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Decompositions of complete multigraphs

into cycles of varying lengths

Darryn Bryant∗, Daniel Horsley†, Barbara Maenhaut∗and
Benjamin R. Smith∗

Abstract

We establish necessary and sufficient conditions for the existence of a decom-

position of a complete multigraph into edge-disjoint cycles of specified lengths,

or into edge-disjoint cycles of specified lengths and a perfect matching.

1 Introduction

A decomposition of a graph K is a collection D of subgraphs of K such that the edge
sets of the graphs in D partition the edge set of K. If the complete graph of order
n, denoted Kn, has a decomposition into t cycles of specified lengths m1, m2, . . . , mt,
then it is easy to see that 3 ≤ mi ≤ n for i = 1, 2, . . . , t, n is odd, and m1 + m2 +
· · ·+mt =

(

n
2

)

. Similarly, if Kn has a decomposition into t cycles of specified lengths
m1, m2, . . . , mt and a perfect matching, then 3 ≤ mi ≤ n for i = 1, 2, . . . , t, n is even,
and m1 +m2 + · · ·+mt =

(

n
2

)

− n
2
. In [16] it was shown that these obvious necessary

conditions are also sufficient for the existence of the desired decomposition, thereby
solving a problem posed by Alspach in 1981 [1].

In this paper, the analogous problem for decompositions of complete multigraphs
into cycles of specified lengths is completely solved, see Theorem 1.1. The complete
multigraph of order n and multiplicity λ, which has λ distinct edges joining each pair
of distinct vertices, is denoted λKn.

Theorem 1.1 There is a decomposition {G1, G2, . . . , Gt} of λKn in which Gi is an

mi-cycle for i = 1, 2, . . . , t if and only if

• λ(n− 1) is even;
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• 2 ≤ m1, m2, . . . , mt ≤ n;

• m1 +m2 + · · ·+mt = λ
(

n
2

)

;

• max(m1, m2, . . . , mt) + t− 2 ≤ λ
2

(

n
2

)

when λ is even; and

•
∑

mi=2mi ≤ (λ− 1)
(

n
2

)

when λ is odd.

There is a decomposition {G1, G2, . . . , Gt, I} of λKn in which Gi is an mi-cycle for

i = 1, 2, . . . , t and I is a perfect matching if and only if

• λ(n− 1) is odd;

• 2 ≤ m1, m2, . . . , mt ≤ n;

• m1 +m2 + · · ·+mt = λ
(

n
2

)

− n
2
; and

•
∑

mi=2mi ≤ (λ− 1)
(

n
2

)

.

The necessity of the conditions of Theorem 1.1 are proved in Section 2 and suffi-
ciency is proved in Section 6. Note that for λ = 1, the condition that

∑

mi=2mi ≤

(λ− 1)
(

n
2

)

implies that each mi ≥ 3, and so the necessary conditions of Theorem 1.1
reduce to the familiar necessary conditions for Alspach’s problem, as described in the
first paragraph.

There has been considerable work done on the existence of decompositions of
complete multigraphs into cycles. For the case λ = 1, the eventual complete solution
[16] was preceded by numerous partial results, dating back to 1847 [22, 24]. The special
case where all of the cycles have uniform length was settled by Alspach, Gavlas and
Šajna [2, 27]. Important preliminary results that contributed directly to the complete
solution for λ = 1 are given in [11, 12, 13, 14], and other partial results can be found
in the large number of cited papers in [16] and the surveys [9] and [19].

For λ > 1, there have been relatively few results for cases where there are cycles
of varying lengths [15], but the case where all the cycles are of uniform length m has
been studied extensively. Solutions for small values of m are given in [6, 7, 20, 21, 26],
other partial results appear in [30, 31], and a complete solution for all m and all λ is
given in [15].

Analagous problems concerning decompositions of λKn into paths, matchings or
stars of sizes m1, m2, . . . , mt have also been considered. The problem is completely
solved for paths in [10]. Baranyai’s Theorem [4] settles the problem for decompositions
of λKn into matchings when λ = 1, and an easy induction extends this result to a
complete solution for all λ ≥ 1. The problem of decomposing λKn into isomorphic
stars has been solved [32], as has the problem of decomposing Kn into stars of sizes
m1, m2, . . . , mt [23].

We briefly mention some basic graph theory terminology that we will use. A
graph G is a nonempty set V (G) of vertices and a set E(G) of edges, together with a
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function which maps each edge in E(G) to a pair of distinct vertices in V (G) called
its endpoints. The size of a graph G is |E(G)|, and the number of edges in G which
have u and v as their endpoints is denoted by µG(uv) and called the multiplicity of
edge uv. Note that the above definition of a graph distinguishes different edges with
the same endpoints. Much of the time, however, distinguishing edges with the same
endpoints is an unnecessary complication which we ignore. For example, if we wish
to delete an edge with endpoints u and v from some graph G, then it will generally
not matter which of the µG(uv) edges with endpoints u and v is deleted. We may also
write, for example, that uv ∈ E(G) when technically we should say there is an edge
in E(G) with endpoints u and v. If µG(uv) ≤ 1 for each distinct u and v in V (G), we
say that G is simple.

We denote the complete graph with vertex set V by KV and the complete bipartite
graph with parts U and V by KU,V . If G is a graph and λ is a positive integer,
then λG is the graph with vertex set V (G) and with µλG(uv) = λµG(uv) for each
pair of distinct u and v in V (G). If H is a subgraph of G, then G − H is the
graph with vertex set V (G) and edge set E(G) \ E(H). Similarly, if E ⊆ E(G),
then G − E is the graph obtained from G by deleting the edges in E. Note that
µG−H(uv) = µG(uv)− µH(uv) for each pair of distinct u and v in V (H). Conversely,
if H is a graph that is edge-disjoint from G, then G ∪H is the graph with vertex set
V (G)∪V (H) and edge set E(G)∪E(H). Note that µG∪H(uv) = µG(uv)+µH(uv) for
each pair of distinct u and v in V (G)∩ V (H). A cycle with m edges, m ≥ 2, is called
an m-cycle and is denoted (v1, v2, . . . , vm), where v1, v2, . . . , vm are the vertices of the
cycle and v1v2, v2v3, . . . , vm−1vm, vmv1 are the edges (so 2K2 is a 2-cycle). A path with
m edges is called an m-path and is denoted [v0, v1, . . . , vm], where v0, v1, . . . , vm are
the vertices of the path and v0v1, v1v2, . . . , vm−1vm are the edges. A graph is said to
be even if every vertex of the graph has even degree and is said to be odd if every
vertex of the graph has odd degree.

For brevity, we avoid having to make separate mention of the case where our
decompositions are into cycles and a perfect matching (rather than just into cycles),
as follows. Let K be a graph and let M = (m1, m2, . . . , mt) be a list of integers with
mi ≥ 2 for i = 1, 2, . . . , t. If K is an even graph, then an (M)-decomposition of K is a
decomposition {G1, G2, . . . , Gt} such that Gi is an mi-cycle for i = 1, 2, . . . , t. If K is
an odd graph, then an (M)-decomposition of K is a decomposition {G1, G2, . . . , Gt, I}
such that Gi is an mi-cycle for i = 1, 2, . . . , t and I is a perfect matching in K.

A packing of a graph K is a decomposition of some subgraph G of K, and the
graph K − G is called the leave of the packing. An (M)-packing of λKn is an (M)-
decomposition of some subgraph G of λKn such that G is an even graph if λ(n− 1)
is even, and G is an odd graph otherwise. Thus the leave of an (M)-packing of λKn

is an even graph and, like an (M)-decomposition of λKn, an (M)-packing of λKn

contains a perfect matching if and only if λ(n− 1) is odd.
Throughout the paper we denote by νm(M) the number of occurrences of m in

the list M . We shall also sometimes use superscripts to specify the number of oc-
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currences of a particular integer in a list. That is, we define (mα1

1 , mα2

2 , . . . , mαt

t )
to be the list comprised of αi occurrences of mi for i = 1, 2, . . . , t. Let M and
M ′ be lists of integers. It follows that for some distinct m1, m2, . . . , mt we may
write M = (mα1

1 , mα2

2 , . . . , mαt

t ) and M ′ = (mβ1

1 , mβ2

2 , . . . , mβt

t ), where αi, βi ≥ 0
for i = 1, 2, . . . , t. Then

∑

M = α1m1 + α2m2 + · · · + αtmt, (M,M ′) is the list
(mα1+β1

1 , mα2+β2

2 , . . . , mαt+β2

t ) and, if 0 ≤ βi ≤ αi for i = 1, 2, . . . , t, then M −M ′ is
the list (mα1−β1

1 , mα2−β2

2 , . . . , mαt−βt

t ).

2 Necessity and admissible lists

For positive integers λ and n, we say that a list (m1, m2, . . . , mt) of integers is (λ, n)-
admissible if

(A1) 2 ≤ m1, m2, . . . , mt ≤ n;

(A2) m1 +m2 + · · ·+mt = λ
(

n
2

)

when λ(n− 1) is even;

(A3) m1 +m2 + · · ·+mt = λ
(

n
2

)

− n
2
when λ(n− 1) is odd;

(A4) max(m1, m2, . . . , mt) + t− 2 ≤ λ
2

(

n
2

)

when λ is even; and

(A5)
∑

mi=2mi ≤ (λ− 1)
(

n
2

)

when λ is odd.

It is clear that the conditions of Theorem 1.1 are satisfied if and only if the list
(m1, m2, . . . , mt) is (λ, n)-admissible. Thus, with the above notation in hand, we can
restate our main theorem (Theorem 1.1) as follows.

Theorem 2.1 For all positive integers λ and n, there is an (M)-decomposition of

λKn if and only if M is a (λ, n)-admissible list.

As noted above, Theorem 2.1 is known to hold when λ = 1 [16], and we include
this result here for later reference.

Lemma 2.2 ([16]) Theorem 2.1 holds for λ = 1.

The necessity of conditions (A1)-(A3) is obvious, but proving that conditions (A4)
and (A5) are necessary requires some work. The following lemma, which is a (slight)
generalisation of a result in [25], is used to prove the necessity of condition (A4).

Lemma 2.3 Suppose G is a graph in which every edge has even multiplicity, D is a

cycle decomposition of G, and C ∈ D. Then |D| ≤ |E(G)|/2− |E(C)|+ 2.
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Proof Suppose for a contradiction that there is a graph G in which every edge has
even multiplicity that admits a cycle decomposition D such that |D| > |E(G)|/2 −
|E(C)|+2 for some C ∈ D. Suppose further that, of all such graphs, G has a minimal
number of edges. Note that |E(G)| > 2|E(C)| because otherwise |E(G)| = 2|E(C)|
and |D| = 2, and thus G−C contains at least one edge of multiplicity at least 2. Let
C ′ be a 2-cycle in G−C, let G′ = G−C ′, let C1 and C2 be distinct cycles in D such
that E(C ′) ⊂ E(C1) ∪E(C2), and let D∗ be a cycle decomposition of (C1 ∪C2)−C ′.
Observe that every edge in G′ has even multiplicity, that D′ = (D \ {C1, C2})∪D∗ is
a cycle decomposition of G′, and that C ∈ D′. Since |E(G′)| = |E(G)| − 2, it follows
that

|D′| ≥ (|D| − 2) + 1 > |E(G)|/2− |E(C)|+ 1 = |E(G′)|/2− |E(C)|+ 2.

This contradicts the minimality of G. ✷

We are now ready to prove the necessity of (λ, n)-admissibility.

Lemma 2.4 If there is an (M)-decomposition of λKn, then M is a (λ, n)-admissible

list.

Proof Let M be the list (m1, m2 . . . , mt) and let D be an (M)-decomposition of
λKn. To show that M is a (λ, n)-admissible list we need to show that conditions
(A1)-(A5) hold. It is clear that conditions (A1)-(A3) hold. Without loss of generality
we can assume m1 = max(m1, m2, . . . , mt). If λ is even, then every edge in λKn has
even multiplicity and by Lemma 2.3, with G = λKn and C a cycle of length m1 in D,
we have t ≤ λ

2

(

n
2

)

−m1 + 2. Thus (A4) holds. If λ is odd, it is clear that for any pair
of distinct vertices x, y ∈ V (λKn), at most λ − 1 of the edges joining x and y occur
in 2-cycles in D. Thus (A5) holds. ✷

Later in the paper we will often need to establish the admissibility of certain lists,
and the following lemma is a useful tool in this regard.

Lemma 2.5 Suppose λ ≥ 2 and n are positive integers and M = (m1, m2, . . . , mt) is
a list of integers satisfying

(A1) 2 ≤ m1, m2, . . . , mt ≤ n;

(A2) m1 +m2 + · · ·+mt = λ
(

n
2

)

when λ(n− 1) is even; and

(A3) m1 +m2 + · · ·+mt = λ
(

n
2

)

− n
2
when λ(n− 1) is odd.

If either ν2(M) < n, or λ is even and the two largest entries in M are equal, then M
is (λ, n)-admissible.
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Proof The result is trivially true for n = 1, and thus we may assume that n ≥ 2.
Let M = (m1, m2, . . . , mt) be a list which satisfies the conditions of the lemma. With-
out loss of generality we may assume that M is non-increasing. By the definition of
(λ, n)-admissibility, we need only show that 2ν2(M) ≤ (λ− 1)

(

n
2

)

if λ is odd and that
m1 + t− 3 < λ

2

(

n
2

)

if λ is even (note that m1 and t are integers).

Case 1. Suppose that λ is odd. Then ν2(M) < n. Since λ ≥ 3 and n ≥ 2 we have
that 2ν2(M) < 2(n− 1) ≤ (λ− 1)

(

n
2

)

and the result follows.

Case 2a. Suppose that λ is even and m1 = m2. Then m1 + m2 + · · · + mt = λ
(

n
2

)

and it follows that m3 +m4 + · · ·+mt = λ
(

n
2

)

− 2m1. Thus

t ≤ 1
2

(

λ
(

n
2

)

− 2m1

)

+ 2 = λ
2

(

n
2

)

−m1 + 2

and it follows that m1 + t− 3 < λ
2

(

n
2

)

.

Case 2b. Suppose that λ is even and ν2(M) < n. Again m1 +m2 + · · ·+mt = λ
(

n
2

)

.
Let t′ = t− ν2(M). We have that m2 +m3 + · · ·+mt′ = λ

(

n
2

)

−m1 − 2ν2(M). Thus,

t ≤ 1
3

(

λ
(

n
2

)

−m1 − 2ν2(M)
)

+ ν2(M) + 1 = λ
3

(

n
2

)

− 1
3
m1 +

1
3
ν2(M) + 1.

So m1 + t − 3 < λ
2

(

n
2

)

will hold provided 2
3
m1 +

1
3
ν2(M) − 2 < λ

6

(

n
2

)

holds. Because
m1 ≤ n, ν2(M) ≤ n− 1 and λ ≥ 2, this latter does indeed hold. ✷

3 Preliminary results

In Section 4 we will prove that it is sufficient to establish our result for a certain
subset of all (λ, n)-admissible lists. In this section we prove a number of preliminary
results which we will need for this.

Lemma 3.1 Suppose λ and n are positive integers and M = (m1, m2, . . . , mt) is a

(λ, n)-admissible list. If either

• λ is even and max(m1, m2, . . . , mt) + t− 2 = λ
2

(

n
2

)

; or

• λ is odd and
∑

mi=2mi = (λ− 1)
(

n
2

)

;

then there is an (M)-decomposition of λKn.

Proof Without loss of generality we may assume that M = (m1, m2, . . . , mt) is non-
increasing. Let ν = ν2(M), let t′ = t− ν and let M ′ = (m1, m2, . . . , mt′).

Case 1. Suppose that λ is even and m1+ t− 2 = λ
2

(

n
2

)

. Since M is (λ, n)-admissible,
m1 +m2 + · · ·+mt = λ

(

n
2

)

. It follows that
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• m1 +m2 + · · ·+mt′ = m1 +m2 + · · ·+mt − 2ν = λ
(

n
2

)

− 2ν is even; and

• m1 + t′ − 2 = λ
2

(

n
2

)

− ν = 1
2
(m1 +m2 + · · ·+mt′).

It follows from Theorem 2.2 in [25] that there is an (M ′)-decomposition of 2G for
some simple graph G satisfying

|V (G)| =
1

2
(m1 +m2 + · · ·+mt′)− t′ + 2 = λ

2

(

n
2

)

− ν − (t− ν) + 2 = m1.

Since m1 ≤ n, G is simple and λ ≥ 2, we can relabel the vertices of G so that 2G is a
subgraph of λKn. It is clear that there is a (2ν)-decomposition of λKn− 2G and thus
the result follows.

Case 2. Suppose that λ is odd and 2ν = (λ − 1)
(

n
2

)

. Since M is (λ, n)-admissible,
m1+m2+ · · ·+mt = λ

(

n
2

)

when n is odd and m1+m2+ · · ·+mt = λ
(

n
2

)

− n
2
when n

is even. It follows that m1+m2+ · · ·+mt′ =
(

n
2

)

when n is odd, m1+m2+ · · ·+mt′ =
(

n
2

)

− n
2
when n is even, and hence M ′ is a (1, n)-admissible list. Thus by Lemma

2.2 there is an (M ′)-decomposition of Kn. Furthermore, it is clear that there is a
(2ν)-decomposition of (λ− 1)Kn and the result follows. ✷

The following two lemmas are taken directly from [15].

Lemma 3.2 ([15]) Let M be a list of integers and let λ, n, m1, m2, m
′
1 and m′

2 be

positive integers such that m1 ≤ m′
1 ≤ m′

2 ≤ m2 and m′
1 + m′

2 = m1 + m2. If there

is an (M,m1, m2)-decomposition of λKn in which an m1-cycle and an m2-cycle share

at least two vertices, then there is an (M,m′
1, m

′
2)-decomposition of λKn.

Lemma 3.3 ([15]) Let M be a list of integers and let λ, n, m, m′ and h be positive

integers such that h ≥ m+m′ and m+m′ + h ≤ n+ 1. If there is an (M,h,m,m′)-
decomposition of λKn, then there is an (M,h,m+m′)-decomposition of λKn.

In order to prove our next result we introduce the following definition. A graph G
is an (a1, a2, . . . , as)-flower if G is the union of s ≥ 1 cycles A1, A2, . . . , As such that

• Ai is a cycle of length ai ≥ 2 for i = 1, 2, . . . , s; and

• if s ≥ 2, then there is an x ∈ V (G) such that V (Ai) ∩ V (Aj) = {x} for all
1 ≤ i < j ≤ s.

Lemma 3.4 Let M and M ′ be lists of integers and let λ, n and m ≥ 3 be positive

integers. If there is an (M)-packing of λKn whose leave has an (M ′, m, 2)-flower as

its only nontrivial component, then there is an (M, 3)-packing of λKn whose leave has

an (M ′, m− 1)-flower as its only nontrivial component.
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Proof If m = 3 the result is obvious. Suppose then that m ≥ 4. Let P be an (M)-
packing of λKn which satisfies the conditions of the lemma and let L be its leave.
Let A and B be cycles in L of lengths m and 2 respectively, and let [u, v, w, x, y] be a
path in L with u, v, w, x ∈ V (A) and x, y ∈ V (B). By applying Lemma 2.1 from [15]
to P (performing the (v, y)-switch with origin w in the terminology of that paper)
we can obtain an (M)-packing P ′ of λKn with a leave L′ such that either L′ = (L−
{vw, vu})+{yw, yu} (if the switch has terminus u) or L′ = (L−{vw, yx})+{yw, vx}
(if the switch has terminus x). In either case, it is easy to check that P ′∪{(w, x, y)} is
an (M, 3)-packing of λKn whose leave has an (M ′, m− 1)-flower as its only nontrivial
component. ✷

The following lemma is a specific case of the more general Lemma 4.15 in [15].

Lemma 3.5 Let M be a list of integers and let λ and n ≥ 5 be positive integers. If

there is an (M, 2, 2, 2)-decomposition of λKn in which two 2-cycles share at least one

vertex, then there is an (M, 3, 3)-decomposition of λKn.

We now use the above lemmas to prove some further results which will be used in
Section 4.

Lemma 3.6 Let M be a list of integers and let λ, n and m ≥ 3 be positive integers.

If there is an (M,m, 2)-decomposition of λKn in which an m-cycle and a 2-cycle share
at least one vertex, then there is an (M,m− 1, 3)-decomposition of λKn.

Proof If m = 3 the result is trivial. Suppose then that m ≥ 4. If an m-cycle and
a 2-cycle share at least two vertices, the result follows from Lemma 3.2. Otherwise,
there is an (M)-packing of λKn whose leave has an (m, 2)-floweras its only nontrivial
component. Thus by Lemma 3.4 there is an (M, 3)-packing of λKn whose leave has
an (m− 1)-cycle as its only nontrivial component. The result follows. ✷

Lemma 3.7 Let M be a list of integers, let λ be odd, and let n, m, m′
1 and m′

2 be

positive integers satisfying 2 ≤ m′
1 ≤ m′

2 ≤ m, m′
1 + m′

2 = 2 + m and 2ν2(M) >
(λ − 1)(

(

n
2

)

−
(

m
2

)

). If there is an (M,m, 2)-decomposition of λKn, then there is an

(M,m1, m2)-decomposition of λKn.

Proof Let D be an (M,m, 2)-decomposition of λKn an let C be an m-cycle in D.
There are

(

n
2

)

−
(

m
2

)

pairs of distinct vertices of λKn that are not subsets of V (C),
and each such pair can be the vertex set of at most (λ − 1)/2 2-cycles in D. Since
2ν2(M) > (λ − 1)(

(

n
2

)

−
(

m
2

)

), it follows that there is a 2-cycle in D that shares two
vertices with C. The result then follows by Lemma 3.2. ✷

Lemma 3.8 Let M be a list of integers and let λ and n ≥ 5 be positive integers

satisfying 2ν2(M) ≥ n−5. If there is an (M, 2, 2, 2)-decomposition of λKn, then there

is an (M, 3, 3)-decomposition of λKn.
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Proof Let D be an (M, 2, 2, 2)-decomposition of λKn. Since 2ν2(M) ≥ n − 5, the
number of occurrences of vertices in 2-cycles in D is at least n+1 and it follows that
at least two 2-cycles share a vertex. The result then follows by Lemma 3.5. ✷

4 A reduction of the problem

In this section we show that to prove Theorem 2.1 it is sufficient to prove that the
desired decompositions exist for what we call (λ, n)-ancestor lists, which we now
define. For any positive integers λ and n, we shall call a list M a (λ, n)-ancestor list
if it is (λ, n)-admissible and satisfies

(N1) if n = 4, then ν3(M) = 0;

(N2) if n = 5, then ν3(M) + ν4(M) ∈ {0, 1}

(N3) if n ≥ 6, then ν4(M) + ν5(M) + · · ·+ νn−1(M) ∈ {0, 1};

(N4) if n ≥ 6 and ν3(M) ≥ 1, then νn−2(M) + νn−1(M) = 0; and

(N5) if n ≥ 6 and ν3(M) ≥ 2, then ν2(M) ≤ ⌊n
2
⌋ − 3.

Theorem 4.1 For each pair of positive integers λ and n, if there exists an (M ′)-
decomposition of λKn for each (λ, n)-ancestor list M ′, then there exists an (M)-
decomposition of λKn for each (λ, n)-admissible list M .

Proof Let λ and n be positive integers. Throughout this proof we assume that any
(λ, n)-admissible list is written in non-increasing order. For distinct (λ, n)-admissible
lists (m1, m2, . . . , mt) and (m′

1, m
′
2, . . . , m

′
t′), we say the list (m′

1, m
′
2, . . . , m

′
t′) is larger

than the list (m1, m2, . . . , mt) if t
′ > t or if t′ = t and m′

k > mk where k is the smallest
positive integer such that mk 6= m′

k. Note that this defines a total order on the set of
all non-increasing (λ, n)-admissible lists.

For a contradiction, suppose the theorem does not hold for λ and n. Then there
exists a largest (λ, n)-admissible list M = (m1, m2, . . . , mt) such that there is no (M)-
decomposition of λKn. By assumption, M is not a (λ, n)-ancestor list and so at least
one of the following holds.

(1) n = 4 and ν3(M) ≥ 1.

(2) n = 5 and ν3(M) + ν4(M) ≥ 2.

(3) n ≥ 6 and ν4(M) + ν5(M) + · · ·+ νn−1(M) ≥ 2.

(4) n ≥ 6, ν3(M) ≥ 1 and νn−2(M) + νn−1(M) ≥ 1.

(5) n ≥ 6, ν3(M) ≥ 2 and ν2(M) ≥ ⌊n
2
⌋ − 2.
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Furthermore, we may assume that λ ≥ 2 (by Lemma 2.2), and that m1+ t−2 < λ
2

(

n
2

)

if λ is even, and 2ν2(M) < (λ−1)
(

n
2

)

if λ is odd (if we have equality in either of these
there exists an (M)-decomposition of λKn by Lemma 3.1). These strict inequalities
allow us to modify the list M in a number of ways to obtain a larger list which still
satisfies conditions (A4) and (A5) of (λ, n)-admissibility. We now show that there
exists a (λ, n)-admissible list M ′ such that M ′ is larger than M and the existence of
(M ′)-decomposition of λKn implies the existence of an (M)-decomposition of λKn.
This will suffice to complete the proof, because an (M ′)-decomposition of λKn must
exist by the maximality of M and hence an (M)-decomposition of λKn exists in
contradiction to our assumption.

If (1) holds then ν3(M) ≥ 2 (since
∑

M is even) and we define M ′ to be the list
obtained from M by replacing two 3’s with a 2 and a 4.

If (2) holds, then there exist integers x and y in M such that 3 ≤ x ≤ y ≤ 4, and
we define M ′ to be the list obtained from M by replacing an x and a y with an x− 1
and a y + 1.

If (3) holds, then there exist integers x and y in M such that 4 ≤ x ≤ y ≤ n− 1,
and we define M ′ as follows.

(a) If x + y ≥ n + 2, then M ′ is the list obtained from M by replacing an x and a
y with an x− 1 and a y + 1.

(b) If x+ y ≤ n+1, then M ′ is the list obtained from M by replacing an x and a y
with an x− 2 and a y + 2 if x = 4, λ is odd and 2ν2(M) = (λ− 1)

(

n
2

)

− 2, and
replacing an x with a 2 and an x− 2 otherwise.

If (4) holds, then there exists an x ∈ {n− 2, n− 1} in M and we define M ′ to be
the list obtained from M by replacing a 3 and an x with a 2 and an x+ 1.

If (5) holds, and neither (3) nor (4) hold, we define M ′ as follows.

(a) If either λ is even, or λ is odd and 2ν2(M) ≤ (λ− 1)
(

n
2

)

− 6, then M ′ is the list
obtained from M by replacing two 3’s with three 2’s.

(b) If λ is odd and 2ν2(M) ≥ (λ− 1)
(

n
2

)

− 4, then M ′ is the list obtained from M
by replacing two 3’s with a 4 and a 2.

It is easy to see that in each case M ′ is (λ, n)-admissible and M ′ is larger than
M . We now show that we can construct an (M)-decomposition of λKn from an
(M ′)-decomposition D of λKn by applying one of Lemmas 3.2, 3.3, 3.6, 3.7 or 3.8.

If (1) holds then we can apply Lemma 3.2 (since n = 4 and thus any 4-cycle and
2-cycle in D must share two vertices). If (2) holds and (x, y) = (3, 3), then we can
apply Lemma 3.6 (since n = 5 and thus any 4-cycle and 2-cycle in D must share at
least one vertex). Similarly, if (2) holds and (x, y) 6= (3, 3), then we can apply Lemma
3.2 (since x+ y ≥ n + 2). If (3) holds and x+ y ≥ n+ 2, then we can apply Lemma
3.2. If (3) holds and x + y ≤ n + 1, λ is odd, x = 4 and 2ν2(M) = (λ − 1)

(

n
2

)

− 2,
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then we can apply Lemma 3.7 with m = y + 2, m′
1 = 4 and m′

2 = y. Otherwise, if
(3) holds and x+ y ≤ n + 1, then we can apply Lemma 3.3 with m = 2, m′ = x− 2
and h = y. If (4) holds, then we can apply Lemma 3.6. If (5) holds and either λ is
even, or λ is odd and 2ν2(M) ≤ (λ− 1)

(

n
2

)

− 6, then we apply Lemma 3.8. Finally, if
(5) holds, λ is odd and 2ν2(M) ≥ (λ− 1)

(

n
2

)

− 4, then we can apply Lemma 3.7 with
m = 4 and m′

1 = m′
2 = 3. ✷

5 The case λ = 2

In this section we give a proof of Theorem 2.1 in the case λ = 2. We first present two
lemmas which are proved in Sections 7 and 8 respectively.

Lemma 5.1 If n ≥ 5 and M is a (2, n)-ancestor list with νn(M) > (n − 3)/2, then
there is an (M)-decomposition of 2Kn.

Lemma 5.2 If n ≥ 5 and Theorem 2.1 holds for 2Kn−1, then there is an (M)-
decomposition of 2Kn for each (2, n)-ancestor list M satisfying νn(M) ≤ (n− 3)/2.

From these lemmas we can prove the following.

Lemma 5.3 Theorem 2.1 holds for 2Kn.

Proof The proof is by induction on n. By Theorem 4.1 it suffices to prove the
existence of an (M)-decomposition of 2Kn for each (2, n)-ancestor list M . The result
is trivial for n ∈ {1, 2}. If n = 3 thenM ∈ {(3, 3), (2, 2, 2)} and in each case it is clear a
suitable decomposition exists. If n = 4 then M ∈ {(4, 4, 4), (4, 4, 2, 2), (2, 2, 2, 2, 2, 2)}
and in each case it is clear a suitable decomposition exists. Suppose then that n ≥ 5
and assume Theorem 2.1 holds for all 2Kn′ with n′ < n. Lemma 5.1 covers each
(2, n)-ancestor list M with νn(M) > (n − 3)/2, and using the inductive hypothesis,
Lemma 5.2 covers those with νn(M) ≤ (n− 3)/2. ✷

6 Proof of Theorem 2.1

Lemmas 2.2 and 5.3 allow us to prove our main result using induction on λ. The main
ingredient in the inductive step is given in the following lemma.

Lemma 6.1 Let λ1, λ2 and n be positive integers such that λ1 ∈ {1, 2} and λ2 is

even. If Theorem 2.1 holds for λ1Kn and λ2Kn, then there is an (M)-decomposition

of (λ1 + λ2)Kn for each (λ1 + λ2, n)-ancestor list M satisfying at least one of

(i) νn(M) ≥ ⌊λ1(
n−1
2
)⌋;
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(ii) 2ν2(M) ≥ λ2

(

n
2

)

; or

(iii) ν3(M) ≥ 2.

Proof Let V be a vertex set of size n, let σ1 = n⌊λ1(
n−1
2
)⌋, let σ2 = λ2

(

n
2

)

, and let
M be a (λ1 + λ2, n)-ancestor list satisfying at least one of (i), (ii) or (iii). We note
that

∑

M = σ1 + σ2, and that for each i ∈ {1, 2}, if M ′ is a (λi, n)-admissible list,
then

∑

M ′ = σi.

Case 1. Suppose that M satisfies (i). If ν2(M) < n, let M1 = (nσ1/n) and let
M2 = M − M1. It follows from Lemma 2.5 that Mi is (λi, n)-admissible for each
i ∈ {1, 2}. Thus, by assumption there is an (Mi)-decomposition Di of λiKV for each
i ∈ {1, 2}. Then D1 ∪ D2 is an (M)-decomposition of (λ1 + λ2)KV . If ν2(M) ≥ n,
let M1 = (nσ1/n) and let M2 = (M,n, n)− (M1, 2

n). It follows from Lemma 2.5 that
Mi is (λi, n)-admissible for each i ∈ {1, 2}. Thus, by assumption there is an (Mi)-
decomposition Di of λiKV for each i ∈ {1, 2}. Let H1 be an n-cycle in D1 and let H2

be an n-cycle in D2. We may assume (by relabelling vertices in D2) that there is a
(2n)-decomposition D′ of H1 ∪H2. Then

(D1 \ {H1}) ∪ (D2 \ {H2}) ∪ D′

is an (M)-decomposition of (λ1 + λ2)KV .

Case 2. Suppose that M satisfies (ii). Let M2 = (2σ2/2) and M1 = M−M2. If λ1 = 1
then ν2(M) ≤ λ2

(

n
2

)

because M is (λ1+λ2, n)-admissible, and thus ν2(M) = σ2/2 and
ν2(M1) = 0. If λ1 = 2, where M is the non-increasing list (m1, m2, . . . , mt) say, then
m1+t−2 ≤ (2+λ2

2
)
(

n
2

)

and thus m1+(t−σ2/2)−2 ≤ (2+λ2

2
)
(

n
2

)

−σ2/2 =
(

n
2

)

. In either
case it follows, by the definition of (λ, n)-admissible and Lemma 2.5, that Mi is (λi, n)-
admissible for each i ∈ {1, 2}. Thus, by assumption there is an (Mi)-decomposition
Di of λiKV for each i ∈ {1, 2}. Then D1∪D2 is an (M)-decomposition of (λ1+λ2)KV .

Case 3. Suppose that M satisfies (iii). We note that if n = 3 then M also satisfies
(i) and the result follows from Case 1. Furthermore, by the properties of (λ, n)-
ancestor lists, it follows that n /∈ {1, 2, 4, 5} and thus we may assume that n ≥ 6
and M satisfies 2ν2(M) ≤ n − 6, ν4(M) + ν5(M) + · · · + νn−1(M) ∈ {0, 1} and
νn−2(M)+νn−1(M) = 0. It follows that 2ν2(M)+3ν3(M)+nνn(M) ≥ σ1+σ2−(n−3),
and thus 3ν3(M) + nνn(M) ≥ σ1 + σ2 − (n − 3) − (n − 6). Since σ2 > 2n, we have
3ν3(M)+nνn(M) > σ1+9. If nνn(M) ≥ σ1 then M satisfies (i) and the result follows
from Case 1. Suppose then that nνn(M) < σ1 and hence 3ν3(M) > 9.

Let M ′ = M − (3, 3, 3). Since nνn(M) ≤ σ1 − n, it follows by the definition of
(λ, n)-ancestor lists that for some ε ∈ {3, 4, 5}, M ′ can be partitioned into lists M1

and M2 satisfying
∑

M1 = σ1 − ε and
∑

M2 = σ2 − 9 + ε, with ν2(M1) = 0 and
ν2(M2) ≤ n−6

2
< n. (In particular, if M ′ is the non-increasing list (m1, m2, . . . , mt)
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say, then a suitable partition can be obtained by packing M1 with lengths m1, m2,
m3, and so on, until

∑

M1 ∈ {σ1 − 5, σ1 − 4, σ1 − 3}.) If ε = 3, then by Lemma
2.5, (M1, 3) is (λ1, n)-admissible and (M2, 3, 3) is (λ2, n)-admissible, and so the result
follows by taking the union of an (M1, 3)-decomposition of λ1KV and an (M2, 3, 3)-
decomposition of λ2KV , which exist by assumption. Suppose then that ε ∈ {4, 5}.
It follows by Lemma 2.5 that (M1, ε) is (λ1, n)-admissible and (M2, 9 − ε) is (λ2, n)-
admissible. Thus, by assumption there is an (M1, ε)-decomposition D1 of λ1KV and
an (M2, 9− ε)-decomposition D2 of λ2KV . Let H1 be an ε-cycle in D1 and let H2 be
a (9− ε)-cycle in D2. By relabelling vertices we may assume that v, w, x, y and z are
distinct vertices in V and that {H1, H2} = {(v, w, x, y, z), (v, w, z, x)}. Then

(D1 \ {H1}) ∪ (D2 \ {H2}) ∪ {(v, w, x), (x, y, z), (v, w, z)}

is an (M)-decomposition of (λ1 + λ2)KV . ✷

We now present the proof of our main Theorem.

Proof of Theorem 2.1

If there is an (M)-decomposition of λKn, then by Lemma 2.4, M is a (λ, n)-admissible
list. It remains to show that if M is a (λ, n)-admissible list, then there is an (M)-
decomposition of λKn. By Theorem 4.1 we need only show there is an (M)-decomposition
of λKn for each (λ, n)-ancestor list M . The proof is by induction on λ. By Lemmas
2.2 and 5.3, Theorem 2.1 holds for Kn and 2Kn. So let λ ≥ 3 and assume Theorem
2.1 holds for λ′Kn with λ′ < λ.

Define λ1 and λ2 such that λ1 ∈ {1, 2} and λ2 = λ−λ1 is even. Let σ1 = n⌊λ1(
n−1
2
)⌋

and let σ2 = λ2

(

n
2

)

. Thus σ1 is a multiple of n, σ2 is even, and
∑

M = σ1 + σ2. By
Lemma 6.1, we need only show that at least one of the following conditions holds.

(1) nνn(M) ≥ σ1.

(2) 2ν2(M) ≥ σ2.

(3) ν3(M) ≥ 2.

Note that (1) holds if n = 1 and (2) holds if n = 2. Similarly, if n = 3 then
2ν2(M) + nνn(M) =

∑

M = σ1 + σ2 and thus (1) or (2) holds. Suppose then that
n ≥ 4. Let k =

∑

M − 2ν2(M) − 3ν3(M) − nνn(M), and note by the definition of
(λ, n)-ancestor lists, that k ≤ n − 1 and k ≤ n − 3 if ν3(M) ≥ 1. Suppose, for a
contradiction, that none of (1), (2) or (3) holds; that is, nνn(M) < σ1, 2ν2(M) < σ2

and ν3(M) < 2. If ν3(M) = 0, then 2ν2(M)+3ν3(M)+nνn(M) ≤ (σ2−2)+(σ1−n) =
∑

M − (n + 2), and k ≥ n + 2; a contradiction. Similarly if ν3(M) = 1, then
2ν2(M)+3ν3(M)+nνn(M) ≤ (σ2−2)+3+(σ1−n) =

∑

M− (n−1), and k ≥ n−1;
a contradiction. The result follows. ✷

The remainder of the paper is devoted to filling in the details of the case λ = 2 by
proving Lemmas 5.1 and 5.2.
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7 The case of more than (n− 3)/2 Hamilton cycles

The aim of this section is to prove Lemma 5.1 which states that, for n ≥ 5, there
is an (M)-decomposition of 2Kn for each (2, n)- ancestor list M satisfying νn(M) >
(n − 3)/2. This will follow directly from Lemmas 7.6 and 7.13. Throughout this
section we make frequent use of circulant graphs which we define as follows. For
distinct i, j ∈ {0, 1, . . . , n− 1}, let dn(i, j) be the shortest distance from i to j in the
n-cycle (0, 1, . . . , n− 1). If S ⊆ {1, 2, . . . , ⌊n/2⌋}, then 〈S〉n is the simple graph with
vertex set {0, 1, . . . , n− 1} and edge set {{i, j} : dn(i, j) ∈ S}.

7.1 Many 2-cycles

In this subsection we deal with the specific case of Lemma 5.1 in which the (2, n)-
ancestor list M satisfies ν2(M) ≥ n/2.

For each positive integer n, we define a graph Jn by V (Jn) = {0, 1, . . . , n+1} and
E(Jn) = {{i, i+1}, {i, i+2} : i = 0, 1, . . . , n−1}. Let M = (m1, m2, . . . , mt) be a list
of integers with mi ≥ 2 for i = 1, 2, . . . , t. A decomposition {A1, A2, . . . , At, P1, P2} of
2Jn such that

• Ai is a cycle of length mi for i = 1, 2, . . . , t, and

• Pi is a path from 0 to n such that V (Pi) = {0, 1, . . . , n} for i = 1, 2,

will be denoted 2Jn → (M,n∗, n∗). We note the following basic properties of Jn.

• For any integers y and n such that 1 ≤ y < n, the graph Jn is the union of
Jn−y and the graph obtained from Jy by applying the vertex map x 7→ x +
(n − y). Thus, if there is a decomposition 2Jn−y → (M, (n − y)∗, (n − y)∗)
and a decomposition 2Jy → (M ′, y∗, y∗), then there is a decomposition 2Jn →
(M,M ′, n∗, n∗). We will call this construction, and the similar constructions
that follow, concatenations.

• For n ≥ 5, if for each i ∈ {0, 1} we identify vertex i of Jn with vertex i+n of Jn

the resulting graph is 〈{1, 2}〉n. This means that for n ≥ 5, we can obtain an
(M,n, n)-decomposition of 2〈{1, 2}〉n from a decomposition 2Jn → (M,n∗, n∗),
provided that for each i ∈ {0, 1} no cycle in the decomposition of 2Jn contains
both vertex i and vertex i+ n. Note in particular that this proviso holds if the
decomposition 2Jn → (M,M ′, n∗, n∗) was formed as a non-trivial concatenation.

Lemma 7.1 The following decompositions exist.

(i) 2Jk → (k + 1, 2(k−1)/2, k∗, k∗), for any odd k ≥ 1.

(ii) 2Jk → (2k1 + 1, 2k2 + 1, 2(k−2)/2, k∗, k∗), for any positive k, k1 and k2 with

2k1 + 2k2 = k.
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Proof (i) It is easy to check that the decomposition 2J1 → (2, 1∗, 1∗) exists. Let
k ≥ 3 be odd and let A be the (k + 1)-cycle on vertices {0, 1, . . . , k} with

E(A) = {{0, 1}, {k − 1, k}} ∪ {{i, i+ 2} : i = 0, 1, . . . , k − 2}.

Let P = {A, (2, 4)} if k = 3, and P = {A, (k−1, k+1)}∪{(i, i+1) : i = 2, 4, . . . , k−
3} otherwise. Then P is a (k + 1, 2(k−1)/2)-packing of 2Jk, and in each case it is
straightforward to check that the leave of P decomposes into two paths P1 and P2,
each from 0 to k, with V (P1) = V (P2) = {0, 1, . . . , k} as required.
(ii) Let k, k1 and k2 be positive integers with 2k1 +2k2 = k. Let A1 be the (2k1 +1)-
cycle on vertices {0, 1, . . . , 2k1} with

E(A1) = {{0, 1}, {2k1 − 1, 2k1}} ∪ {{i, i+ 2} : i = 0, 1, . . . , 2k1 − 2},

and let P1 = {A1} if k1 = 1, and P1 = {A1} ∪ {(i, i + 1) : i = 2, 4, . . . , 2k1 − 2}
otherwise. Similarly, let A2 be the (2k2 + 1)-cycle on vertices {2k1, 2k1 + 1, . . . , k}
with

E(A2) = {{2k1, 2k1 + 1}, {k − 1, k}} ∪ {{i, i+ 2} : i = 2k1, 2k1 + 2, . . . , k − 2},

and let P2 = {A2} if k2 = 1, and P2 = {A2}∪{(i, i+1) : i = 2k1+1, 2k1+3, . . . , k−3}
otherwise. Then P = P1 ∪P2 ∪{(k− 1, k+1)} is a (2k1+1, 2k2+1, 2(k−2)/2)-packing
of 2Jk, and in each case it is straightforward to check that the leave of P decomposes
into two paths P1 and P2, each from 0 to k, with V (P1) = V (P2) = {0, 1, . . . , k} as
required. ✷

In the following result we use concatenations of decompositions from Lemma 7.1
to build decompositions of 2〈{1, 2}〉n.

Lemma 7.2 If n ≥ 5 and M = (m1, m2, . . . , mt) is any list satisfying 2 ≤ mi ≤ n for

i = 1, 2, . . . , t, 2ν2(M) ≥ n and
∑

M = 2n, then there is an (M,n, n)-decomposition

of 2〈{1, 2}〉n.

Proof We note that n/2 < t ≤ n and thus ν2(M) > n−t ≥ 0. Let M ′ = M−(2n−t),
and let r = t−(n−t) be the length of the list M ′, noting that r ≥ 2 and that

∑

M ′ =
2t. Take a partition of M ′ in which each part is either a single even integer or a pair of
odd integers. This is possible since

∑

M ′ is even and, as M ′ contains at least one 2,
this partition has at least two parts. For each part that is a single even integer, say {s},
use Lemma 7.1(i) to construct a decomposition 2Js−1 → (s, 2(s−2)/2, (s−1)∗, (s−1)∗),
and for each part that is a pair of odd integers, say {s1, s2}, use Lemma 7.1(ii) to
construct a decomposition 2Js1+s2−2 → (s1, s2, 2

(s1+s2−4)/2, (s1 + s2 − 2)∗, (s1 + s2 −
2)∗). Concatenate all of these decompositions to obtain a decomposition 2J2t−r →
(M ′, 2t−r, (2t − r)∗, (2t − r)∗). Since 2t − r = n and t − r = n − t, we have 2Jn →
(M,n∗, n∗) and the result follows. ✷

The following lemma is from [8] (see Lemma 2.3 of [8] and its proof), also see [18].
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Lemma 7.3 Let n ≥ 5 be an integer and M = (m1, m2, . . . , mt) be any list satisfying

3 ≤ mi ≤ n for i = 1, 2, . . . , t and
∑

M = n. Let m0 = 0 and for each j ∈ {1, 2, . . . , t}
let sj =

∑j−1
i=0 mi and

Cj =

{

(sj , sj + 2, . . . , sj +mj − 1, sj +mj − 2, sj +mj − 4, . . . , sj + 1), if mj is odd;

(sj , sj + 2, . . . , sj +mj − 2, sj +mj − 1, sj +mj − 3, . . . , sj + 1), if mj is even.

Then the leave H of the packing P = {C1, C2, . . . , Ct} of 〈{1, 2}〉n is an n-cycle and

so P ∪ {H} is an (M,n)-decomposition of 〈{1, 2}〉n.

Lemma 7.4 If n ≥ 5 and M = (m1, m2, . . . , mt) is any list satisfying 2 ≤ mi ≤ n for

i = 1, 2, . . . , t and
∑

M = n, then there is an (M,n, n, n)-decomposition of 2〈{1, 2}〉n.

Proof If ν2(M) = 0 the result follows by combining an (M,n)-decomposition of
〈{1, 2}〉n and an (n, n)-decomposition of 〈{1, 2}〉n, each of which exists by Lemma
7.3. If ν2(M) = n/2 the result follows from Lemma 7.2. Suppose then that 1 ≤
ν2(M) < n/2. Let m ≥ 2 and h ≥ 0 be integers such that M ′ = M − (m, 22h+1)
satisfies ν2(M

′) = 0. (Note that m = 2 if ν2(M) is even, and 3 ≤ m ≤ n − 2 if
ν2(M) is odd.) By Lemma 7.3 there is an (M ′, m+2, 4h, n)-decomposition, D′ say, of
〈{1, 2}〉n. Furthermore, we may assume that if h ≥ 1 then D′ contains the 4-cycles
Ci = (i, i+ 1, i+ 3, i+ 2) for i = 0, 4, . . . , 4(h− 1), and that D′ contains an (m+ 2)-
cycle C that has the path [4h + 2, 4h, 4h + 1, 4h + 3] as a subgraph. Let {H1, H2}
be an (n, n)-decomposition of 〈{1, 2}〉n, with H1 = (0, 1, . . . , n− 3, n − 1, n− 2) if n
is even and H1 = (0, 1, . . . , n − 1) if n is odd. In either case, H1 contains the path
[0, 1, . . . , 4h+3] (note that, if n is even,

∑

M ′ +m ≥ 4 and hence n ≥ 4h+6). Then

D = (D′ \ {C,C0, C4, . . . , C4(h−1)}) ∪ {C∗, H∗
1 , H2} ∪ {(i, i+ 1) : i = 0, 2, . . . , 4h}

is an (M,n, n, n)-decomposition of 2〈{1, 2}〉n, where C∗ is the m-cycle obtained from
C by replacing the path [4h+2, 4h, 4h+1, 4h+3] with the path [4h+2, 4h+3], and
H∗

1 is the n-cycle obtained from H1 by replacing the path [i, i + 1, i + 2, i + 3] with
the path [i, i+ 2, i+ 1, i+ 3], for each i = 0, 4, . . . , 4h. ✷

Lemma 7.5 If n, a and b are non-negative integers satisfying 2a + 2nb = n(n− 5),
then there is a (2a, n2b)-decomposition of 2〈{3, 4, . . . , ⌊n/2⌋}〉n.

Proof By Lemma 3.1 of [17], there is a decomposition D of 〈{3, 4, . . . , ⌊n/2⌋}〉n into
⌊n−5

2
⌋ n-cycles if n is odd, and into ⌊n−5

2
⌋ n-cycles and a 1-factor if n is even. In

either case, let H1, H2, . . . , Hb be distinct n-cycles in D (noting that b ≤ ⌊n−5
2
⌋) and

let P be the packing of 2〈{3, 4, . . . , ⌊n/2⌋}〉n containing exactly two copies of each
of H1, H2, . . . , Hb. Clearly the leave of P is a graph in which each edge has even
multiplicity. Thus it can be decomposed into 2-cycles and the result follows. ✷

Finally, we have the following result.
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Lemma 7.6 If n ≥ 5 and M is a (2, n)-ancestor list satisfying ν2(M) ≥ n/2 and

νn(M) ≥ 2, then there is an (M)-decomposition of 2Kn.

Proof Let M be a (2, n)-ancestor list with ν2(M) ≥ n/2 and νn(M) ≥ 2. By the
definition of (2, n)-ancestor lists it follows that

2ν2(M) + nνn(M) ≥ n(n− 2). (A)

Let b be the largest integer such that 2b ≤ min(νn(M)− 2, n− 5) (note that b is non-
negative) and let a = n(n−5−2b)/2. Because 2b ≥ νn(M)−3 or 2b ≥ n−5, it follows
from (A) that a ≤ ν2(M), and thus (2a, n2b) is a sublist of M . Now 2a+2bn = n(n−5)
and there exists a (2a, n2b)-decomposition of 2〈{3, 4, . . . , ⌊n/2⌋}〉n by Lemma 7.5. Note
that M ′ = M − (2a, n2b) satisfies

∑

M ′ = 4n and νn(M
′) ≥ 2. Further, since M is a

(2, n)-ancestor list, M ′ contains either one 3 and at most one length in {4, 5, . . . , n−3},
or no 3’s and at most one length in {4, 5, . . . , n−1}. It follows that either νn(M

′) = 2,
2ν2(M

′) ≥ n and there is an (M ′)-decomposition of 2〈{1, 2}〉n by Lemma 7.2, or
νn(M

′) ≥ 3 and there is an (M ′)-decomposition of 2〈{1, 2}〉n by Lemma 7.4. The
result follows. ✷

7.2 Few 2-cycles

In this subsection we deal with the specific case of Lemma 5.1 in which the (2, n)-
ancestor list M satisfies ν2(M) < n/2.

Lemma 7.7 If there is an (M, 2, 2, 5)-decomposition of 2Kn in which vertices from

two vertex disjoint 2-cycles are joined by an edge of a 5-cycle, then there is an

(M, 3, 3, 3)-decomposition of 2Kn.

Proof Our aim is to show there is an (M)-packing of 2Kn whose leave admits a
(3, 4, 2)-decomposition in which the 4-cycle and 2-cycle share at least one vertex.
Then there is an (M, 3, 4, 2)-decomposition of 2Kn in which a 4-cycle and a 2-cycle
share at least one vertex and the result follows by Lemma 3.6.

By our hypothesis, there is an (M)-packing P of 2Kn with leave L, such that L
admits a decomposition {C1, C2, C} in which C is a 5-cycle, say C = (u, v, x, y, z), and
C1 and C2 are vertex disjoint 2-cycles with u ∈ V (C1) and v ∈ V (C2), say C1 = (u, u′)
and C2 = (v, v′). If either y ∈ {u′, v′} or (u′, v′) = (x, z) then it is easy to check that
the required (3, 4, 2)-decomposition of L exists. Suppose then that y /∈ {u′, v′} and
(u′, v′) 6= (x, z). Without loss of generality (by suitably relabelling the vertices) we
may assume that u′ /∈ V (C). By applying Lemma 2.1 from [15] to P (performing the
(u′, y)-switch with origin u in the terminology of that paper) we can obtain an (M)-
packing P ′ of 2Kn with a leave L′ such that one of L′ = (L − {u′u, u′u}) + {yu, yu}
(if the switch has terminus u), L′ = (L − {u′u, yx}) + {yu, u′x} (if the switch has
terminus x), or L′ = (L − {u′u, yz}) + {yu, u′z} (if the switch has terminus z). In
each case, it is easy to check that the required decomposition of L′ exists. ✷
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Lemma 7.8 Suppose n andm are integers with n ≥ m ≥ 3, andM = (m1, m2, . . . , mt)
is a list of integers satisfying

∑

M = m and mi ≥ 2 for i = 1, 2, . . . , t. Then

there is a subgraph of 2Kn which admits both an (M,n)-decomposition and an (m,n)-
decomposition.

Proof If t = 1 thenM = (m) and the result is obvious. Suppose then that t ≥ 2. Let
C1, C2, . . . , Ct be pairwise vertex disjoint cycles, of lengthsm1, m2, . . . , mt respectively,
in 2Kn. For each i = 1, 2, . . . , t, partition the edges of Ci into three paths, say Pi, Qi

and Ri, of lengths 1, mi − 2 and 1, respectively, and label the vertices of Ci so that
Pi = [ui, vi] and Ri = [wi, ui] (with wi = vi if mi = 2). Let L be the leave of the
packing {C1, C2, . . . , Ct} in 2Kn. Define paths Xi = [ui, vi+1] for i = 1, 2, . . . , t − 1,
Xt = [ut, v1], Yi = [wi, ui+1] for i = 1, 2, . . . , t − 2 and Yt−1 = [wt−1, wt] in L with
length 1. Also define a path Yt in L from ut to u1 with length n−m+1 whose set of
internal vertices is disjoint from the set {ui, vi, wi : i = 1, 2, . . . , t}. Observe that

• Ci = Pi ∪Qi ∪Ri is a cycle of length mi for each i = 1, 2, . . . , t;

• H =
⋃t

i=1(Qi ∪Xi ∪ Yi) is a cycle of length n;

• C =
⋃t

i=1(Qi ∪ Ri ∪Xi) is a cycle of length m; and

• H ′ =
⋃t

i=1(Pi ∪Qi ∪ Yi) is a cycle of length n.

Then G =
⋃t

i=1(Pi ∪ 2Qi ∪Ri ∪Xi ∪ Yi) is a subgraph of 2Kn which admits both an
(M,n)-decomposition {C1, C2, . . . , Ct, H}, and an (m,n)-decomposition {C,H ′}. ✷

In order to prove the main result of this subsection we require some results on
decompositions of circulant graphs of the form 〈{n/2−1, n/2}〉n, where n is even. We
obtain these results using graph concatenation methods similar to those in the previous
subsection. Accordingly, we redefine Jn to suit our purposes in this subsection.

Let Vi = {i, i′} for each nonnegative integer i. Then for each even integer n ≥ 2,

we define Jn by V (Jn) =
⋃n/2

i=0 Vi and E(Jn) = {{i, i + 1}, {i, i′}, {i′, (i + 1)′} : i =
0, 1, . . . , n/2 − 1}. Let M = (m1, m2, . . . , mt) be a list of integers with mi ≥ 2 for
i = 1, 2, . . . , t. A decomposition {A1, A2, . . . , At, P1, P2} of Jn ∪ I, where I is a 1-

regular graph with V (I) =
⋃n/2−1

i=0 Vi, such that

• Ai is a cycle of length mi with Vn/2 ∩ V (Ai) = ∅ for i = 1, 2, . . . , t;

• P1 and P2 are vertex disjoint paths with end vertices in V0 ∪ Vn/2 such that
|E(P1)|+ |E(P2)| = n;

will be denoted Jn → (M,n+) if each Pi has one end vertex in V0 and one end vertex
in Vn/2, and denoted Jn → (M,n∗) otherwise. We note the following basic properties
of Jn.
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• For n ≥ 8 and n ≡ 0 (mod 4), if we identify vertices 0 and 0′ of Jn with
vertices (n/2)′ and (n/2) respectively of Jn, the resulting graph is isomorphic
to 〈{n/2 − 1, n/2}〉n. Similarly, for n ≥ 6 and n ≡ 2 (mod 4), if we identify
vertices 0 and 0′ of Jn with vertices (n/2) and (n/2)′ respectively of Jn, the
resulting graph is isomorphic to 〈{n/2− 1, n/2}〉n. This means that for n ≥ 6,
we can obtain an (M,n)-decomposition of 〈{n/2−1, n/2}〉n∪Ii, for some perfect
matching Ii in Kn, from a decomposition Jn → (M,n∗).

• For any even integers y and n such that 2 ≤ y < n, the graph Jn is the
union of Jn−y and the graph obtained from Jy by applying the vertex map
(x, x′) 7→ (x + (n − y)/2, (x+ (n− y)/2)′). Similarly, if I1 is a 1-regular graph

with V (I1) =
⋃(n−y)/2−1

i=0 Vi and I2 is a 1-regular graph with V (I2) =
⋃y/2−1

i=0 Vi,
then the union of I1 and the graph obtained from I2 by applying the vertex
map (x, x′) 7→ (x + (n − y)/2, (x + (n − y)/2)′) is a 1-regular graph I with

V (I) =
⋃n/2−1

i=0 Vi. Thus, if there is a decomposition Jn−y → (M, (n−y)+) and a
decomposition Jy → (M ′, y+), then there is a decomposition Jn → (M,M ′, n+).
Similarly, if there is a decomposition Jn−y → (M, (n−y)+) and a decomposition
Jy → (M ′, y∗), then there is a decomposition Jn → (M,M ′, n∗). As before, we
call this method of combining decompositions concatenation.

Lemma 7.9 The following decompositions exist.

(i) J2k → (2k, (2k)∗), for any k ≥ 2.

(ii) J2k → (2k1 + 1, 2k2 + 1, (2k)∗), for any k1 ≥ 2 and k2 ≥ 1 with k1 + k2 + 1 = k.

(iii) J4 → (2, 2, 4∗), J8 → (2, 3, 3, 8∗) and J12 → (3, 3, 3, 3, 12∗).

(iv) J2k → (2k, (2k)+), for any k ≥ 1.

(v) J2k → (2k1 + 1, 2k2 + 1, (2k)+), for any k1, k2 ≥ 1 with k1 + k2 + 1 = k.

Proof In each case we give only the decomposition D2k of J2k ∪ I, noting that it is
then straightforward to check that (the implicitly defined) I = (

⋃

G∈D2k
G)− J2k is a

1-regular graph with V (I) =
⋃k−1

i=0 Vi as required.

(i) Let D2k = {A, [0, 0′], [k, k − 1, . . . , 1, 1′, 2′, . . . , k′]}, where A = (0, 1, 0′, 1′) if k = 2,
and A = (1′, 0′, 0, 1, 2′, 2, 3′, 3, . . . , (k − 1)′, k − 1) otherwise.

(ii) Let D2k = {A1, A2, [0, 0
′], P2}, where

• A1 = (1′, 0′, 0, 1, 2) if k1 = 2, and
A1 = (1′, 0′, 0, 1, 2′, 2, 3′, 3, . . . , (k1 − 1)′, (k1 − 1), k1) otherwise,

• A2 = ((k − 2)′, (k − 1)′, k − 1) if k2 = 1, and
A2 = (k′

1, (k1 + 1)′, (k1 + 1), (k1 + 2)′, (k1 + 2), . . . , (k − 1)′, k − 1) otherwise,
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• P2 = [k, k−1, . . . , k1, k
′
1, (k1−1)′, . . . , 1′, 1, 2, . . . , k1−1, (k1+1)′, (k1+2)′, . . . , k′].

(iii) Let D4 = {(0, 1), (0′, 1′), [0, 0′], [2, 1, 1′, 2′]},
let D8 = {(0, 1), (0′, 1′, 2′), (2, 3, 3′), [0, 0′], [4, 3, 1′, 1, 2, 2′, 3′, 4′]}, and let
D12 = {(0, 1, 2), (0′, 1′, 2′), (3, 3′, 4′), (4, 5, 5′), [0, 0′], [6, 5, 1′, 1, 3′, 2′, 2, 3, 4, 4′, 5′, 6′]}.

(iv) Let D2k = {A, [0, 1, . . . , k], [0′, 1′, . . . , k′]}, where A = (0, 0′) if k = 1, and
A = (0′, 0, 1′, 1, . . . , (k − 1)′, k − 1) otherwise.

(v) Let D2k = {A1, A2, P1, P2}, where

• A1 = (0′, 0, 1) if k1 = 1 and
A1 = (0′, 0, 1′, 1, . . . , (k1 − 1)′, k1 − 1, k1) otherwise,

• A2 = (k′
1, (k − 1)′, k − 1) if k2 = 1 and

A2 = (k′
1, (k1 + 1)′, k1 + 1, (k1 + 2)′, k1 + 2, . . . , (k − 1)′, k − 1) otherwise,

• P1 = [0, 2′, 3′, . . . , k′] if k1 = 1 and
P1 = [0, 1, . . . , k1 − 1, (k1 + 1)′, (k1 + 2)′, . . . , k′] otherwise, and

• P2 = [0′, 1′, . . . , k′
1, k1, k1 + 1, . . . , k]. ✷

We now use the decompositions from Lemma 7.9 to build larger decompositions.

Lemma 7.10 Suppose n ≥ 6 is even and M = (m1, m2, . . . , mt) is a list of integers

satisfying
∑

M = n and mi ≥ 2 for i = 1, 2, . . . , t. Then there is a subgraph of

2Kn which admits both an (M,n)-decomposition, and a decomposition into 〈{n/2 −
1, n/2}〉n and a perfect matching.

Proof Suppose first that M = (3, 3). Thus n = 6 and we can easily choose I such
that 〈{2, 3}〉6 ∪ I ∼= K6 − F where F is a perfect matching in K6. The required
(3, 3, 6)-decomposition then exists by Lemma 2.2. Suppose then that M 6= (3, 3), and
note that we need only show there is a decomposition Jn → (M,n∗). It is routine
to check that, since M satisfies the hypotheses of the lemma, M can be written as
M = (X, Y ) whereX is some (possibly empty) list and either Y = (2k) for some k ≥ 2,
Y = (2k1+1, 2k2+1) for some k1 ≥ 2 and k2 ≥ 1, or Y ∈ {(2, 2), (2, 3, 3), (3, 3, 3, 3)}.
Let

∑

Y = y, then Jy → (Y, y∗) by Lemma 7.9 (i)–(iii). If X is empty then we are
finished. If X is nonempty, take a partition of X in which each part is either a single
even integer or a pair of odd integers. This is possible since

∑

X is even. For each part
that is a single even integer, say {s}, use Lemma 7.9(iv) to construct a decomposition
Js → (s, s+), and for each part that is a pair of odd integers, say {s1, s2}, use Lemma
7.9(v) to construct a decomposition Js1+s2 → (s1, s2, (s1 + s2)

+). Concatenate all
of these decompositions to obtain a decomposition Jn−y → (X, (n − y)+). Then
we can obtain the required decomposition by concatenating this decomposition with
Jy → (Y, y∗). ✷
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Lemma 7.11 If n is odd and (M1,M2,M3) is a (2, n)-admissible list such that

• νn(M1) ≥ 1,

• there is an (M1)-decomposition of Kn, and

• there is an (M2,
∑

M3)-decomposition of Kn,

then there is an (M1,M2,M3)-decomposition of 2Kn.

Proof Let V be a vertex set with |V | = n, and let m =
∑

M3. Since n ≥ m ≥ 3,
it follows from Lemma 7.8 that there is a subgraph of 2KV that admits both an
(M3, n)-decomposition, D3 say, and an (m,n)-decomposition, {C,H} say, where C
is an m-cycle and H is an n-cycle. Let D1 be an (M1)-decomposition of KV which
contains the n-cycle H , and let D2 be an (M2, m)-decomposition of KV which contains
the m-cycle C (such decompositions can be found by taking the decompositions given
by our hypotheses and relabelling vertices). Then (D1 \ {H})∪ (D2 \ {C})∪D3 is an
(M1,M2,M3)-decomposition of 2KV as required. ✷

Lemma 7.12 If n is even and (M1,M2,M3) is a (2, n)-admissible list such that

• there is an (M1)-decomposition of Kn − 〈{n/2− 1, n/2}〉n,

• there is an (M2)-decomposition of Kn, and

• νn(M3) ≥ 1,

then there is an (M1,M2,M3)-decomposition of 2Kn. Furthermore,

(i) if ν2(M3) ≥ 1 and ν4(M2) ≥ 1, then there is an (M †)-decomposition of 2Kn,

where M † = (M1,M2,M3, 3, 3)− (2, 4); and

(ii) if ν2(M3) ≥ 2 and ν5(M2) ≥ 1, then there is an (M †)-decomposition of 2Kn,

where M † = (M1,M2,M3, 3, 3, 3)− (2, 2, 5).

Proof Let V be a vertex set with |V | = n and let D1 be an (M1)-decomposition of
KV−G, whereG ⊆ KV is isomorphic to 〈{n/2−1, n/2}〉n. LetM3 = (m1, m2, . . . , mt, n).
Then m1 + m2 + . . . + mt = n and by Lemma 7.10 there is an (M3)-decomposition
D3 of G ∪ I, for some perfect matching I in KV . Observe that the cycles of lengths
m1, m2, . . . , mt in D3 are necessarily pairwise vertex disjoint. Finally, let D2 be an
(M2)-decomposition of KV − I. Then 2KV = (KV − G) ∪ (G ∪ I) ∪ (KV − I) and
D1 ∪ D2 ∪ D3 is an (M1,M2,M3)-decomposition of 2KV .

Furthermore, if ν4(M2) ≥ 1 and ν2(M3) ≥ 1, then there is a 4-cycle C in D2 and
a 2-cycle C ′ in D3. We note that C ′ necessarily contains an edge of I, say xy. By
relabelling vertices in D2, we may assume that x ∈ V (C). Case (i) then follows by
Lemma 3.6.
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Similarly, if ν5(M2) ≥ 1 and ν2(M3) ≥ 2, then there is a 5-cycle C in D2 and two
distinct 2-cycles C1 and C2 in D3. We note that C1 and C2 contain distinct edges of
I, say x1y1 and x2y2. By relabelling vertices in D2, we may assume that x1x2 ∈ E(C).
Case (ii) then follows by Lemma 7.7. ✷

Finally, we have the following result.

Lemma 7.13 If n ≥ 5 and M is a (2, n)-ancestor list satisfying ν2(M) < n/2 and

νn(M) > (n− 3)/2, then there is an (M)-decomposition of 2Kn.

Proof Let M be a (2, n)-ancestor list with ν2(M) < n/2 and νn(M) > (n − 3)/2.
By the definition of (2, n)-ancestor lists it follows that

3ν3(M) + nνn(M) > n(n− 3). (B)

The problem now splits according to the parity of n.

Case 1. Suppose that n is odd. Let M1 = (n(n−1)/2). Thus M1 is a sublist of
M and there is an (M1)-decomposition of Kn by Lemma 2.2. Furthermore, the list
M ′ = M − M1 satisfies

∑

M ′ =
(

n
2

)

and 2ν2(M
′) = 2ν2(M) ≤ (n − 1)/2. It is

straightforward to show there is a sublist M3 of M ′ satisfying ν2(M3) = ν2(M
′) and

3 ≤
∑

M3 ≤ n. Let M2 = M ′ − M3, and thus (M2,
∑

M3) is (1, n)-admissible and
there exists an (M2,

∑

M3)-decomposition of Kn by Lemma 2.2. The result then fol-
lows by Lemma 7.11, noting that M = (M1,M2,M3) and νn(M1) = (n− 1)/2 > 1.

Case 2. Suppose that n is even. Let M1 = (nn/2−2). Thus M1 is a sublist of M
and there is an (M1)-decomposition of Kn − 〈{n/2− 1, n/2}〉n by Lemma 3.1 of [17].
Consider the list M ′ = M −M1. Since 2ν2(M

′) = 2ν2(M) < n, n divides
∑

M ′ and
M ′ contains at most one length in {4, 5, . . . , n−1}, it follows that for some ε ∈ {0, 1, 2}
there is a partition of M ′ into M ′

2 and M ′
3 satisfying

∑

M ′
2 = n(n−2)/2−ε,

∑

M ′
3 =

2n + ε, ν2(M
′
3) = ν2(M

′), ν3(M
′
3) ≥ ε and νn(M

′
3) ≥ 1. Let M2 = (M ′

2, 3 + ε) − (3)
and let M3 = (M3, 2

ε) − (3ε). Thus M2 is (1, n)-admissible and there is an (M2)-
decomposition of Kn by Lemma 2.2. The result then follows by Lemma 7.12, noting
that M = (M1,M2,M3) when ε = 0, that M = (M1,M2,M3, 3, 3)− (2, 4) when ε = 1,
and that M = (M1,M2,M3, 3, 3, 3)− (2, 2, 5) when ε = 2. ✷

8 The case of at most (n− 3)/2 Hamilton cycles

The aim of this section is to prove Lemma 5.2 which states that if n ≥ 5 and Theorem
2.1 holds for 2Kn−1, then there is an (M)-decomposition of 2Kn for each (2, n)-
ancestor list M satisfying νn(M) ≤ (n − 3)/2. We begin with the following useful
lemmas.
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Lemma 8.1 If there is an (M)-decomposition of 2Kn−1, then there is an (M, 2n−1)-
decomposition of 2Kn.

Proof Let U be a vertex set with |U | = n − 1, let ∞ be a vertex not in U , let
V = U ∪ {∞}, and let D be an (M)-decomposition of 2KU . Then D ∪ D1 is an
(M, 2n−1)-decomposition of 2KV , where D1 is a (2n−1)-decomposition of 2K{∞}, U . ✷

Lemma 8.2 If there is an (M,h)-decomposition of 2Kn−1, then there is an (M, 2n−1−h, 3h)-
decomposition of 2Kn.

Proof Let U be a vertex set with |U | = n − 1, let ∞ be a vertex not in U , let
V = U ∪ {∞} and let D be an (M,h)-decomposition of 2KU . Let C be an h-cycle in
D. Then

(D \ {C}) ∪ D1 ∪ D2

is an (M, 2n−1−h, 3h)-decomposition of 2KV , where

• D1 is a (2n−1−h)-decomposition of 2K{∞},U\V (C); and

• D2 is a (3h)-decomposition of 2K{∞},V (C) ∪ C.

These decompositions are straightforward to construct. ✷

Lemma 8.3 Let n ≥ 5 and h ≥ 2 be integers. If there is an (M)-packing of 2Kn

with leave L of size 3h such that either

(i) L has a vertex of degree 2h and admits a decomposition into a (2h−1)-flower and
an (h+ 2)-cycle, or

(ii) L admits a decomposition into a (2h)-flower and an h-cycle,

then there is an (M, 3h)-decomposition of 2Kn.

Proof If h = 2 and (i) holds then there is an (M, 4, 2)-decomposition of 2Kn in
which a 4-cycle and a 2-cycle share at least one vertex and the result follows from
Lemma 3.4. If h = 2 and (ii) holds then there is an (M, 2, 2, 2)-decomposition of 2Kn

in which two 2-cycles share a vertex and the result follows from Lemma 3.5. Suppose
then that h ≥ 3 and that the result holds for any h′ < h. Our aim is to show that
there is an (M, 3)-packing of 2Kn with leave of size 3(h− 1) such that either

(a) L has a vertex of degree 2(h−1) and admits a decomposition into a (2h−2)-flower
and an (h+ 1)-cycle, or

(b) L admits a decomposition into a (2h−1)-flower and an (h− 1)-cycle.

23



The result will then follow by our inductive hypothesis. Let V be a vertex set with
|V | = n and let P be an (M)-packing of 2KV with leave L of size 3h which satisfies
(i) or (ii).

Case 1. Suppose that L satisfies (i). Let {F,C} be a decomposition of L in which F
is a (2h−1)-flower and C is an (h+2)-cycle, let v be the vertex of degree 2h in L, and
let X = V (F ) ∩ V (C). Let [u, v, w, x, y] be a path in C and observe that u, w /∈ X .
If x ∈ X then L contains the 3-cycle (v, w, x), and hence P ′ = P ∪ {(v, w, x)} is an
(M, 3)-packing of 2KV with leave L′ of size 3(h−1). Furthermore, L′ decomposes into
the (2h−1)-flower F−(v, x) and the (h−1)-cycle (C−[v, w, x])∪[v, x] and thus satisfies
(b). Suppose then that x /∈ X . It follows that |X| < h and hence there is a vertex
z ∈ V (F ) \X . By applying Lemma 2.1 from [15] to P (performing the (z, x)-switch
with origin w in the terminology of that paper) we can obtain an (M)-packing P ′ of
2KV with leave L′ such that either L′ = L1 = (L−{wx, yx})+{wz, yz} (if the switch
has terminus y), or L′ = L2 = (L−{wx, vz})+{wz, vx} (if the switch has terminus v).
In either case, P ′ ∪ {(z, v, w)} is an (M, 3)-packing of 2KV with leave L′ − (z, v, w) of
size 3(h− 1). Furthermore, L′ − (z, v, w) decomposes into the (2h−2)-flower F − (z, v)
and either the (h+1)-cycle (C − [v, w, x, y])∪ [v, z, y] (if L′ = L1) or the (h+1)-cycle
(C − [v, w, x]) ∪ [v, x] (if L′ = L2), and thus satisfies (a).

Case 2. Suppose that L satisfies (ii). Let {F,C} be a decomposition of L in which
F is a (2h)-flower and C is an h-cycle, let v be the vertex of degree 2h in F , and let
X = V (F ) ∩ V (C). If h = 3 then P ∪ {C} is an (M, 3)-packing of 2KV whose leave
satisfies (b). Suppose then that h ≥ 4.

Subcase 2a. Suppose that X 6= ∅ and v /∈ X . Thus there are distinct vertices
w, x, y ∈ V such that w ∈ X and [w, x, y] is a path in C. If x ∈ X then L contains
the 3-cycle (v, w, x), and hence P ′ = P ∪ {(v, w, x)} is an (M, 3)-packing of 2KV

with leave L′ of size 3(h − 1). Furthermore, L′ decomposes into the (2h−2)-flower
F − ((v, w)∪ (v, x)) and the (h+1)-cycle (C − [w, x])∪ [w, v, x] and thus satisfies (a).
Suppose then that x /∈ X . It follows that there is a vertex u ∈ V (F ) \ (X ∪ {v}). By
applying Lemma 2.1 from [15] to P (performing the (u, x)-switch with origin w in the
terminology of that paper) we can obtain an (M)-packing P ′ of 2KV with leave L′

such that either L′ = L1 = (L− {wx, yx}) + {wu, yu} (if the switch has terminus y),
or L′ = L2 = (L−{wx, vu})+{wu, vx} (if the switch has terminus v). In either case,
P ′ ∪ {(u, v, w)} is an (M, 3)-packing of 2KV with leave L′ − (u, v, w) of size 3(h− 1).
Furthermore, L′− (u, v, w) decomposes into the (2h−2)-flower F − ((v, u)∪ (v, w)) and
either the (h + 1)-cycle (C − [w, x, y]) ∪ [w, v, u, y] (if L′ = L1) or the (h + 1)-cycle
(C − [w, x]) ∪ [w, v, x] (if L′ = L2), and thus satisfies (a).

Subcase 2b. Suppose that v ∈ X . Thus there are distinct vertices u, w, x, y ∈ V such
that u ∈ V (F ) \X and [v, w, x, y] is a path in C. Note that w /∈ V (F ). If x ∈ X then
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L contains the 3-cycle (v, w, x), and hence P ′ = P∪{(v, w, x)} is an (M, 3)-packing of
2KV with leave L′ of size 3(h−1). Furthermore, L′ decomposes into the (2h−1)-flower
F − (v, x) and the (h− 1)-cycle (C − [v, w, x])∪ [v, x] and thus satisfies (b). Suppose
then that x /∈ X . By applying Lemma 2.1 from [15] to P (performing the (u, x)-switch
with origin w in the terminology of that paper) we can obtain an (M)-packing P ′ of
2KV with leave L′ such that either L′ = L1 = (L−{wx, yx})+{wu, yu} (if the switch
has terminus y), or L′ = L2 = (L−{wx, vu})+{wu, vx} (if the switch has terminus v).
In either case, P ′ ∪{(u, v, w)} is an (M, 3)-packing of 2KV with leave L′ − (u, v, w) of
size 3(h−1). Furthermore, L′− (u, v, w) decomposes into the (2h−1)-flower F − (u, v)
and either the (h−1)-cycle (C − [v, w, x, y])∪ [v, u, y] (if L′ = L1) or the (h−1)-cycle
(C − [v, w, x]) ∪ [v, x] (if L′ = L2), and thus satisfies (b).

Subcase 2c. Suppose that X = ∅. Thus there are distinct vertices u, w, x, y ∈ V
such that (u, v) is a 2-cycle in F and [w, x, y] is a path in C. By applying Lemma
2.1 from [15] to P (performing the (u, x)-switch with origin w in the terminology of
that paper) we can obtain an (M)-packing P ′ of 2KV with leave L′ of size 3h such
that either L′ = L1 = (L − {wx, yx}) + {wu, yu} (if the switch has terminus y), or
L′ = L2 = (L− {wx, vu}) + {wu, vx} (if the switch has terminus v). If L′ = L1, then
L′ decomposes into the (2h)-flower F and the h-cycle C1 = (C − [w, x, y]) ∪ [w, u, y]
and, since V (F ) ∩ V (C1) = {u}, we can continue as in Subcase 2a. If L′ = L2, then
degL′(v) = 2h and L′ decomposes into the (2h−1)-flower F−(u, v) and the (h+2)-cycle
C2 = (C − [w, x]) ∪ [w, u, v, x] and we can continue as in Case 1. ✷

Lemma 8.4 If n ≥ 2s+3 ≥ 5 and there is an (M, (n−1)s)-decomposition of 2Kn−1,

then there is an (M, 3s, ns)-packing of 2Kn whose leave has a (2n−2s−1)-flower as its

only nontrivial connected component.

Proof Let U be a vertex set with |U | = n − 1, let ∞ be a vertex not in U , let
V = U∪{∞}, let D be an (M, (n−1)s)-decomposition of 2KU , and let H1, H2, . . . , Hs

be distinct (n − 1)-cycles in D. We begin by showing there is a subgraph G of 2KU

such that E(G) contains precisely one edge from each of the cycles H1, H2, . . . , Hs, and
such that each nontrivial connected component of G is a path. (As an aside, a similar
result concerning the existence of such a graph G, in the case where {H1, H2, . . . , Hs}
is a 2-factorisation of a graph, is given in Theorem 4.5 of [3].) Construct a sequence
(G0, U0), (G1, U1), . . . , (Gs, Us), where

• each Gi is a subgraph of 2KU of size i having the property that each of its
nontrivial connected components is a path, and

• each Ui is a subset of U of size i,

as follows. Define V (G0) = U , E(G0) = ∅ and U0 = ∅. Then for each i ∈ {1, 2, . . . , s}
let Gi be the graph obtained from Gi−1 by adding an edge, xiyi say, from E(Hi),
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such that xi, yi ∈ U \ Ui−1, and let Ui be a subset of U containing every vertex of
degree 2 in Gi and exactly one vertex of degree 1 from each nontrivial connected
component of Gi. Observe that E(Hi) always contains such an edge since V (Hi) = U
and |U | = n − 1 > 2s > 2|Ui−1|, and that adding such an edge to Gi−1 ensures that
each nontrivial connected component of Gi is a path. Then G = Gs is a graph with
the required properties.

Let t be the number of nontrivial connected components of G, let p1, p2, . . . , pt
be their respective sizes, and let U ′ = U \ {x1, x2, . . . , xs, y1, y2, . . . , ys} (the set of
vertices of degree 0 in G). Observe that t ≤ s, that p1 + p2 + · · ·+ pt = s, and that
|U ′| = n− 1− s− t ≥ n− 2s− 1. Then

P = (D \ {H1, H2, . . . , Hs}) ∪ {H ′
1, H

′
2, . . . , H

′
s}

is an (M,ns)-packing of 2KV , whereH
′
i = (Hi−[xi, yi])∪[xi,∞, yi], for i ∈ {1, 2, . . . , s}.

Furthermore, the only nontrivial connected component of the leave of P is a (p1 +
2, p2 + 2, . . . , pt + 2, 2n−1−s−t)-flower. Let P0 = P and for each i = 1, 2, . . . , s, let Pi

be the (M, 3i, ns)-packing obtained by applying Lemma 3.4 to Pi−1, choosing m ≥ 3.
Then Ps is the required packing. ✷

Lemma 8.5 If n ≥ 2s + 3 ≥ 5 and there is an (M,h, (n − 1)s)-decomposition of

2Kn−1 with h ≤ n− 2s− 1, then there is an (M, 2n−2s−1−h, 3s+h, ns)-decomposition of

2Kn.

Proof Since h ≤ n − 2s − 1, it follows from Lemma 8.4 that there is an
(M,h, 2n−2s−1−h, 3s, ns)-packing of 2Kn whose leave has a (2h)-flower as its only non-
trivial connected component. The result then follows from Lemma 8.3 (ii). ✷

Proof of Lemma 5.2 Let M be a (2, n)-ancestor list with νn(M) ≤ (n−3)/2. Since
M contains at most one cycle of length in {4, 5, . . . , n− 1}, we have

2ν2(M) + 3ν3(M) + nνn(M) ≥ (n− 1)2. (C)

Case 1. Suppose that νn(M) = 0. It follows from (C) that 2ν2(M) + 3ν3(M) ≥
(n − 1)2, and since n ≥ 5, that ν2(M) + ν3(M) ≥ n. Let h = 0 if ν2(M) ≥ n − 1,
let h = 2 if ν2(M) = n − 2, let h = n − 1 − ν2(M) if ν2(M) ≤ n − 3, and let
M ′ = M − (3h, 2n−1−h). If h = 0, then the fact that M is (2, n)-admissible implies
that M ′ is (2, n−1)-admissible. Thus, by assumption there is an (M ′)-decomposition
of 2Kn−1 and the result follows by Lemma 8.1. Otherwise, 2 ≤ h ≤ n − 1 and
ν2(M

′) ≤ 1. Then (M ′, h) is (2, n−1)-admissible (by Lemma 2.5) and by assumption
there is an (M ′, h)-decomposition of 2Kn−1. The result then follows by Lemma 8.2.

Case 2. Suppose that νn(M) = 1. It follows from (C) that 2ν2(M) + 3ν3(M) ≥
(n−1)2−n, and since n ≥ 5, that ν2(M)+ν3(M) ≥ n−1. Furthermore, by the prop-
erties of (2, n)-admissible lists, it is clear that ν3(M) ≥ 1. Let h = 0 if ν2(M) ≥ n−3,
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let h = 2 if ν2(M) = n − 4, let h = n − 3 − ν2(M) if ν2(M) ≤ n − 5, and let
M ′ = M−(n, 3h+1, 2n−3−h). If h = 0, then the fact that M is (2, n)-admissible implies
that (M ′, n− 1) is (2, n− 1)-admissible. Thus, by assumption there is an (M ′, n− 1)-
decomposition of 2Kn−1 and the result follows by Lemma 8.4 (with s = 1). Otherwise,
2 ≤ h ≤ n−1 and ν2(M

′) ≤ 1. Then (M ′, h, n−1) is (2, n−1)-admissible (by Lemma
2.5) and by assumption there is an (M ′, h, n− 1)-decomposition of 2Kn−1. The result
then follows by Lemma 8.5 (with s = 1).

Case 3. Suppose that νn(M) = s ≥ 2. If ν2(M) ≥ n/2 then the required decompo-
sition exists by Lemma 7.6. Suppose then that ν2(M) < n/2. Because s ≤ (n− 3)/2,
it follows from (C) that ν3(M) ≥ s. It also follows from (C) that 2ν2(M)+3ν3(M) ≥
(n − 1)2 − sn, and since n ≥ 2s + 3, that ν2(M) + ν3(M) ≥ n − s. Let h = 0 if
ν2(M) ≥ n − 2s − 1, let h = 2 if ν2(M) = n − 2s − 2, let h = n − 2s − 1 − ν2(M)
if ν2(M) ≤ n − 2s − 3, and let M ′ = M − (ns, 3s+h, 2n−2s−1−h). If h = 0, then
(M ′, (n− 1)s) is (2, n− 1)-admissible (by Lemma 2.5). Thus, by assumption there is
an (M ′, (n− 1)s)-decomposition of 2Kn−1 and the result follows by Lemma 8.4. Oth-
erwise, 2 ≤ h ≤ n− 1 and ν2(M

′) ≤ 1. Then (M ′, h, (n− 1)s) is (2, n− 1)-admissible
(by Lemma 2.5) and by assumption there is an (M ′, h, (n − 1)s)-decomposition of
2Kn−1. The result then follows by Lemma 8.5. ✷

Acknowledgements

The authors acknowledge the support of the Australian Research Council via
grants DP150100530, DP150100506, DP120100790, DP120103067, DE120100040 and
DP130102987.

References

[1] B. Alspach, Research Problem 3, Discrete Math. 36 (1981), 333.

[2] B. Alspach and H. Gavlas, Cycle decompositions of Kn and Kn − I, J. Combin.

Theory Ser. B 81 (2001), 77–99.

[3] B. Alspach, K. Heinrich and G.Z. Liu, Orthogonal factorizations of graphs, in
Contemporary Design Theory: A Collection of Surveys, (Eds. J. Dinitz, D. Stin-
son), Wiley, New York (1992), pp. 1340.

[4] Zs. Baranyai, On the factorization of the complete uniform hypergraph, Colloq.
Math. Soc. Janos Bolyai 10 (1975), 91–108.

[5] J.-C. Bermond, O. Favaron and M. Maheo, Hamiltonian decomposition of Cayley
graphs of degree 4, J. Combin. Theory Ser. B. 46 (1989), 142–153.

27



[6] J.C. Bermond and D. Sotteau, Cycle and circuit designs odd case, Contributions
to graph theory and its applications (Internat. Colloq., Oberhof, 1977) (German),
pp. 11–32, Tech. Hochschule Ilmenau, Ilmenau, 1977.

[7] J.C. Bermond, C. Huang and D. Sotteau, Balanced cycle and circuit designs:
even cases, Ars Combin. 5 (1978), 293–318.

[8] D. Bryant, Hamilton cycle rich two-factorisations of complete graphs, J. Combin.

Des. 12 (2004), 147–155.

[9] D. Bryant, Cycle decompositions of complete graphs, in Surveys in Combina-

torics 2007, A. Hilton and J. Talbot (Editors), London Mathematical Society
Lecture Note Series 346, Proceedings of the 21st British Combinatorial Confer-
ence, Cambridge University Press, 2007, pp 67–97.

[10] D. Bryant, Packing paths in complete graphs, J. Combin. Theory Ser. B 100

(2010), 206–215.

[11] D. Bryant and D. Horsley, Packing cycles in complete graphs, J. Combin. Theory

Ser. B 98 (2008), 1014–1037.

[12] D. Bryant and D. Horsley, Decompositions of complete graphs into long cycles,
Bull. London Math. Soc. 41 (2009), 927–934.

[13] D. Bryant and D. Horsley, An asymptotic solution to the cycle decomposition
problem for complete graphs, J. Combin. Theory Ser. A 117 (2010), 1258–1284.

[14] D. Bryant, D. Horsley and B. Maenhaut, Decompositions into 2-regular sub-
graphs and equitable partial cycle decompositions, J. Combin. Theory Ser. B 93

(2005), 67–72.

[15] D. Bryant, D. Horsley, B. Maenhaut and B.R. Smith, Cycle decompositions of
complete multigraphs, J. Combin. Des. 19 (2011), 42–69.

[16] D. Bryant, D. Horsley and W. Pettersson, Cycle decompositions V: Complete
graphs into cycles of arbitrary lengths, Proc. London Math. Soc. (2013), doi
10.1112/plms/pdt051.

[17] D. Bryant and B. Maenhaut, Decompositions of complete graphs into triangles
and Hamilton cycles, J. Combin. Des. 12 (2004), 221-232.

[18] D. Bryant and G. Martin, Some results on decompositions of low degree circulant
graphs, Austral. J. Combin. 45 (2009), 251–261.

[19] D. Bryant and C. A. Rodger, Cycle decompositions, in The CRC Handbook of

Combinatorial Designs, 2nd edition (Eds. C. J. Colbourn, J. H. Dinitz), CRC
Press, Boca Raton (2007), pp 373–382.

28



[20] H. Hanani, The existence and construction of balanced incomplete block designs,
Ann. Math. Statist. 32 (1961), 361–386.

[21] C. Huang and A. Rosa, On the existence of balanced bipartite designs, Utilitas
Math. 4 (1973), 55–75.

[22] T. P. Kirkman, On a problem in combinations, Cambridge and Dublin Math. J.

2 (1847), 191–204.

[23] C. Lin and T-W Shyu, A necessary and sufficient condition for the star decom-
position of complete graphs, J. Graph Theory 23 (1996), 361–364.
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