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Abstract

In this paper, we prove a generalization of a conjecture of Erdös, about the chro-
matic number of certain Kneser-type hypergraphs. For integers n, k, r, s with n ≥ rk

and 2 ≤ s ≤ r, the r-uniform general Kneser hypergraph KGr
s(n, k), has all k-subsets

of {1, . . . , n} as the vertex set and all multi-sets {A1, . . . , Ar} of k-subsets with s-wise
empty intersections as the edge set. The case r = s = 2, was considers by Kneser
[7] in 1955, where he conjectured that its chromatic number is n − 2(k − 1). This
was finally proved by Lovász [8] in 1978. The case r > 2 and s = 2, was considered

by Erdös in 1973, and he conjectured that its chromatic number is
⌈
n−r(k−1)

r−1

⌉

. This

conjecture was proved by Alon, Frankl and Lovász [2] in 1986. The case where s > 2,
was considered by Sarkaria [11] in 1990, where he claimed to prove a lower bound for
its chromatic number which generalized all previous results. Unfortunately, an error
was found by Lange and Ziegler [14] in 2006 in the induction method of Sarkaria on
the number of prime factors of r, and Sarkaria’s proof only worked when s is less than
the smallest prime factor of r or s = 2. Finally in 2019, Aslam, Chen, Coldren, Frick
and Setiabrata [6] were able to extend this by using methods different from Sarkaria
to the case when r = 2α0pα1

1 . . . pαt

t and 2 ≤ s ≤ 2α0(p1 − 1)α1 . . . (pt − 1)αt . In this
paper, by applying the Zp-Tucker lemma of Ziegler [13] and Meunier [10], we finally
prove the general Erdös conjecture and prove the claimed result of Sarkaria for any
2 ≤ s ≤ r. We also provide another proof of a special case of this result, using meth-
ods similar to those of Alon, Frankl, and Lovász [2] and compute the connectivity of
certain simplicial complexes that might be of interest in their own right.

1 Introduction

For integers n, k, r, s with n ≥ rk and 2 ≤ s ≤ r, the r-uniform hypergraph KGr
s(n, k),

with all k-subsets of [n] := {1, . . . , n} as the vertex set and all multi-sets {A1, . . . , Ar} of
k-subsets with s-wise empty intersection as the edge set, was considered by Sarkaria in
[11]. It generalizes the corresponding graphs and hypergraphs of Kneser [7] and Erdös [5].
A further generalization was made by Ziegler in [13]. For a sequence S = (s1, . . . , sn) of
integers 0 ≤ si ≤ r, the r-uniform hypergraph KGr

S(n, k) was defined with all k-subsets
of [n] as the vertex set and all multi-sets {A1, . . . , Ar} of k-subsets that are S-disjoint as
the edge set. Here, S-disjoint means that for any 1 ≤ i ≤ n the number 1 ≤ j ≤ r with
i ∈ Aj is at most si. When s1 = · · · = sn = s − 1, we recover the Sarkaria’s hypergraph
KGr

s(n, k). Let n̄ = s1 + · · · + sn. Ziegler claimed that if n̄ ≥ kr then the chromatic

number of this hypergraph χ(KGr
S(n, k))

1 is at least
⌈
n̄−r(k−1)

r−1

⌉

. Unfortunately, the

1Ziegler’s assumption si < r is dropped. If at least k values of si’s are equal to r, then a loop edge

{A, . . . , A} appears. In this case, we define the chromatic number to be infinity.
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same type of error that existed in Sarkaria [11]. also exited in this proof in the case when
r is non-prime, see [14] and [9].

For a partition P = {P1, . . . , Pl} of [n], Alishahi and Hajiabolhassan [1] defined an
r-uniform hypergraph KGr(n, k,P) with the vertex set of all k-subsets A of [n] such that
|A ∩ Pj| ≤ 1 for all j = 1, . . . , l and the edge set of all r-subsets {A1, . . . , Ar} of vertices
with pairwise empty intersection. They studied the chromatic number of this hypergraph
when r = 2. Aslam, Chen, Coldren, Frick and Setiabrata in [6] studied the chromatic
number of this hypergraph for r > 2 under the assumption that |Pi| ≤ r for all 1 ≤ i ≤ l.

The relation between the two hypergraphs KGr
S(n, k) and KGr(n, k,P) is as follows.

Let n̄ = s1 + · · · + sn and partition [n̄] into P = {P1, . . . , Pn} where P1 is the first s1
elements {1, . . . , s1}, P2 is the second s2 elements and so on. The map f : [n̄] → [n] that
for 1 ≤ i ≤ n, sends the elements of Pi to i, defines a homomorphism of KG(n̄, k,P) to
KGr

S(n, k) and hence
χ(KGr

S(n, k)) ≥ χ(KGr(n̄, k,P)).

Our main result is the proof of the following theorem (conjecture 3.5. in [6]).

Theorem 1.1. For integers n, k, r with n ≥ rk and r ≥ 2 and a partition P = {P1, . . . , Pl}
of [n], if |Pi| ≤ r for all 1 ≤ i ≤ l then the chromatic number of KGr(n, k,P) is equal to
⌈
n−r(k−1)

r−1

⌉

.

This theorem was proved in the following special cases in [6]. When r = 2α0 , when
r is an odd prime number and |Pi| ≤ r − 1. More generally when r = 2α0pα1

1 . . . pαt

t and
|Pi| ≤ 2α0(p1 − 1)α1 . . . (pt − 1)αt . The method we use to prove this theorem is different
and simpler than the method used in [6]. The proof uses the Zp-Tucker lemma of Ziegler
and Meunier, see [13] and [10].

In particular, a corollary to our main theorem above is the following claimed result of
Ziegler (without the extra assumption of si < r), whose proof had an error.

Corollary 1.1. If n, k, r and S = (s1, . . . , sn) are as above and n̄ = s1 + · · · + sn ≥ kr

then

χ(KGr
S(n, k)) ≥

⌈
n̄− r(k − 1)

r − 1

⌉

.

The proof of this corollary when r = p is a prime number and si < r, in Ziegler [13],
was correct and used the Zp-Tucker lemma. In the last section of this article, we provide
a different proof for this case, where we compute the connectivity of a certain complex
whose method might be useful in other places. In this section, some other complexes are
defined that might be of interest as well. It is worthwhile to note that here, we allow
si = r, which was excluded by Ziegler.

Erdös [5] introduced the following method to derive an upper bound for χ(KGr
S(n, k)).

Assume that s1 ≤ s2 ≤ · · · ≤ sn < r and s1 + · · · + sn ≥ kr. Let t1 be the largest
number such that s1 + · · · + st1 < rk. Now let t2 be the largest number such that
s(t1+1) + · · ·+ s(t1+t2) < r, and continue this way to find the largest ti so that

s(t1+···+ti−1+1) + · · ·+ s(t1+···+ti−1+ti) < r

If after l steps, the process stops, i.e. t1 + · · · + tl = n, then χ(KGr
S(n, k)) ≤ l. Here we

give a proper coloring as follows. We will color A with color 1 if A ⊂ {1, . . . , t1}, and with
color i (for i = 2, . . . , l) if it contains at least one of the elements t1+ · · ·+ti−1+1, . . . , t1+
· · ·+ ti−1 + ti. To see that this coloring is proper, assume that for an S-disjoint multiset
{A1, . . . , Ar} of k-subsets, all the sets have color 1, then since on one hand

∑r
i=1 |Ai| = rk
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and on the other hand each element 1 ≤ i ≤ t1 is repeated at most si times, this sum
is at most

∑t1
i=1 si < kr which is a contradiction. If all these subsets have color i ≥ 2,

then the number of sets that contain j between t1 + · · · + ti−1 + 1 and t1 + · · · + ti is at
most sj , since each A1, . . . , Ar must contain at least one of these j’s hence the sum of
these numbers should be at least r, but it is assumed that

∑
sj for these j’s is less than

r, which is a contradiction again.
If s1 = · · · = sn = s < r and sn ≥ rk, this method yields a coloring of KGr

S(n, k)
with 1 +

⌈
ns−rk+1

Ps

⌉
colors where P = ⌊ r−1

s
⌋. This is because t2 = · · · = tl−1 = P and

t1 = ⌊kr−1
s

⌋. This is the content of Lemma 3.1 of [13].
So, we can complete the proof of the following corollary of Ziegler [13] and Sarkaria

[11].

Corollary 1.2. If s1 = · · · = sn = s and s divides r − 1 and ns ≥ rk then

χ(KGr
S(n, k)) =

⌈
ns− r(k − 1)

r − 1

⌉

.

Remark 1.1. There are other examples of S, where the lower bound and upper bound for
the chromatic number of KGr

S(n, k) coincide. For instance if s1 = · · · = skr−1 = 1 and
skr = · · · = sn = r − 1, we get χ(KGr

S(n, k)) = n− rk + 2.

2 Proof of the Theorem 1.1

Because of Lemma 3.2 of [6], the validity of Theorem 1.1 for r = r1 and r = r2 implies
its validity for r = r1r2. So it is enough to prove Theorem 1.1 for the case when r = p is
a prime number. For this purpose, we follow the method of Meunier in [10] and use the
Zp-Tucker lemma, whose statement, we now recall from [10].

The classical Tucker lemma was introduced by Tucker in [12] as a combinatorial coun-
terpart for the topological Borsuk-Ulam theorem that asserts there is no continuous map
f from the n dimensional sphere Sn to the (n−1) dimensional sphere Sn−1 that is antipo-
dal i.e. f(−x) = −f(x). It replaces the sphere Sn with the simplicial complex En(Z2),
which is (n+1)-fold joins of the discrete two pointed simplicial complex Z2, whose vertices
are {±1, . . . ,±(n+1)} and its faces are all subsets that do not contain i and −i together.
If we let sd(X) to denote the barry-centric subdivision of a simplicial complex X, then
the statement of the Tucker lemma in a special case is

Theorem 2.1. (Tucker’s lemma) There is no antipodal simplicial map from sd(En(Z2))
to En−1(Z2).

Dold generalized this lemma to the case when the action of Z2 is replaced with the
action of Zp, see [4]. Similarly one lets En(Zp) be the (n + 1)-fold joins of the discrete
simplicial complex Zp with its natural free Zp action. Here the vertices are Zp × [n + 1]
where Zp acts on the first component by multiplication (we may let Zp be the multiplica-
tive group of the pth roots of unity) and its faces are all subsets F such that π2 : F → [n]
is one to one, where π2 is the projection on to the second component. The statement of
his theorem in a special case is

Theorem 2.2. There is no Zp-equivariant simplicial map from sd(En(Zp)) to En−1(Zp)
or more generally to any simplicial complex X with a free Zp action and of dimension
less than n.
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Dold gave a topological proof for this theorem, later Ziegler produced a combinatorial
proof in [13]. The following lemma is called the Zp-Tucker lemma and is an immediate
corollary to the Dold’s theorem above.

Lemma 2.1. (Zp-Tucker Lemma) Let n,m and α be integers and p be a prime number,
where α ≤ m. If λ is a Zp-equivariant map from the non-empty faces of En−1(Zp) to
Zp × [m] with λ(A) = (λ1(A), λ2(A)) ∈ Zp × [m] that satisfies the following properties,

1. If A1 ⊆ A2 be non-empty faces of En−1(Zp) and λ2(A1) = λ2(A2) ≤ α then λ1(A1) =
λ1(A2).

2. If A1 ⊆ · · · ⊆ Ap be non-empty faces of En−1(Zp) and λ2(A1) = · · · = λ2(Ap) > α

then λ1(A1), . . . , λ1(Ap) are not pairwise distinct.

then
α+ (m− α)(p − 1) ≥ n.

The proof immediately follows from the Dold’s Theorem 2.2, if one notices that the
conditions are designed to guarantee the existence of a Zp-equivariant simplicial map from
sd(En−1(Zp)) to Eα−1(Zp) ⋆ ∂∆

p−1 ⋆ · · · ⋆ ∂∆p−1
︸ ︷︷ ︸

m−α

, where ∂∆p−1 is the simplicial complex

of all proper subsets of Zp with its free Zp action. Since dimension of the target complex
is α+ (m− α)(p − 1)− 1, Dold’s theorem finishes the proof.
Now, we present our proof of Theorem 1.1 for the case when r = p is a prime number.

Proof. Let t be the chromatic number of KGp(n, k,P) and c be a proper coloring map
from the vertices to {1, . . . , t}. Also choose an arbitrary complete ordering on the subsets
of [n], such that if |A| < |B| then A < B. We define a mapping λ as in Lemma 2.1 for
m = p(k − 1) + t and α = p(k − 1). Therefore, we conclude

p(k − 1) + t(p− 1) ≥ n

and hence t ≥ n−p(k−1)
p−1 . Since by the standard way of coloring of a Kneser hypergraph

t ≤
⌈
n−p(k−1)

p−1

⌉

, the theorem follows.

Assume that P = {P1, . . . , Pl} is a partition of [n] with |Pi| ≤ p for i = 1, . . . , l. For a
non-empty face A of En−1(Zp) and i ∈ Zp, let

Ai = {1 ≤ j ≤ n|(i, j) ∈ A}.

Choose the maximum subset (with respect to the chosen order) B ⊆ A such that for all
i ∈ Zp, one has Bi is admissible, that is |Bi ∩ Pj | ≤ 1 for all 1 ≤ j ≤ l.
Let 1 ≤ j ≤ l be the smallest number that π2(B) ∩ Pj is non-empty. There is a unique
subset B′ = {(i1, j1), . . . , (ih, jh)} ⊆ B with j1 < · · · < jh such π2(B

′) = π2(B) ∩ Pj . We
define

P (A) =

{

i1 if h = p

(i1 . . . ih)
h′

if h < p

where 1 ≤ h′ < p is the unique number that hh′ ≡ 1 mod p. With these preliminaries,
the definition of the map λ is given in two cases.
Case 1: If |B| ≤ α = p(k − 1) then define

λ(A) = (P (A), |B|).
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Case 2: If |B| > p(k − 1), then there is a k-subset F ⊆ Bi for some i ∈ Zp. Note that
by assumption on B, one has |F ∩ Pj | ≤ 1 for all 1 ≤ j ≤ l. Choose the smallest (with
respect to the chosen order) such subset, say F ⊆ Bi and define

λ(A) = (i, c(F ) + α).

It remains to check the conditions of the Zp-Tucker lemma. Note that if B ⊆ A is
the maximum subset such that Bi is admissible for all i ∈ Zp, then ω · B ⊆ ω · A for
ω ∈ Zp, is the maximum subset such that (ω · B)i is admiisble for all i ∈ Zp. So, we
have the same j as in the definition, and (ω ·B)′ = {(ω · i1, j1), . . . , (ω · ih, jh)}, and hence
P (ω ·A) = ω ·P (A). This obvious if h = p and follows from ωhh′

= ω if h < p. This proves
that λ is a Zp-map in the Case 1. In the second case if F ⊆ Bi is the maximum k-subset
then F ⊆ (ω ·B)ω·i is the corresponding maximum subset and hence λ(ω ·A) = ω · λ(A).

Now assume A1 ⊆ A2 are non-empty faces of En−1(Zp) with λ2(A1) = λ2(A2) ≤ α.
Hence we are in the Case 1. Let B1 ⊆ A1 and B2 ⊆ A2 be maximum subsets with
the property that Bi

1 and Bi
2 are admissible for all i ∈ Zp. Since λ2(A1) = λ2(A2)

hence |B1| = |B2|. Since B1 ⊆ A2, also has the property that Bi
1 is admissible, hence

|π2(B1) ∩ Pj | = |π2(B2) ∩ Pj | for all 1 ≤ j ≤ l. It follows that the smallest 1 ≤ j ≤ l,
needed in the definition is the same for both of them. Hence their corresponding h is also
the same. If h = p then since |Pj | ≤ p then π2(B1) ∩ Pj = π2(B2) ∩ Pj = Pj and hence
B′

1 = B′
2 and it implies that λ1(A1) = λ1(A2). If h < p, then since π1(B

′
1) = π1(B

′
2) then

again it follows that λ1(A1) = λ1(A2).

Finally, assume that A1 ⊆ · · · ⊆ Ap are non-empty faces of En−1(Zp) and λ2(A1) =
· · · = λ2(Ap) > α. We are then in the Case 2, and we may find admissible k-subsets Fi ⊆

B
λ1(Ai)
i for i = 1, . . . , p with the same color c(F1) = · · · = c(Fp). If λ1(A1), . . . , λ1(Ap)

are pairwise distinct then since B
λ1(Ai)
i ∩B

λ1(Aj)
j = ∅, the subsets F1, . . . , Fp are pairwise

disjoint. This contradicts the properness of the coloring c. Hence the conditions are
checked and the theorem is proved. �

3 Proof of the Corollary 1.1 when r is a prime number

For an r-uniform hypergraphG, Alone, Frankl and Lovász introduced a simplicial complex
C(G) in [2] as follows. Its vertex set is all r tuples (a1, . . . , ar) of vertices where {a1, . . . , ar}
is an edge. Its faces are all subsets {(ai1, . . . , a

i
r)}i∈I such that for all choices of not

necessarily distinct indices i1, . . . , ir ∈ I the subset {ai11 , . . . , a
ir
r } is an edge. The cyclic

group Zr acts on this complex by shifting. It was proved in [2] that

Theorem 3.1. If r is a prime number and the complex C(G) is c-connected then

χ(G) ≥

⌈
c+ r + 1

r − 1

⌉

.

To compute a lower bound for the connectivity of C(G), we work with its maximal
nerve. Let us recall its definition. If C is a simplicial complex, its maximal nerve,
denoted by N(C) is a simplicial complex whose vertices are maximal faces of C and a
subset {F1, . . . , Fm} is a face if and only if F1 ∩ · · · ∩ Fm 6= ∅. It is a well-known fact
that C and N(C) are homotopy equivalent, see for example [3]. Hence C and N(C) have

5



the same connectivity number. The maximal nerve of C(KGr
S(n, k)), and even a slightly

more general complex KS(n, k1, . . . , kr), will be explicitly constructed as follows.
Given an integer r ≥ 1, an integer-valued function s on [n] such that 0 ≤ s(i) ≤ r and

an r-tuple k = (k1, . . . , kr), where ki ≥ 0 define two complexes Ks(n,k) and Cs(n,k) as
follow. The vertices of Ks(n,k) are the r-tuples (A1, . . . , Ar) of subsets of {1, . . . , n} such
that |Ai| = ki and the r-tuple is s-disjoint (that is i appears in at most s(i) of A1, . . . , Ar).
The subset {(Ai

1, . . . , A
i
r)}i∈I is a face if for all i1, . . . , ir ∈ I the r-tuple (Ai1

1 , . . . , A
ir
r ) is

s-disjoint. The vertices of Cs(n,k) are the r-tuples (A1, . . . , Ar) of subsets of {1, . . . , n}
such that |Ai| ≥ ki and for each x ∈ {1, . . . , n} the number of 1 ≤ i ≤ r that x ∈ Ai is
exactly s(x). The subset {(Ai

1, . . . , A
i
r)}i∈I is a face if | ∩i∈I A

i
j| ≥ kj for all j = 1, . . . , r.

If s(1)+ · · ·+s(n) < k1+ · · ·+kr or ki is bigger than the number of x with s(x) > 0, then
clearly this complex is empty. The exact condition for which the complex is non-empty
is more complicated and we do not need it here. But we need the following result.

Lemma 3.1. The complex Cs(n, k, . . . , k), where k is repeated r times is non-empty if
and only if

∑n
i=1 s(i) ≥ rk.

Proof. The necessity is obvious. To prove the sufficiency, let M = {1 ≤ i ≤ n|s(i) = r}.
We prove our claim by induction on r. If r = 1, then the condition of the lemma implies
that |M | ≥ k so A1 = M is an element of Cs(n, k). More generally if |M | ≥ k then A1 =
· · · = Ar = M is an element of Cs(n, k, . . . , k), with k repeated r times. So we assume that
|M | < k. Also assume without loss of generality that s(1) ≥ · · · ≥ s(n). The condition
implies that s(1) ≥ · · · ≥ s(k) > 0. Define s′(i) = s(i) − 1 for 1 ≤ i ≤ k and s′(i) = s(i)
for k < i ≤ n. Then 0 ≤ s′(i) ≤ r− 1 for all i, and

∑n
i=1 s

′(i) =
∑n

i=1 s(i)− k ≥ (r− 1)k.
So by the induction hypothesis, Cs′(n, k, . . . , k) with k repeated r−1 times is non-empty.
Let (A2, . . . , Ar) be a vertex of it, and hence ({1, . . . , k}, A2, . . . , Ar) will be a vertex of
Cs(n, k, . . . , k) with k repeated r times. �

Lemma 3.2. The maximal nerve of Ks(n,k) is isomorphic to Cs(n,k).

Proof. We give a bijection between the vertices of Cs(n,k) with the maximal faces of
Ks(n,k) that maps faces to faces. If (A1, . . . , Ar) is a vertex in Cs(n,k), the collection of
all {(Xi

1, . . . ,X
i
r)}i∈I of all subsets Xi

j ⊆ Aj of size kj , gives a maximal face of Ks(n,k).
First, since (A1, . . . , Ar) is s-disjoint any (X1, . . . ,Xr) where Xi ⊆ Ai is also s-disjoint.
So the collection is a face of Ks(n,k). Second, if the collection were not maximal, one
can add (X1, . . . ,Xr) where at least one of Xi’s is not a subset of Ai. Assume X1 is
not a subset of A1, hence there is x ∈ X1\A1. Since the number of 2 ≤ i ≤ r that
x ∈ Ai is exactly s(x), one can find (X ′

1, . . . ,X
′
r) where X

′
i ⊆ Ai of size ki and the number

of 2 ≤ i ≤ r that x ∈ X ′
i is exactly s(x), this implies that (X1,X

′
2, . . . ,X

′
r) is not s-

disjoint, which is a contradiction. Conversely if {(Xi
1, . . . ,X

i
r)}i∈I is a maximal face of

Ks(n,k), if we let Aj = ∪i∈IX
i
j for j = 1, . . . , r, then (A1, . . . , Ar) is a vertex of Cs(n,k).

Since, if x ∈ {1, . . . , n} appears in l > s(x) of Ai’s then one can find i1 < · · · < il and
j1 < · · · < jl that x ∈ Xi1

j1
, . . . , x ∈ X

il
jl
, this contradicts the fact that {(Xi

1, . . . ,X
i
r)}i∈I

is a face. And if if x ∈ {1, . . . , n} appears in l < s(x) of Ai’s, by adding x to one of
the Xi

j that does not contain it and removing another element from it, we arrive at a

set Zi
j where (X

i
1, . . . ,X

i
j−1, Z

i
j ,X

i
j+1, . . . ,X

i
r) can be added to the face {(Xi

1, . . . ,X
i
r)}i∈I

without violating the face condition. This contradicts the maximality condition. The
fact that this bijection between vertices sends faces to faces is easy and is left to the
reader. �

Note that if k = (k, . . . , k), where k is repeated r times, thenKs(n,k) is C(KGr
s(n, k)).
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To compute the connectivity C(KGr
s(n, k)), we use the following well-known fact, as

stated in [2].

Lemma 3.3. If a simplicial complex X is a union of its sub-complexes X1, . . . ,Xn and
for a given integer c and for any 1 ≤ l ≤ n and 1 ≤ i1 < i2 < · · · < il ≤ n, the intersection
Xi1 ∩ · · · ∩Xil is (c− l+ 1)-connected then X is c-connected.(Recall that (−1)-connected
means non-empty and any space is c-connected for c ≤ −2.)

The following theorem, together with Theorem 3.1 will finish the proof of Corollary 1.1
for the case when r is a prime number. However, the statement of the following theorem
does not require that r to be a prime number.

Theorem 3.2. The complex Cs(n, k, . . . , k) where k is repeated r times is (s(1) + · · · +
s(n)− rk − 1)-connected.

Proof. Let M = {1 ≤ i ≤ n|s(i) = r}, Supp(s) = {1 ≤ i ≤ n|s(i) > 0} and c =
s(1)+· · ·+s(n)−kr−1. We need to show that Cs(n, k, . . . , k), where k is repeated r times
is c-connected. If s(1)+ · · ·+s(n) < kr then it is obvious since by convention any space is
c-connected for c ≤ −2. Also, if k ≤ |M | then the complex is contractible since any subset
of vertices will be a face. We, therefore, assume k > |M |. The complex Cs(n, k, . . . , k) is
isomorphic to Cs′(n−|M |, k−|M |, . . . , k−|M |) where we remove the elements of M and
the corresponding si’s. Since both complexes have the same corresponding number c, we
can assume that M is empty.

Let Ci for i ∈ Supp(s) be the subcomplex of Cs(n, k, . . . , k) of those vertices (A1, . . . , Ar)
that i ∈ A1. According to lemma 3.3 it is enough to show that for any I ⊆ Supp(s),
CI = ∩i∈IC

i is (c− |I|+ 1)-connected.
First, we show that when |I| ≥ k then CI is (c−|I|+k)-connected. Since c−|I|+k ≥ −1

is the only non-trivial case, we may assume |I| ≤ c + k + 1. Under this assumption, it
is easy to show that CI is non-empty. In fact if we let s′(i) = s(i) − 1 for i ∈ I and
s′(i) = s(i) otherwise, then

n∑

i=1

s′(i)− (r − 1)k = c+ 1− |I|+ k ≥ 0

hence by lemma 3.1, there is (A2, . . . , Ar) in Cs′(n, k, . . . , k) with k repeated r− 1 times.
Now (I,A2, . . . , Ar) is an element of CI .

By the following Lemma 3.4, CI is homotopy equivalent to Cs′(n, k, . . . , k) with k

repeated r− 1 times, hence by induction on r, CI is
∑

s′(i)− (r− 1)k− 1 = (c− |I|+ k)-
connected. Since k > 0, it is at least (c− |I|+ 1)-connected.

For l = |I| < k, we show that CI is in fact c-connected. We use a backward induction
on l. If l = k − 1, then consider CI as the union of CI∪{i} for i ∈ Supp(s)\I. Then any
intersection of l′ of these sub-complexes is (c − (l + l′) + k)-connected, so it is at least
(c− l′+1)-connected, and hence by lemma 3.3, CI is c-connected. When |I| < k−1, then
similarly CI is the union of CI∪{i} and the intersection of any l′ of them by the induction
hypothesis, if l+ l′ < k is c-connected and if l+ l′ ≥ k is (c− (l+ l′) + k)-connected, and
in both cases it is at least (c− l′ + 1)-connected, so by lemma 3.3, CI is c-connected.

�

Lemma 3.4. If I is a subset of Supp(s) of size at least k, then CI is homotopy equivalent
to Cs′(n, k, . . . , k) where k is repeated r − 1 times. Here, s′(i) = s(i) − 1 for i ∈ I and
s′(i) = s(i) otherwise.
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Proof. We define a retraction r from CI to the sub-complex of vertices (A1, . . . , Ar) with
A1 = I,which is isomorphic to Cs′(n, k, . . . , k) where k is repeated r − 1 times. For this
purpose, for a vertex v = (A1, . . . , Ar) of C

I , let r(v) = (I,A′
2, . . . , A

′
r) be a vertex of CI

whereA′
2, . . . , A

′
r are obtained by distributing the elements of A1\I among them only once,

so that each i appear in exactly s(i) subset, for example, let Bi = (A1\I)∩A1∩· · ·∩Ai−1

for i = 2, . . . , n and let A′
i = Ai ∪ Bi. Notice that if {v1, . . . , vm} is a face of CI then

{v1, . . . , vm, r(v1), . . . , r(vm)} is also a face, so r is a simplicial map in a stronger sense.
Also the simple homotopy given by tx + (1 − t)r(x) for 0 ≤ t ≤ 1 on the geometric
realization of the complex CI is well-defined and shows that r is a deformation retract. �

Remark 3.1. It seems to be an interesting problem to understand the homotopy type
of the complex Cs(n, k1, . . . , kr) in general. We believe that it must be wedge of several
spheres.
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