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EXCLUDING KURATOWSKI GRAPHS AND THEIR

DUALS FROM BINARY MATROIDS

DILLON MAYHEW, GORDON ROYLE, GEOFF WHITTLE

Abstract. We consider some applications of our characterisation of
the internally 4-connected binary matroids with no M(K3,3)-minor. We
characterise the internally 4-connected binary matroids with no minor
in M, where M is a subset of {M(K3,3),M

∗(K3,3),M(K5),M
∗(K5)}

that contains either M(K3,3) or M∗(K3,3). We also describe a prac-
tical algorithm for testing whether a binary matroid has a minor in
M. In addition we characterise the growth-rate of binary matroids
with no M(K3,3)-minor, and we show that a binary matroid with no
M(K3,3)-minor has critical exponent over GF(2) at most equal to four.

1. Introduction

Earlier, we proved the following theorem.

Theorem 1.1 ([10, Theorem 1.1]). An internally 4-connected binary ma-

troid M has no minor isomorphic to M(K3,3) if and only if M is either:

(i) cographic,

(ii) isomorphic to a triangular or triadic Möbius matroid, or

(iii) isomorphic to one of 18 sporadic matroids.

The 18 sporadic matroids appearing in Theorem 1.1 have ground sets of
cardinality at most 21, and have rank at most 11. Their matrix representa-
tions appear in Appendix B of [10]. Möbius matroids are single-element ex-
tensions of the cographic matroids corresponding to two families of graphs:
The cubic Möbius ladder CM2n is obtained from an even cycle with ver-
tex sequence v0, . . . , v2n−1 by joining each vertex vi to the antipodal vertex
vi+n. (Indices are read modulo 2n.) The quartic Möbius ladder QM2n+1 is
obtained from an odd cycle with vertex sequence v0, . . . , v2n by joining each
vertex vi to the two antipodal vertices vi+n and vi+n+1. (Indices are read
modulo 2n + 1.)

Let r > 2 be an integer and let {e1, . . . , er} be the standard basis of
GF(2)r. For 1 ≤ i ≤ r−1 let ai be the sum of ei and er, and for 1 ≤ i ≤ r−2
let bi be the sum of ei and ei+1. Let br−1 be the sum of e1, er−1, and er.
The rank-r triangular Möbius matroid, denoted by ∆r, is represented by the
set {e1, . . . , er, a1, . . . , ar−1, b1, . . . , br−1}. (We also take this set to be the
ground set of ∆r.) Deleting er from ∆r produces a copy of M∗(CM2r−2).
It is easy to see that if r ≥ 4, then ∆r has ∆r−1 as a minor.
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Now let r ≥ 4 be an even integer, and again let {e1, . . . , er} be the stan-
dard basis of GF(2)r. For 1 ≤ i ≤ r− 2 let ci be the sum of ei, ei+1, and er.
Let cr−1 be the sum of e1, er−1, and er. The rank-r triadic Möbius matroid,
denoted by Υr, is represented by the set {e1, . . . , er, c1, . . . , cr−1}. If r ≥ 4
is an even integer then Υr\er is isomorphic to M∗(QMr−1). If r > 4, then
Υr has Υr−2 as a minor.

This sequel explores various applications of Theorem 1.1. If M is a set
of binary matroids, then EX2(M) is the set of binary matroids that have
no minor isomorphic to a member of M. Throughout this introduction,
we let M be some subset of {M(K3,3),M

∗(K3,3),M(K5),M
∗(K5)} that

contains either M(K3,3) or M∗(K3,3). First of all, by using Theorem 1.1,
and the classical results by Hall and Wagner on graphs with no K3,3- or
K5-minor, we can obtain additional characterisations. In Section 2 we list
descriptions of the internally 4-connected matroids in EX2(M). Thus we
characterise the internally 4-connected members in twelve different families
of binary matroids. Only the smallest of these classes has been characterised
before [13].

The Graph Minors Project of Robertson and Seymour showed that there
is a polynomial-time algorithm for testing whether a graph contains a fixed
minor [14]. Similarly, the Matroid Minors Project of Geelen, Gerards, and
Whittle [2] is expected to show that the following problem has a polynomial-
time solution for each GF(q)-representable matroid N : Given a matrix, A,
over the field GF(q), decide whether the matroid M [A] has an N -minor.
However, the existence proofs of these algorithms are very non-constructive.
In Section 3 we present algorithms that could actually be implemented. In
particular, we present an algorithm that will decide whether M [A] has a
minor in M, where A is a matrix over GF(2). The algorithm runs in O(n13)
steps, where n is the number of columns in A.

A very well-known example due to Seymour [16] shows that an oracle
algorithm for testing whether a matroid is binary cannot run in polynomial
time relative to the size of the ground set. As we discuss in Section 3,
the same example shows that there is no polynomial-time oracle algorithm
for testing whether a matroid is binary with no minor in M. However,
this difficulty vanishes when we restrict ourselves to internally 4-connected
matroids: There is a polynomial-time oracle algorithm that tests whether an
internally 4-connected matroid (not necessarily binary) belongs to EX2(M).
We conjecture that this is a general phenomenon: the problems created by
Seymour’s examples can be eliminated with higher connectivity.

Conjecture 1.2. There is a polynomial-time oracle algorithm for deciding

if an internally 4-connected matroid is binary.

This is an ambitious conjecture. The next is somewhat more modest.

Conjecture 1.3. There is a polynomial-time oracle algorithm for decid-

ing whether an internally 4-connected matroid belongs to any given proper

minor-closed class of binary matroids.
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The matroids in Seymour’s example are known as binary spikes. Spikes
are a notorious source of difficulty in matroid theory. A spike-like flower

of order n in a 3-connected matroid M is a partition (P1, . . . , Pn) of the
ground set of M such that, for every proper subset J of {1, . . . , n} the
partition (∪j∈JPj, E(M) − ∪j∈JPj) is an exact 3-separation of M ; and, for
all distinct i and j in {1, . . . , n} we have r(Pi ∪ Pj) = r(Pi) + r(Pj)− 1. A
rank-n spike contains a spike-like flower of order n. We believe the existence
of large spike-like flowers is at the heart of the difficulty of recognising binary
matroids. This belief is encapsulated by the next conjecture, which is a
strengthening of Conjecture 1.2.

Conjecture 1.4. Let k be a fixed positive integer. There is a polynomial-

time oracle algorithm for deciding if a 3-connected matroid with no spike-like

flower of order k is a binary matroid.

In the final two sections of the paper, we consider growth-rates and criti-
cal exponents. In Section 4 we use Theorem 1.1 to determine the maximum
size of a simple rank-r binary matroid with no M(K3,3)-minor. Moreover,
we characterise the matroids that obtain this upper bound. This completely
resolves a question studied by Kung [8]. He showed that a simple rank-r
binary matroid M without an M(K3,3)-minor has at most 10r elements.
Theorem 4.2 shows that, in fact, |E(M)| ≤ 14r/3 − α(r), where α(r) as-
sumes one of three values depending on the residue of r modulo 3. Any ma-
troid meeting this bound can be obtained by starting with either PG(1, 2),
PG(2, 2), or PG(3, 2), and then repeatedly adding copies of PG(3, 2) via
parallel connections along points.

If M is a matroid, then its characteristic polynomial, χ(M ; t), is a polyno-
mial in the variable t, and naturally generalises the chromatic polynomial of
a graph. If M is loopless and representable over GF(q), then the critical ex-
ponent of M over q, denoted c(M ; q), is the smallest positive integer k such
that χ(M ; qk) 6= 0. The material in Section 4 shows that |E(M)| ≤ 5r(M),
for every simple binary matroid, M , with no M(K3,3)-minor. It therefore
follows from Lemma 7.5 in [9] that the critical exponent of such a matroid
is at most 5. Kung had already shown that the critical exponent is at most
10 [8]. In Section 5 we improve these bounds by showing that any loopless
binary matroid with no M(K3,3)-minor has a critical exponent over GF(2)
of at most 4. This result cannot be improved: we also characterise the ma-
troids with critical exponent exactly equal to 4: They are precisely those
with a 3-connected component isomorphic to PG(3, 2).

2. Additional classes

Kung initiated the study of binary matroids that have no minor isomor-
phic to one of the graphic matroids of the Kuratowski graphs, K3,3 and
K5 [8]. We extend his programme here. Recall that if M is a set of bi-
nary matroids, then EX2(M) is the class of binary matroids that have no
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minors isomorphic to members of M. Thus Theorem 1.1 gives a struc-
tural characterisation of EX2({M(K3,3)}). Let M be a subset of the col-
lection {M(K3,3),M

∗(K3,3),M(K5),M
∗(K5)} such that M contains either

M(K3,3) or its dual. There are exactly twelve such subsets, leading to twelve
classes of the form EX2(M). By using Theorem 1.1, and classical results by
Hall [3] and Wagner [17], we obtain characterisations of the internally 4-con-
nected matroids in each of these twelve classes. To do so, we occasionally
need to check whether certain binary matroids have particular minors. We
accomplish this task by using the matroid capabilities of the Sage mathemat-
ics package (www.sagemath.org). We start with some preliminary lemmas.

Lemma 2.1. The triangular and triadic Möbius matroids have no

M(K5)-minors.

Proof. Lemma 3.8 of [10] states that the only internally 4-connected non-
cographic minors of Möbius matroids are themselves Möbius matroids. Thus
if a Möbius matroid had an M(K5)-minor it would imply that M(K5) is a
Möbius matroid. It is easily seen that this is not the case. �

The next lemma follows from Wagner’s characterisation of graphs with
no K5-minor (see [5, Theorem 1.6]).

Lemma 2.2. If M is an internally 4-connected cographic matroid with no

minor isomorphic to M∗(K5) then either M = M∗(G), where G is a planar

graph, or M is isomorphic to either M∗(K3,3) or M∗(CM8).

Now to the characterisations of the twelve families. All sporadic ma-
troids are described in Appendix B of [10]. The next result follows from
Theorem 1.1, Lemma 2.1, and a simple computer check.

Theorem 2.3. An internally 4-connected matroid M belongs to

EX2({M(K3,3),M(K5)}) if and only if M is either:

(i) cographic,

(ii) isomorphic to a triangular or triadic Möbius matroid, or

(iii) isomorphic to one of the sporadic matroids C11, C12, M
a
5,12, M6,13,

M7,15, M9,18, or M11,21.

It is easy to check that ∆6 has an M∗(K5)-minor, and therefore ∆r has an
M∗(K5)-minor for all r ≥ 6. On the other hand ∆r has no M∗(K5)-minor
if r ∈ {3, 4, 5}. Similarly Υr has an M∗(K5)-minor if r ≥ 6, but Υ4 has no
M∗(K5)-minor. We note that ∆3

∼= F7 and Υ4
∼= F ∗

7 . The next theorem
follows from these facts, and by applying Theorem 1.1, Lemma 2.2, and
some computer tests. The sporadic matroid T12 was introduced in [6].

Theorem 2.4. An internally 4-connected matroid M belongs to

EX2({M(K3,3),M
∗(K5)}) if and only if M is either:

(i) planar graphic,

(ii) isomorphic to one of the cographic matroids M∗(K3,3) or M
∗(CM8),

(iii) isomorphic to one of the Möbius matroids F7, F
∗
7 , ∆4, ∆5, or

www.sagemath.org
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(iv) isomorphic to one of the 18 sporadic matroids of Theorem 1.1, other
than T12.

Next we consider EX2({M(K3,3),M
∗(K3,3)}). A result due to Hall [3]

implies that the only 3-connected cographic matroids with no M∗(K3,3)-mi-
nor are M∗(K5), and cycle matroids of planar graphs. The only Möbius
matroids with no M∗(K3,3)-minor are ∆3, Υ4, and Υ6. Next we consider
the sporadic matroids. As ∆4 has an M∗(K3,3)-minor, we need only con-
sider sporadic matroids with no ∆4-minor. By a result in [6] the matroid T12

has a transitive automorphism group, so T12\e and T12/e are well-defined.
Corollary 2.15 of [10] says that the only internally 4-connected non-cographic
matroids in EX2({M(K3,3),∆4}) are F7, F

∗
7 , M(K5), T12\e, T12/e, and T12.

None of these matroids has an M∗(K3,3)-minor. Both T12 and T12/e are
among the sporadic matroids of Theorem 1.1, while F7

∼= ∆3, F
∗
7
∼= Υ4, and

T12\e ∼= Υ6 are all Möbius matroids. The next result follows.

Theorem 2.5. An internally 4-connected matroid M belongs to

EX2({M(K3,3),M
∗(K3,3)}) if and only if M is either:

(i) planar graphic,

(ii) isomorphic to the cographic matroid M∗(K5),
(iii) isomorphic to one of the Möbius matroids F7, F

∗
7 , or T12\e, or

(iv) isomorphic to one of the sporadic matroids M(K5), T12/e, or T12.

The next theorems are easy consequences of results stated above.

Theorem 2.6. An internally 4-connected matroid M belongs to

EX2({M(K3,3),M(K5),M
∗(K5)}) if and only if M is either:

(i) planar graphic,

(ii) isomorphic to one of the cographic matroids M∗(K3,3) or M
∗(CM8),

(iii) isomorphic to one of the Möbius matroids F7, F
∗
7 , ∆4, ∆5, or

(iv) isomorphic to one of the sporadic matroids C11, C12, M
a
5,12, M6,13,

M7,15, M9,18, or M11,21.

Theorem 2.7. An internally 4-connected matroid M belongs to

EX2({M(K3,3),M
∗(K3,3),M(K5)}) if and only if M is either:

(i) planar graphic,

(ii) isomorphic to the cographic matroid M∗(K5), or
(iii) isomorphic to one of the Möbius matroids F7, F

∗
7 , or T12\e.

Finally, we have the following characterisation, which has already been
proved by Qin and Zhou [13].

Theorem 2.8. An internally 4-connected matroid M belongs to

EX2({M(K3,3),M
∗(K3,3),M(K5),M

∗(K5)}) if and only if M is either:

(i) planar graphic, or

(ii) isomorphic to one of F7 or F ∗
7 .

Theorem 1.1 and Theorems 2.3 to 2.8 gives us characterisations of seven
families. Dualising these theorems gives us five additional characterisations
(since Theorems 2.5 and 2.8 characterise self-dual classes).
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3. Polynomial-time algorithms

Let M be a set of binary matroids. We consider the following computa-
tional problem.

Membership of EX2(M)
Input: A GF(2) matrix representing the matroid, M .
Question: Does M belong to the class EX2(M)?

The fact that this problem has a polynomial-time solution is expected to
follow from the Matroid Minors Project of Geelen, Gerards, and Whittle
(see [2]). However, the proofs in that project are highly non-constructive,
and the algorithms that follow from them are not implementable. In this
section we will describe a practical algorithm for solving Membership of

EX2(M) whenM is a subset of {M(K3,3),M
∗(K3,3),M(K5),M

∗(K5)} that
contains M(K3,3) or M

∗(K3,3). We start with some preliminary material.
The symmetric difference of sets Z1 and Z2 is denoted by Z1△Z2. Suppose

that M is a binary matroid. A cycle of M is either the empty set, or a set
that can be partitioned into circuits. Binary matroids are characterised by
the fact that the symmetric difference of any two cycles is another cycle [11,
Theorem 9.1.2].

Let M1 and M2 be two binary matroids on the ground sets E1 and E2

respectively. Let Z be the collection

{Z1△Z2 : Zi is a cycle of Mi for i = 1, 2, and Z1 ∩ E2 = Z2 ∩ E1}.

Then Z is the collection of cycles of a binary matroid on the ground set
E1△E2 (see [15] or [11, Lemma 9.3.1]). We denote this matroid M1△M2.

Proposition 3.1 ([15, (4.4)]). Suppose that M1 and M2 are binary matroids

on the sets E1 and E2 respectively. If I and J are disjoint subsets of E1−E2

then (M1△M2)/I\J = (M1/I\J)△M2.

Next we define 1-, 2-, and 3-sums of binary matroids, following the path
taken by Seymour [15]. This means that the sums defined here are slightly
different from those in [11]. If E1 and E2 are disjoint, and neither E1 nor
E2 is empty, then M1△M2 is the 1-sum of M1 and M2, denoted M1 ⊕1 M2.
If E1 ∩ E2 = {p}, where p is neither a loop nor a coloop in M1 or M2,
and |E1|, |E2| ≥ 3, then M1△M2 is the 2-sum of M1 and M2, denoted
M1 ⊕2 M2. We say that p is the basepoint of the 2-sum. Finally, suppose
that E1 ∩ E2 = T and assume that the following conditions hold:

(i) T is a triangle in both M1 and M2,
(ii) T contains a cocircuit in neither M1 nor M2, and
(iii) |E1|, |E2| ≥ 7.

In this case M1△M2 is the 3-sum of M1 and M2, denoted M1 ⊕3 M2.

Proposition 3.2 ([15, (2.1)]). If (X1,X2) is a 1-separation of the binary

matroid M , then M = (M |X1)⊕1 (M |X2). Conversely, if M = M1 ⊕1 M2,

then (E(M1), E(M2)) is a 1-separation of M .
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The next result is easy, and also follows from [11, Proposition 4.2.20] and
[11, (2.1)].

Proposition 3.3. Let M = M1 ⊕1 M2 and let N be a connected matroid.

Then M has an N -minor if and only if either M1 or M2 has an N -minor.

Proposition 3.4 ([15, (2.6)]). If (X1,X2) is an exact 2-separation of the

binary matroid M , then there are binary matroids M1 and M2 on the ground

sets X1 ∪ p and X2 ∪ p, where p /∈ X1 ∪ X2, such that M = M1 ⊕2 M2.

Conversely, if M = M1 ⊕2 M2 then (E(M1)−E(M2), E(M2)−E(M1)) is a
2-separation of M .

We can deduce the next result from [11, Proposition 8.3.5] and [15, (2.6)].

Proposition 3.5. Let M = M1 ⊕2 M2 and let N be a 3-connected matroid.

Then M has an N -minor if and only if either M1 or M2 has an N -minor.

Proposition 3.6 ([15, (2.9)]). Suppose that (X1,X2) is an exact 3-separa-
tion of the binary matroid M such that min{|X1|, |X2|} ≥ 4. Then there

are binary matroids M1 and M2 on the ground sets X1 ∪ T and X2 ∪ T
respectively, where T is disjoint from X1 ∪X2, such that M = M1 ⊕3 M2.

Conversely, if M = M1 ⊕3 M2, then (E(M1)− E(M2), E(M2)− E(M1)) is
an exact 3-separation of M .

Proposition 3.7 ([15, (4.1)]). Let M be the binary matroid M1 ⊕3 M2. If

M is 3-connected then M1 and M2 are isomorphic to minors of M .

Proposition 3.8. Let M be the binary matroid M1 ⊕3 M2. Assume M is

3-connected and let N be an internally 4-connected binary matroid such that

|E(N)| ≥ 4 and N has no triad. Then M has an N -minor if and only if

either M1 or M2 has an N -minor.

Proof. Let E1 and E2 be the ground sets of M1 and M2 respectively, so that
|E1|, |E2| ≥ 7. We will assume that E1∩E2 = T , where T is a coindependent
triangle in both M1 and M2. The ‘if’ direction of the proof follows from
Proposition 3.7. To prove the ‘only if’ direction, we assume that neither M1

nor M2 has an N -minor, and yet M does. Amongst such counterexamples,
assume M has been chosen so that |E(M)| is as small as possible.

It cannot be the case that M is isomorphic to N , or else Proposition 3.6
would imply that N is not internally 4-connected. ThereforeM has a proper
N -minor. Furthermore, N is not a wheel, since all wheels have triads.
Therefore we can apply Seymour’s Splitter Theorem [15, (7.3)]. There is a
3-connected minor, M ′, of M such that M ′ has an N -minor, and |E(M)| −
|E(M ′)| = 1. Let e be the element in E(M) − E(M ′). Without loss of
generality, we can assume that e is in E1 − T . If M ′ = M\e, then let
M ′

1 = M1\e, and if M ′ = M/e, let M ′
1 = M1/e. Proposition 3.1 implies

M ′ = M ′
1△M2. Since neither M ′

1 nor M2 has an N -minor, and yet M ′

does, it follows that M ′
1△M2 is not the 3-sum of M ′

1 and M2, or else the
minimality of M is contradicted. Therefore, either T is not a triangle in
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M ′
1, or T contains a cocircuit in M ′

1, or |E(M ′
1)| < 7. We eliminate these

possibilities one by one.

3.8.1. T is a triangle in M ′
1.

Proof. If T is not a triangle, then M ′
1 must be M1/e, and e must be parallel

to an element, x ∈ T , in M1. Let C be a circuit of M2 such that C∩T = {x}
(C exists because T is coindependent in M2). It is easy to see that (C−x)∪e
is a circuit of M = M1△M2. Now (E1 − T,E2 − T ) is a 3-separation of M ,
by Proposition 3.6, and e is in E1 ∩ clM (E2). Thus (E1 − (T ∪ e), E2 − T )
is a 2-separation of M ′ = M/e, and this contradicts the fact that M ′ is
3-connected. �

3.8.2. T does not contain a cocircuit in M ′
1.

Proof. Certainly T does not contain a cocircuit in M1. If it contains a
cocircuit in M ′

1, then M ′
1 = M1\e, and there is a cocircuit, C∗

1 , of M1 such
that C∗

1 ⊆ T ∪ e and e ∈ C∗
1 . The intersection T ∩ C∗

1 contains exactly
two elements [11, Theorem 9.1.2]. Let T = {x1, x2, x3}, and assume that
T ∩C∗

1 = {x1, x2}.
In M2, consider a basis, B, that contains x2 and x3. Then clM2

(B−x2) is
a hyperplane that intersects T exactly in x3. Thus there is a cocircuit, C∗

2 ,
of M2 such that C∗

2 ∩ T = {x1, x2}. Now M∗
1△M∗

2 = M∗ (see [15, p. 319]).
From this we can deduce that (C∗

2 −{x1, x2})∪ e is a cocircuit in M . Hence
(E1−T,E2−T ) is a 3-separation of M , and e is in E1∩ cl∗M (E2). Therefore
(E1 − (T ∪ e), E2 − T ) is a 2-separation of M ′ = M\e, a contradiction. �

By 3.8.1 and 3.8.2, we must now assume that |E(M ′
1)| < 7, and hence

|E1| = 7. From [15, (4.3)], we know that M1 is 3-connected, except that
there may exist parallel classes of size two that contain elements of T . In
particular, M1 contains no series pair and no coloop. Any 7-element binary
matroid with rank at least 4 that contains a triangle also contains a series
pair or coloop, so 2 ≤ r(M ′

1) ≤ r(M1) ≤ 3.
Assume r(M ′

1) = 3, so the complement of T in M ′
1 is a cocircuit of size

at most three. Let C∗ be this cocircuit. From the fact that (M ′
1)

∗△M∗
2 =

(M ′)∗, we can see that C∗ is a cocircuit of M ′. Since N has no triad, there
is an element, x ∈ C∗, such that M ′/x = (M ′

1/x)△M2 has an N -minor.
Therefore either r(M ′

1) = 2 and M ′
1△M2 has an N -minor, or r(M ′

1/x) = 2,
and (M ′

1/x)△M2 has an N -minor. In either case it is easy to see that
M ′

1△M2 or (M ′
1/x)△M2 is obtained from M2 by possibly deleting elements

of T and adding parallel elements to elements of T . As N has no parallel
pairs, it now follows that M2 has an N -minor. This is a contradiction that
completes the proof of the proposition. �

Now we prove the main result of this section.

Theorem 3.9. Let M be a subset of {M(K3,3),M
∗(K3,3),M(K5),M

∗(K5)}
that contains M(K3,3) or M

∗(K3,3). There is an algorithm that solves Mem-

bership of EX2(M) in time bounded by O(|E(M)|13).
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Proof. Let n be |E(M)|. A representation of M∗ can be produced in O(n3)
steps. Therefore we can replace M with M∗ if necessary, so we lose no gen-
erality in assuming that M contains M∗(K3,3). Henceforth we also assume
that M has no loops or coloops.

We sketch the procedure for finding an exact k-separation (when k is 1
or 2), or an exact 3-separation with at least 4 elements on each side. A
more complete description is in [1]. The algorithm involves considering all
pairs of disjoint k-element subsets (when k is 1 or 2) or 4-element subsets
(when k = 3). This requires looping at most O(n8) times. We attempt
to extend each such pair to a k-separation. This involves examining each
remaining element of E(M) (looping O(n) times), and calculating the rank
of a submatrix for each such element (which can be done in O(n3) steps).
Thus it takes at most O(n12) steps to search for a separation certifying that
M can be decomposed via a 1-, 2-, or 3-sum.

Every loopless rank-r binary matroid can be considered as a multiset of
points in the projective space P = PG(r − 1, 2). If X ⊆ E(M), we use
clP (X) to denote the span of X in P . Suppose that (X1,X2) is an exact
k-separation of M for some k ∈ {1, 2, 3} with the property that if k = 3
then |X1|, |X2| ≥ 4 and rM (X1), rM (X2) ≥ 3. Let Z = clP (X1) ∩ clP (X2),
and for i = 1, 2 let Mi be the binary matroid represented by the multiset
Xi ∪ Z. Then M ∼= M1 ⊕k M2. It follows easily that by solving a system of
equations (which takes O(n3) steps), we can produce representations of M1

and M2.
Imagine a binary tree with nodes labelled by matroids. The root is la-

belled M . If a node is labelled M ′, we are allowed to label the children of
that node with M1 and M2 if M ′ can be expressed as M ′ = M1 ⊕k M2 for
some k ∈ {1, 2, 3}. For every node, we assume the decomposition of M ′

into M1 ⊕k M2 has been chosen so that k is as small as possible. Even so,
the decomposition need not be unique. Now |E(si(M1))| + |E(si(M2))| ≤
|E(si(M))| + 6. It is easy to prove by induction that the binary tree
has at most max{1, |E(si(M))| − 6} leaves, and therefore at most O(n)
internal nodes. Each internal node corresponds to finding a k-separa-
tion. It follows that we can construct such a tree in time bounded by
O(n)(O(n12) + O(n3)) = O(n13). Note that the matroids labelling leaves
are internally 4-connected (except that they may contain parallel pairs).

Let M∆ be the subset of M containing matroids that have triangles. By
our earlier assumption, M∗(K3,3) is in M∆. Note that no matroid in M∆

contains a triad. We have insisted that we decompose a matroid along a
3-sum only if it is 3-connected. Therefore we can apply Propositions 3.3
and 3.5 and Lemma 4.3. From these results we deduce that M has no minor
in M∆ if and only the simplification of each of the matroids labelling a leaf
has no such minor. The basic classes of internally 4-connected binary ma-
troids with no minor in M∆ are described either by a theorem in Section 2,
or the dual of such a theorem. Therefore we now check that the simplifi-
cation of each leaf matroid belongs to one of these basic classes. There are
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O(n) leaves. Producing a representation of a dual can be done in O(n3)
steps. We will show that we can test whether a matroid is cographic, iso-
morphic to a sporadic matroid, or a Möbius matroid in at most O(n7) steps,
so we can complete this part of the algorithm with another O(n)O(n3)O(n7)
steps.

Assume that M ′ is the simplification of a leaf matroid. Checking that M ′

is isomorphic to a specific sporadic matroid can be done in constant time.
There is an algorithm running in at most O(n3) calls to an independence
oracle which will produce a graph that represents M ′, or certify that no
such graph exists [1]. This also allows us to check whether M ′ is cographic
or planar graphic. Each call to an independence oracle can be simulated in
O(n3) operations on the matrix, so the total time required to check whether
M ′ is graphic, cographic, or planar graphic, is O(n6).

To check if M ′ is a triangular Möbius matroid, we consider each matroid
of the form M ′\e, and produce a graph G (if possible), such that M∗(G) =
M ′\e. We then check each such graph to see if it is a cubic Möbius ladder.
We can do this by finding all 4-cycles (in time O(n4)), and checking that
the edges lying in exactly one such cycle form a Hamiltonian cycle. The
remaining edges must then join opposite vertices in the cycle. Assuming this
is the case, we check that e forms a circuit with the set of edges not in the
Hamiltonian cycle. This entire process can be completed in O(n)(O(n6) +
O(n4)) = O(n7) steps. To check if M ′ is a triadic Möbius matroid, we go
through a similar process, except that we find the 3-cycles of G. The edges
that lie in exactly one 3-cycle must form a Hamiltonian cycle, and e must
be in a circuit with the set of edges not in this cycle.

We have now shown that it is possible to test in O(n13) steps whether M
has a minor isomorphic to a member of M∆. If M has such a minor, then
we halt the algorithm. If M = M∆, then again, we can halt. Therefore
we now assume that M has no minor in M∆ but that M − M∆ is non-
empty. We next produce a decomposition tree for M∗, and we test the
matroids corresponding to leaves of this tree to see whether they belong to
the basic classes of matroids with no minor in {N∗ : N ∈ M}. Note that
the matroids in {N∗ : N ∈ M − M∆} have no triads. We can again use
the results from earlier in this section to deduce that M∗ has no minor in
{N∗ : N ∈ M − M∆} if and only if the leaf matroids belong to the basic
classes. We already have assumed that M∗ has no minor in {N∗ : N ∈ M∆}.
Therefore we can complete the algorithm with another O(n13) steps. �

Oracle algorithms. Historically, matroid computation has often been dis-
cussed in terms of oracle algorithms. In this case our computational model
is a deterministic Turing Machine equipped with an oracle which can, in
unit time, return the rank of a specified subset of the ground set. Let M be
a subset of the family {M(K3,3),M

∗(K3,3),M(K5),M
∗(K5)} that contains

either M(K3,3) or M
∗(K3,3). We now briefly discuss the difficulty of testing

membership in EX2(M) via oracle algorithms.
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A well-known example of Seymour’s [16] shows that the number of calls
to the oracle needed to test whether a matroid is binary is exponential in
terms of the size of the ground set. We will use the same example to show
that an exponential number of calls is required to test whether a matroid
belongs to EX2(M). For r ≥ 3 let {e1, . . . , er} be the standard basis of the
vector space over GF(2) with dimension r. Let d be the sum of e1, . . . , er,
and for 1 ≤ i ≤ r let di be the sum of d and ei. The binary matroid
represented by the set {e1, . . . , er, d1, . . . , dr} is known as the rank-r binary

spike. We will denote this matroid by Nr. If H is a subset of E(Nr) such
that |H ∩ {d1, . . . , dr}| is odd and |H ∩ {ei, di}| = 1 for 1 ≤ i ≤ r, then H
is a circuit-hyperplane of Nr. Let Nr(H) be the matroid obtained from Nr

by relaxing H. It is not difficult to prove by induction on r that Nr has no
minor in M. However, Nr(H) is non-binary, so certainly does not belong to
EX2(M). In the worst case, an oracle algorithm will have to check each of
the 2r−1 candidate sets, H, to decide whether the matroid it is considering
is isomorphic to Nr or Nr(H). Therefore testing whether a matroid belongs
to EX2(M) requires exponentially many calls to the oracle relative to the
size of the ground set.

The matroid Nr contains many 3-separations. If we restrict our attention
to internally 4-connected matroids the situation changes dramatically. Sey-
mour [16] shows that there is an algorithm which, given a matroid M (not
necessarily binary), will either output a graph G such that M = M(G), or
decide that no such graph exists, using a polynomial number of calls to the
oracle. Using a similar strategy to that in the proof of Theorem 3.9 we can
decide whether a matroid M is isomorphic to a Möbius matroid, using only
a polynomial number of calls to an oracle. Since it is obviously possible to
decide whether a matroid M is isomorphic to one of a finite number of spo-
radic matroids using a constant number of oracle calls, it follows that we can
decide in a polynomial number of calls to the oracle whether an internally
4-connected matroid (not necessarily binary) belongs to EX2(M).

4. The growth-rate of EX({M(K3,3)})

Kung [8] investigated simple rank-r matroids of maximum size in
EX2({M(K3,3)}). He showed that if N and N ′ are such matroids and
r(N) = r(N ′) + 1, then |E(N)| − |E(N ′)| ≤ 10. It then follows by induc-
tion that |E(M)| ≤ 10r(M) for any simple matroid M ∈ EX2({M(K3,3)}).
Using our structure theorem, we show that |E(N)| − |E(N ′)| is 4, 8, or 2,
depending on the residue of r(N) modulo 3. The average of these three
numbers is 14/3, so we can prove that |E(M)| ≤ 14r(M)/3 for any sim-
ple matroid M ∈ EX2({M(K3,3)}). Moreover, we characterise the simple
rank-r matroids of maximum size in the class.

When r ∈ {2, 3, 4}, we define the class Pr to be {PG(r − 1, 2)}. When
r > 4 we recursively define Pr to be the class {P (M,PG(3, 2)) : M ∈ Pr−3},
where P (M,PG(3, 2)) is a parallel connection of M and PG(3, 2) (see [11,



12 DILLON MAYHEW, GORDON ROYLE, GEOFF WHITTLE

Section 7.1]) along an arbitrary basepoint. Note that starting with r =
8, the class Pr contains non-isomorphic matroids. It is well known that
parallel connections can be expressed as 2-sums by adding a parallel element.
Therefore the next result follows easily from Proposition 3.5 and induction.

Proposition 4.1. Let r ≥ 2 be an integer. If M is in Pr, then M has no

M(K3,3)-minor.

For an integer r ≥ 2, define h(r) to be the size of matroids in Pr. Therefore

h(r) =











14
3 r − 7 if r ≡ 0 (mod 3)
14
3 r −

11
3 if r ≡ 1 (mod 3)

14
3 r −

19
3 if r ≡ 2 (mod 3)

Let α(r) be 7, 11/3, or 19/3 according to whether r is equivalent to 0, 1, or
2 modulo 3. Thus h(r) = 14r/3 − α(r).

Theorem 4.2. Let M be a simple member of EX2({M(K3,3)}) with rank

r ≥ 2. Then |E(M)| ≤ h(r) and equality holds if and only if M ∈ Pr.

Lemma 4.3. Assume M is a 3-connected member of EX2({M(K3,3)}) with
rank r ≥ 2. Either |E(M)| ≤ 4r − 5, or M is isomorphic to one of the

rank-4 sporadic matroids PG(3, 2), M4,14, M4,13, C12, or D12.

Proof. Assume that M is a counterexample with the smallest possible rank.
ThereforeM is a 3-connected simple matroid in EX2({M(K3,3)}), with r ≥ 2
and |E(M)| > 4r− 5, while M is not isomorphic to any of the five sporadic
matroids listed in the statement. It is easy to see that r ≥ 3.

Assume that M is internally 4-connected. All the sporadic matroids from
Theorem 1.1 satisfy the bound |E(M)| ≤ 4r(M) − 5 (with the exceptions
of PG(3, 2), M4,14, M4,13, C12, and D12). Therefore M is either cographic
or isomorphic to a Möbius matroid. If M is a Möbius matroid then |E(M)|
is either 3r − 2 or 2r − 1. If M is cographic then |E(M)| ≤ 3r − 3 [11,
Lemma 14.10.2]. Since r ≥ 3, both 3r − 2 and 2r − 1 are bounded above
by 4r− 5. Thus we have a contradiction in any case, so M is not internally
4-connected.

By Proposition 3.6 we can express M as M1 ⊕3 M2. Let T be E(M1) ∩
E(M2). Let ri be the rank of Mi for i = 1, 2. Proposition 3.6 implies
r1 + r2 − r = 2. Certainly r1, r2 > 2, or else T contains a cocircuit in M1

or M2. Hence r1, r2 < r. We see from [15, (4.3)] that si(M1) and si(M2)
are 3-connected. Moreover si(Mi) has no M(K3,3)-minor for i = 1, 2, by
Proposition 3.7. Therefore the lemma holds for si(M1) and si(M2) by our
inductive assumption.

Assume that si(M2) is isomorphic to PG(3, 2), M4,14, M4,13, C12, or D12.
If clM1

(T ) is not coindependent in M1, then clM1
(T ) is 2-separating in M1,

which contradicts [15, (4.3)]. Therefore we can deduce that si(M1) has
corank at least three. Now we can apply [12, Theorem 3.6], which tells us
that M1 has a minor, M ′

1, isomorphic to M(K4) and containing the triangle
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T . Now M ′
1△M2 is a minor of M , by Proposition 3.1, and M ′

1△M2 is ob-
tained from M2 by performing a ∆-Y operation on the triangle T . It follows
that M has, as a minor, a matroid obtained from PG(3, 2), M4,14, M4,13,
C12, or D12 by performing a ∆-Y operation. But any such matroid contains
a M(K3,3)-minor, by results from [10, Appendix C]. From this contradic-
tion and induction we deduce that |E(si(M2))| ≤ 4r2 − 5. Symmetrically,
|E(si(M1))| ≤ 4r1 − 5.

The only parallel classes of Mi have size two and contain an element of T
[15, (4.3)]. Note that no element in T can be in a parallel pair in both M1

and M2, for that would imply that M = M1⊕3M2 has a parallel pair. Let m
be the number of elements in T that are contained in a parallel pair in either
M1 or M2. Then |E(M)| = |E(si(M1))| + |E(si(M2))| − m − 2(3 − m) ≤
|E(si(M1))|+ |E(si(M2))| − 3. Thus

|E(M)| ≤ |E(si(M1))|+ |E(si(M2))| − 3

≤ (4r1 − 5) + (4r2 − 5)− 3 = 4(r1 + r2 − 2)− 5 = 4r − 5

and M is not a counterexample after all. �

Proof of Theorem 4.2. Assume that M is a counterexample with rank
r, where r is as small as possible. Thus M is a simple member of
EX2({M(K3,3)}), and either |E(M)| > h(r), or |E(M)| = h(r) and M
does not belong to Pr. Certainly M is no larger than the projective geom-
etry PG(r − 1, 2), so the result holds if r ≤ 4. Hence r > 4, and therefore
14r/3− 7 > 4r− 5. As |E(M)| ≥ h(r) ≥ 14r/3− 7, Lemma 4.3 now implies
M is not 3-connected.

Assume that M = M1 ⊕1 M2, so M1 and M2 belong EX2({M(K3,3)}) by
Proposition 3.3. Suppose that ri = r(Mi) for i = 1, 2, so that r = r1 + r2.
Since M is simple, ri > 0 and hence ri < r for i = 1, 2. Therefore we can
apply the inductive hypothesis and conclude that

|E(M)| = |E(M1)|+ |E(M2)| ≤ (14r1/3− α(r1)) + (14r2/3− α(r2))

= 14r/3− (α(r1) + α(r2)).

But α(r1) + α(r2) > 7, regardless of the residue classes of r1 and r2 mod-
ulo 3, so |E(M)| < 14r/3 − 7 ≤ h(r), contradicting our earlier statement.
Therefore M is connected, but not 3-connected.

Now M can be expressed as M1 ⊕2 M2. Let p be the basepoint of the
2-sum. Let ri = r(Mi) for i = 1, 2. By Proposition 3.4 we see r1+r2−r = 1.
As M has no parallel pairs, r1, r2 > 1, so r1, r2 < r. By Proposition 3.5,
neither M1 nor M2 has an M(K3,3)-minor, so we can apply the inductive
hypothesis to si(M1) and si(M2). We can assume that either M1 or M2

is non-simple, since otherwise we could add a parallel element to p in M1,
and obtain a simple matroid that has one more element than M despite
having noM(K3,3)-minor (since adding parallel elements and taking a 2-sum
cannot create a M(K3,3)-minor). However, it cannot be the case that both
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M1 and M2 are non-simple, for then M would be non-simple. Therefore
|E(M)| = |E(si(M1))|+ |E(si(M2))| − 1,

Assume that r1, r2 ≡ 0 (mod 3), so r ≡ 2 (mod 3) and

h(r) = 14
3 r −

19
3 ≤ |E(M)| = |E(si(M1))|+ |E(si(M2))| − 1

≤ 14
3 r1 +

14
3 r2 − 15 = 14

3 (r1 + r2 − 1)− 31
3 = 14

3 r −
31
3 ,

which is impossible. We reach a similar contradiction if the residues of r1
and r2 are (0, 2), (2, 0), or (2, 2), so at least one of r1 and r2 is equivalent to
1 modulo 3.

We consider the case that r1 ≡ 1 (mod 3) and r2 ≡ 0 (mod 3), so that
r ≡ 0 (mod 3) and

h(r) = 14
3 r − 7 ≤ |E(M)| = |E(si(M1))|+ |E(si(M2))| − 1

≤ 14
3 r1 +

14
3 r2 −

11
3 − 7− 1 = 14

3 (r1 + r2 − 1)− 21
3 = 14

3 r −
21
3 .

As equality holds throughout, we deduce that si(M1) and si(M2) belong to
Pr1 and Pr2 respectively. It is easy to see that the parallel connection is an
associative operation. As si(M1) is formed by taking the parallel connection
of multiple copies of PG(3, 2), and si(M2) is similarly formed from copies of
PG(3, 2) and a single copy of PG(2, 2), it now follows that M belongs to Pr,
so M is not a counterexample after all. In all the other possible cases, we
reach a contradiction in exactly the same way. �

5. Critical exponents

Let M be a loopless rank-r GF(q)-representable matroid. Then M can be
considered as a multiset of points in the projective geometry PG(r − 1, q).
The critical exponent ofM over q, denoted by c(M ; q), is the smallest integer
k such that there is a set of hyperplanes, H1, . . . ,Hk, in PG(r − 1, q) with
the property that H1 ∩ · · · ∩Hk contains no points of E(M).

The critical exponent depends only on M and q, and not on the particular
representation chosen. We can deduce this fact from a formulation in terms
of the characteristic polynomial, denoted χ(M ; t). Assume M is a matroid
on the ground set E. Then

χ(M ; t) =
∑

A⊆E

(−1)|A|tr(M)−r(A).

Now χ(M ; qk) is the number of k-tuples of hyperplanes, (H1, . . . ,Hk), in
PG(r − 1, q) satisfying H1 ∩ · · · ∩Hk ∩ E(M) = ∅ [9, Theorem 4.1]. From
this it follows that χ(M ; qk) ≥ 0 for all positive integers k, and c(M ; q) is the
least positive integer k such that χ(M ; qk) > 0. Note that, if k ≥ c(M ; q),
then χ(M ; qk) > 0. It is obvious that if M has a loop, then χ(M ; t) is
identically zero. If e ∈ E(M), then c(M\e; q) ≤ c(M ; q).

Kung [8] looked at the critical exponent over GF(2) of binary matroids
with no M(K3,3)-minor. He showed that if M ∈ EX2({M(K3,3)}) is loopless
then c(M ; 2) ≤ 10. By using Theorem 4.2 as well as [7, Lemma 3.1], we
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can improve this to c(M ; 2) ≤ 5, since |E(M)| ≤ 5r(M) for every simple
matroid M ∈ EX2({M(K3,3)}). In this section we improve this further to
c(M ; 2) ≤ 4, and show that this bound cannot be improved. In particular, we
show that if c(M ; 2) = 4, then M has a 3-connected component isomorphic
to PG(3, 2).

Lemma 5.1. Let M be an internally 4-connected binary matroid with no

M(K3,3)-minor. Then c(M ; 2) ≤ 4, and if c(M ; 2) = 4, then M is isomor-

phic to PG(3, 2).

Proof. It is easy to see that PG(3, 2) has critical exponent 4 over GF(2)
(see [9, Section 8.1]) so we let M be an internally 4-connected member
of EX2({M(K3,3)}) other than PG(3, 2). Assume that M = M∗(G) for
some graph G. Because M is connected, G has no isthmus. Jaeger showed
that G has a nowhere-zero 8-flow [4]. The number of such flows is χ(M ; 8)
[9, Theorem 4.6]. Hence χ(M ; 8) > 0 and thus c(M ; 2) ≤ 3. Consider the
GF(2)-representation of ∆r discussed in Section 1. Each point of PG(r−1, 2)
corresponds to a vector (x1, . . . , xr). Let H1, H2, and H3 be the hyperplanes
of PG(r − 1, 2) defined, respectively, by the equations xr = 0, x1 + · · · +
xr = 0, and

∑

xi = 0, where the final sum is taken over all odd indices in
{1, . . . , r−1}. It is easy to see that no point ofM is contained inH1∩H2∩H3,
so c(∆r; 2) ≤ 3. Similarly, no point of Υr is contained in the hyperplane
defined by x1 + · · ·+ xr = 0, so c(Υr; 2) ≤ 1.

Now we can assume that M is neither cographic nor a Möbius matroid,
so M is isomorphic to one of the sporadic matroids in Theorem 1.1. The
largest such matroid with rank 4 is PG(3, 2), and it known that every proper
minor of this matroid has critical exponent at most three over GF(2) [9,
Section 8.1]. Thus we will assume that r(M) ≥ 5. The sporadic matroid
T12 has rank 6. By examining the matrix representation of T12 in [10,
Appendix B], we see that no point of T12 is contained in the hyperplane
defined by x1+ · · ·+x6 = 0. Thus c(T12; 2) ≤ 1. Let A be the matrix in [10,
Appendix B] such that [I5|A] represents the rank-5 sporadic matroid Ma

5,12.
If

Ha
5,12 =





1 1 0 0 0
1 0 1 0 1
1 1 1 1 1





then the matrix product Ha
5,12[I5|A] contains no zero columns. This means

that no point of Ma
5,12 is contained in all three of the hyperplanes defined

by x1 + x2 = 0, x1 + x3 + x5 = 0, and x1 + x2 + x3 + x4 + x5 = 0. Thus
c(Ma

5,12; 2) ≤ 3.
In the same way we can show that M5,13, M6,13, M7,15, M9,18, and M11,21

all have critical exponent at most three by examining the matrices

H5,13 =





1 0 0 0 1
1 0 1 0 1
1 1 1 1 0



 , H6,13 =





0 1 0 0 0 0
1 0 0 1 1 0
1 1 1 1 1 1



 ,
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H7,15 =

[

1 0 1 0 1 0 1
1 1 1 1 1 1 1

]

, H9,18 =





1 1 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1



 ,

and

H11,21 =





0 0 0 0 0 0 1 0 0 1 0
1 0 1 0 1 0 0 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1



 .

As every sporadic matroid in Theorem 1.1 can be produced from one
of PG(3, 2), Ma

5,12, M5,13, T12, M6,13, M7,15, M9,18, or M11,21 by deleting
elements, the proof is complete. �

Next we come to the main result of this section.

Theorem 5.2. Let M be a loopless binary matroid with no M(K3,3)-minor.

Then c(M ; 2) ≤ 4, and if c(M ; 2) = 4, then either

(i) M is isomorphic to PG(3, 2), or
(ii) M can be expressed as the 1- or 2-sum of M1 and M2, where M1,M2

belong to EX2({M(K3,3)}), and either c(M1; 2) = 4 or c(M2; 2) = 4.

Proof. Let M be a minor-minimal counterexample to the theorem.
Lemma 5.1 shows that M cannot be internally 4-connected. Assume that M
is not connected, so that M can be expressed as M1⊕1M2. Clearly M1 and
M2 are loopless members of EX2({M(K3,3)}). It is well known, and easy
to verify, that χ(M ; t) = χ(M1; t)χ(M2; t). By the inductive hypothesis,
c(Mi; 2) ≤ 4, meaning that χ(Mi; 16) > 0 for i = 1, 2. Hence χ(M ; 16) > 0,
so c(M ; 2) ≤ 4. Since M is a counterexample, c(M ; 2) = 4, so χ(M ; 8) = 0.
Therefore χ(Mi; 8) = 0 for some i ∈ {1, 2}. This implies that c(Mi; 2) = 4
for some i ∈ {1, 2}. However, M now satisfies statement (ii) so it is not a
counterexample at all.

Now we must assume that M is connected. Assume M can be expressed
as M1⊕2M2, where p is the basepoint of the 2-sum. Again, M1 and M2 are
loopless members of EX2({M(K3,3)}). Walton and Welsh [18, (7)] note the
following relation:

(1) χ(M ; t) =
χ(M1; t)χ(M2; t)

t− 1
+ χ(M1/p; t)χ(M2/p; t).

Note that if Mi/p is loopless, then, by earlier discussion, χ(Mi/p; k) ≥ 0
for all positive integers k. The same statement holds if Mi/p has a loop,
for then χ(Mi/p; t) is identically zero. Since M1 and M2 are isomorphic to
proper minors of M it follows that χ(Mi; 16) > 0 for i = 1, 2. Now (1)
implies that χ(M ; 16) > 0, so c(M ; 2) ≤ 4. Therefore it must be the case
that c(M ; 2) = 4, so that χ(M ; 8) = 0. It follows that either χ(M1; 8) = 0
or χ(M2; 8) = 0. Then M satisfies statement (ii) of the theorem, and we
again have a contradiction.

Finally, we assume that M is 3-connected, so M = M1 ⊕3 M2 for some
matroids M1 and M2. Let {a, b, c} be E(M1) ∩ E(M2). Let P be the
generalised parallel connection of M1 and M2, so that M = P\{a, b, c}.
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Proposition 3.7 implies that M1 and M2 are isomorphic to proper minors
of M . Moreover M1 and M2 are loopless, and both si(M1) and si(M2)
are 3-connected by [15, (4.3)]. The following equality is from Walton and
Welsh [18].

(2) χ(M ; t) =
χ(M1; t)χ(M2; t)

(t− 1)(t− 2)
+ χ(P\a\b/c; t) + χ(P\a/b; t) +χ(P/a; t).

Since P is binary, our earlier discussion means that the evaluations
χ(P\a\b/c; 16), χ(P\a/b; 16), and χ(P/a; 16) are all non-negative. On the
other hand, by the minimality of M , χ(M1; 16) and χ(M2; 16) are positive.
We deduce that c(M ; 2) ≤ 4. As M is a counterexample, c(M ; 2) = 4, so
χ(M ; 8) = 0. The terms in (2) must be zero when t = 8, so we can assume
by relabeling that χ(M1; 8) = 0. Therefore c(M1; 2) = 4.

The critical exponent of si(M1) is precisely the critical exponent of M1.
Since si(M1) is 3-connected and obeys the theorem, it follows that si(M1) ∼=
PG(3, 2). Exactly as in the proof of Lemma 4.3, we can show that M has a
minor isomorphic to the matroid produced from PG(3, 2) by performing a
∆-Y operation on T . This matroid has an M(K3,3)-minor [10, Appendix C],
so we have a contradiction that completes the proof. �
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