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Abstract

In 1979 Tarsi showed that an edge decomposition of a complete multigraph into stars

of size m exists whenever some obvious necessary conditions hold. In 1992 Lonc gave

necessary and sufficient conditions for the existence of an edge decomposition of a (simple)

complete graph into stars of sizes m1, . . . ,mt. We show that the general problem of

when a complete multigraph admits a decomposition into stars of sizes m1, . . . ,mt is

NP-complete, but that it becomes tractable if we place a strong enough upper bound

on max(m1, . . . ,mt). We determine the upper bound at which this transition occurs.

Along the way we also give a characterisation of when an arbitrary multigraph can be

decomposed into stars of sizes m1, . . . ,mt with specified centres, and a generalisation of

Landau’s theorem on tournaments.

1 Introduction

For a positive integer m, an m-star is a connected simple graph with m edges, all of which

are incident with a single vertex. For m > 2, this vertex is unique and is called the centre

of the star. For some of the results in this paper it will be convenient to treat each star as

having a unique centre, so we assume that 1-stars have exactly one of their vertices designated

as their centre. All the multigraphs considered in this paper will be loopless. Let G be a

multigraph. For distinct vertices u and v of G, we denote by µG(uv) the number of edges of

G between u and v. A decomposition D of G is a collection of sub-multigraphs of G such that
∑

H∈D µH(uv) = µG(uv) for all distinct vertices u and v of G. A packing of G is a decomposition

of some sub-multigraph of G. We denote the λ-fold complete multigraph on n vertices by λKn

and the λ-fold complete multigraph on vertex set V by λKV . For a set V we denote by
(

V
2

)

the set {{u, v} : u, v ∈ V and u 6= v}.
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Tarsi [16] has shown that some obvious numerical necessary conditions for the existence

of a decomposition of a complete multigraph into stars of a uniform specified size are also

sufficient. The simple graph case of this result, along with the equivalent result on complete

bipartite graphs, was independently proved by Yamamoto et al [18]. Further, Lonc [14] has

given a simple numerical characterisation for the existence of a decomposition of a simple

complete graph into stars of various specified sizes (Lonc in fact proved a more general result

for uniform hypergraphs; his result for graphs was later rediscovered by Lin and Shyu [13]).

This paper deals with the common generalisation of these problems: when does a complete

λ-fold multigraph admit an edge decomposition into stars of sizes m1, . . . , mt? We show that

this problem is NP-complete if we allow m1, . . . , mt to take any values, but that the obvious

necessary conditions for such a decomposition suffice if a suitable upper bound is placed on

max(m1, . . . , mt). It is worth noting that the analogous problems of when a complete λ-fold

multigraph can be decomposed into matchings, paths or cycles of specified sizes have all been

completely solved with numerical necessary and sufficient conditions (see [2, 3, 5]).

Problems concerning the decomposition of graphs into stars have been well studied. In

addition to those already mentioned, three further results are particularly relevant to our pur-

poses here. In [17] Tarsi showed a simple graph of order n admits a decomposition into stars

of sizes m1, . . . , mt provided its minimum degree is at least n
2
+ max(m1, . . . , mt) − 1. In [9]

Hoffman gave necessary and sufficient conditions for an arbitrary multigraph to have a decom-

position into m-stars where the number of stars centred at each vertex is specified. In [15] it is

shown that deciding whether an arbitrary λ-fold multigraph has a decomposition into stars of

a uniform specified size is NP-complete. See [4, 8, 10] for other results on star decompositions.

Before stating our main result, we first formalise the primary question under investigation

as a family of decision problems, one for each positive integer λ and real number α such that

0 6 α 6 1.

(λ, α)-star decomp

Instance: Positive integers n and m1, . . . , mt such that max(m1, . . . , mt) 6 α(n − 1) and

m1 + · · ·+mt = λ
(

n
2

)

.

Question: Does λKn have a decomposition into stars of sizes m1, . . . , mt?

Note that m1+ · · ·+mt = λ
(

n
2

)

and max(m1, . . . , mt) 6 n− 1 are obvious necessary conditions

for the existence of the required decomposition. Our main result is the following.

Theorem 1. Let λ > 2 be an integer. Then (λ, α)-star decomp is NP-complete if α > α′,

where

α′ =

{

λ
λ+1

, if λ is odd;

1− 2
λ
(3− 2

√
2), if λ is even.

Furthermore, if α 6 α′ then every instance of (λ, α)-star decomp is feasible and the required

decompositions can be constructed in polynomial time.

Our major tool in proving Theorem 1 is a result which concerns the problem of packing an

arbitrary multigraph G with stars, where the sizes of the stars to be centred at each vertex

are specified. We give a characterisation of when such a packing exists and show there is a
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polynomial time (in the problem’s input size) algorithm for deciding this. The input I to this

problem involves specifying the multiplicity function µG of G represented by a sequence of
(

n
2

)

nonnegative integers, and the sequence of star sizes mv,1, . . . , mv,|Mv| for each v ∈ V (G). Thus

the size of the input |I| is bounded below as follows.

|I| >
∑

{u,v}∈(V2)

log(µG(uv) + 1) +
∑

v∈V

|Mv|
∑

i=1

log(mv,i + 1) (1)

Of course, if the sum of the star sizes is equal to the number of edges in G (counting multi-

plicities) then a decomposition will result, and so our result also characterises decompositions.

It generalises the result of Hoffman mentioned above.

For a multiset M of positive integers we define σ(M) to be the sum of all the elements of

M and for each i ∈ {0, . . . , |M |} we define σi(M) to be the sum of the largest i elements in M .

Theorem 2. Let G be a loopless multigraph with vertex set V and, for each v ∈ V , let Mv be

a (possibly empty) multiset of positive integers. There is a packing of G with stars such that

Mv is the multiset of sizes of stars centred at v for each v ∈ V if and only if

∑

v∈V
σf(v)(Mv) 6

∑

{u,v}∈(V2)

min(f(u) + f(v), µG(uv))

for each function f : V → Z such that f(v) ∈ {0, . . . , |Mv|} for each v ∈ V . Furthermore,

there is a polynomial time (in the problem’s input size) algorithm for deciding whether such a

packing exists, and constructing one if so.

We introduce some notation relating to Theorem 2. Let G be a loopless multigraph G

with vertex set V equipped with multisets {Mv : v ∈ V } of integers. Call a packing of G

with stars a star G-packing if Mv is the multiset of sizes of stars centred at v for each v ∈ V .

We say a function f : V → Z such that f(v) ∈ {0, . . . , |Mv|} for each v ∈ V is a restriction

function for G. For a restriction function f for G, we define ∆−
f (G) =

∑

v∈V σf(v)(Mv), ∆
+
f (G) =

∑

{u,v}∈(V2)
min(f(u) + f(v), µG(uv)), and ∆f(G) = ∆+

f (G) − ∆−
f (G). Finally, we define ∆(G)

to be the minimum value of ∆f(G) over all restriction functions f for G. We say a restriction

function f is minimal if ∆f (G) = ∆(G). Considering the restriction function that is uniformly

0, we always have ∆(G) 6 0. Theorem 2 effectively states that a star G-packing exists if and

only if ∆(G) = 0.

Intuitively, ∆−
f (G) is the number of edges in the sub-multigraph of G induced by the largest

f(v) stars centred at each vertex v ∈ V and ∆+
f (G) is the number of edges in the multigraph

obtained from G by limiting the number of edges between u and v to f(u) + f(v) for each

{u, v} ∈
(

V
2

)

. The former multigraph must be a sub-multigraph of the latter, and so the

necessity of the condition ∆−
f (G) 6 ∆+

f (G) is obvious.
Theorem 2 has a consequence concerning tournaments. For a vertex set V , a λ-fold tour-

nament on V is a graph produced by orienting the edges of λKV . For a vertex v of an oriented

multigraph G, let deg+G(v) denote the number of edges that are incident with v and oriented
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out from it, and let N+
G (v) denote the set of all w ∈ V (G) for which there is at least one edge

of G oriented from v to w.

In [12] Landau characterised when there exists a 1-fold tournament with a specified out-

degree at each vertex. This result generalises easily to λ-fold tournaments (see [6, Theorem

2.2.4] or [7], for example). Using Theorem 2, we can prove a further generalisation to Landau’s

theorem in which we also specify a lower bound on the size of the out-neighbourhood of each

vertex.

Theorem 3. Let V be a set of n vertices and let a : V → Z and b : V → Z be functions such

that a(v) > b(v) > 0 for each v ∈ V and
∑

v∈V a(v) = λ
(

n
2

)

. There exists a λ-fold tournament

T on V such that deg+T (v) = a(v) and |N+
T (v)| > b(v) for each v ∈ V if and only if, for each

k ∈ {0, . . . , n− 1},
ψk +

∑

v∈V
bk(v) 6

1
2
λk(2n− k − 1),

where bk(v) = max(0, b(v) − n + k + 1) for each v ∈ V and ψk is the sum of the greatest k

elements of the multiset {a(v)− bk(v) : v ∈ V }.

The generalisation of Landau’s result to λ-fold tournaments can be recovered from Theo-

rem 3 by setting b(v) = 0 for each v ∈ V , noting that in this case
∑

v∈V bk(v) = 0 and ψk is

equal to the sum of the greatest k elements of {a(v) : v ∈ V }.

2 Proof of Theorems 2 and 3

As discussed, Hoffman [9] obtained a characterisation for the existence of a decomposition of

an arbitrary multigraph into uniform size stars, where the number of stars centred at each

vertex is specified. His proof relies on constructing an equivalent network flow problem. We

now extend this idea to prove Theorem 2.

In the rest of the paper, we often use the exponential notation {x[e1]1 , . . . , x
[et]
t } to describe

multisets, where, for each i ∈ {1, . . . , t}, x[ei]i stands for ei occurrences of xi.

Proof of Theorem 2. Let G be the multigraph G equipped with the multisets {Mv : v ∈ V }.
Let |I(G)| be the input size of G as discussed before the statement of Theorem 2.

Let S = {(u, i) : u ∈ V, i ∈ {1, . . . , |Mu|}} and T = {{u, v} ∈
(

V
2

)

: µG(uv) > 0}. For each

u ∈ V , letMu = {mu,1, . . . , mu,|Mu|}, and let z =
∑

(u,i)∈S mu,i. We will establish an equivalence

between packings of G satisfying the conditions of Theorem 2 and integer flows of magnitude

z through the flow network N composed of

• a source a and a sink b;

• an internal vertex s(u,i) for all (u, i) ∈ S;

• an internal vertex t{u,v} for all {u, v} ∈ T ;

• an arc as(u,i) with capacity mu,i for all (u, i) ∈ S;

• an arc s(u,i)t{u,v} with capacity 1 for all (u, i) ∈ S and v ∈ V \ {u} such that {u, v} ∈ T ;
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• an arc t{u,v}b with capacity µG(uv) for all {u, v} ∈ T .

With any integer flow of magnitude z through N we can associate a multiset of stars P =

{Hu,i : (u, i) ∈ S} where, for (u, i) ∈ S, Hu,i is a star centred at u with E(Hu,i) = {uv :

arc s(u,i)t{u,v} has flow 1}. Note that P is a packing of G because, for each {u, v} ∈ T , the

number of stars in P using an edge between u and v is exactly the flow through the arc t{u,v}b

in N and hence is at most µG(uv). Also, for each (u, i) ∈ S, |E(Hu,i)| = mu,i because any flow of

magnitude z through N must have flow exactly mu,i through arc as(u,i). Thus, P is a packing

satisfying the conditions of Theorem 2. Conversely any packing satisfying the conditions of

Theorem 2 can be associated with an integer flow of magnitude z through N .

Given this equivalence, it suffices to show that there is a flow of magnitude z through N if

and only if the hypotheses of the theorem hold. Hence, by the max-flow min-cut theorem (and

the integer flow theorem), it suffices to show that a minimum capacity cut of N has capacity

at least z if and only if the hypotheses of the theorem hold. Note that establishing this will

immediately provide the polynomial time algorithm whose existence the theorem asserts. This

is because the number of vertices in N is at most 2 + |T |+∑

v∈V |Mv| which is polynomial in

|I(G)| by (1), and it is well known that there is a polynomial time (in the number of vertices

in the network) algorithm for finding an integral maximum flow in a network.

With each cut (A∗, B∗) of N where a ∈ A∗ and b ∈ B∗, we associate the restriction function

f ∗ : V → Z for G given by f ∗(u) = |{i ∈ {1, . . . , |Mu|} : s(u,i) ∈ A}|. Now let f : V → Z be

a fixed restriction function for G. Note that there is at least one cut of N whose associated

restriction function is f and, of all such cuts, let (A,B) be one of minimum capacity. The

capacity of (A,B) is

∑

s(u,i)∈A, t{v,w}∈B
capacity(s(u,i)t{v,w}) +

∑

t{v,w}∈A
capacity(t{v,w}b) +

∑

s(u,i)∈B
capacity(as(u,i))

=
∑

t{v,w}∈B

(

f(v) + f(w)
)

+
∑

t{v,w}∈A
µG(vw) +

∑

s(u,i)∈B
mu,i

=





∑

t{v,w}∈B

(

f(v) + f(w)
)

+
∑

t{v,w}∈A
µG(vw)



+ z −
∑

s(v,i)∈A
mv,i

=
∑

{v,w}∈T
min

(

f(v) + f(w), µG(vw)
)

+ z −
∑

u∈V
σf(u)(Mu).

The last equality follows because the minimality of (A,B) implies that {mu,i : s(u,i) ∈ A} is

the multiset of the f(u) largest elements in Mu for each u ∈ V and that, for each {v, w} ∈ T ,

t{v,w} ∈ B if f(v) + f(w) < µG(vw) and t{v,w} ∈ A if µG(vw) < f(v) + f(w). So (A,B) has

capacity at least z if and only if

∑

u∈V
σf(u)(Mu) 6

∑

{v,w}∈T
min(f(v) + f(w), µG(vw)).

So if this inequality holds for all restriction functions, then each cut of N has capacity at

least z. Conversely, if the inequality fails for some restriction function, then there is a cut of

5



N with capacity less than z.

We next prove Lemma 4, which is a simple result on minimal restriction functions.

Lemma 4. Let G be a multigraph G equipped with multisets {Mv : v ∈ V (G)} of positive

integers. Suppose there is a minimal restriction function fj for G such that fj(w) = j for some

w ∈ V (G) and integer j such that 1 6 j 6 |Mw| − 1. Let mj and mj+1 be the jth and (j + 1)st

largest elements of Mw and, for each i ∈ {j − 1, j + 1}, let fi be the restriction function for G
such that fi(v) = fj(v) for each v ∈ V (G) \ {w} and fi(w) = i.

(a) If mj+1 = mj, then fj−1 is also minimal.

(b) If mj+1 = mj − 1, then one of fj−1 or fj+1 is also minimal.

Proof. For each i ∈ {j, j + 1}, observe that ∆−
fi
(G) = ∆−

fi−1
(G) +mi and let ki be the integer

such that ∆+
fi
(G) = ∆+

fi−1
(G) + ki. Thus ∆fi(G) = ∆fi−1

(G) + ki −mi for each i ∈ {j, j + 1}.
Because fj is minimal, ∆fj (G) 6 ∆fi(G) for each i ∈ {j − 1, j + 1}, and so mj+1 6 kj+1

and kj 6 mj . Now, it can be seen from the definition of ∆+
f (G) that kj+1 6 kj, and so

mj+1 6 kj+1 6 kj 6 mj . Thus, if mj+1 = mj, then kj = mj and (a) follows. Similarly (b)

follows because if mj+1 = mj − 1, then kj = mj or kj+1 = mj+1.

It is not immediately apparent that Hoffman’s result [9, Theorem 1] follows from Theorem 2.

However, by Lemma 4(a), in the case where all the prescribed star sizes are equal it suffices to

consider only restriction functions such that f(v) ∈ {0, |Mv|} for each vertex v, and so Theo-

rem 2 reduces to Hoffman’s theorem. To see that considering only such restriction functions

in Theorem 2 does not suffice in general, consider taking G to be 2K10 where two vertices are

equipped with multisets {9, 5}, four vertices with {9, 1}, and the remaining four with {5}. The
restriction function which takes values 2, 1 and 0 at the first, second and third type of vertices

respectively shows that a star G-decomposition does not exist, but the same is not true for any

restriction function f such that f(v) ∈ {0, |Mv|} for each vertex v.

We conclude this section by proving Theorem 3 which we achieve with the help of the

following lemma.

Lemma 5. Let V be a set of n vertices and let a : V → Z and b : V → Z be functions such

that a(v) > b(v) > 0 for each v ∈ V . There exists a λ-fold tournament T on V such that

deg+T (v) = a(v) and |N+
T (v)| > b(v) for each v ∈ V if and only if, for all disjoint subsets A and

B of V ,
∑

v∈A
a(v) +

∑

v∈B
b(v) 6 1

2
λ|A|(2n− |A| − 1) + |B|(n− |A| − 1) (2)

with equality in the case (A,B) = (V, ∅).

Proof. We may assume that
∑

v∈V a(v) =
1
2
λn(n−1) for otherwise the condition of the lemma

does not hold when (A,B) = (V, ∅) and clearly there is no λ-fold tournament T on V such that

deg+T (v) = a(v) for each v ∈ V .

For each v ∈ V , let Mv = {b(v), 1[a(v)−b(v)]} if b(v) > 2 and Mv = {1[a(v)]} if b(v) ∈ {0, 1}.
By considering the edges of stars to be oriented outward from their centres, it can be seen that
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a λ-fold tournament T on V such that deg+T (v) = a(v) and |N+
T (v)| > b(v) for each v ∈ V

exists if and only if a star K-decomposition exists, where K is λKV equipped with the multisets

{Mv : v ∈ V }.
Observe that if A and B are disjoint subsets of V and f is a restriction function for K such

that f(v) = |Mv| for each v ∈ A, f(v) = 1 for each v ∈ B and f(v) = 0 for each v ∈ V \(A∪B),

then

∆+
f (K) 6 λ

( |A|
2

)

+ λ|A|(n− |A|) + 2
( |B|

2

)

+ |B|(n− |A| − |B|) (3)

∆−
f (K) >

∑

v∈A
a(v) +

∑

v∈B
b(v). (4)

Furthermore, we have equality in (3) if |Mv| > λ for each v ∈ A and we have equality in (4) if

b(v) 6= 0 for each v ∈ B. Note also that the right hand side of (4) is equal to the left hand side

of (2) and, by routine calculation, the right hand side of (3) is equal to the right hand side of

(2).

To prove the ‘only if’ direction, suppose there are disjoint subsets A and B of V for which

(2) fails. Let f be a restriction function for K such that f(v) = |Mv| for each v ∈ A, f(v) = 1

for each v ∈ B and f(v) = 0 for each v ∈ V \ (A ∪B). Then by (3), (4) and the failure of (2),

we have ∆−
f (K) > ∆+

f (K) and hence that no star K-decomposition exists by Theorem 2.

To prove the ‘if’ direction, suppose that (2) holds for all disjoint subsets A and B of

V . Of all the minimal restriction functions for K, let f be one that maximises the sequence

(|f−1(0)|, |f−1(1)|, . . .) lexicographically. We claim that, for each v ∈ V , f(v) ∈ {0, 1, |Mv|},
f(v) 6= |Mv| if 2 6 |Mv| 6 λ − 1, and f(v) 6= 1 if b(v) = 0. Proving this claim will suffice

to prove the lemma because, if we set A = {v : f(v) > λ} and B = {v : f(v) = 1}, then
(3) and (4) hold with equality, and hence ∆(K) = ∆+

f (K) − ∆−
f (K) > 0 because (2) holds.

By Lemma 4(a) it can be seen that, for each v ∈ V , f(v) ∈ {0, 1, |Mv|}, and f(v) 6= 1 if

a(v) > 2 and b(v) = 0. We will complete the proof by showing that in addition, for each v ∈ V ,

f(v) 6= |Mv| if 2 6 |Mv| 6 λ− 1 or if Mv = {1}.
Suppose otherwise and, of all the elements of

{v ∈ V : f(v) = |Mv| and either 2 6 f(v) 6 λ− 1 or Mv = {1}},

let w be one with a minimum value of |Mw|. If f(v) > λ− |Mw|+1 for each v ∈ V \ {w}, then
f(v) > max(|Mw|, λ− |Mw|+1) for all v ∈ V \ {w} by the definition of w and we can conclude

successively that ∆+
f (K) = λ

(

n
2

)

, that ∆f(K) = 0 (because ∆−
f (K) 6 λ

(

n
2

)

and we always have

∆(K) 6 0), and the contradiction that f is uniformly 0 (recall that f(w) = |Mw| > 0). So there

is some u ∈ V \ {w} such that f(u) 6 λ − |Mw|. Let f1 be the restriction function such that

f1(v) = f(v) for each v ∈ V \ {w} and f1(w) = |Mw| − 1. Then ∆+
f1
(K) 6 ∆+

f (K)− 1 because

u exists and ∆−
f1
(K) = ∆−

f (K) − 1 by our definitions of K and w. Thus ∆f1(K) 6 ∆f (K),

|f−1
1 (i)| = |f−1(i)| for each i ∈ {0, . . . , |Mw| − 2} and |f−1

1 (|Mw| − 1)| > |f−1(|Mw| − 1)|, which
contradicts our definition of f .

Proof of Theorem 3. In Lemma 5, for a fixed choice of A, it can be seen that the inequality
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is tightest when B = {v ∈ V \ A : b(v) > n − k} where k = |A|. Thus, for a fixed choice of A

and k = |A|, a tournament satisfying the conditions of Lemma 5 exists if and only if

∑

v∈A
a(v) +

∑

v∈V \A
bk(v) 6

1
2
λk(2n− k − 1),

or equivalently,
∑

v∈A
(a(v)− bk(v)) +

∑

v∈V
bk(v) 6

1
2
λk(2n− k − 1). (5)

Now, for a fixed choice k of |A|, the right hand side and the second sum on the left hand side

in (5) are constant and the maximum value of the first sum on the left hand side is exactly ψk.

The result follows.

3 Theorem 1 proof strategy

We begin this section with two very simple results that will be useful in the proof of Theorem 1.

Lemma 6. Let m1, . . . , mt, x, y be positive integers. If there is a packing of a multigraph G with

stars of sizes m1, . . . , mt, x+ y then there is a packing of G with stars of sizes m1, . . . , mt, x, y.

Proof. Begin with the packing of G with stars of sizes m1, . . . , mt, x+ y and replace a star H

of size x+ y with two stars H1 and H2 such that |E(H1)| = x, |E(H2)| = y and {H1, H2} is a

decomposition of H .

Call a multigraph G a multistar if |V (G)| > 2, G is connected and G has some vertex c with

which every edge is incident. For |V (G)| > 3, this vertex is unique and is called the centre of

the multistar. When |V (G)| = 2 we assume that one of the vertices is designated as the centre.

Lemma 7. Let G be a multistar with centre c and let m1, . . . , mt be positive integers such that

m1 > · · · > mt. There is a packing of G with stars of sizes m1, . . . , mt if and only if, for each

s ∈ {1, . . . , t},
s

∑

i=1

mi 6
∑

v∈V (G)\{c}
min(s, µG(cv)).

Proof. In any packing of G with stars of sizes m1, . . . , mt, each star of size greater than one

must be centred at c and we may assume without loss of generality that each star of size 1 is

centred at c. The lemma is now a specialisation of Theorem 2.

In Sections 4 and 5 we will prove Theorem 1 in the cases where λ is odd and even, re-

spectively. Here we discuss our overall proof strategy. Theorem 2 is our main tool in proving

Theorem 1. For each parity of λ, we first show that (λ, α)-star decomp is NP-complete when

α > α′, and then show that, when α 6 α′, every instance of (λ, α)-star decomp is feasi-

ble. The plethora of possible restriction functions can be an obstacle to exploiting Theorem 2.

To deal with this we show that, when the multisets assigned to the vertices of λKn are well-

behaved in certain ways, there must be a minimal restriction function of a particular form (see

Lemmas 10 and 14).
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To establish the NP-completeness of (λ, α)-star decomp when α > α′ we will reduce to

it from the decision problem 3-partition.

3-partition

Instance: A multiset {a1, . . . , a3q} of positive integers such that a = 1
q
(a1 + · · · + a3q) is an

integer and a
4
< ai <

a
2
for each i ∈ {1, . . . , 3q}.

Question: Is there a partition of {a1, . . . , a3q} into q classes such that the elements of each class

sum to a?

It is known that 3-partition is NP-complete in the strong sense; that is, it remains NP-

complete even when qa is bounded by a polynomial in the length of its input (see [11, Theo-

rem 4.2]). This fact means that it suffices for us to reduce from it to an instance of (λ, α)-star

decomp whose input size is polynomial in qa.

Our strategy for showing that every instance of (λ, α)-star decomp is feasible when α 6 α′

is as follows. We first set an upper bound m on the star size, where m is equal to (or slightly

larger than) ⌊α′(n−1)⌋. We note that by Lemma 6, we may assume that any two distinct spec-

ified star sizes sum to more than m. Next, we assign centre vertices to the specified star sizes,

resulting in a multisetMv of star sizes to be centred at each vertex v of our complete multigraph

λKn. We then “compress” each multiset Mv into a new multiset M∗
v such that σ(M∗

v ) = σ(Mv)

and σi(M
∗
v ) > σi(Mv) for each i ∈ {1, . . . , |M∗

v |}. Let K be λKn equipped with the multiset

M∗
v at each vertex v. It follows by Lemma 7 that, in a star K-decomposition, the multistar

induced by the stars centred at any vertex v has a decomposition into stars of sizes given by

the elements of Mv. Thus it suffices to show there exists a star K-decomposition. Finally, we

apply Theorem 2. The compression ensures that the assigned multisets are well-behaved and

hence, as discussed, the existence of a minimal restriction function of a particular form. Using

this, we are able to conclude that ∆(K) > 0 and hence that the desired decomposition exists.

Ensuring that distinct star sizes sum to more than m, compressing multisets, and applying

Theorem 2 to construct a suitable decomposition can all be completed in polynomial time in

n. We will show that the same is true for the procedures by which we assign the star sizes to

the vertices.

We introduce some notation related to multisets that will be used throughout the rest of

the paper. For a multiset M of positive integers and a positive integer x we define νx(M) to be

the number of elements ofM equal to x, and for a set S of positive integers we define νS(M) =
∑

x∈S νx(M). For multisets M and N of positive integers, we say M ⊆ N if νx(M) 6 νx(N)

for all positive integers x, and we define M ⊎N and M \N so that, for all positive integers x,

νx(M ⊎N) = νx(M) + νx(M) and νx(M \N) = max(0, νx(M)− νx(N)).

We now give two technical lemmas which will be useful in Sections 4 and 5. Lemma 8 is used

in establishing the NP-completeness of (λ, α)-star decomp when α > α′ whereas Lemma 9 is

used in proving that every instance of (λ, α)-star decomp is feasible when α 6 α′.

Lemma 8. Let K be a complete multigraph λKV equipped with multisets {Mv : v ∈ V } of

positive integers and let n = |V |. Let {V ′, V ′′} be a partition of V such that |V ′| = q, let

M ′ =
⊎

v∈V ′ Mv and let M ′′ =
⊎

v∈V ′′ Mv. If there is a star K-decomposition, then

(a)
∑

x∈M ′′(x− q) 6 λ
(

n−q
2

)

;
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(b) if
∑

x∈M ′′(x− q) = λ
(

n−q
2

)

, then σ(Mu) 6 λ(n− 1)− |M ′′| for each u ∈ V ′.

Proof. Let S be a subset of V . Applying Theorem 2 with f(x) = 0 for each x ∈ S and

f(v) = |Mv| for each v ∈ V \ S, we have that

∑

v∈V \S
σ(Mv) 6 ∆+

f (K) 6 λ
(

n− |S|
2

)

+ |S|
∑

v∈V \S
min(λ, |Mv|). (6)

Now (a) follows by setting S = V ′ in (6), using min(λ, |Mv|) 6 |Mv| for each v ∈ V ′′, and

subtracting q|M ′′| from each side of the inequality.

For each u ∈ V ′, by (6) with S = V ′ \ {u}, using min(λ, |Mv|) 6 |Mv| for each v ∈ V ′′ and

min(λ, |Mu|) 6 λ,

∑

v∈V ′′∪{u}
σ(Mv) 6 λ

(

n− q + 1

2

)

+ (q − 1)λ+ (q − 1)|M ′′|. (7)

If
∑

x∈M ′′(x− q) = λ
(

n−q
2

)

, then σ(M ′′) = λ
(

n−q
2

)

+ q|M ′′|. Now (b) follows by subtracting this

equation from (7).

Lemma 9. Let K be a complete multigraph λKV equipped with multisets {Mv : v ∈ V } of

positive integers such that
∑

v∈V σ(Mv) = λ
(

n
2

)

, and let f be a restriction function for K such

that ∆f(K) < 0. Then

∑

v∈V
(σ(Mv)− σf(v)(Mv)) = λ

(

n

2

)

−∆−
f (K) <

∑

{u,v}∈(V2)

max(λ− f(u)− f(v), 0).

Proof. The equality follows by subtracting ∆−
f (K) from each side of

∑

v∈V σ(Mv) = λ
(

n
2

)

and

then applying the definition of ∆−
f (K). Now, because ∆f(K) < 0, ∆+

f (K) < ∆−
f (K) and hence

λ
(

n
2

)

−∆−
f (K) < λ

(

n
2

)

−∆+
f (K). Then the inequality follows using λ

(

n
2

)

=
∑

{u,v}∈(V2)
λ and the

definition of ∆+
f (K).

4 Proof of Theorem 1 when λ is odd

We begin with a result which guarantees the existence of a minimal restriction function with

certain properties.

Lemma 10. Let n and λ be integers such that λ > 3 is odd, let ℓ = λ−1
2

and let V be a set of n

vertices. Let K be the multigraph λKV equipped with multisets {Mv : v ∈ V } of integers from

{1, . . . , n− 1} such that
∑

v∈V σ(Mv) = λ
(

n
2

)

.

(a) If |Mv| 6 ℓ+ 2 for each v ∈ V , then there is a minimal restriction function f for K such

that, for each v ∈ V ,

(i) f(v) ∈
{

{0, ℓ+ 1, ℓ+ 2} if σℓ(Mv) 6 ℓ(n− 1)− |f−1(ℓ+ 2)|;
{ℓ, ℓ+ 1, ℓ+ 2} if σℓ(Mv) > ℓ(n− 1)− |f−1(ℓ+ 2)|;

(ii) f(v) 6= ℓ + 1 if |Mv| = ℓ+ 2 and min(Mv) = ⌊1
2
(σ(Mv)− σℓ(Mv))⌋.
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(b) If there are positive integers k > ℓ + 1 and m 6 n − 1 such that, for each v ∈ V ,

|Mv| 6 k + 2 and σi(Mv) = im for i ∈ {0, . . . , k}, then there is a minimal restriction

function f for K such that f(v) = 0 or f(v) > ℓ+ 2 for each v ∈ V .

Proof. Of all the minimal restriction functions for K, let f be one such that |f−1(0)| is max-

imised and, subject to this, |f−1(ℓ + 1)| is minimised. For brevity, let ni = |f−1(i)| for each

nonnegative integer i.

We first prove (a). Suppose in accordance with (a) that |Mv| 6 ℓ + 2 for each v ∈ V . In

view of our definition of f , (a)(ii) follows immediately from parts (a) and (b) of Lemma 4.

Suppose there is a vertex w ∈ V such that f(w) ∈ {0, . . . , ℓ}. For each i ∈ {0, . . . , ℓ}, let
fi be the restriction function for K defined by fi(v) = f(v) for v ∈ V \ {w} and fi(w) = i.

Then ∆−
fi
(K) = ∆−

f0
(K) + σi(Mw). Because f(v) 6 |Mv| 6 ℓ + 2 for each v ∈ V , ∆+

fi
(K) =

∆+
f0
(K) + i(n− 1) if i ∈ {0, . . . , ℓ− 1} and ∆+

fℓ
(K) = ∆+

f0
(K) + ℓ(n− 1)− nℓ+2. Thus,

∆fi(K) =

{

∆f0(K) + i(n− 1)− σi(Mw) if i ∈ {0, . . . , ℓ− 1};
∆f0(K) + ℓ(n− 1)− nℓ+2 − σℓ(Mw) if i = ℓ.

So, for each i ∈ {1, . . . , ℓ − 1}, ∆f0(K) 6 ∆fi(K) because σi(Mw) 6 i(n − 1). Furthermore,

if σℓ(Mw) > ℓ(n − 1) − nℓ+2, then ∆fℓ(K) < ∆f0(K), and if σℓ(Mw) 6 ℓ(n − 1) − nℓ+2, then

∆f0(K) 6 ∆fℓ(K). In view of our definition of f , this establishes (a)(i).

We now prove (b). Suppose in accordance with (b) that there are positive integers k > ℓ+1

and m 6 n − 1 such that, for each v ∈ V , |Mv| 6 k + 2 and σi(M) = im for i ∈ {0, . . . , k}.
Note that f(v) ∈ {0, k, k + 1, k + 2} for each v ∈ V by Lemma 4(a) in view of our definition

of f . So if k > ℓ + 2, then the result follows immediately and it suffices to assume k = ℓ + 1

and show that f(v) 6= ℓ + 1 for each v ∈ V . Note that we have f(w1) = 0 for some w1 ∈ V ,

for otherwise we would have f(v) > ℓ+ 1 for each v ∈ V and could conclude successively that

∆+
f (K) = λ

(

n
2

)

, that ∆f (K) = 0, and the contradiction that f is uniformly 0.

Let w ∈ V be a vertex such that f(w) ∈ {0, ℓ + 1}. For each i ∈ {0, ℓ + 1}, let fi be

the restriction function for K defined by fi(v) = f(v) for v ∈ V \ {w} and fi(w) = i. Then

∆−
fℓ+1

(K) = ∆−
f0
(K)+σℓ+1(Mw) = ∆−

f0
(K)+(ℓ+1)m and, because f(v) 6 |Mv| 6 ℓ+3 for each

v ∈ V , ∆+
fℓ+1

(K) = ∆+
f0
(K)+ (ℓ+1)(n− 1)− d+ δ where d =

∑

j∈{1,2,3}min(ℓ+1, j)nℓ+j, δ = 1

if f(w) = ℓ+ 1, and δ = 0 if f(w) = 0 (note that
∑

j∈{1,2,3}min(ℓ + 1, j)|f−1
0 (ℓ+ j)| = d − δ).

Thus,

∆fℓ+1
(K) = ∆f0(K) + (ℓ+ 1)(n−m− 1)− d+ δ.

Setting w = w1, we see that (ℓ + 1)(n − m − 1) > d because in this case we must

have ∆f0(K) 6 ∆fℓ+1
(K) by our definition of f . Thus, if there were any vertex w2 such that

f(w2) = ℓ+ 1, we would obtain a contradiction to our definition of f by setting w = w2. So

f(v) 6= ℓ+ 1 for each v ∈ V .

Our next result will allow us to accomplish the reduction of 3-partition to (λ, α)-star

decomp in the case where λ > 3 is odd and α > λ
λ+1

.
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Lemma 11. Let λ > 3 be an odd integer, let {a1, . . . , a3q} be an instance of 3-partition, let

ℓ = λ−1
2
, and let a = 1

q
(a1+ · · ·+ a3q). Suppose that n > 4(ℓ+4)(a+1)q is an integer such that

n ≡ q+1 (mod λ+ 1) and let m = λ(n−1)+q
λ+1

be an integer and b = ℓ(n−m−1)+ q−1
2

−(ℓ+1)qa.

Let B = {b[q]} if q is odd and B = {⌈b⌉[q/2], ⌊b⌋[q/2]} if q is even, and let M = {m[(ℓ+1)n−q], (ℓ+

1)qa1, . . . , (ℓ + 1)qa3q} ⊎ B. There is a decomposition of λKn into stars of sizes given by the

elements of M if and only if {a1, . . . , a3q} is a feasible instance of 3-partition.

Proof. Broadly, our proof strategy is to show that a decomposition of λKn into stars of sizes

given by M exists if and only if n− q vertices each have stars of sizes {m[ℓ+1]} centred at them

and the remaining q vertices each have stars of sizes {m[ℓ], bv} ⊎ Av centred at them, where

bv ∈ {⌈b⌉, ⌊b⌋} and Av is a subset of {(ℓ+ 1)qa1, . . . , (ℓ+ 1)qa3q} with σ(Av) = (ℓ+ 1)qa. The

values of m and b and the multiset M have been carefully chosen to ensure that this is the

case. It is then not too hard to show that {(ℓ+ 1)qa1, . . . , (ℓ+ 1)qa3q} can be partitioned into

q such sets Av if and only if {a1, . . . , a3q} is a feasible instance of 3-partition.

Observe that b is an integer if q is odd and b is an odd multiple of 1
2
if q is even. Also,

σ(M) = m((ℓ+ 1)n− q) + (ℓ+ 1)q2a+ bq = λ
(

n

2

)

,

where the second equality is obtained by applying the definitions of b andm and using λ = 2ℓ+1.

It will be useful to note the following facts.

m > ⌈b⌉ + (ℓ+ 1)qa+ (ℓ+ 1
2
)(q − 1) (8)

2⌊b⌋ > b+ (ℓ+ 1)qa+ (ℓ+ 1
2
)(q − 1) (9)

Using ⌈b⌉ 6 b + 1
2
and the definition of b, we see that to establish (8) it suffices to show that

(ℓ+1)m > ℓ(n−1)+(ℓ+1)(q−1)+ 1
2
. This does indeed hold because (ℓ+1)m = (ℓ+ 1

2
)(n−1)+ q

2

using the definition of m and λ = 2ℓ + 1, and because our hypothesis on n implies that
1
2
(n− 1) > (ℓ+1)(q− 1)+ 1

2
. Using ⌊b⌋ > b− 1

2
and the definition of b, we see that to establish

(9) it suffices to show that ℓ(n − m − 1) > 2(ℓ + 1)qa + ℓ(q − 1) + 1. This does indeed hold

because ℓ(n − m − 1) = ℓ(n−q−1)
2ℓ+2

using the definition of m and λ = 2ℓ + 1, and because our

hypothesis on n implies that ℓ(n− q − 1) > 4(ℓ+ 1)2q(a+ 1). Let V be a set of n vertices.

‘If’ direction. Suppose that {a1, . . . , a3q} is a feasible instance of 3-partition. Then

clearly there is a partition {A1, . . . , Aq} of {(ℓ+1)qa1, . . . , (ℓ+1)qa3q} such that σ(Ai) = (ℓ+1)qa

for each i ∈ {1, . . . , q}. Let V ′ be a set of q vertices in V , let V ′′ = V \ V ′, and let V ∗ be a

subset of V ′ such that |V ∗| = 0 if q is odd and |V ∗| = q
2
if q is even. By Lemma 6 it suffices

to show that there is a star K-decomposition where K is the multigraph λKV equipped with

multisets Mv = {m[ℓ+1]} for each v ∈ V ′′, Mv = {m[ℓ], ⌊b⌋ + (ℓ + 1)qa} for each v ∈ V ′ \ V ∗

and Mv = {m[ℓ], ⌈b⌉ + (ℓ + 1)qa} for each v ∈ V ∗ (recall that ⌈b⌉ + (ℓ + 1)qa < m). Let f be

a minimal restriction function for K given by Lemma 10(a). By Theorem 2 it suffices to show

that ∆f(K) > 0.

Since |Mv| = ℓ + 1 and σℓ(Mv) = ℓm for each v ∈ V , it follows from Lemma 10(a)(i) that

f(v) ∈ {0, ℓ + 1} for each v ∈ V . Let Vi = f−1(i) and ni = |Vi| for i ∈ {0, ℓ + 1}. We may
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assume nℓ+1 < n, for otherwise ∆+
f (K) = λ

(

n
2

)

and hence ∆f (K) > 0. We claim that

∆f(K) = λ
(

nℓ+1

2

)

+ (ℓ+ 1)n0nℓ+1 −
∑

v∈Vℓ+1

σ(Mv)

= 1
2
nℓ+1(2ℓ(n− 1) + 2n− nℓ+1 − 1)−

∑

v∈Vℓ+1

σ(Mv)

>

{

1
2
nℓ+1(n− nℓ+1 − q) if nℓ+1 6 n− q;

1
2
(n− nℓ+1 − 1)(nℓ+1 − (n− q)) if n− q < nℓ+1 6 n− 1.

If this claim holds then ∆f (K) > 0 as required, so it suffices to prove the claim. The second

equality of the claim can be obtained by substituting n0 = n − nℓ+1 and λ = 2ℓ + 1. To

see that the inequality holds note that |V ′| = q, σ(Mv) 6 (ℓ + 1)m for each v ∈ V , and

σ(Mv) 6 ℓm+ b+ (ℓ+ 1)qa+ 1
2
= ℓ(n− 1) + q

2
for each v ∈ V ′, and hence that

∑

v∈Vℓ+1

σ(Mv) 6

{

nℓ+1(ℓ+ 1)m if nℓ+1 6 n− q;

(n− q)(ℓ+ 1)m+ (nℓ+1 − (n− q))(ℓ(n− 1) + q
2
) if n− q < nℓ+1 6 n− 1.

Using this fact, the inequality in the claim can be established by routine calculation after

applying the definition of m and using λ = 2ℓ+ 1.

‘Only if’ direction. We do not retain any of the notation defined in the proof of the

‘if’ direction. Suppose there is a star K-decomposition, where K is λKV equipped with some

multisets {Mv : v ∈ V } such that
⊎

v∈V Mv =M .

Let r = (ℓ+ 1)n− q. Let {V ′, V ′′} be a partition of V such that |V ′| = q and νm(M
′) 6 ℓq

where M ′ =
⊎

v∈V ′ Mv. Such a partition exists by pigeonhole arguments because νm(M) = r =

(ℓ+ 1)n− q. Let M ′′ =
⊎

v∈V ′′ Mv.

We will show that M ′′ = {m[r−ℓq]}. Note that, by the definitions of M and {V ′, V ′′}, we
have {m[r−ℓq]} ⊆M ′′. By Lemma 8(a),

∑

x∈M ′′

(x− q) 6 λ
(

n− q

2

)

= (ℓ+ 1)(n− q)(m− q) = (r − ℓq)(m− q), (10)

where the first equality follows from our definition of m and the second from our definition

of r. So, because {m[r−ℓq]} ⊆ M ′′ and each element of M is greater than q, it must be that

M ′′ = {m[r−ℓq]} and the inequality in (10) can be replaced with an equality.

Thus we can apply Lemma 8(b) to obtain, for each u ∈ V ′,

σ(Mu) 6 λ(n− 1)− |M ′′| = ℓ(n+ q − 2) + q − 1 = ℓm+ b+ (ℓ+ 1)qa+ (ℓ+ 1
2
)(q − 1), (11)

where the first equality follows using |M ′′| = r − ℓq and the definition of r and the second

equality follows using the definitions of b and m. Because M ′′ = {m[r−ℓq]}, we have M ′ =

{m[ℓq], (ℓ+1)qa1, . . . , (ℓ+1)qa3q}⊎B. Thus, using (11), (8) and (9), we can conclude successively

that νm(Mv) = ℓ and ν{⌊b⌋,⌈b⌉}(Mv) = 1 for each v ∈ V ′. It follows that Mv = {m[ℓ], bv} ⊎
Av for each v ∈ V ′ where {bv : v ∈ V } = B and {Av : v ∈ V ′} is a partition of {(ℓ +
1)qa1, . . . , (ℓ + 1)qa3q} into q classes. So, because σ(Av) ≡ 0 (mod (ℓ+ 1)q) for each v ∈ V ′
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and (ℓ+ 1)q > (ℓ+ 1
2
)(q − 1) + 1

2
, it follows from (11) that σ(Av) = (ℓ+ 1)qa for each v ∈ V ′.

The existence of {Av : v ∈ V ′} implies there is a partition of {a1, . . . , a3q} into q classes such

that the elements of each class sum to a.

In this λ odd case we will use a greedy method to assign the specified star sizes to the

vertices of the multigraph when proving that every instance of (λ, α)-star decomp is feasible

for α 6
λ

λ+1
. We now detail this method, and prove some basic properties of the assignment it

produces. Let m1, . . . , mt be positive integers and V be a set of n vertices. A greedy assignment

of m1, . . . , mt to multisets {Mv : v ∈ V } is one produced according to the following iterative

procedure. At each stage, take a largest unassigned element of {m1, . . . , mt} and assign it to a

multiset Mu such that the sum of the elements already assigned toMu is at most the sum of the

elements already assigned to Mv for each v ∈ V . Continue until all elements of {m1, . . . , mt}
are assigned.

Lemma 12. Let λ be a fixed odd integer. Let n, m and m1, . . . , mt be positive integers such

that n > m > m1 > · · · > mt, mt−1 +mt > m > n
2
. Let V be an index set of cardinality n. A

greedy assignment {Mv : v ∈ V } of m1, . . . , mt can be produced in polynomial time in n and for

any such assignment the following hold.

(G1) For each v ∈ V , |Mv| ∈ {⌊ t
n
⌋, ⌈ t

n
⌉}.

(G2) For any u, v ∈ V , σ(Mv) 6 σ(Mu) + min(Mv).

(G3) For any u, v ∈ V such that |Mv| > 1, σ(Mu) >
|Mv|−1
|Mv| σ(Mv).

(G4) For any u, v ∈ V such that |Mv| = |Mu|, σ(Mv) 6 σ(Mu) + max(Mv)−min(Mu).

(G5) For any u, v ∈ V such that |Mv| = |Mu|+ 1, σ(Mv) > σ(Mu).

Proof. Producing a greedy assignment clearly takes only polynomial time in n. To show that

(G1)–(G5) hold, we proceed by induction on t. The result is obvious for t = 1, so suppose it is

true for t ∈ {1, . . . , t′} for some positive integer t′. We must show it also holds when integers

m1 > . . . > mt′+1 are assigned. Let {M ′
v : v ∈ V } be the multisets resulting from assigning

m1, . . . , mt′ and {Mv : v ∈ V } be the multisets resulting from assigning m1, . . . , mt′+1. We now

establish (G1), (G2), (G3), (G4) and (G5) hold for {Mv : v ∈ V }.

(G1) Because (G1) holds for t = t′, we have |M ′
v| ∈ {⌊ t′

n
⌋, ⌈ t′

n
⌉} for each v ∈ V . Let Mw be the

multiset to which the (t′+1)st integer is assigned. Because (G5) holds for t = t′, we have

σ(M ′
v) > σ(M ′

u) for any u, v ∈ V such that |M ′
v| = |M ′

u|+1. So, because σ(M ′
w) 6 σ(M ′

v)

for each v ∈ V , we have |M ′
w| = ⌊ t′

n
⌋ and it follows that |Mv| ∈ {⌊ t′+1

n
⌋, ⌈ t′+1

n
⌉} for each

v ∈ V .

(G2) Suppose for a contradiction that σ(Mv)−min(Mv) > σ(Mu). Then, when the last integer

was assigned to Mv, the sum of the integers already assigned to Mv was greater than the

sum of the integers already assigned to Mu contradicting our greedy assignment method.

(G3) We have σ(Mv) 6 σ(Mu) + min(Mv) by (G2). Thus, because min(Mv) 6
1

|Mv|σ(Mv), the

result follows.
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(G4) Because (G1) holds for each t ∈ {1, . . . , t′+1} we have that, for each i ∈ {1, . . . , |Mv|−1},
the (i+1)st integer assigned toMv is less than or equal to the ith integer assigned to Mu

(because it was assigned later). Thus σ(Mv)−max(Mv) 6 σ(Mu)−min(Mu).

(G5) Similarly, for each i ∈ {1, . . . , |Mu| − 1}, the (i+ 1)st integer assigned to Mu is less than

or equal to the ith integer assigned to Mv. Thus σ(Mu)−max(Mu) 6 σ|Mv|−2(Mv). We

have σ(Mv) > σ|Mv|−2(Mv) +m because mt′ + mt′+1 > m, and we have max(Mu) 6 m

because m1 6 m. Thus σ(Mu) < σ(Mv).

Our last lemma for this section shows that, when α 6
λ

λ+1
, every instance of (λ, α)-star

decomp is feasible. We show this by first greedily assigning (as in Lemma 12) the specified

star sizes to the vertices of λKn. We then “compress” the resulting list at each vertex so as

to reduce the number of possible restriction functions we need to consider. Finally we use

Theorem 2 and Lemma 10 to establish the existence of the decomposition into the compressed

sizes, and hence also of the desired decomposition. To achieve this we are forced to consider a

number of cases.

Lemma 13. Let λ > 3 be an odd integer. For any positive integer n, if M is a multiset of

positive integers such that σ(M) = λ
(

n
2

)

and max(M) 6 λ(n−1)+1
λ+1

, then a decomposition of λKn

into stars of sizes given by the elements of M exists and can be found in polynomial time in n.

Proof. The result is obvious for n 6 4, so we may assume that n > 5. Let m = ⌊λ(n−1)+1
λ+1

⌋ and
ℓ = λ−1

2
. By Lemma 6 we may assume that x + y > m for any distinct (but possibly equal)

x, y ∈ M . Let V be a set of n vertices. By Lemma 12, a greedy assignment {Mv : v ∈ V }
of the elements of M to multisets can be produced in polynomial time. We will first establish

that σ(Mv) > ℓm for each v ∈ V . If, to the contrary, σ(Mw) 6 ℓm for some w ∈ V , then

σ(Mv) 6 (ℓ + 1)m for each v ∈ V \ {w} by (G2). So σ(M) 6 (n − 1)(ℓ + 1)m + ℓm and,

using m 6
λ(n−1)+1

λ+1
, it can be seen that λ

(

n
2

)

− σ(M) > λ−1
2(λ+1)

(n − 2) > 0, contradicting our

hypotheses.

In each of two cases below we will define, for each v ∈ V , a “compressed” multiset

M∗
v of integers from {1, . . . , m} such that σ(M∗

v ) = σ(Mv) and σi(M
∗
v ) > σi(Mv) for each

i ∈ {1, . . . , |M∗
v |}. As discussed in Section 3, by Lemma 7 it will suffice to find a star K-

decomposition where K is the multigraph λKV equipped with the multisets {M∗
v : v ∈ V }.

For each case we will define f to be a minimal restriction function for K given by Lemma 10.

For each nonnegative integer i, let Vi = f−1(i) and ni = |Vi|. By Theorem 2, it will suffice to

show ∆f(K) > 0 (note that Theorem 2 guarantees a polynomial time construction). Suppose

for a contradiction that ∆f(K) < 0. In each case below we will obtain the required contradiction

by applying Lemma 9 and obtaining an upper bound for ∆−
f (K). Note that f(v) 6 ℓ for some

v ∈ V , because otherwise ∆+
f (K) = λ

(

n
2

)

contradicting ∆f (K) < 0. Because σ(M∗
v ) = σ(Mv)

for each v ∈ V , we will use σ(Mv) in preference to σ(M∗
v ) for the sake of clean notation.

Case 1. Suppose that σ(Mv) > (ℓ + 2)m for some v ∈ V . By (G2), we must have

km < σ(Mv) 6 (k + 2)m for each v ∈ V and some k > ℓ+ 1. For each v ∈ V , let

M∗
v =

{

{m[k], σ(Mv)− km} if km < σ(Mv) 6 (k + 1)m;

{m[k+1], σ(Mv)− (k + 1)m} if (k + 1)m < σ(Mv) 6 (k + 2)m.
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Note {m[k]} ⊆ M∗
v for each v ∈ V . So, by Lemma 10(b), we can take f to be a minimal

restriction function for K such that f(v) = 0 or f(v) > ℓ + 2 for each v ∈ V . Thus, by

Lemma 9, because
∑

v∈V0
σ(Mv) 6

∑

v∈V (σ(Mv)− σf(v)(Mv)), we have

∑

v∈V0

σ(Mv) 6 λ
(

n

2

)

−∆−
f (K) < λ

(

n0

2

)

+ (ℓ− 1)n0(n− n0). (12)

It follows that σ(Mw) <
λ
2
(n0 − 1) + (ℓ− 1)(n− n0) for some w ∈ V0 and substituting ℓ = λ−1

2

shows this latter expression is equal to λ
2
(n−1)− 3

2
(n−n0). So σ(Mv) 6

λ
2
(n−1)− 3

2
(n−n0)+m

for each v ∈ V by (G2). Thus, ∆−
f (K) 6 (n− n0)(

λ
2
(n− 1)− 3

2
(n− n0) +m). Adding this to

the second and third expressions in (12), using ℓ = λ−1
2

and
(

n
2

)

=
(

n0

2

)

+ 1
2
(n− n0)(n+n0− 1),

we obtain the contradiction

λ
(

n

2

)

< λ
(

n

2

)

− 1
2
(n− n0)(3n− 2m) 6 λ

(

n

2

)

.

Case 2. Suppose that σ(Mv) 6 (ℓ+ 2)m for each v ∈ V . Recall that σ(Mv) > ℓm for each

v ∈ V . For each v ∈ V , let yv = max(σℓ+1(Mv)− ℓm, ⌈1
2
(σ(Mv)− ℓm)⌉) and

M∗
v =

{

{m[ℓ], yv} if σ(Mv) = ℓm+ yv;

{m[ℓ], yv, σ(Mv)− ℓm− yv} if σ(Mv) > ℓm+ yv.

(Intuitively, yv is the smallest integer that ensures σℓ+1(M
∗
v ) > σℓ+1(Mv) and yv > σ(M∗

v ) −
σℓ+1(M

∗
v ).) For each v ∈ V , either M∗

v = {m[ℓ], ⌈1
2
(σ(Mv) − ℓm)⌉, ⌊1

2
(σ(Mv) − ℓm)⌋} or

σℓ+1(M
∗
v ) = σℓ+1(Mv). So by Lemma 10 we can take f to be a minimal restriction function

for K satisfying (a)(i) and (a)(ii) of Lemma 10. Thus, because f satisfies the latter of these,

σℓ+1(M
∗
v ) = σℓ+1(Mv) for each v ∈ Vℓ+1 and we will use σℓ+1(Mv) in preference to σℓ+1(M

∗
v ).

We consider two cases according to the value of nℓ+2.

Case 2a. Suppose that nℓ+2 > ℓ(n−m−1). Then Vℓ∪Vℓ+1∪Vℓ+2 = V by Lemma 10(a)(i)

because σℓ(M
∗
v ) = ℓm for each v ∈ V . By Lemma 9, again using σℓ(M

∗
v ) = ℓm for each v ∈ V ,

we have
∑

v∈Vℓ

(σ(Mv)− ℓm) 6 λ
(

n

2

)

−∆−
f (K) <

(

nℓ

2

)

. (13)

So σ(Mw) − ℓm < 1
2
(nℓ − 1) and hence σ(Mw) < ℓm + 1

2
(nℓ − 1) for some w ∈ Vℓ. Thus, by

(G2), σ(Mv) < (ℓ+ 1)m+ 1
2
(nℓ − 1) for each v ∈ V and hence ∆−

f (K) 6 nℓℓm+ (n− nℓ)((ℓ+

1)m+ 1
2
(nℓ − 1)). Adding this to the second and third expression in (13),

λ
(

n

2

)

<
(

nℓ

2

)

+ nℓℓm+ (n− nℓ)((ℓ+ 1)m+ 1
2
(nℓ − 1))

= 1
2
n(nℓ − 1) + 1

2
m
(

n(λ + 1)− 2nℓ

)

6 λ
(

n

2

)

− λ− 1

2(λ+ 1)
nℓ(n− 2) 6 λ

(

n

2

)

,

where the equality follows using ℓ = λ−1
2

and the second inequality follows using m 6
λ(n−1)+1

λ+1
.

Case 2b. Suppose that 0 6 nℓ+2 6 ℓ(n − m − 1). Then V0 ∪ Vℓ+1 ∪ Vℓ+2 = V by

Lemma 10(a)(i) because σℓ(M
∗
v ) = ℓm for each v ∈ V . Let w be an element of V0 such that
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σ(Mw) 6 σ(Mv) for each v ∈ V0. By Lemma 9 we have

∑

v∈V0

σ(Mv) 6 λ
(

n

2

)

−∆−
f (K) < λ

(

n0

2

)

+ ℓn0nℓ+1 + (ℓ− 1)n0nℓ+2. (14)

So, using nℓ+1 = n−n0−nℓ+2, σ(Mw) <
λ
2
(n0−1)+ℓnℓ+1+(ℓ−1)nℓ+2 = ℓ(n−1)+ 1

2
(n0−1)−nℓ+2.

We will use this fact often. Also, adding ∆−
f (K) to the second and third expression in (14),

λ
(

n

2

)

< λ
(

n0

2

)

+ ℓn0nℓ+1 + (ℓ− 1)n0nℓ+2 +
∑

v∈Vℓ+1

σℓ+1(Mv) +
∑

v∈Vℓ+2

σ(Mv). (15)

We now consider two subcases according to whether |Mw| = ℓ+ 1.

Case 2b(i). Suppose that |Mw| > ℓ + 2. Then σℓ+1(Mv) 6 σ(Mw) for each v ∈ Vℓ+1

for otherwise (G2) or (G5) would have been violated immediately after Mw was assigned its

(ℓ + 2)nd element. By (G3), for each v ∈ Vℓ+2, we have that σ(Mv) 6
ℓ+2
ℓ+1

σ(Mw) because

|Mv| > ℓ+ 2. Thus, from (15),

λ
(

n

2

)

< λ
(

n0

2

)

+ ℓn0nℓ+1 + (ℓ− 1)n0nℓ+2 + nℓ+1σ(Mw) +
ℓ+2
ℓ+1

nℓ+2σ(Mw)

=
n0

2

(

n0 − 2nℓ+2 + (λ− 1)(n− 1)− 1
)

+
(

n− n0 +
2nℓ+2

λ+ 1

)

σ(Mw)

<
(

n

2
+

nℓ+2

λ+ 1

)

((λ− 1)(n− 1) + n0 − 2nℓ+2 − 1)

6 λ
(

n

2

)

− nℓ+2

(λ+ 1)
(ℓ(n+ 2) + 2n+ 3nℓ+2 + 1) 6 λ

(

n

2

)

,

where the equality is obtained using nℓ+1 = n − n0 − nℓ+2 and ℓ = λ−1
2
, the second inequality

is obtained using σ(Mw) < ℓ(n− 1) + 1
2
(n0 − 1) − nℓ+2 and ℓ = λ−1

2
, and the third inequality

is obtained using n0 6 n− nℓ+2.

Case 2b(ii). Suppose that |Mw| = ℓ + 1. Let s = min(Mw). Then, for each v ∈ Vℓ+2,

σ(Mv) 6 σ(Mw)+min(Mv) by (G2) and min(Mv) 6 s because |Mv| > |Mw|. Also, σℓ+1(Mv) 6

σ(Mw) +m− s for each v ∈ Vℓ+1 using (G4). Thus, from (15),

λ
(

n

2

)

< λ
(

n0

2

)

+ ℓn0nℓ+1 + (ℓ− 1)n0nℓ+2 + nℓ+1(σ(Mw) +m− s) + nℓ+2(σ(Mw) + s)

= s(n0 + 2nℓ+2 − n) +m(n− n0 − nℓ+2) + σ(Mw)(n− n0) + n0(ℓ(n− 1) + n0−1
2

− nℓ+2),

(16)

where the equality is obtained using nℓ+1 = n− n0−nℓ+2. We will obtain a contradiction from

(16). The sign of n0 +2nℓ+2− n determines whether we require an upper or lower bound for s.

If n0+2nℓ+2 > n, then using first s 6 1
ℓ+1

σ(Mw) and next σ(Mw) < ℓ(n−1)+ 1
2
(n0−1)−nℓ+2

and m 6
λ(n−1)+1

λ+1
, we have from (16) that

λ
(

n

2

)

<
1

2(λ+ 1)

(

n(λ2(n− 1) + n− λ+ 2) + n0((λ− 3)n + 2n0 − 2)− 2nℓ+2(n + λ+ 4nℓ+2 + 1)
)

6 λ
(

n

2

)

− n− n0

2(λ+ 1)
(λ(n+ 1) + 2n− 1) 6 λ

(

n

2

)

,

where the second inequality is obtained by recalling that nℓ+2 >
1
2
(n−n0) and hence expression
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is maximised when nℓ+2 =
1
2
(n− n0).

If n0 + 2nℓ+2 < n, then using first s > σ(Mw) − ℓm and next σ(Mw) < ℓ(n − 1) + 1
2
(n0 −

1)− nℓ+2, we have from (16) that

λ
(

n

2

)

< 1
2
m(λ(n− n0 − 2nℓ+2) + n− n0) +

1
2
(n0 + 2nℓ+2)((λ− 1)(n− 1) + n0 − 2nℓ+2 − 1)

6 λ
(

n

2

)

− nℓ+2(2nℓ+2 +
n+2λ
λ+1

)− 1
2
(n0 − 1)(n− n0) < λ

(

n

2

)

,

where the second inequality follows using m 6
λ(n−1)+1

λ+1
and the third follows using n0 > 1

(recall that f(v) 6 ℓ for some v ∈ V ).

Proof of Theorem 1 when λ is odd. If α 6
λ

λ+1
, Lemma 13 shows that every instance of

(λ, α)-star decomp is feasible and that the required decompositions can be constructed in

polynomial time. If α > λ
λ+1

and {a1, . . . , a3q} is an instance of 3-partition, then we can

apply Lemma 11, with n chosen to be polynomial in a1 + · · · + a3q but sufficiently large that

m < α(n − 1), in order to reduce the instance of 3-partition to an instance of (λ, α)-star

decomp.

5 Proof of Theorem 1 when λ is even

We begin with a result which guarantees the existence of a minimal restriction function with

certain properties.

Lemma 14. Let n and λ be positive integers such that λ is even, let ℓ = λ
2
, and let V be a set

of n vertices. Let K be the multigraph λKV equipped with multisets {Mv : v ∈ V } of integers

from {1, . . . , n− 1} such that
∑

v∈V σ(Mv) = λ
(

n
2

)

.

(a) If |Mv| 6 ℓ+ 1 for each v ∈ V , then there is a minimal restriction function f for K such

that, for each v ∈ V ,

(i) f(v) ∈
{

{0, ℓ+ 1} if σℓ(Mv) 6 ℓ(n− 1)− |f−1(ℓ+ 1)|;
{ℓ, ℓ+ 1} if σℓ(Mv) > ℓ(n− 1)− |f−1(ℓ+ 1)|;

(ii) f(v) 6= ℓ if |Mv| = ℓ+ 1 and min(Mv) = ⌊1
2
(σ(Mv)− σℓ−1(Mv))⌋.

(b) If there are positive integers k > ℓ and m < n such that, for each v ∈ V , |Mv| 6 k + 2

and σi(Mv) = im for i ∈ {0, . . . , k}, then there is a minimal restriction function f for K
such that f(v) = 0 or f(v) > ℓ+ 1 for each v ∈ V .

Proof. Of all the minimal restriction functions for K, let f be one such that |f−1(0)| is max-

imised and, subject to this, |f−1(ℓ)| is minimised. Let ni = |f−1(i)| for each nonnegative integer

i.

We first prove (a). Suppose in accordance with (a) that |Mv| 6 ℓ + 1 for each v ∈ V .

Suppose there is a vertex w ∈ V such that f(w) ∈ {0, . . . , ℓ}. For each i ∈ {0, . . . , ℓ}, let fi
be the restriction function for K defined by fi(v) = f(v) for v ∈ V \ {w} and fi(w) = i. Then

∆−
fi
(K) = ∆−

f0
(K)+σi(Mw) for each i ∈ {0, . . . , ℓ}. Because f(v) 6 |Mv| 6 ℓ+1 for each v ∈ V ,
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∆+
fi
(K) = ∆+

f0
(K) + i(n− 1) for each i ∈ {0, . . . , ℓ− 1} and ∆+

fℓ
(K) = ∆+

f0
(K) + ℓ(n− 1)− nℓ+1.

Thus,

∆fi(K) =

{

∆f0(K) + i(n− 1)− σi(Mw) if i ∈ {0, . . . , ℓ− 1};
∆f0(K) + ℓ(n− 1)− nℓ+1 − σℓ(Mw) if i = ℓ.

So, for each i ∈ {1, . . . , ℓ − 1}, ∆f0(K) 6 ∆fi(K) because σi(Mw) 6 i(n − 1). Furthermore,

∆fℓ(K) < ∆f0(K) if and only if σℓ(Mw) > ℓ(n− 1)− nℓ+1. In view of our definition of f , this

establishes (a)(i).

We now prove (a)(ii). Suppose further, for a contradiction, that f(w) = ℓ and that Mw =

{m1, . . . , mℓ+1} where m1 > · · · > mℓ+1 and mℓ+1 = ⌊1
2
(σ(Mw) − σℓ−1(Mw))⌋. Then mℓ =

⌈1
2
(σ(Mw)−σℓ−1(Mw))⌉ and hence mℓ+1 ∈ {mℓ−1, mℓ}. So by Lemma 4, one of fℓ−1 or fℓ+1 is

also a minimal restriction function for K, contradicting our choice of f . This establishes (a)(ii).

Finally we prove (b). Suppose in accordance with (b) that there are positive integers k > ℓ

and m < n such that, for each v ∈ V , |Mv| 6 k + 2 and σi(M) = im for i ∈ {0, . . . , k}. Note

that f(v) ∈ {0, k, k + 1, k + 2} for each v ∈ V by Lemma 4(a). So (b) follows immediately if

k > ℓ+ 1 and it suffices to assume k = ℓ and prove that f(v) 6= ℓ for each v ∈ V .

Suppose there is a vertex w ∈ V such that f(w) ∈ {0, ℓ}. For each i ∈ {0, ℓ}, let fi be
the restriction function for K defined by fi(v) = f(v) for v ∈ V \ {w} and fi(w) = i. Then

∆−
fℓ
(K) = ∆−

f0
(K) + σℓ(Mw) = ∆−

f0
(K) + ℓm and, because f(v) 6 |Mv| 6 ℓ + 2 for each v ∈ V ,

∆+
fℓ
(K) = ∆+

f0
(K) + ℓ(n− 1)− d, where d =

∑

j∈{1,2}min(ℓ, j)nℓ+j. Thus,

∆fℓ(K) = ∆f0(K) + ℓ(n−m− 1)− d.

So if ℓ(n−m− 1) < d, then our definition of f would imply that f(v) > ℓ for all v ∈ V and we

could conclude successively that ∆+
f (K) = λ

(

n
2

)

, that ∆f (K) = 0, and the contradiction that f

is uniformly 0. Thus it must be that ℓ(n −m − 1) > d and hence by our definition of f that

f(v) 6= ℓ for each v ∈ V .

In Lemma 16 we will establish that (λ, α)-star decomp is NP-complete for λ even and

α > 1 − 2
λ
(3 − 2

√
2). The bulk of this work is accomplished in Lemma 15 which allows us to

reduce an instance of 3-partition to an instance of (λ, α)-star decomp provided we can

find suitable integers n, m and r.

Lemma 15. Let λ be a positive even integer, let {a1, . . . , a3q} be an instance of 3-partition,

let ℓ = λ
2
, and let a = 1

q
(a1 + · · · + a3q). Suppose there are positive integers n, m and r such

that ℓq < r < n− q, q < m < n− 1 and

c =
ℓ(n− q)(n− q − 1)− r(m− q)

(ℓ+ 1)(n− q)− 2r
+ q and

b = (ℓ− 1)(n− c− 1) + r + q − c− 1− (ℓ+ 1)qa

are integers satisfying 2c > m+q, ℓ(c−q) > (ℓ−1)(m−q), m > c+b+(ℓ+1)qa and b > (ℓ+1)qa+

ℓ(q − 1). Then there is a decomposition of λKn into stars of sizes {m[r], c[(ℓ+1)n−2r−q], b[q], (ℓ+

1)qa1, . . . , (ℓ+ 1)qa3q} if and only if {a1, . . . , a3q} is a feasible instance of 3-partition.
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Proof. Let M be the multiset {m[r], c[(ℓ+1)n−2r−q], b[q], (ℓ+ 1)qa1, . . . , (ℓ+ 1)qa3q} and let V be

a set of n vertices. Note that

σ(M) = mr + c((ℓ+ 1)n− 2r − q) + bq + (ℓ+ 1)q2a = λ
(

n

2

)

,

where the second equality follows by first applying the definition of b and then applying the

definition of c.

Our proof strategy is similar to the one we employed in the proof of Lemma 11. We will

show that a decomposition of λKn into stars of sizes given by M exists if and only if n− r− q

vertices each have stars of sizes {c[ℓ+1]} centred at them, r vertices each have stars of sizes

{m, c[ℓ−1]} centred at them, and the remaining q vertices each have stars of sizes {c[ℓ], b} ⊎ Av

centred at them, where Av is a subset of {(ℓ+ 1)qa1, . . . , (ℓ+ 1)qa3q} with σ(Av) = (ℓ + 1)qa.

The values of m, c and b and the multiset M have been carefully chosen to ensure that this is

the case. It is then not too hard to show that {(ℓ + 1)qa1, . . . , (ℓ + 1)qa3q} can be partitioned

into q such sets Av if and only if {a1, . . . , a3q} is a feasible instance of 3-partition.

‘If’ direction. Suppose that {a1, . . . , a3q} is a feasible instance of 3-partition. Then

clearly there is a partition {A1, . . . , Aq} of {(ℓ+1)qa1, . . . , (ℓ+1)qa3q} such that σ(Ai) = (ℓ+1)qa

for each i ∈ {1, . . . , q}. Let {V ′, V ′′, V ′′′} be a partition of V such that |V ′| = q, |V ′′| = r and

|V ′′′| = n − r − q. By Lemma 6, it will suffice to show that there is a star K-decomposition

where K is the multigraph λKV equipped with multisets {Mv : v ∈ V } such that Mv = {c[ℓ+1]}
for v ∈ V ′′′, Mv = {m, c[ℓ−1]} for v ∈ V ′′, Mv = {c[ℓ−1], c+ b+ (ℓ+ 1)qa} for v ∈ V ′ (note that

c+ b+ (ℓ+ 1)qa < m by our hypotheses). Let f be a minimal restriction function for K given

by Lemma 14(a) and let Vi = f−1(i) and ni = |Vi| for i ∈ {0, ℓ, ℓ+1}. By Theorem 2 it suffices

to show that ∆f (K) > 0. We may assume that n0 > 1, for otherwise ∆+
f (K) = λ

(

n
2

)

and hence

∆f (K) > 0.

Now ∆+
f (K) = λ

(

n−n0

2

)

+ ℓn0nℓ + (ℓ + 1)n0nℓ+1. Note Vℓ+1 ⊆ V ′′′ because |Mv| = ℓ for

v ∈ V ′ ∪ V ′′. By Lemma 14(a)(ii) it can be seen that Vℓ ∩ V ′′′ = ∅. Further, V ′ ⊆ V0 by

Lemma 14(a)(i), because nℓ+1 6 |V ′′′| = n− r− q and ℓc+ b+(ℓ+1)qa = ℓ(n−1)− (n− r− q)

by the definition of b. Thus we see that Vℓ ⊆ V ′′, in addition to Vℓ+1 ⊆ V ′′′. So, since

σ(Mv) = m+ (ℓ− 1)c for each v ∈ V ′′ and σ(Mv) = (ℓ+ 1)c for each v ∈ V ′′′, we have

∆−
f (K) = nℓ(m+ (ℓ− 1)c) + nℓ+1(ℓ+ 1)c.

From this, our expression for ∆+
f (K), and the fact that nℓ = n− n0 − nℓ+1 we see that

∆f(K) = (n− n0)(ℓ(n− c− 1)−m+ c) + nℓ+1(n0 +m− 2c). (17)

We will use (17) to show that ∆f (K) > 0, considering two cases according to the value of nℓ+1.

If nℓ+1 6 ℓ(n− c− 1)−m+ c, then Vℓ = ∅ by Lemma 14(a)(i), so nℓ+1 = n− n0 and from

(17) we have

∆f (K) > (n− n0)(ℓ(n− c− 1) + n0 − c).

Thus ∆f(K) > 0 because our assumption that nℓ+1 6 ℓ(n − c − 1) − m + c, together with
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nℓ+1 = n−n0, implies that n+m− c 6 ℓ(n− c−1)+n0 and hence that ℓ(n− c−1)+n0− c >

n +m− 2c > 0.

If, on the other hand, nℓ+1 > ℓ(n − c − 1) −m + c, then Vℓ = V ′′ by Lemma 14(a)(i), so

nℓ+1 = n− r − n0 and from (17) we have

∆f(K) > (n− n0)(ℓ(n− c− 1) + n0 + r − c)− r(n+m− 2c).

Because q 6 n0 6 n − r, the right hand expression is minimised either when n0 = q or when

n0 = n− r. When n0 = q, the expression is equal to 0 by the definition of c. When n0 = n− r,

the expression is r((ℓ−1)(n− c−1)+n−m−1), which is nonnegative because n−1 > m > c.

‘Only if’ direction. We do not retain any of the notation defined in the proof of the

‘if’ direction. Suppose there is a star K-decomposition, where K is λKV equipped with some

multisets {Mv : v ∈ V } such that
⊎

v∈V Mv =M .

Let {V ′, V ′′} be a partition of V such that |V ′| = q and, for all v ∈ V ′ and u ∈ V ′′,

either ν{m,c}(Mv) < ν{m,c}(Mu) or ν{m,c}(Mv) = ν{m,c}(Mu) and νm(Mv) 6 νm(Mu). Let M ′ =
⊎

v∈V ′ Mv,M
′′ =

⊎

u∈V ′′ Mu and, for a multiset S of positive integers, abbreviate (m−q)νm(S)+
(c− q)νc(S) to ξ(S). By Lemma 8(a) we have

ξ(M ′′) 6
∑

x∈M ′′

(x− q) 6 λ
(

n− q

2

)

= (m− q)r + (c− q)((ℓ+ 1)(n− q)− 2r), (18)

where the equality follows by the definition of c.

We will show that ξ(Mv) = ℓ(c− q) for each v ∈ V ′. Suppose otherwise. Because νm(M
′) =

r− νm(M
′′) and νc(M

′) = (ℓ+ 1)n− 2r− q − νc(M
′′), (18) implies that ξ(M ′) > ℓq(c− q). So

ξ(Mv0) > ℓ(c− q) for some v0 ∈ V ′ and hence either ν{m,c}(Mv0) > ℓ+1 or ν{m,c}(Mv0) = ℓ and

νm(Mv0) > 1. Then, by the definition of {V ′, V ′′}, for each u ∈ V ′′ either ν{m,c}(Mu) > ℓ + 1

or ν{m,c}(Mu) = ℓ and νm(Mu) > 1. Furthermore, the latter applies for strictly fewer than r

vertices u ∈ V ′′, for otherwise we would necessarily have {m[r], c[(ℓ+1)(n−q)−2r]} ⊆M ′′ and hence

νm(M
′) = 0 and νc(M

′) 6 ℓq, contradicting ξ(M ′) > ℓq(c − q). Thus, ξ(Mu) > ξ({m, c[ℓ−1]})
for each u ∈ V ′′ and ξ(Mu) > ξ({c[ℓ+1]}) for strictly more than n− r − q vertices u ∈ V ′′ (note

that our hypothesis 2c > m+ q implies ξ({m, c[ℓ−1]}) < ξ({c[ℓ+1]})). Thus,

ξ(M ′′) > rξ({m, c[ℓ−1]}) + (n− r − q)ξ({c[ℓ+1]}) = λ
(

n− q

2

)

,

where the equality is obtained by applying the definitions of ξ and c. Hence we have a con-

tradiction to (18) and it is indeed the case that ξ(Mv) = ℓ(c − q) for each v ∈ V ′. Further,

for each v ∈ V ′, we have νm(Mv) + νc(Mv) > ℓ for otherwise νm(Mv) + νc(Mv) 6 ℓ − 1 and

ξ(Mv) 6 (ℓ− 1)(m− q) < ℓ(c− q) where the second inequality is one of our hypotheses. Thus,

because m > c, for each v ∈ V ′ we in fact have (νm(Mv), νc(Mv)) = (0, ℓ).

From this it follows that (νm(M
′′), νc(M

′′)) = (r, (ℓ + 1)(n − q)− 2r). Thus, because each

element ofM is greater than q, equality holds throughout (18) andM ′′ = {m[r], c[(ℓ+1)(n−q)−2r]}.
So, by Lemma 8(b), for each v ∈ V ′,

σ(Mv) 6 λ(n− 1)− |M ′′| = ℓc+ b+ (ℓ+ 1)qa+ ℓ(q − 1), (19)
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where the equality follows using |M ′′| = (ℓ+ 1)(n− q)− r and the definition of b.

Because M ′′ = {m[r], c[(ℓ+1)(n−q)−2r]}, M ′ = {c[ℓq], b[q], (ℓ + 1)qa1, . . . , (ℓ + 1)qa3q}. We have

already seen that (νm(Mv), νc(Mv)) = (0, ℓ) for each v ∈ V ′. So, using (19) and the fact that

b > (ℓ+1)qa+ ℓ(q−1), we can conclude that νb(Mv) = 1 for each v ∈ V ′. It follows thatMv =

{c[ℓ], b} ⊎Av for each v ∈ V ′ where {Av : v ∈ V ′} is a partition of {(ℓ+ 1)qa1, . . . , (ℓ+ 1)qa3q}
into q classes. So, because σ(Av) ≡ 0 (mod (ℓ+ 1)q) for each v ∈ V ′ and (ℓ + 1)q > ℓ(q − 1),

it follows from (19) that σ(Av) = (ℓ + 1)qa for each v ∈ V ′. The existence of {Av : v ∈ V ′}
implies there is a partition of {a1, . . . , a3q} into q classes such that the elements of each class

sum to a.

Lemma 16. Let λ be a positive even integer. For each α > 1 − 2
λ
(3 − 2

√
2), (λ, α)-star

decomp is NP-complete.

Proof. Let {a1, . . . , a3q} be an instance of 3-partition. We will use Lemma 15 to reduce this

instance to an instance of (λ, α)-star decomp. Let a = 1
q
(a1+ · · ·+a3q), α′ = 1− 2

λ
(3−2

√
2),

and ℓ = λ
2
. It suffices to find integers n, m and r that satisfy the conditions of Lemma 15 and

such that m 6 α(n− 1) and n is polynomial in qa.

We will first select integers n, m and r such that n ≫ (ℓ + 1)qa, n is polynomial in qa, c

(as defined as in Lemma 15) is an integer, and

r = 1√
2
(n− 1) + r′

m = α′(n− 1) +m′

for some r′ and m′ such that r′ = o(n), m′ = o(n), m′ > 2r′ > 0 and m′ > 2
√
2(ℓ+ 1)q(a+ 2).

We proceed as follows.

n and x: Select n ≫ (ℓ + 1)qa so that n is polynomial in qa and n − q has a divisor x such

that x = o(n) and n−q
x

= o(n).

p and r: Now let p be the smallest prime such that p >
1

x
√
2
(n − 1) and note that p ≫ ℓ

because x = o(n). Results on prime gaps imply that p = 1
x
√
2
(n − 1) + o(n

x
) (see [1], for

example). Choose r = px and note this means r′ = o(n).

m (and hence m′): We will now select an integer m (and hence also a real m′) such that

m′ > 2r′,m′ > 2
√
2(ℓ+1)q(a+2),m′ = o(n) and z divides the integer ℓ(n−q)(n−q−1)

x
− r(m−q)

x

where z is the integer (ℓ+1)(n−q)−2r
x

. Note this last fact will ensure that (ℓ+1)(n− q)− 2r

divides ℓ(n − q)(n− q − 1)− r(m − q) and hence that c (as defined as in Lemma 15) is

an integer. Noting p = r
x
, we will be able to select such an m provided that gcd(z, p)

divides ℓ(n−q)(n−q−1)
x

because then the diophantine equation βz + γp = ℓ(n−q)(n−q−1)
x

will

have solutions for β and γ and we will be able to set m = γ + q for an appropriately

chosen solution γ. Observe that gcd(z, p) ∈ {1, p} since p is prime. To see that gcd(z, p)

divides ℓ(n−q)(n−q−1)
x

, note that gcd(z, p) must divide (ℓ+1)(n−q)
x

since (ℓ+1)(n−q)
x

= z + 2p.

But then gcd(z, p) must in fact divide n−q
x
, because gcd(ℓ + 1, p) = 1 since p ≫ ℓ + 1 is

prime.
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c and b: Choose c and then b according to their definitions in Lemma 15.

So we can indeed select integers with the properties we claimed. Note that m 6 α(n − 1)

because m = α′(n− 1) + o(n) and α > α′.

Now, r = 1√
2
(n− 1) + o(n), m = α′(n− 1) + o(n) and it can be calculated that

c =

(

1− 2−
√
2

2ℓ

)

(n− 1) + o(n).

From this, it is routine to check that 2c > m+q, ℓ(c−q) > (ℓ−1)(m−q) andm > c+b+(ℓ+1)qa.

Finally, using the definitions of m and r, we have b > (ℓ+ 1)qa+ ℓ(q − 1) because

b− (ℓ+ 1)qa− ℓ(q − 1) = (ℓ− 1)(n− c− 1) + r + q − 1− c− 2(ℓ+ 1)qa− ℓ(q − 1)

=
ℓ
√
2m′ + q(4 − 3

√
2)

2(ℓ+ 1−
√
2)

− 2−
√
2

2
− 2(ℓ+ 1)qa− ℓ(q − 1)

+
2r′((ℓ + 1)(ℓm′ − 2r′) + 2

√
2r′)

2(ℓ+ 1−
√
2)2n

+ o(1)

and this can be seen to be positive using m′ > 2r′ > 0 and m′ > 2
√
2(ℓ+ 1)q(a+ 2).

In this λ even case, the greedy assignment method that we used for λ odd will not suffice for

establishing that every instance of (λ, α)-star decomp is feasible when α 6 1− 2
λ
(3− 2

√
2).

Instead, we now introduce an alternative assignment method and, in Lemma 17, establish some

of its properties.

Let m1, . . . , mt be positive integers and V be a set of n vertices. An equitable assignment

of m1, . . . , mt to multisets {Mv : v ∈ V } is one for which

(E1) for each v ∈ V , |Mv| ∈ {⌊ t
n
⌋, ⌈ t

n
⌉}; and

(E2) for any u, v ∈ V such that σ(Mu) < σ(Mv) and any elements x ∈ Mu and y ∈ Mv such

that x < y, σ(Mv)− σ(Mu) 6 y − x.

Lemma 17. Let λ be a fixed even integer. Let n, m and m1, . . . , mt be positive integers such

that n > m > m1 > · · · > mt, mt−1 +mt > m > n
2
, and m1 + · · ·+mt = λ

(

n
2

)

. Let V be an

index set of cardinality n. An equitable assignment {Mv : v ∈ V } of m1, . . . , mt can be found

in polynomial time in n and for any such assignment the following hold.

(E3) For any u, v ∈ V and any element x ∈Mu, σ(Mv) 6 max(⌈ t
n
⌉x, σ(Mu) +m− x).

(E4) For any u, v ∈ V , σ(Mv) 6 σ(Mu) +m.

(E5) For any u, v ∈ V such that |Mv| > 2, then σ(Mv) 6
|Mv|

|Mv|−1
σ(Mu).

Proof. We first show that an equitable assignment exists and can be found in polynomial

time. Begin with any assignment {Mv : v ∈ V } satisfying (E1). Clearly the variance z =
∑

v∈V (σ(Mv) − λ
2
(n − 1))2 of the sums of the multisets is an integer which is polynomial in

n. Because mt−1 + mt >
n
2
implies that t is linear in n, it can be checked in quadratic

time in n whether the assignment satisfies (E2). If it does not, there are u, v ∈ V such that
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σ(Mu) < σ(Mv) and elements x ∈Mu and y ∈Mv such that x < y and σ(Mv)−σ(Mu) > y−x,
and we can replace the initial assignment with the assignment {M ′

v : v ∈ V } obtained from

{Mv : v ∈ V } by exchanging an element of Mu equal to x with an element of Mv equal to y.

The new assignment satisfies (E1) and the variance of the sums of the multisets of this new

assignment is an integer strictly smaller than z because

|σ(M ′
v)− σ(M ′

u)| = |σ(Mv)− σ(Mu)− 2(y − x)| < |σ(Mv)− σ(Mu)|.

Thus by iterating this process we will obtain an equitable assignment in polynomial time in n.

We now show that (E3), (E4) and (E5) hold for any equitable assignment {Mv : v ∈ V } of

m1, . . . , mt.

(E3) We may assume that σ(Mu) < σ(Mv) for otherwise it is clear that σ(Mv) 6 σ(Mu)+m−x.
If max(Mv) 6 x, then σ(Mv) 6 |Mv|x 6 ⌈ t

n
⌉x. Otherwise, max(Mv) > x and, by (E2),

σ(Mv) 6 σ(Mu) + max(Mv)− x 6 σ(Mu) +m− x.

(E4) Let x = min(Mu) and note that x 6
1

|Mu|σ(Mu). By (E3), σ(Mv) 6 max(⌈ t
n
⌉x, σ(Mu) +

m−x). We have ⌈ t
n
⌉x 6 (|Mu|+1)x 6 σ(Mu)+m and, clearly, σ(Mu)+m−x < σ(Mu)+m.

(E5) We may assume that σ(Mu) < σ(Mv) for otherwise (E5) follows immediately. Let x =

min(Mu) and note that x 6
1

|Mu|σ(Mu). If x > max(Mv), then

σ(Mv) 6 |Mv|x 6
|Mv|
|Mu|σ(Mu) 6

|Mv|
|Mv|−1

σ(Mu).

If m
2
< x < max(Mv), then max(Mv)− x < x and so by (E2),

σ(Mv) 6 σ(Mu) + max(Mv)− x < σ(Mu) + x 6
|Mu|+1
|Mu| σ(Mu) 6

|Mv|
|Mv|−1

σ(Mu).

If x 6
m
2
, then x < min(Mv) because x+min(Mv) > m. So by (E2)

σ(Mv) 6 σ(Mu) + min(Mv)− x < σ(Mu) +
1

|Mv|σ(Mv)

and, rearranging, we have σ(Mv) <
|Mv|

|Mv|−1
σ(Mu).

As an example of when greedy assignment would be insufficient, consider attempting to

decompose 4K100 into stars of sizes {90[166], 73[36], 72[31]}. Greedy assignment would result in

multisets {Mv : v ∈ V } such that Mu = {90, 73} for some u ∈ V and either Mv = {90[2]} or

|Mv| > 3 for each v ∈ V \ {u}. The restriction function that takes the value 0 at u and the

value |Mv| at each v ∈ V \{u} shows that a decomposition with this assignment does not exist.

However, because 90 6 α′(n−1), we will see in Lemma 18 below that a decomposition of 4K100

into stars of the prescribed sizes does indeed exist when the star sizes are assigned equitably.

We are now ready to show that, when α 6 1 − 2
λ
(3 − 2

√
2), every instance of (λ, α)-star

decomp is feasible. We show this by first equitably assigning (as in Lemma 17) the specified

star sizes to the vertices of λKn. We then “compress” the resulting list at each vertex so as
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to reduce the number of possible restriction functions we need to consider. Finally we use

Theorem 2 and Lemma 14 to show the existence of a decomposition into the compressed sizes,

and hence also of the desired decomposition. Again, we are forced to consider a number of

cases.

Lemma 18. Let λ be a positive even integer and let α′ = 1 − 2
λ
(3 − 2

√
2). For each positive

integer n, if M is a multiset of integers such that σ(M) = λ
(

n
2

)

and max(M) 6 α′(n− 1), then

a decomposition of λKn into stars of sizes given by the elements of M exists and can be found

in polynomial time in n.

Proof. The result is obvious if n 6 4, so we may suppose that n > 5. Let m = ⌊α′(n − 1)⌋
and let t = |M |. By Lemma 6 we may assume that x + y > m for any distinct (but possibly

equal) x, y ∈ M . Let ℓ = λ
2
and let β = 3 − 2

√
2 ≈ 0.172 so that α′ = 1 − β

ℓ
. Let V be a

set of n vertices. By Lemma 17, an equitable assignment {Mv : v ∈ V } of the elements of M

to multisets can be produced in polynomial time. Because σ(M) = ℓn(n − 1) > ℓmn, there

must be a vertex u ∈ V such that σ(Mu) > ℓm and hence, by (E4), σ(Mv) > (ℓ− 1)m for each

v ∈ V .

In each of two cases below we will define, for each v ∈ V , a “compressed” multiset

M∗
v of integers from {1, . . . , m} such that σ(M∗

v ) = σ(Mv) and σi(M
∗
v ) > σi(Mv) for each

i ∈ {1, . . . , |M∗
v |}. As discussed in Section 3, by Lemma 7 it will suffice to find a star K-

decomposition where K is the multigraph λKV equipped with the multisets {M∗
v : v ∈ V }. For

each case we will define f to be a minimal restriction function for K given by Lemma 14 and,

for each nonnegative integer i, let Vi = f−1(i) and ni = |Vi|. By Theorem 2, it will suffice to

show ∆f (K) > 0 (note that Theorem 2 guarantees a polynomial time construction).

Note that because σ(M∗
v ) = σ(Mv) for each v ∈ V , we will usually use σ(Mv) in preference

to σ(M∗
v ) for the sake of clean notation. The quantity ℓ(n−m−1) will be important throughout

this proof and it will be useful to note that β(n − 1) 6 ℓ(n −m − 1) < β(n − 1) + ℓ because

m = ⌊α′(n− 1)⌋.
Case 1. Suppose that σ(Mv) > (ℓ + 1)m for some v ∈ V . By (E4), we must have

km < σ(Mv) 6 (k + 2)m for all v ∈ V for some positive integer k > ℓ. For each v ∈ V , let

M∗
v =

{

{m[k], σ(Mv)− km} if km < σ(Mv) 6 (k + 1)m;

{m[k+1], σ(Mv)− (k + 1)m} if (k + 1)m < σ(Mv) 6 (k + 2)m.

Note {m[k]} ⊆ M∗
v for each v ∈ V . So, by Lemma 14(b), we can take f to be a minimal

restriction function such that f(v) = 0 or f(v) > ℓ + 1 for each v ∈ V . Suppose for a

contradiction that ∆f (K) < 0. Note that n0 > 0 for otherwise ∆+
f (K) = λ

(

n
2

)

, contradicting

∆f (K) < 0. By Lemma 9,

∑

v∈V0

σ(Mv) 6 λ
(

n

2

)

−∆−
f (K) < λ

(

n0

2

)

+ n0(ℓ− 1)(n− n0). (20)

It follows that σ(Mw) < ℓ(n − 1) − (n − n0) for some w ∈ V0 and hence that σ(Mv) 6

ℓ(n−1)−(n−n0)+m for each v ∈ V by (E4). Thus ∆−
f (K) 6 (n−n0)(ℓ(n−1)−(n−n0)+m).
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Adding this to the second and third expressions in (20) we obtain the contradiction

λ
(

n

2

)

< λ
(

n

2

)

− (n− n0)(n−m) 6 λ
(

n

2

)

.

Case 2. Suppose that σ(Mv) 6 (ℓ+1)m for each v ∈ V . Recall that σ(Mv) > (ℓ− 1)m for

each v ∈ V . For each v ∈ V , let yv = max(σℓ(Mv)− (ℓ− 1)m, ⌈1
2
(σ(Mv)− (ℓ− 1)m)⌉) and

M∗
v =

{

{m[ℓ−1], yv} if σ(Mv) = (ℓ− 1)m+ yv;

{m[ℓ−1], yv, σ(Mv)− (ℓ− 1)m− yv} if σ(Mv) > (ℓ− 1)m+ yv.

(Intuitively, yv is the smallest integer that ensures σℓ(M
∗
v ) > σℓ(Mv) and yv > σ(M∗

v )−σℓ(M∗
v ).)

Note that |M∗
v | ∈ {ℓ, ℓ+ 1} for each v ∈ V . So, by Lemma 14, we can take f to be a minimal

restriction function satisfying (a)(i) and (a)(ii) of Lemma 14. By (a)(i), V0∪Vℓ ∪Vℓ+1 = V . By

(a)(ii) and the definition of M∗
v , it can be seen that, for each v ∈ Vℓ, σℓ(M

∗
v ) = σℓ(Mv) and we

will use σℓ(Mv) in preference σℓ(M
∗
v ).

Suppose for a contradiction that ∆f(K) < 0. Note that n0 > 0 for otherwise ∆+
f (K) = λ

(

n
2

)

and n0 < n for otherwise f is uniformly 0, both of which contradict ∆f (K) < 0. Let w be an

element of V0 such that σ(Mw) 6 σ(Mv) for all v ∈ V0. By Lemma 9

∑

v∈V0

σ(Mv) 6 λ
(

n

2

)

−∆−
f (K) < λ

(

n0

2

)

+ ℓn0nℓ + (ℓ− 1)n0nℓ+1. (21)

It follows that

σ(Mw) < ℓ(n− 1)− nℓ+1. (22)

Adding ∆−
f (K) to the second and third expressions in (21), we have

λ
(

n

2

)

< λ
(

n0

2

)

+ ℓn0nℓ + (ℓ− 1)n0nℓ+1 +
∑

v∈Vℓ

σℓ(Mv) +
∑

v∈Vℓ+1

σ(Mv). (23)

We now distinguish a number of cases. In each case we will bound
∑

v∈Vℓ
σℓ(Mv) +

∑

v∈Vℓ+1
σ(Mv) and use (23) to obtain a contradiction. The cases divide according to whether

nℓ+1 6 ℓ(n−m− 1), whether ⌊ t
n
⌋ > ℓ+1 and whether σ(Mv) 6 σ(Mw) +

m
2
for each v ∈ Vℓ+1.

Note that certainly ⌊ t
n
⌋ > ℓ because λ

(

n
2

)

= σ(M) 6 t(n− 1) implies that ℓn 6 t. It will help

to remember that |Mv| ∈ {⌊ t
n
⌋, ⌈ t

n
⌉} for each v ∈ V by (E1).

Case 2a. Suppose that nℓ+1 6 ℓ(n−m−1) or that ⌊ t
n
⌋ > ℓ+1. We have σ(Mv) 6

ℓ+1
ℓ
σ(Mw)

for each v ∈ Vℓ+1 by (E5). We next prove the claim that σℓ(Mv) 6 σ(Mw) for each v ∈ Vℓ

(recall that σℓ(M
∗
v ) = σℓ(Mv) for each v ∈ Vℓ).

If nℓ+1 6 ℓ(n−m− 1), then our claim is vacuously true because Vℓ = ∅ by Lemma 14(a)(i),

noting that σℓ(M
∗
v ) 6 ℓm for each v ∈ V . So we may assume that ⌊ t

n
⌋ > ℓ+1. Let s = min(Mw)

and let v ∈ Vℓ. If max(Mv) 6 s, then σℓ(Mv) 6 ℓs 6 σ(Mw), as required. If max(Mv) > s,

then σ(Mv) 6 σ(Mw) + max(Mv) − s by (E2) and thus σℓ(Mv) 6 σ(Mw) + max(Mv) − s −
min(Mv) because |Mv| > ℓ+ 1 by (E1). So again σℓ(Mv) 6 σ(Mw) because max(Mv) 6 m and

s +min(Mv) > m. Thus our claim holds.

Now, because σ(Mv) 6
ℓ+1
ℓ
σ(Mw) for each v ∈ Vℓ+1 and σℓ(Mv) 6 σ(Mw) for each v ∈ Vℓ,
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we have from (23) that

λ
(

n

2

)

< λ
(

n0

2

)

+ ℓn0nℓ + (ℓ− 1)n0nℓ+1 + nℓσ(Mw) +
ℓ+1
ℓ
nℓ+1σ(Mw)

6 λ
(

n

2

)

− nℓ+1(
1
ℓ
nℓ+1 + 1) 6 λ

(

n

2

)

,

where the second inequality follows using nℓ = n− n0 − nℓ+1 and (22).

Case 2b. Suppose that nℓ+1 > ℓ(n−m− 1), that ⌊ t
n
⌋ = ℓ and that σ(Mv) 6 σ(Mw) +

m
2

for each v ∈ Vℓ+1. Using first σ(Mv) 6 σ(Mw) +
m
2
for each v ∈ Vℓ+1 and the obvious fact that

σℓ(Mv) 6 ℓm for each v ∈ Vℓ, and then (22), we have from (23) that

λ
(

n

2

)

< λ
(

n0

2

)

+ ℓn0nℓ + (ℓ− 1)n0nℓ+1 + ℓmnℓ + nℓ+1(σ(Mw) +
m
2
)

6 λ
(

n

2

)

− (n− nℓ+1)ℓ(n−m− 1)− n0 (nℓ+1 − ℓ(n−m− 1)) + 1
2
nℓ+1(m− 2nℓ+1).

Now, because n0 > 1 and nℓ+1 > ℓ(n−m− 1), we have n0(nℓ+1− ℓ(n−m− 1)) > nℓ+1− ℓ(n−
m− 1), and hence

λ
(

n

2

)

< λ
(

n

2

)

− (n− nℓ+1 − 1)ℓ(n−m− 1) + 1
2
nℓ+1 (m− 2nℓ+1 − 2)

6 λ
(

n

2

)

− β(n− 1)2 + 1
2
nℓ+1

((

1 + 2ℓ−1
ℓ
β
)

(n− 1)− 2nℓ+1 − 2
)

,

where the second inequality is obtained using ℓ(n −m − 1) > β(n − 1) and m 6 α′(n − 1) =

(1− β
ℓ
)(n−1). Because this last expression is maximised when nℓ+1 =

1
4
((1+ 2ℓ−1

ℓ
β)(n−1)−2)

and n > 5, it is routine to obtain a contradiction.

Case 2c. Suppose that nℓ+1 > ℓ(n −m − 1), that ⌊ t
n
⌋ = ℓ and that σ(Mv) > σ(Mw) +

m
2

for some v ∈ Vℓ+1. Let s be the ℓth greatest element in Mw. Note that s 6 1
ℓ
σ(Mw). We now

state and prove some useful facts.

• s > m
2
. This holds if |Mw| = ℓ + 1 because then s > min(Mw) and s + min(Mw) > m.

So suppose otherwise that |Mw| = ℓ and s 6
m
2
. Then, by (E3), σ(Mv) 6 max(s(ℓ +

1), σ(Mw) +m− s) for each v ∈ V . So, because s(ℓ+ 1) 6 m
2
(ℓ+ 1) 6 ℓm and σ(Mw)−

s 6 (ℓ − 1)m, we have σ(Mv) 6 ℓm for each v ∈ V . This implies the contradiction

σ(M) < λ
(

n
2

)

.

• σℓ(Mv) 6 min(ℓm, σ(Mw) + m − s) for each v ∈ Vℓ. Obviously σℓ(Mv) 6 ℓm for each

v ∈ Vℓ. So suppose for a contradiction that σℓ(Mu) > σ(Mw) +m − s for some u ∈ Vℓ.

If max(Mu) 6 s, then σℓ(Mu) 6 σ(Mw) using s 6
1
ℓ
σ(Mw). If max(Mu) > s, then

σ(Mu) 6 σ(Mw) + max(Mu)− s by (E2). So in either case we have a contradiction.

• σ(Mv) 6 (ℓ + 1)s for each v ∈ Vℓ+1. Let u be an element of Vℓ+1 with a maximum

value of σ(Mu) and suppose for a contradiction that σ(Mu) > (ℓ + 1)s. Then, by (E3),

σ(Mu) 6 σ(Mw) +m− s. Thus, because s > m
2
, σ(Mu) < σ(Mw) +

m
2
which contradicts

the assumption of Case 2c.

Because σℓ(Mv) 6 min(ℓm, σ(Mw) +m− s) for each v ∈ Vℓ and σ(Mv) 6 (ℓ+ 1)s for each
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v ∈ Vℓ+1, we have from (23) that

λ
(

n

2

)

< λ
(

n0

2

)

+ ℓn0nℓ + (ℓ− 1)n0nℓ+1 + nℓ min(ℓm, σ(Mw) +m− s) + (ℓ+ 1)snℓ+1. (24)

Consider the right hand side of (24) as a function of s on the domain 0 < s 6 1
ℓ
σ(Mw). The

derivative of this function is (ℓ + 1)nℓ+1 > 0 when s < σ(Mw)− (ℓ− 1)m and is (ℓ+ 2)nℓ+1 +

n0 − n when s > σ(Mw) − (ℓ − 1)m, where we used the fact that nℓ = n − n0 − nℓ+1. So, if

(ℓ+ 2)nℓ+1 + n0 > n, the function is nondecreasing and has a global maximum at s = 1
ℓ
σ(Mw)

and if (ℓ+2)nℓ+1+n0 < n, it has a global maximum at s = σ(Mw)− (ℓ− 1)m. We distinguish

cases accordingly.

Case 2c(i). Suppose that (ℓ + 2)nℓ+1 + n0 > n. By our discussion above we can take

s = 1
ℓ
σ(Mw) in (24) and hence min(ℓm, σ(Mw) +m − s) 6 ℓ−1

ℓ
σ(Mw) +m. Using these facts

and nℓ = n− n0 − nℓ+1, we have

λ
(

n

2

)

< λ
(

n0

2

)

+ (m+ ℓn0)(n− n0 − nℓ+1) + (ℓ− 1)n0nℓ+1 +
1
ℓ
((ℓ− 1)(n− n0) + 2nℓ+1)σ(Mw)

< λ
(

n

2

)

+ 1
ℓ
(n− n0 − nℓ+1) (nℓ+1 − ℓ(n−m− 1))− 1

ℓ
nℓ+1(nℓ+1 + ℓ)

6 λ
(

n

2

)

− β
ℓ
(n− 1)2 + 1

ℓ
nℓ+1((1 + β)(n− 1)− ℓ− 2nℓ+1),

where the second inequality is obtained by applying (22) and the third is obtained by sub-

stituting n0 > 1 (recall that nℓ+1 > ℓ(n − m − 1) by the conditions of this case) and

ℓ(n − m − 1) > β(n − 1) and then simplifying. This last expression is maximised when

nℓ+1 =
1
4
((1 + β)(n− 1)− ℓ) and using this we obtain

λ
(

n

2

)

< λ
(

n

2

)

−
(

1−
√
2
2

)

(n− 1) + ℓ
8
< λ

(

n

2

)

.

To see that the last inequality holds, note that using the condition of Case 2c and the fact that

m 6 n− 2, we have n > nℓ+1 > ℓ(n−m− 1) > ℓ.

Case 2c(ii). Suppose (ℓ + 2)nℓ+1 + n0 < n. Together with n0 > 1 and the condition of

this case that nℓ+1 > ℓ(n −m − 1), this implies that ℓ(ℓ + 2)(n −m − 1) < n − 1 and hence

that ℓ ∈ {1, 2, 3} (recall that β(n− 1) 6 ℓ(n −m − 1)). By our discussion above we can take

s = σ(Mw)− (ℓ− 1)m in (24). Using first this fact and nℓ = n− n0 − nℓ+1, and then (22),

λ
(

n

2

)

< m(ℓn+ nℓ+1)− ((ℓ+ 1)nℓ+1 + n0)(nℓ+1 − ℓ(n−m− 1))

6 m(ℓn + nℓ+1)− ((ℓ+ 1)nℓ+1 + 1)(nℓ+1 − ℓ(n−m− 1)) (25)

where the second inequality follows by using n0 > 1 (recall that nℓ+1 > ℓ(n − m − 1) by the

conditions of this case). This last expression is maximised when nℓ+1 =
ℓ
2
(n−m−1)+ m−1

2(ℓ+1)
and,

using this together with m = ⌊α′(n− 1)⌋, it is routine to obtain a contradiction by considering

the cases ℓ = 1, ℓ = 2 and ℓ = 3 individually. In particular, note that if ℓ = 3 and n = 5, then

given nℓ+1 must be an integer the expression (25) is maximised for nℓ+1 = 2 and in this case

the right hand side of (25) is equal to λ
(

n
2

)

which is the required contradiction.
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Proof of Theorem 1 when λ is even. If α 6 1 − 2
λ
(3− 2

√
2), Lemma 18 shows that every

instance of (λ, α)-star decomp is feasible and that the required decompositions can be con-

structed in polynomial time. If α > 1− 2
λ
(3− 2

√
2), Lemma 16 shows (λ, α)-star decomp is

NP-complete.

6 Conclusion

As mentioned in the introduction, the problems of when a complete λ-fold multigraph can be

decomposed into matchings, paths or cycles of specified sizes have all been completely solved

with numerical necessary and sufficient conditions (see [2, 3, 5]). This indicates that these kinds

of problems can be tractable for families of graphs with low maximum degree. Stars arguably

form the simplest example of a family of high degree graphs, so our results here suggest that,

for high degree families, this style of decomposition problem will prove difficult.

Rather than bounding the maximum star size, one could attempt to find other sufficient

conditions for the existence of a decomposition of a complete λ-fold multigraph into stars of

specified sizes. A condition in the style of Lonc’s [14] would be one possibility. Of course, the

NP-completeness of the general problem indicates that finding neat necessary and sufficient

conditions is unlikely. Finally, it would be interesting to determine whether results in the style

of those in this paper could be obtained for the problem of decomposing a complete λ-fold

multigraph into cliques of specified orders.
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