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STABILITY OF GRAPH PAIRS

YAN-LI QIN, BINZHOU XIA, JIN-XIN ZHOU, AND SANMING ZHOU

Abstract. We start up the study of the stability of general graph pairs. This
notion is a generalization of the concept of the stability of graphs. We say that
a pair of graphs (Γ,Σ) is stable if Aut(Γ × Σ) ∼= Aut(Γ) × Aut(Σ) and unstable
otherwise, where Γ× Σ is the direct product of Γ and Σ. An unstable graph pair
(Γ,Σ) is said to be a nontrivially unstable graph pair if Γ and Σ are connected
coprime graphs, at least one of them is non-bipartite, and each of them has the
property that different vertices have distinct neighbourhoods. We obtain necessary
conditions for a pair of graphs to be stable. We also give a characterization of
a pair of graphs (Γ,Σ) to be nontrivially unstable in the case when both graphs
are connected and regular with coprime valencies and Σ is vertex-transitive. This
characterization is given in terms of the Σ-automorphisms of Γ, which are a new
concept introduced in this paper as a generalization of both automorphisms and
two-fold automorphisms of a graph.

Key words: stable graph; stable graph pair; direct product of graphs

1. Introduction

All graphs considered in this paper are finite, undirected and simple, unless stated

otherwise. As usual, for a graph Γ we use V (Γ), E(Γ) and Aut(Γ) to denote its vertex

set, edge set and full automorphism group, respectively, and we use val(Γ) to denote

the valency of Γ if Γ is regular. For a vertex u of Γ, the neighborhood of u in Γ,

denoted by NΓ(u), is the set of vertices adjacent to u in Γ. For two adjacent vertices

u, v in a graph, the edge between them is denoted by the unordered pair {u, v}.

Let Γ and Σ be graphs. The direct product of Γ and Σ, denoted by Γ× Σ, is the

graph with vertex set V (Γ)×V (Σ) such that two vertices (u, x), (v, y) ∈ V (Γ)×V (Σ)

are adjacent if and only if u and v are adjacent in Γ and x and y are adjacent in Σ.

Clearly,

Aut(Γ)× Aut(Σ) . Aut(Γ× Σ). (1)

Herein and in the sequel we use X . Y to indicate that X is isomorphic to a

subgroup of Y , and × on the left-hand side denotes the direct product of groups. In

the literature much attention has been paid to the automorphism group Aut(Γ×Σ)

of Γ×Σ. In particular, the question of when the equality in (1) holds has attracted

considerable interest (see, for example, [3, 4]). In line with this we introduce the

following definition.

Definition 1.1. A graph pair (Γ,Σ) is called stable if Aut(Γ×Σ) ∼= Aut(Γ)×Aut(Σ)

and unstable otherwise.
1
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Note that (Γ,Σ) is stable if and only if (Σ,Γ) is stable. The notion of the stability

of graph pairs generalizes the concept of the stability of graphs [6], in the sense that

a graph Γ is stable if and only if the graph pair (Γ, K2) is stable, where K2 is the

complete graph with two vertices. Introduced by Marušič et al. [6] in the language of

symmetric (0, 1) matrices, the stability of graphs has been studied extensively (see,

for example, [9, 11, 12, 14]) owing to its close connections with regular embeddings

of canonical double covers [8], two-fold automorphisms of graphs [5], and general-

ized Cayley graphs [7]. For example, the stability of circulant graphs was studied

by Wilson in [14], and an open question in [14] about the stability of arc-transitive

circulant graphs was answered and an infinite family of counterexamples to a con-

jecture of Marušič et al. [6] was constructed by Qin et al. in [9]. A conjecture of

Wilson [14] about the stability of generalized Petersen graphs was recently proved

by Qin et al. in [10].

A graph Γ is said to be R-thick [4] if there exist distinct vertices u, v of Γ such

that NΓ(u) = NΓ(v). Graphs that are not R-thick are said to be R-thin [4] or

vertex-determining [9, 14]. A graph is said to be prime (with respect to the direct

product) if it has order greater than 1 and cannot be represented as a direct product

of two graphs of smaller orders, where the order of a graph is defined as its number

of vertices. Since the direct product of graphs is an associative and commutative

operation, the direct product of more than two graphs is well defined up to isomor-

phism. An expression Γ ∼= Γ1 × Γ2 × · · · × Γk with each Γi prime is called a prime

factorization of Γ (with respect to the direct product). It is well known [4, Theorem

8.17] that up to permutation of factors any non-bipartite graph with order greater

than 1 has a unique prime factorization. Two graphs are called coprime (with re-

spect to the direct product) if they do not have any common factor of order greater

than 1. In particular, any two graphs of coprime orders must be coprime.

Remark 1.2. If two graphs have a common factor with respect to the direct product,

then their valencies must have a common divisor greater than 1. Thus regular graphs

with coprime valencies must be coprime.

Our first main result in this paper gives necessary conditions for a graph pair to

be stable.

Theorem 1.3. Let (Γ,Σ) be a stable pair of graphs. Then Γ and Σ are coprime R-

thin graphs. Moreover, if in addition both Aut(Γ) and Aut(Σ) are nontrivial groups,

then both Γ and Σ are connected and at least one of them is non-bipartite.

In this paper we are only interested in graphs with nontrivial automorphism

groups. Under this assumption Theorem 1.3 implies that in studying the stability

of graph pairs we can focus on those pairs (Γ,Σ) such that Γ and Σ are connected

coprime R-thin graphs and at least one of them is non-bipartite. This fact motivates

the following definition.
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Definition 1.4. An unstable graph pair (Γ,Σ) is said to be nontrivially unstable if Γ

and Σ are connected coprime R-thin graphs and at least one of them is non-bipartite.

Since a graph not coprime to K2 is necessarily bipartite, we see that (Γ, K2) is

nontrivially unstable if and only if Γ is a non-bipartite connected R-thin unstable

graph. Such a graph Γ is called nontrivially unstable by Wilson in [14] in a study of

the stability of graphs. So the above definition of nontrivially unstable graph pairs

generalizes the concept of nontrivially unstable graphs.

Remark 1.5. It can be easily shown that Γ × Σ is R-thin if and only if both Γ

and Σ are R-thin ([9, Lemma 2.3], stated as Lemma 3.1(b) in the present paper),

and Γ× Σ is connected if and only if both Γ and Σ are connected and at least one

of them is non-bipartite ([4, Theorem 5.9], stated as Lemma 3.1(a) in the present

paper). Therefore, our definition of graph pairs (Γ,Σ) being nontrivially unstable is

equivalent to requiring that Γ and Σ are coprime graphs with Γ×Σ connected and

R-thin.

Needless to say, the following problem is of central importance to the study of the

stability of graph pairs.

Problem 1.6. Characterize nontrivially unstable pairs of graphs (Γ,Σ) with both

Aut(Σ) and Aut(Γ) nontrivial.

We will study this problem in the case when Γ and Σ are regular graphs of coprime

valencies. Our study is motivated by orientably regular embeddings of the canonical

double cover Γ×K2 of a given graph Γ. More precisely, it was shown by Nedela and

Škoviera [8] that for any stable graph Γ (that is, for any stable graph pair (Γ, K2)),

all orientably regular embeddings of Γ×K2 can be described in terms of orientably

regular embeddings of Γ. As a natural extension, one would expect that for a stable

pair (Γ,Σ) of graphs we may be able to describe all orientably regular embeddings

of Γ×Σ in terms of orientably regular embeddings of Γ and Σ. In this regard it has

been proved by Chen [2] that, if (Γ,Σ) is a stable pair of regular graphs such that

Γ× Σ has an orientably regular embedding, then the valencies of Γ and Σ must be

coprime. It is thus natural to impose the extra condition gcd(val(Γ), val(Σ)) = 1

when studying Problem 1.6, and we will do so in this paper. Note that this condition

is satisfied by (Γ, K2) for any regular graph Γ.

Let Γ be a graph. A pair of permutations (α, β) of V (Γ) is called a two-fold auto-

morphism of Γ if for all u, v ∈ V (Γ), {u, v} ∈ E(Γ) if and only if {uα, vβ} ∈ E(Γ).

A two-fold automorphism (α, β) is said to be nontrivial if in addition α 6= β. It is

proved in [5, Theorem 3.2] that a graph is unstable if and only if it has a nontrivial

two-fold automorphism. The second main result in our paper, Theorem 1.8 below,

generalizes this result to the setting of nontrvially unstable graph pairs when Γ is

regular. To present our result we need the following definition.
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Definition 1.7. Let Γ and Σ be graphs with V (Σ) = {1, . . . , n}, and let α1, . . . , αn

be permutations of V (Γ). We say that the n-tuple (α1, . . . , αn) is a Σ-automorphism

of Γ if for all u, v ∈ V (Γ), {u, v} ∈ E(Γ) if and only if {uαi , vαj} ∈ E(Γ) for all

i, j ∈ V (Σ) with {i, j} ∈ E(Σ). Such a Σ-automorphism (α1, . . . , αn) of Γ is said

to be nondiagonal if there exists at least one pair of vertices i, j ∈ V (Σ) such that

αi 6= αj .

It is readily seen that a two-fold automorphism of a graph Γ is exactly a K2-

automorphism of Γ, and a nontrivial two-fold automorphism of Γ is precisely a

nondiagonal K2-automorphism of Γ. As a side note, we mention that the definition

above applies when Γ and Σ are pseudographs. (A pseudograph is a graph in which

both loops and multiple edges are permitted.) And we observe that, if Σ is the

pseudograph K◦

1 with only one vertex and one self-loop, then a K◦

1 -automorphism

of Γ is an automorphism of Γ in the usual sense. Nevertheless, in this paper we only

consider the case when both Γ and Σ are simple graphs with order at least two.

The second main result in this paper, presented below, settles Problem 1.6 in the

case when Γ and Σ are regular with coprime valencies and Σ is vertex-transitive.

Theorem 1.8. Let Γ be a connected regular graph and Σ a connected vertex-transitive

graph such that val(Γ) and val(Σ) are coprime. Suppose that both Γ and Σ are R-

thin and at least one of them is non-bipartite. Then (Γ,Σ) is nontrvially unstable if

and only if at least one Σ-automorphism of Γ is nondiagonal.

The rest of this paper is organized as follows. In the next section we will introduce

the Σ-automorphism group of Γ and two subgroups (see Definitions 2.1 and 2.3 in

the next section) of Aut(Γ×Σ), and study connections between these groups and the

stability of (Γ,Σ). The proof of Theorem 1.3 will be given in Section 3. In Section 4,

we will prove a number of lemmas concerning pairs of graphs with coprime valencies.

These lemmas will be used to prove Theorem 1.8 in Section 5. We will conclude the

paper with some remarks and questions in Section 6.

2. Σ-automorphism group of Γ

Throughout this section Γ and Σ are graphs with V (Σ) = {1, . . . , n} and n > 1.

2.1. AutΣ(Γ), P (Γ,Σ) and Q(Γ,Σ). It is not difficult to see that the set of all

Σ-automorphisms of Γ with multiplication defined by

(α1, . . . , αn)(β1, . . . , βn) = (α1β1, . . . , αnβn)

is a group. We call this group the Σ-automorphism group of Γ and denote it by

AutΣ(Γ). Note that (α, α, . . . , α) ∈ AutΣ(Γ) if and only if α ∈ Aut(Γ). Hence

Aut(Γ) . AutΣ(Γ). (2)

Moreover,

Aut(Γ) ∼= AutΣ(Γ) ⇔ α1 = · · · = αn for each (α1, . . . , αn) ∈ AutΣ(Γ). (3)
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Definition 2.1. Define

Q(Γ,Σ) = {σ ∈ Aut(Γ× Σ) : (V (Γ)× {i})σ = V (Γ)× {i} for each i ∈ V (Σ)}.

Note that Q(Γ,Σ) is a subgroup of Aut(Γ × Σ). Denote the projections from

V (Γ× Σ) to V (Γ) and V (Σ) by πΓ and πΣ, respectively. In other words,

(u, i)πΓ = u and (u, i)πΣ = i, for (u, i) ∈ V (Γ× Σ).

Lemma 2.2. Let Γ and Σ be graphs. Then

Q(Γ,Σ) ∼= AutΣ(Γ).

Proof. Set V (Σ) = {1, . . . , n}. Define

f : Q(Γ,Σ) → Sym(V (Γ))× · · · × Sym(V (Γ)), σ 7→ (α1, . . . , αn)

such that (u, i)σπΓ = (u, i)πΓαi for each (u, i) ∈ V (Γ × Σ). For any σ, τ ∈ Q(Γ,Σ),

let f(σ) = (α1, . . . , αn) and f(τ) = (β1, . . . , βn). It is straightforward to verify that

(u, i)στπΓ = (u, i)πΓ(αiβi) for each (u, i) ∈ V (Γ× Σ). Hence

f(σ)f(τ) = (α1, . . . , αn)(β1, . . . , βn)

= (α1β1, . . . , αnβn)

= f(στ).

Thus f is a group homomorphism. Since f is injective, we haveQ(Γ,Σ) ∼= f(Q(Γ,Σ)).

Let (α1, . . . , αn) ∈ AutΣ(Γ). Define σ by (u, i)σ = (uαi , i) for all i ∈ V (Σ). Then

σ ∈ Q(Γ,Σ) and f(σ) = (α1, . . . , αn). Thus AutΣ(Γ) ⊆ f(Q(Γ,Σ)).

Conversely, let σ ∈ Q(Γ,Σ) and f(σ) = (α1, . . . , αn). Then for any i, j ∈ V (Σ)

with {i, j} ∈ E(Σ), we have

{u, v} ∈ E(Γ) ⇔ {(u, i), (v, j)} ∈ E(Γ× Σ)

⇔ {(u, i)σ, (v, j)σ} = {(uαi, i), (vαj , j)} ∈ E(Γ× Σ)

⇔ {uαi , vαj} ∈ E(Γ),

whence {u, v} ∈ E(Γ) if and only if {uαi, vαj} ∈ E(Γ). Thus f(σ) = (α1, . . . , αn) ∈

AutΣ(Γ), and so f(Q(Γ,Σ)) ⊆ AutΣ(Γ). Therefore, Q(Γ,Σ) ∼= f(Q(Γ,Σ)) =

AutΣ(Γ), completing the proof. �

Obviously, {V (Γ)× {i} | i ∈ V (Σ)} is a partition of V (Γ× Σ).

Definition 2.3. Define P (Γ,Σ) to be the set of elements of Aut(Γ× Σ) that leave

the partition {V (Γ)× {i} | i ∈ V (Σ)} invariant.

That is, P (Γ,Σ) is the setwise stabilizer of {V (Γ) × {i} | i ∈ V (Σ)} under

Aut(Γ × Σ). Hence it is a subgroup of Aut(Γ × Σ). Of course P (Γ,Σ) induces an

action on {V (Γ)× {i} | i ∈ V (Σ)}, and the kernel of this action is exactly Q(Γ,Σ).

Hence

P (Γ,Σ)/Q(Γ,Σ) ∼= Aut(Σ).

This together with Lemma 2.2 implies the following result.
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Lemma 2.4. Let Γ and Σ be graphs. Then

P (Γ,Σ) ∼= AutΣ(Γ)⋊ Aut(Σ).

2.2. P (Γ,Σ) and the stability of (Γ,Σ).

Lemma 2.5. Let Γ and Σ be graphs. If (Γ,Σ) is stable, then

Aut(Γ× Σ) = P (Γ,Σ).

Proof. By (2) and Lemma 2.4, we have

Aut(Γ)× Aut(Σ) . AutΣ(Γ)⋊Aut(Σ) ∼= P (Γ,Σ) 6 Aut(Γ× Σ).

Thus, if (Γ,Σ) is stable, then Aut(Γ× Σ) = P (Γ,Σ). �

Lemma 2.6. Let Γ and Σ be graphs, where V (Σ) = {1, . . . , n}.

(a) If at least one Σ-automorphism of Γ is nondiagonal, then (Γ,Σ) is unstable.

(b) If Aut(Γ × Σ) = P (Γ,Σ), then (Γ,Σ) is unstable if and only if at least one

Σ-automorphism of Γ is nondiagonal.

Proof. (a) Suppose that there is at least one nondiagonal Σ-automorphism of Γ.

Then we see from (2) and (3) that Aut(Γ) is isomorphic to a proper subgroup of

AutΣ(Γ). Combining this with Lemma 2.4, we obtain

|Aut(Γ)×Aut(Σ)| < |AutΣ(Γ)⋊ Aut(Σ)| = |P (Γ,Σ)| 6 |Aut(Γ× Σ)|.

Thus Aut(Γ× Σ) ≇ Aut(Γ)× Aut(Σ) and so (Γ,Σ) is unstable.

(b) Suppose that Aut(Γ×Σ) = P (Γ,Σ). Then Aut(Γ×Σ) ∼= AutΣ(Γ)⋊Aut(Σ) by

Lemma 2.4. Thus (Γ,Σ) is unstable if and only if AutΣ(Γ) ≇ Aut(Γ), which, by (2)

and (3), is true if and only if at least one Σ-automorphism of Γ is nondiagonal. �

3. Proof of Theorem 1.3

3.1. Preparation. We need a few lemmas before we can prove Theorem 1.3. First,

the following known results will be used in our proofs of Theorems 1.3 and 1.8.

Lemma 3.1. Let Γ and Σ be graphs.

(a) If Γ and Σ are connected with order at least 2, then Γ×Σ is connected if at least

one of Γ and Σ is non-bipartite, and Γ × Σ has exactly two components if both

Γ and Σ are bipartite ([13]; see also [4, Theorem 5.9]).

(b) Γ× Σ is R-thin if and only if both Γ and Σ are R-thin ([9, Lemma 2.3]).

(c) Γ×Σ is non-bipartite if and only if both Γ and Σ are non-bipartite ([4, Exercise

8.13]).

Lemma 3.2. Let Γ and Σ be graphs. If (Γ,Σ) is stable, then both Γ and Σ are

R-thin.
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Proof. We prove the contrapositive of the statement. Suppose that at least one of Γ

and Σ is R-thick. Without loss of generality we may assume that Γ is R-thick. Then

there exist two distinct vertices u and v of Γ such that NΓ(u) = NΓ(v). Let α be

the permutation of V (Γ) which swaps u and v and fixes each vertex in V (Γ)\{u, v},

and let τ = (α, 1, 1, . . . , 1). Then τ is a Σ-automorphism of Γ. Moreover, τ is

nondiagonal as α 6= 1. Thus, by Lemma 2.6(a), (Γ,Σ) is unstable. �

Lemma 3.3. Let Γ and Σ be graphs. If one of them is disconnected and the other

has a nontrivial automorphism group, then (Γ,Σ) is unstable.

Proof. Without loss of generality we may assume that Γ is disconnected and Aut(Σ) 6=

1. Take a connected component Γ1 of Γ and an element α 6= 1 of Aut(Σ). Let σ be

the permutation of V (Γ× Σ) which fixes each vertex in V (Γ× Σ) \ V (Γ1 × Σ) and

permutes the vertices in V (Γ1 × Σ) in the following way:

(u, i)σ = (u, iα) for each (u, i) ∈ V (Γ1 × Σ).

It is straightforward to verify that σ ∈ Aut(Γ× Σ) \ P (Γ,Σ). So (Γ,Σ) is unstable

by Lemma 2.5. �

In regard to Lemma 3.3, there exist both stable pairs (Γ,Σ) and unstable pairs

(Γ,Σ) with Γ disconnected and Aut(Σ) = 1, as illustrated by the following example.

Example 3.4. Let Γ1 be the graph with V (Γ1) = {1, 2, 3, 4, 5} and

E(Γ1) = {{1, 2}, {3, 4}, {4, 5}, {3, 5}} .

Let Γ2 be the graph with V (Γ2) = {1, 2, 3, 4, 5, 6, 7, 8} and

E(Γ2) = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {3, 6}, {4, 6}, {7, 8}}.

Let Σ be the graph with V (Σ) = {1, 2, 3, 4, 5, 6} and

E(Σ) = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {3, 6}, {4, 6}}.

Then both Γ1 and Γ2 are disconnected and Aut(Σ) = 1. Computation inMagma [1]

shows that |Aut(Γ1 × Σ)| = |Aut(Γ1)| = 12, |Aut(Γ2)| = 2, and |Aut(Γ2 × Σ)| = 4.

Hence (Γ1,Σ) is stable but (Γ2,Σ) is unstable.

As usual, for a graph Γ and a subset U ⊆ V (Γ), we use 〈U〉 to denote the subgraph

of Γ induced by U , namely the graph with vertex set U in which two vertices u, v ∈ U

are adjacent if and only if they are adjacent in Γ.

Lemma 3.5. Let Γ and Σ be connected bipartite graphs. If both Aut(Γ) and Aut(Σ)

are nontrivial groups, then (Γ,Σ) is unstable.

Proof. Let {B1, B2} be the bipartition of Γ and {C1, C2} the bipartition of Σ. Set

U1 = (B1 × C1) ∪ (B2 × C2) and U2 = (B1 × C2) ∪ (B2 × C1).
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Then 〈U1〉 and 〈U2〉 are two connected components of Γ×Σ = 〈U1∪U2〉. Since both

Aut(Γ) and Aut(Σ) are nontrivial, we have

|Aut(Γ× Σ)| > |Aut(Γ)| · |Aut(Σ)| > 2 · 2 = 4. (4)

If both Aut(〈U1〉) and Aut(〈U2〉) are trivial, then

Aut(Γ× Σ) = Aut(〈U1 ∪ U2〉) =

{

1, if 〈U1〉 ≇ 〈U2〉

Z2, if 〈U1〉 ∼= 〈U2〉,

which contradicts (4). Hence at least one of Aut(〈U1〉) and Aut(〈U2〉) is nontriv-

ial. Without loss generality we may assume that Aut(〈U2〉) is nontrivial. Take an

element 1 6= α ∈ Aut(〈U2〉). Let σ be the permutation of V (Γ× Σ) defined by

(u, i)σ =

{

(u, i), if (u, i) ∈ U1

(u, i)α, if (u, i) ∈ U2

(5)

for (u, i) ∈ V (Γ× Σ). Then σ ∈ Aut(Γ× Σ).

Suppose to the contrary that (Γ,Σ) is stable. Then by Lemma 2.5, Aut(Γ ×

Σ) = P (Γ,Σ), and so σ ∈ P (Γ,Σ). Set V (Σ) = {1, . . . , n} and let α1, . . . , αn be

permutations of V (Γ) such that uαi = (u, i)σπΓ for u ∈ V (Γ) and i ∈ V (Σ). Since

σ ∈ P (Γ,Σ), by (5) we have for (u, i) ∈ V (Γ× Σ),

(u, i)σ =

{

(u, i), if (u, i) ∈ U1

(uαi, i), if (u, i) ∈ U2.
(6)

Hence

{u, v} ∈ E(Γ) ⇔{(u, i)σ, (v, j)σ} ∈ E(Γ× Σ) for any i, j ∈ V (Σ) with {i, j} ∈ E(Σ)

⇔{(uαi, i), (vαj , j)} ∈ E(Γ× Σ) for any i, j ∈ V (Σ) with {i, j} ∈ E(Σ)

⇔{uαi, vαj} ∈ E(Γ) for any i, j ∈ V (Σ) with {i, j} ∈ E(Σ).

In other words, (α1, . . . , αn) is a Σ-automorphism of Γ. Since (Γ,Σ) is stable, by

Lemma 2.6(a) we deduce that α1 = · · · = αn. This together with (6) implies that σ

fixes each vertex of Γ×Σ, whence σ = 1. It then follows from (5) that α = 1. This

contradiction shows that (Γ,Σ) is unstable and the proof is complete. �

The following example shows that the condition that both Aut(Γ) and Aut(Σ)

are nontrivial cannot be removed from Lemma 3.5 for otherwise the result may not

be true.

Example 3.6. Let Γ be the graph with V (Γ) = {1, 2, 3, 4, 5, 6, 7} and E(Γ) =

{{1, 2}, {2, 3}, {3, 4}, {4, 5}, {2, 6}, {3, 7}, {6, 7}}. Let Σ ∼= K2 with V (Σ) = {a, b}.

Then both Γ and Σ are bipartite and Aut(Γ) = 1. Let σ be the permutation of

V (Γ×Σ) which interchanges (i, a) and (i, b) for each i ∈ V (Γ). Then Aut(Γ×Σ) =

〈σ〉 ∼= Z2. Hence Aut(Γ× Σ) ∼= Aut(Γ)× Aut(Σ) and (Γ,Σ) is stable.



STABILITY OF GRAPH PAIRS 9

Let Σ and Γ be graphs each with a nontrivial automorphism group. If one of

them is R-thick or disconnected, then by Lemma 3.2 or 3.3 we know that (Γ,Σ) is

unstable. Part (b) of the following lemma determines the stability of (Γ,Σ) when

both Σ and Γ are connected, R-thin and non-bipartite.

Lemma 3.7. Let Γ and Σ be graphs.

(a) If (Γ,Σ) is stable, then Γ and Σ are coprime.

(b) If both Γ and Σ are connected, R-thin and non-bipartite, then (Γ,Σ) is stable if

and only if Γ and Σ are coprime.

Proof. (a) We prove the contrapositive of this statement. Suppose that Γ and Σ

are not coprime. Then there exist graphs Γ1, Σ1 and ∆ such that Γ = Γ1 × ∆,

Σ = Σ1 × ∆ and |V (∆)| > 1. So Γ × Σ = Γ1 × ∆ × Σ1 × ∆. Let σ be the

permutation of V (Γ×Σ) = V (Γ1×∆×Σ1×∆) defined by (x, u, y, v)σ = (x, v, y, u)

for (x, u, y, v) ∈ V (Γ1 × ∆ × Σ1 × ∆). Since |V (∆)| > 1, it is straightforward to

verify that σ ∈ Aut(Γ × Σ) \ P (Γ,Σ). This together with Lemma 2.5 implies that

(Γ,Σ) is unstable.

(b) The “only if” part follows from (a), so it remains to prove the “if” part.

Since both Γ and Σ are connected, R-thin and non-bipartite, by Lemma 3.1, so is

Γ × Σ. If Γ and Σ are coprime, then by [4, Theorem 8.18], we have Aut(Γ × Σ) =

Aut(Γ)× Aut(Σ) and hence (Γ,Σ) is stable. �

3.2. Proof of Theorem 1.3. We are now ready to prove Theorem 1.3.

Proof. Suppose that (Γ,Σ) is stable. Then by Lemmas 3.2 and 3.7(a) we know that

Γ and Σ are coprime R-thin graphs. Moreover, if both Aut(Γ) and Aut(Σ) are

nontrivial, then by Lemmas 3.3 and 3.5 both Γ and Σ are connected and at least

one of them is non-bipartite. �

4. Pairs of regular graphs with coprime valencies

As a preparation for our proof of Theorem 1.8, we study pairs of regular graphs

with coprime valencies in this section. As before, throughout this section Γ and Σ

are graphs with V (Σ) = {1, . . . , n} and n > 1. As usual, the set of positive integers

is denoted by N. A key concept used in this section is the Boolean square [4] of a

graph ∆, denoted by B(∆), which is the graph with vertex set V (∆) and edge set

{{u, v} | u, v ∈ V (∆), u 6= v,N∆(u) ∩N∆(v) 6= ∅}.

4.1. Notation. For (u, i), (v, j) ∈ V (Γ× Σ), define

fΓ,Σ((u, i), (v, j)) =
|NΓ×Σ((u, i)) ∩NΓ×Σ((v, j))|

|NΓ×Σ((u, i))|
.

Define

XΓ,Σ(u, i) = {(v, j) ∈ V (Γ× Σ) \ {(u, i)} | val(Σ) · fΓ,Σ((u, i), (v, j)) ∈ N}
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and

YΓ,Σ(u, i) = {(v, j) ∈ XΓ,Σ(u, i) | fΓ,Σ((u, i), (v, j)) > fΓ,Σ((u, i), (w, j)) ∀w ∈ V (Γ)}.

We will abbreviate fΓ,Σ((u, i), (v, j)), XΓ,Σ(u, i) and YΓ,Σ(u, i) to f((u, i), (v, j)),

X(u, i) and Y (u, i), respectively, when there is no danger of confusion.

The following lemma follows immediately from the definitions of Γ × Σ and

f((u, i), (v, j)).

Lemma 4.1. Let Γ and Σ be regular graphs, and let (u, i), (v, j) ∈ V (Γ×Σ). Then

f((u, i), (v, j)) =
|NΓ(u) ∩NΓ(v)|

val(Γ)
·
|NΣ(i) ∩NΣ(j)|

val(Σ)
. (7)

Now assume that Σ is vertex-transitive. Then the vertex-transitivity of Σ implies

that there exist integers n1 > n2 > · · · > nt ≥ 1 such that for any i ∈ V (Σ) and

x ∈ NB(Σ)(i) we have

|NΣ(x) ∩NΣ(i)| ∈ {n1, n2, . . . , nt} and |NB(Σ)(i)| > n1.

Set

D0(i) = {i},

Dk(i) = {x ∈ NB(Σ)(i) | |NΣ(x) ∩NΣ(i)| = nk, 1 6 nk < |NB(Σ)(i)|} for 1 ≤ k ≤ t,

Dt+1(i) = {x ∈ V (Σ) | NΣ(i) ∩NΣ(x) = ∅},

and

Ds(i) = ∅ for s > t + 2.

Then

V (Σ) = ∪t+1
k=1Dk(i), val(Σ) =

t
∑

k=1

|Dk(i)| and NB(Σ)(i) = ∪t
k=1Dk(i).

For each (u, i) ∈ V (Γ× Σ), define

X0(u, i) = Y0(u, i) = {(u, i)}

and

Xk(u, i) = X(u, i) ∩ (V (Γ)×Dk(i)) for k ≥ 1.

Define Yk(u, i) to be the set of elements (v, j) of X(u, i) \ (∪k−1
m=0Xm(u, i)) such that

f((u, i), (v, j)) > f((u, i), (w, y)) for all (w, y) ∈ X(u, i) \ (∪k−1
m=0Xm(u, i)).



STABILITY OF GRAPH PAIRS 11

4.2. X(u, i) and Xk(u, i).

Lemma 4.2. Let Γ and Σ be graphs. Then for any (u, i) ∈ V (Γ × Σ) and σ ∈

Aut(Γ× Σ), we have

(X(u, i))σ = X((u, i)σ).

Proof. For any (u, i), (v, j) ∈ V (Γ× Σ) and σ ∈ Aut(Γ× Σ), we have

(u, i) 6= (v, j) ⇔ (u, i)σ 6= (v, j)σ

and

val(Σ) · f((u, i), (v, j)) ∈ N ⇔ val(Σ) · f((u, i)σ, (v, j)σ) ∈ N.

It follows that

(v, j)σ ∈ (X(u, i))σ ⇔ (v, j) ∈ X(u, i) ⇔ (v, j)σ ∈ X((u, i)σ).

Thus (X(u, i))σ = X ((u, i)σ) as required. �

Lemma 4.3. Let Γ and Σ be regular graphs with coprime valencies. Suppose that

Γ is R-thin. Then for any (u, i) ∈ V (Γ× Σ) and (v, j) ∈ X(u, i), we have i 6= j.

Proof. Suppose that i = j for some (u, i) ∈ V (Γ × Σ) and (v, j) ∈ X(u, i). Then

|NΣ(i) ∩NΣ(j)| = val(Σ). Since (v, j) ∈ X(u, i), it follows from Lemma 4.1 that

|NΓ(u) ∩NΓ(v)|

val(Γ)
· val(Σ) = val(Σ) · f((u, i), (v, j)) ∈ N.

This together with gcd(val(Γ), val(Σ)) = 1 implies that |NΓ(u) ∩ NΓ(v)| = val(Γ).

Since Γ is R-thin, we deduce that u = v, and so (u, i) = (v, j), a contradiction. �

Lemma 4.4. Let Γ and Σ be regular graphs with coprime valencies. Suppose that

Σ is R-thin. Then for any u ∈ V (Γ), any σ ∈ Aut(Γ × Σ), and any edge {i, j} of

B(Σ), we have

(u, i)σπΣ 6= (u, j)σπΣ.

Proof. Since {i, j} is an edge of B(Σ), we have i 6= j, and hence (u, i) 6= (u, j).

Since σ ∈ Aut(Γ× Σ), we then have (u, i)σ 6= (u, j)σ. Suppose to the contrary that

(u, i)σπΣ = (u, j)σπΣ = z for some z ∈ V (Σ). Then (u, i)σ = (g, z) and (u, j)σ = (h, z)

for some g, h ∈ V (Γ) with g 6= h. Thus

|NΓ×Σ((u, i)
σ) ∩NΓ×Σ((u, j)

σ)| = |NΓ×Σ((g, z)) ∩NΓ×Σ((h, z))|

= |NΓ(g) ∩NΓ(h)| · |NΣ(z)|

= |NΓ(g) ∩NΓ(h)| · val(Σ).

On the other hand, since σ ∈ Aut(Γ× Σ), we have

|NΓ×Σ((u, i)
σ) ∩NΓ×Σ((u, j)

σ)| = |NΓ×Σ((u, i)) ∩NΓ×Σ((u, j))|

= |NΓ(u)| · |NΣ(i) ∩NΣ(j)|

= val(Γ) · |NΣ(i) ∩NΣ(j)|.
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Hence

|NΓ(g) ∩NΓ(h)| · val(Σ) = val(Γ) · |NΣ(i) ∩NΣ(j)|.

Since gcd(val(Γ), val(Σ)) = 1, it follows that val(Σ) divides |NΣ(i) ∩NΣ(j)|. Hence

|NΣ(i) ∩ NΣ(j)| = val(Σ) or |NΣ(i) ∩ NΣ(j)| = 0. However, this is impossible as Σ

is R-thin and {i, j} is an edge of B(Σ). This completes the proof. �

Lemma 4.5. Let Γ and Σ be regular graphs with coprime valencies. Suppose that

both Γ and Σ are R-thin. Then for any edge {u, v} of B(Γ), any edge {i, j} of B(Σ),

and any element σ ∈ Aut(Γ× Σ), we have

|NΣ((u, i)
σπΣ) ∩NΣ((v, j)

σπΣ)| > |NΣ(i) ∩NΣ(j)|. (8)

Proof. Since {u, v} is an edge of B(Γ), we have NΓ(u) ∩ NΓ(v) 6= ∅. Consider

w ∈ NΓ(u) ∩NΓ(v). We have

{w} × (NΣ(i) ∩NΣ(j)) ⊆ NΓ×Σ((u, i)) ∩NΓ×Σ((v, j)).

Since σ ∈ Aut(Γ× Σ), it follows that

({w} × (NΣ(i) ∩NΣ(j)))
σ ⊆ (NΓ×Σ((u, i)) ∩NΓ×Σ((v, j)))

σ

= NΓ×Σ((u, i)
σ) ∩NΓ×Σ((v, j)

σ).

This together with Lemma 4.4 implies (8). �

Lemma 4.6. Let Γ and Σ be regular graphs with coprime valencies. Suppose that

both Γ and Σ are R-thin. Suppose further that Σ is vertex-transitive. Then for any

(u, i) ∈ V (Γ× Σ), any σ ∈ Aut(Γ× Σ), and any integer k ≥ 0, we have

(Xk(u, i))
σ = Xk((u, i)

σ).

Proof. Consider an arbitrary vertex (v, j) of Xk(u, i). By Lemma 4.2,

(v, j)σ ∈ (Xk(u, i))
σ ⊆ (X(u, i))σ = X((u, i)σ). (9)

Since Xk(u, i) = X(u, i) ∩ (V (Γ) × Dk(i)), we have j ∈ Dk(i) and (v, j) ∈ X(u, i),

whence {u, v} is an edge of B(Γ) and {i, j} is an edge of B(Σ). It then follows from

Lemma 4.5 that

|NΣ((u, i)
σπΣ) ∩NΣ((v, j)

σπΣ)| > |NΣ(i) ∩NΣ(j)| = nk. (10)

First assume that k = 0. Then (X0(u, i))
σ = {(u, i)σ} = X0((u, i)

σ).

Next assume that k = 1. By (9), we have (v, j)σ ∈ X((u, i)σ). By Lemma 4.3, we

then have

(u, i)σπΣ 6= (v, j)σπΣ,

and so

|NΣ((u, i)
σπΣ) ∩NΣ((v, j)

σπΣ)| 6 n1.

This together with (10) implies that

|NΣ((u, i)
σπΣ) ∩NΣ((v, j)

σπΣ)| = n1.
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Thus (v, j)σ ∈ V (Γ)×D1((u, i)
σπΣ). Combining this with (9), we then have

(v, j)σ ∈ X((u, i)σ) ∩ (V (Γ)×D1((u, i)
σπΣ)) = (X1(u, i)

σ).

Therefore,

(X1(u, i))
σ ⊆ X1((u, i)

σ). (11)

It then follows that

(X1((u, i)
σ))σ

−1

⊆ X1((u, i)
σσ−1

) = X1(u, i).

Thus

|X1((u, i)
σ)| 6 |(X1(u, i))

σ|.

This together with (11) implies (X1(u, i))
σ = X1((u, i)

σ) as required.

Now assume that k > 2. Suppose by induction that for all integers ℓ with 0 6

ℓ < k we have

(Xℓ(u, i))
σ = Xℓ((u, i)

σ). (12)

Since (v, j) ∈ Xk(u, i), we have (v, j)σ /∈ (∪k−1
m=0Xm(u, i))

σ. It then follows from (12)

that

(v, j)σ /∈ ∪k−1
m=0(Xm(u, i))

σ = ∪k−1
m=0Xm((u, i)

σ).

That is,

(v, j)σ /∈ Xm((u, i)
σ) for m = 0, 1, . . . , k − 1.

By the definition of Xm((u, i)
σ and (9), we then obtain that

(v, j)σπΣ /∈ Dm((u, i)
σπΣ) for m = 0, 1, . . . , k − 1.

This together with (10) implies that (v, j)σπΣ ∈ Dk((u, i)
σπΣ), and hence we drive

from (9) that

(v, j)σ ∈ X((u, i)σ) ∩ (V (Γ)×Dk((u, i)
σπΣ)) = Xk((u, i)

σ).

Therefore,

(Xk(u, i))
σ ⊆ Xk((u, i)

σ).

Note that this holds for any (u, i) ∈ V (Γ×Σ) and σ ∈ Aut(Γ×Σ). Replacing (u, i)

by (u, i)σ and σ by σ−1 in this inclusion, we obtain

(Xk((u, i)
σ))σ

−1

⊆ Xk(((u, i)
σ)σ

−1

) = Xk(u, i),

or equivalently,

Xk((u, i)
σ) ⊆ (Xk(u, i))

σ.

Therefore, (Xk(u, i))
σ = Xk((u, i)

σ) and the proof is complete by induction. �
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4.3. Y (u, i) and Yk(u, i).

Lemma 4.7. Let Γ and Σ be regular graphs with coprime valencies. Suppose that

Σ is Γ-thin. Then for any (u, i) ∈ V (Γ× Σ), we have

Y (u, i) = {u} ×NB(Σ)(i).

Proof. Let j ∈ NB(Σ)(i). Then i 6= j and NΣ(i) ∩ NΣ(j) 6= ∅. Since Γ and Σ are

regular, we drive from Lemma 4.1 that

val(Σ) · f((u, i), (u, j)) = |NΣ(i) ∩NΣ(j)| ∈ N. (13)

For any w ∈ V (Γ), by Lemma 4.1 and (13) we have

val(Σ) · f((u, i), (w, j)) =
|NΓ(u) ∩NΓ(w)|

val(Γ)
· |NΣ(i) ∩NΣ(j)|

6 |NΣ(i) ∩NΣ(j)|

= val(Σ) · f((u, i), (u, j)).

Hence

f((u, i), (u, j)) > f((u, i), (w, j)) for all w ∈ V (Γ). (14)

This together with (13) implies that (u, j) ∈ Y (u, i). Thus

{u} ×NB(Σ)(i) ⊆ Y (u, i). (15)

Conversely, let (v, j) ∈ Y (u, i). Then (v, j) 6= (u, i), val(Σ) · f((u, i), (v, j)) ∈ N,

and

f((u, i), (v, j)) > f((u, i), (w, j)) for all w ∈ V (Γ). (16)

Moreover, by Lemma 4.1, we have

val(Σ) · f((u, i), (v, j)) =
|NΓ(u) ∩NΓ(v)|

val(Γ)
· |NΣ(i) ∩NΣ(j)| ∈ N. (17)

It follows that |NΣ(i) ∩ NΣ(j)| 6= 0, and so NΣ(i) ∩ NΣ(j) 6= ∅. Since (v, j) ∈

Y (u, i) ⊆ X(u, i), we derive from Lemma 4.3 that j 6= i, and hence j ∈ NB(Σ)(i).

Thus, using the same argument as in the first paragraph of this proof, we can derive

that (u, i), (u, j) and (w, j) satisfy (14). Combining this and (16), we then obtain

v = u and therefore (v, j) ∈ {u} ×NB(Σ)(i). So we have proved that

Y (u, i) ⊆ {u} ×NB(Σ)(i),

which together with (15) yields Y (u, i) = {u} ×NB(Σ)(i), as required. �

Lemma 4.8. Let Γ and Σ be regular graphs with coprime valencies. Suppose that

both Γ and Σ are R-thin. Then the following hold for any (u, i) ∈ V (Γ × Σ) and

positive integer k:

(a) Yk(u, i) ⊆ Xk(u, i);

(b) Yk(u, i) = Y (u, i) ∩ (V (Γ)×Dk(i)).
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Proof. If Yk(u, i) = ∅, then statement (a) is obvious. Now assume that Yk(u, i) 6= ∅

and let (v, j) ∈ Yk(u, i). Then

(v, j) ∈ X(u, i) \ (∪k−1
m=0Xm(u, i)) (18)

and

f((u, i), (v, j)) > f((u, i), (w, k)) for all (w, k) ∈ X(u, i) \ (∪k−1
m=0Xm(u, i)). (19)

Suppose by way of contradiction that (v, j) /∈ Xk(u, i). Then by (18) we have

(v, j) ∈ X(u, i) but (v, j) /∈ Xm(u, i) for m = 0, 1, . . . , k − 1, k.

Since Xm(u, i) = X(u, i) ∩ (V (Γ)×Dm(i)), we have

(v, j) /∈ V (Γ)×Dm(i) for m = 0, 1, . . . , k − 1, k.

So j ∈ Dt(i) for some t > k. Thus Dt(i) 6= ∅ and so Dk(i) 6= ∅. Take y ∈ Dk(i).

Then

|NΣ(i) ∩NΣ(j)| < |NΣ(i) ∩NΣ(y)| (20)

and

(u, y) ∈ X(u, i) \ (∪k−1
m=0Xm(u, i)).

Using (20), we can easily obtain f((u, i), (v, j)) < f((u, i), (u, y)), which contradicts

(19). This contradiction shows that (v, j) ∈ Xk(u, i), and therefore Yk(u, i) ⊆

Xk(u, i). This completes the proof of statement (a).

Now we prove statement (b). Let (v, j) ∈ Yk(u, i). By statement (a), we have

(v, j) ∈ Xk(u, i) = X(u, i) ∩ (V (Γ)×Dk(i)) ⊆ X(u, i). (21)

It then follows from Lemmas 4.1 and 4.3 that

val(Σ) · f((u, i), (v, j)) =
|NΓ(u) ∩NΓ(v)|

val(Γ)
· |NΣ(i) ∩NΣ(j)| ∈ N

and i 6= j. Hence NΣ(i) ∩ NΣ(j) 6= ∅. Using Lemma 4.1, it is straightforward to

verify that

val(Σ) · f((u, i), (u, j)) ∈ N (22)

and

val(Σ) · f((u, i), (u, j)) > val(Σ) · f((u, i), (v, j)). (23)

Moreover, by (21), we have j ∈ Dk(i), and so j /∈ ∪k−1
m=0Dm(i). Since i 6= j, we derive

from (22) that

(u, j) ∈ X(u, i) \ (∪k−1
m=0Xm(u, i)).

This combined with (19) and (23) implies that v = u. Since NΣ(i) ∩ NΣ(j) 6= ∅,

we have j ∈ NB(Σ)(i), and thus we obtain from Lemma 4.7 and (21) that (v, j) ∈

Y (u, i) ∩ V (Γ)×Dk(i). Therefore,

Yk(u, i) ⊆ Y (u, i) ∩ (V (Γ)×Dk(i)). (24)

Conversely, let (v, j) ∈ Y (u, i)∩ (V (Γ)×Dk(i)). Since Y (u, i) ⊆ X(u, i), we have

(v, j) ∈ X(u, i) ∩ (V (Γ)×Dk(i)) ⊆ X(u, i) \ (∪k−1
m=0Xm(u, i)). (25)
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Consider an arbitrary element (w, t) of X(u, i) \ (∪k−1
m=0Xm(u, i)). Since Xm(u, i) =

X(u, i) ∩ (V (Γ)×Dm(i)), we have

(w, t) /∈ X(u, i) ∩ (V (Γ)×Dm(i)) for m = 0, 1, . . . , k − 1.

Since (w, t) ∈ X(u, i), we deduce that

t /∈ Dm(i) for m = 0, 1, . . . , k − 1,

and hence j /∈ ∪k−1
m=0Dm(i). Note that (v, j) ∈ Dk(i). It follows that

|NΣ(i) ∩NΣ(j)| > |NΣ(i) ∩NΣ(t)|. (26)

Since (v, j) ∈ Y (u, i), by Lemma 4.7 we obtain that u = v. Thus

|NΓ(u) ∩NΓ(v)| = val(Γ) > |NΓ(u) ∩NΓ(w)|.

This together with (26) and Lemma 4.1 implies that

val(Σ) · f((u, i), (v, j)) = |NΣ(i) ∩NΣ(j)|

>
|NΓ(u) ∩NΓ(w)|

val(Γ)
· |NΣ(i) ∩NΣ(t)|

= val(Σ) · f((u, i), (w, t)).

Combining this with (25), we obtain (v, j) ∈ Yk(u, i). Thus

Y (u, i) ∩ (V (Γ)×Dk(i)) ⊆ Yk(u, i).

This together with (24) completes the proof of statement (b). �

Lemma 4.9. Let Γ and Σ be regular graphs with coprime valencies. Suppose that

both Γ and Σ are R-thin. Suppose further that Σ is vertex-transitive. Then for any

(u, i) ∈ V (Γ× Σ) and σ ∈ Aut(Γ× Σ), we have

(Y (u, i))σ = Y ((u, i)σ).

Proof. Since Σ is finite, there exists a positive integer t such that V (Σ) = ∪t+1
m=0Dm(i),

where as before D0(i) = {i} and Dt+1(i) = {x ∈ V (Σ) | NΣ(i) ∩NΣ(x) = ∅}. Since

Y (u, i) ⊆ X(u, i), by Lemma 4.3, we have

Y (u, i) ∩ (V (Γ)×D0(i)) = ∅. (27)

For any (v, j) ∈ V (Γ) × Dt+1(i), we have j /∈ NB(Σ)(i) as NΣ(i) ∩ NΣ(j) = ∅. By

Lemma 4.7, we then have (v, j) /∈ Y (u, i) and therefore

Y (u, i) ∩ (V (Γ)×Dt+1(i)) = ∅. (28)

Note that

V (Γ× Σ) = V (Γ)× V (Σ)

= V (Γ)×
(

∪t+1
m=0Dm(i)

)

= ∪t+1
m=0(V (Γ)×Dm(i))

=
(

∪t
m=1(V (Γ)×Dm(i))

)

∪ (V (Γ)×D0(i)) ∪ (V (Γ)×Dt+1(i)) .
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Thus, by (27), (28) and Lemma 4.8(b), we have

Y (u, i) = Y (u, i) ∩ V (Γ× Σ)

= Y (u, i) ∩
(

∪t
m=1(V (Γ)×Dm(i))

)

= ∪t
m=1(Y (u, i) ∩ (V (Γ)×Dm(i))

= ∪t
m=1Ym(u, i).

Since σ ∈ Aut(Γ × Σ), by Lemmas 4.2 and 4.6, we obtain that for each positive

integer k,
(

X(u, i) \
(

∪k−1
m=0Xm(u, i)

))σ
= (X(u, i))σ \

(

∪k−1
m=0(Xm(u, i))

σ
)

= X((u, i)σ) \
(

∪k−1
m=0Xm((u, i)

σ)
)

.

Thus (Yk(u, i))
σ = Yk((u, i)

σ) by the definition of Yk(u, i). Therefore,

(Y (u, i))σ =
(

∪t
m=1Ym(u, i)

)σ
= ∪t

m=1(Ym(u, i))
σ = ∪t

m=1Ym((u, i)
σ) = Y ((u, i)σ),

completing the proof. �

5. Proof of Theorem 1.8

5.1. Lemmas. We need the following lemmas in our proof of Theorem 1.8.

Lemma 5.1. Let Γ and Σ be regular graphs with coprime valencies. Suppose that

both Γ and Σ are R-thin. Suppose further that Σ is vertex-transitive. Let u ∈ V (Γ)

and i, j ∈ V (Σ). If NΣ(i) ∩NΣ(j) 6= ∅, then for any σ ∈ Aut(Γ× Σ), we have

(u, i)σπΓ = (u, j)σπΓ .

Proof. If i = j, then (u, i)σ = (u, j)σ and so the statement is true. Now assume

that i 6= j and NΣ(i) ∩ NΣ(j) 6= ∅. Then j ∈ NB(Σ)(i). By Lemma 4.7, we then

have (u, j) ∈ Y (u, i). Hence (u, j)σ ∈ (Y (u, i))σ = Y ((u, i)σ) by Lemma 4.9. This

together with Lemma 4.7 implies that (u, i)σπΓ = (u, j)σπΓ , as required. �

Lemma 5.2. Let Γ and Σ be regular graphs with coprime valencies. Suppose that

both Γ and Σ are R-thin. Suppose further that Σ is vertex-transitive. Let u, v ∈

V (Γ) and i ∈ V (Σ). If there is a walk from u to v of even length, then for any

σ ∈ Aut(Γ× Σ), we have

(u, i)σπΣ = (v, i)σπΣ . (29)

Proof. It suffices to prove (29) in the case when NΓ(u) ∩ NΓ(v) 6= ∅. The result in

the general case follows by applying this equation to pairs of every other vertices on

the walk.

So let us assume that NΓ(u) ∩NΓ(v) 6= ∅. Take a vertex w ∈ NΓ(u) ∩NΓ(v). Set

W = {w} × NΣ(i). Then W ⊆ NΓ×Σ((u, i)) ∩NΓ×Σ((v, i)). Since σ ∈ Aut(Γ× Σ),

it follows that

W σ ⊆ NΓ×Σ((u, i)
σ) ∩NΓ×Σ((v, i)

σ).
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Consequently,

W σπΣ ⊆ NΣ((u, i)
σπΣ) ∩NΣ((v, i)

σπΣ). (30)

Note that

|W σ| = |W | = |NΣ(i)| = |NΣ((u, i)
σπΣ)| = |NΣ((v, i)

σπΣ)| = val(Σ). (31)

Consider any two distinct vertices (w, j), (w, k) in W . We have j 6= k ∈ NΣ(i)

and i ∈ NΣ(j) ∩ NΣ(k), whence NΣ(j) ∩ NΣ(k) 6= ∅. By Lemma 5.1, we have

(w, j)σπΓ = (w, k)σπΓ . Since (w, j) 6= (w, k) and σ ∈ Aut(Γ × Σ), we then obtain

that (w, j)σπΣ 6= (w, k)σπΣ. Hence |W σπΣ| = |W σ|. Combining this with (30) and

(31), we obtain that

NΣ((u, i)
σπΣ) = NΣ((v, i)

σπΣ) = W σπΣ .

Since Σ is R-thin, we then conclude that (u, i)σπΣ = (v, i)σπΣ . �

For a graph ∆ and a partition B of V (∆), the quotient graph ∆B of ∆ with respect

to B is defined to have vertex set B such that two blocks B,C ∈ B are adjacent if

and only if there exists at least one edge of ∆ with one end-vertex in B and the

other end-vertex in C.

Lemma 5.3. Let Γ and Σ be connected regular graphs with coprime valencies. Sup-

pose that both Γ and Σ are R-thin. Suppose further that Γ is bipartite and Σ is

vertex-transitive and non-bipartite. Then

Aut(Γ× Σ) = P (Γ,Σ).

Proof. Let B0 and B1 be the biparts of Γ, and let V (Σ) = {1, 2, . . . , n}. Let u, v ∈

V (Γ) and i ∈ V (Σ), and let σ be an arbitrary element of Aut(Γ× Σ). Let

∆ = Γ× Σ.

Set

B = {V (Γ)× {j} | j ∈ V (Σ)}

and

D = {B0 × {j}, B1 × {j} | j ∈ V (Σ)}.

Then B and D are partitions of V (∆), and hence ∆B and ∆D are well defined.

First assume that u and v are in the same biparts of Γ. Since Γ is connected

and bipartite, there is a walk in Γ from u to v of even length. It then follows from

Lemma 5.2 that (u, i)σπΣ = (v, i)σπΣ . Hence σ preserves D, and so σ ∈ Aut(∆D).

Next assume that u and v are in different biparts of Γ. Without loss generality we

may assume that u ∈ B0 and v ∈ B1. Since Σ is non-bipartite and vertex-transitive,

every vertex of Σ is contained in an odd cycle, and so there exists a cycle of odd

length containing i, say, C : i1, i2, . . . , iℓ, i1, where i = i1 and ℓ is odd. It follows

that

CB : V (Γ)× {i1}, V (Γ)× {i2}, . . . , V (Γ)× {iℓ}, V (Γ)× {i1}
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and

CD : B0×{i1}, B1×{i2}, . . . , B0×{iℓ}, B1×{i1}, B0×{i2}, . . . , B1×{iℓ}, B0×{i1}

are cycles in ∆B and ∆D, respectively. Note that CD is of length 2ℓ. Since σ ∈

Aut(∆D) as shown above, σ maps CD to the cycle (CD)
σ of ∆D, and also maps the

pair of antipodals B0 ×{i}, B1 ×{i} to some pair of antipodals in (CD)
σ. Note also

that for each pair of antipodals X, Y of some cycle in ∆D, we have XπΣ = Y πΣ and

|XπΣ| = |Y πΣ | = 1. In particular, we have

(B0 × {i})σπΣ = (B1 × {i})σπΣ

and

|(B0 × {i})σπΣ | = |(B1 × {i})σπΣ | = 1.

Since u ∈ B0 and v ∈ B1, we then obtain that (u, i)σπΣ = (v, i)σπΣ. Since this

holds for any u, v ∈ V (Γ) and i ∈ V (Σ), we conclude that σ ∈ P (Γ,Σ). Since this

holds for any σ ∈ Aut(Γ× Σ), we obtain that Aut(Γ× Σ) 6 P (Γ,Σ), which yields

Aut(Γ× Σ) = P (Γ,Σ). �

Lemma 5.4. Let Γ and Σ be connected regular graphs with coprime valencies. Sup-

pose that both Γ and Σ are R-thin. Suppose further that Γ is non-bipartite and Σ is

vertex-transitive and bipartite. Then

Aut(Γ× Σ) = P (Γ,Σ).

Proof. Let

∆ = Γ× Σ

and

B = {V (Γ)× {j} | j ∈ V (Σ)}.

Then the quotient graph ∆B of ∆ with respect to B is isomorphic to Σ. Since Σ

is bipartite, it follows that there is no odd cycle in ∆B. This implies that, for any

u, v ∈ V (Γ) and i ∈ V (Σ), there is no path of odd length from (u, i) to (v, i) in

∆. Since Γ is non-bipartite, we obtain from Lemma 3.1(a) that ∆ is connected. It

follows that there is a path of even length from (u, i) to (v, i) in ∆, and therefore

there is a walk of even length from u to v in Γ. Thus, by Lemma 5.2, for any

σ ∈ Aut(Γ × Σ), we have (u, i)σπΣ = (v, i)σπΣ , which implies σ ∈ P (Γ,Σ). Since

this holds for any σ ∈ Aut(Γ× Σ), it follows that Aut(Γ × Σ) 6 P (Γ,Σ), yielding

Aut(Γ× Σ) = P (Γ,Σ) as required. �

5.2. Proof of Theorem 1.8. We are now ready to prove Theorem 1.8.

Proof. Let Γ be a regular graph and Σ a vertex-transitive graph such that val(Γ)

and val(Σ) are coprime.

Suppose that (Γ,Σ) is nontrivially unstable. Then by the definition of a nontriv-

ially unstable graph pair, Γ and Σ are coprime connected R-thin graphs and at least

one of them is non-bipartite. Hence, by Lemma 3.1, Γ×Σ is connected and R-thin.

Moreover, by Lemmas 5.3 and 5.4, we have Aut(Γ × Σ) = P (Γ,Σ). Since (Γ,Σ) is
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unstable, it follows from Lemma 2.6(b) that at least one Σ-automorphism of Γ is

nondiagonal.

Conversely, suppose that Γ × Σ is connected and R-thin and at least one Σ-

automorphism of Γ is nondiagonal. Then, by Lemma 3.1, Γ and Σ are connected

R-thin graphs and at least one of them is non-bipartite. If both Γ and Σ are non-

bipartite, then by Lemma 3.7(b), (Γ,Σ) is stable, but this contradicts Lemma 2.6(a)

as we assume that at least one Σ-automorphism of Γ is nondiagonal. Thus exactly

one of Γ and Σ is non-bipartite. Since val(Γ) and val(Σ) are coprime, by Remark 1.2,

Γ and Σ are coprime. Finally, by Lemmas 5.3 and 5.4, we have Aut(Γ×Σ) = P (Γ,Σ).

Hence, by Lemma 2.6(b), (Γ,Σ) is unstable. Moreover, (Γ,Σ) is nontrivially unstable

since Γ and Σ are coprime connected R-thin graphs. �

6. Concluding remarks

In the case when Σ = K2, Theorem 1.8 gives rise to the following result: A con-

nected regular graph is unstable if and only if it has a nontrivial two-fold automor-

phism. As mentioned in the introduction, this is a special case of [5, Theorem 3.2],

where the graph in the statement is not required to be regular. So Theorem 1.8 is a

partial generalization of [5, Theorem 3.2]. It would be interesting to study whether

the result in Theorem 1.8 is still true if Σ is not required to be regular with valency

coprime to the valency of Γ.

As seen in Theorem 1.8, there are close connections between stability of graph

pairs (Γ,Σ) and Σ-automorphisms of Γ. However, the notion of Σ-automorphisms

of Γ deserves further studies for its own sake. As far as we know, there are not

many results on Σ-automorphisms of Γ in the literature, except in the case when

Σ = K◦

1 for which a K◦

1 -automorphism of Γ is an automorphism of Γ in the usual

sense, and in the case when Σ = K2 for which a K2-automorphism of Γ is exactly

a two-fold automorphism of Γ [5]. The concept of two-fold automorphisms was first

introduced by Zelinka in [15, 16] for digraphs in his study of isotopies of digraphs

and was extended to mixed graphs by Lauri et al. in [5]. It is readily seen that, if Σ1

is a spanning subgraph of Σ2, then AutΣ2
(Γ) ≤ AutΣ1

(Γ). So among all graphs Σ

of order n the complete graph Kn gives rise to the smallest possible group AutΣ(Γ).

Therefore, it would be interesting to study the groups AutKn
(Γ) for n ≥ 2. Note

that AutK2
(Γ) is exactly the two-fold automorphism group AutTF(Γ) of Γ [5].

Finally, many questions about (nontrivially) unstable graph pairs may be asked.

For example, by Lemma 2.6(a), if Γ admits a nondiagonal Σ-automorphism then

(Γ,Σ) is unstable, and Theorem 1.8 determines a situation where this necessary

condition is also sufficient. In general, one may ask the following question: For an

unstable pair of graphs (Γ,Σ), under what conditions does Γ admit a nondiagonal

Σ-automorphism? One may also study the stability of (Γ,Σ) for various special

families of graphs Γ and/or various special families of graphs Σ. Possible candidates

for Γ include circulant graphs [9, 14], arc-transitive graphs, generalized Petersen
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graphs GP(n, k) [10], etc. and potential choices for Σ include complete graphs Kn,

complete bipartite graphs Kn,n, cycles Cn, etc. Obviously, this area of research is

wide open and pleasantly inviting.
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