b) G⊲⊳s has the multivariate property BCsλ.

(c) G⊲⊳s has the multivariate property BCsλ for all vectors s satisfying se ≥ s for all edges
e.

Indeed, Lemmas 5.2 and 5.3 are an immediate consequence of the formula (3.4) for subdivi-
sions — which states that subdivision by s moves the nonzero roots from v to sv — together
with the fact that |sλ+ sv| < sλ is equivalent to |λ+ v| < λ.

In the preceding section we have shown that not all graphs have the univariate property
BC1. It is nevertheless true — and virtually trivial — that every connected graph has
the univariate property BCλ for some λ > 0. (Since a non-identically-vanishing univariate
polynomial has finitely many roots, it suffices to choose λ small enough so that none of the
roots of CG(v) lie in the disc |λ + v| < λ.) By Lemma 5.2, an equivalent assertion is that
G⊲⊳s has the univariate property BC1 for all sufficiently large integers s.5

The situation is very different, however, when we consider the multivariate property BCλ.
We begin with a simple but important lemma:

Lemma 5.4 Let λ > 0, and suppose that the connected graph G has the multivariate property
BCλ. Then every connected subgraph H ⊆ G also has the multivariate property BCλ.

Proof. Consider first the case in which H is a connected spanning subgraph (i.e. its vertex
set is the same as that of G). Let us write v = (v′,v′′) where v′ = {ve}e∈E(H) and v′′ =
{ve}e∈E(H)\E(G). Then

CH(v
′) = CG(v

′, 0) = lim
v′′→0

CG(v
′,v′′) . (5.1)

5Brown and Colbourn [5, Proposition 4.4 and Theorem 4.5] have proven a result also for non-uniform

subdivisions G⊲⊳s: namely, for each graph G there exists an integer s such that G⊲⊳s has the univariate
property BC1 whenever se ≥ s for all e. This is significantly stronger than the just-mentioned trivial result,
and it would be worth trying to understand it better. Brown and Colbourn’s method looks very different
from ours, at least at first glance; it would be interesting to try to translate it into our language. In particular,
there may be a “partially multivariate” result hiding underneath their apparently univariate proof.
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By hypothesis, CG(v
′,v′′) 6= 0 whenever |λ + ve| < λ for all e ∈ E(G). Now take v′′ → 0

from within this product of discs (0 lies on its boundary). By Hurwitz’s theorem6, either
CH(v

′) is nonvanishing whenever |λ+ve| < λ for all e ∈ E(H), or else CH is identically zero.
But the latter is impossible since H is connected.

Now let H be an arbitrary connected subgraph of G (spanning or not). Construct a

connected spanning subgraph Ĥ of G by hanging trees off some or all of the vertices of
H without creating any new circuits.7 Let us write v = {ve}e∈E(Ĥ) = (v′,v′′) where v′ =

{ve}e∈E(H) and v′′ = {ve}e∈E(Ĥ)\E(H). Then

CĤ(v) = CH(v
′)

∏

e∈E(Ĥ)\E(H)

ve . (5.2)

Since Ĥ has multivariate property BCλ, so does H . �

The following is the fundamental fact from which all else flows:

Proposition 5.5 The complete graph K4 does not have the multivariate property BCλ for
any λ > 0.

Proof. This is an almost immediate consequence of the observations made at the end of
Section 2. In cases (b) and (d), for any λ > 0 there exists b with |λ + b| = λ for which at
least one of the solutions to CK4(a, b) = 0 satisfies |λ + a| < λ. By slightly perturbing this
pair, we can find a pair (a, b) with CK4(a, b) = 0 satisfying |λ + a| < λ and |λ + b| < λ. So
K4 does not even have the bivariate property BCλ. �

We can deduce from Lemma 5.4 and Proposition 5.5 a necessary and sufficient condition
for G to have various forms of the multivariate Brown–Colbourn property:

Theorem 5.6 Let G be a loopless connected graph. Then the following are equivalent:

(a) G has the multivariate property BC1.

6Hurwitz’s theorem states that if D is a domain in Cn and (fk) are nonvanishing analytic functions on D

that converge to f uniformly on compact subsets of D, then f is either nonvanishing or else identically zero.
Hurwitz’s theorem for n = 1 is proved in most standard texts on the theory of analytic functions of a single
complex variable (see e.g. [1, p. 176]). Surprisingly, we have been unable to find Hurwitz’s theorem proven
for general n in any standard text on several complex variables (but see [11, p. 306] and [15, p. 337]). So
here, for completeness, is the sketch of a proof: Suppose that f(c) = 0 for some c = (c1, . . . , cn) ∈ D, and let
D′ ⊂ D be a small polydisc centered at c. Applying the single-variable Hurwitz theorem, we conclude that
f(z1, c2, . . . , cn) = 0 for all z1 such that (z1, c2, . . . , cn) ∈ D′. Applying the same argument repeatedly in the
variables z2, . . . , zn, we conclude that f is identically vanishing on D′ and hence, by analytic continuation,
also on D.

7This can be done, for instance, by running breadth-first search with the vertices of H initially on the
queue.
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(b) G has the multivariate property BCλ for some λ > 0.

(c) G is series-parallel.

Proof. (a) =⇒ (b) is trivial.
(b) =⇒ (c): Let G be a loopless connected graph that is not series-parallel. Then

G contains a subgraph H that is a subdivision of K4.
8 Suppose that H = (K4)

⊲⊳s with
s = (s1, . . . , s6), and define s = max(s1, . . . , s6). Now fix any λ > 0; then, by Proposition 5.5
we can find a vector v = (v1, . . . , v6) that is a zero of CK4(v) and satisfies |λ/s+ vi| < λ/s
for i = 1, . . . , 6. It then follows that the vector v′ = (v′1, . . . , v

′
6) defined by v′i = sivi satisfies

CH(v
′) = 0 and |λ + v′i| < λ for i = 1, . . . , 6. Therefore H does not have the multivariate

property BCλ. By Lemma 5.4, G cannot have this property either.
(c) =⇒ (a): This is proven in [16, Remark 3 in Section 4.1], but for the convenience of

the reader we repeat the proof here. Suppose that G is a loopless connected series-parallel
graph; this means that G can be obtained from a tree by a finite sequence of series and
parallel extensions of edges (i.e. replacing an edge by two edges in series or two edges in
parallel). We will prove that G has the multivariate property BC1, by induction on the
length of this sequence of series and parallel extensions. The base case is when G is a tree:
then CG(v) =

∏
e∈E(G) ve and G manifestly has the multivariate property BC1. Now suppose

that G is obtained from a smaller graph G′ by replacing an edge e∗ of G′ by two parallel
edges e1, e2. Use the parallel reduction formula (3.1): since |1+v1| < 1 and |1+v2| < 1 imply
|1+v∗| < 1, we deduce that G has the multivariate property BC1 if G

′ does. Suppose, finally,
that G is obtained from a smaller graph G′ by replacing an edge e∗ of G

′ by two edges e1, e2 in
series. Use the series reduction formula (3.2)/(3.3) and the fact that |1+ v| < 1 is equivalent
to Re(1/v) < −1/2: then Re(1/vi) < −1/2 for i = 1, 2 implies that Re(1/v∗) < −1 < −1/2,
and moreover the prefactor v1 + v2 is nonzero; so we deduce that G has the multivariate
property BC1 if G′ does. �

For each graph G, let us define λ⋆(G) to be the maximum λ for which G has the mul-
tivariate property BCλ. Then Theorem 5.6 states a surprising (at first sight) dichotomy:
either λ⋆(G) = 0 [when G is not series-parallel] or else λ⋆(G) ≥ 1 [when G is series-parallel].

Some series-parallel graphs have λ⋆(G) = 1 exactly: for example, the graphs K
(n)
2 (a pair

of vertices connected by n parallel edges) have C
K

(n)
2
(v) = (1 + v)n − 1 and hence even have

univariate roots on the circle |1 + v| = 1. On the other hand, some series-parallel graphs
have λ⋆(G) > 1: for example, the cycles Cn have λ⋆(G) = n/2. [Proof: We have

CCn
(v) =

(
n∏

i=1

vi

)(
1 +

n∑

i=1

1

vi

)
, (5.3)

8The relevant fact is the following [8, Exercise 8.16 and Proposition 1.7.2]: G is series-parallel ⇐⇒ G has
no K4 minor ⇐⇒ G has no K4 topological minor. And the latter statement says precisely that G contains
no subgraph H that is a subdivision of K4. See also [9, 13].
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which is nonvanishing if Re(1/vi) < −1/n for all i. But this is equivalent to |n/2+vi| < n/2.]
It is an interesting open problem to characterize the graphs that have λ⋆(G) = 1 or, more
ambitiously, to find a simple graph-theoretic formula for λ⋆(G).
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[4] A. Brandstädt, Le Van Bang and J.P. Spinrad, Graph Classes: A Survey (SIAM,
Philadelphia, 1999).

[5] J.I. Brown and C.J. Colbourn, Roots of the reliability polynomial, SIAM J. Discrete
Math. 5 (1992), 571–585.

[6] S.-C. Chang and R. Shrock, Reliability polynomials and their asymptotic limits for
families of graphs, J. Statist. Phys. 112 (2003), 1019–1077, cond-mat/0208538 at
xxx.lanl.gov.

[7] C.J. Colbourn, The Combinatorics of Network Reliability (Oxford University Press,
New York–Oxford, 1987).

[8] R. Diestel, Graph Theory (Springer-Verlag, New York, 1997).

16

ftp://ftp.dm.unipi.it/pub/mpsolve/
http://arxiv.org/abs/cond-mat/0208538


[9] R.J. Duffin, Topology of series-parallel graphs, J. Math. Anal. Appl. 10 (1965), 303–318.
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