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Abstract

The reconfiguration graph Rk(G) for the k-colorings of a graph G

has as vertex set the set of all possible k-colorings of G and two col-
orings are adjacent if they differ in the color of exactly one vertex of
G. Let d, k ≥ 1 be integers such that k ≥ d + 1. We prove that for
every ǫ > 0 and every graph G with n vertices and maximum average
degree d − ǫ, Rk(G) has diameter O(n(log n)d−1). This significantly
strengthens several existing results.

1 Introduction

Let k be a positive integer. A k-coloring of a graph G is a function f :
V (G) → {1, . . . , k} such that f(u) 6= f(v) whenever (u, v) ∈ E(G). The
reconfiguration graph Rk(G) for the k-colorings of a graph G has as vertex
set the set of all possible k-colorings of G and two colorings are adjacent if
they differ in the color of exactly one vertex of G.

Given a non-negative integer d, a graph G is d-degenerate if every sub-
graph of G contains a vertex of degree at most d. Expressed differently, G is
d-degenerate if there there exists an ordering v1, . . . , vn of the vertices in G,
called a d-degenerate ordering, such that each vi has at most d neighbors vj
with j < i. The maximum average degree of a graph G is defined as

max
{2|E(H)|

|V (H)|
: H ⊆ G

}

.
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In particular, if G has maximum average degree strictly less than some pos-
itive integer d, then G is (d− 1)-degenerate.

Consider the following conjecture of Cereceda [3].

Conjecture 1. For every integers k and ℓ, ℓ ≥ k+2, and every k-degenerate
graph G on n vertices, Rℓ(G) has diameter O(n2).

The conjecture appears difficult to prove or disprove, with the case k = 1
only being known despite some efforts; for a recent exposition on the con-
jecture and the results surrounding it see [4, 1]. The most important break-
through is Theorem 1 in [1] due to Bousquet and Heinrich, which addresses
a number of cases for Conjecture 1, generalising several existing results. For
instance, it is shown in [1] that there exists a constant c > 0 independent of
k such that Rℓ(G) has diameter at most (cn)k+1 for every ℓ ≥ k + 2.

The purpose of this note is to prove the following theorem.

Theorem 1. Let d, k ≥ 1 be integers such that k ≥ d + 1. For every ǫ > 0
and every graph G with n vertices and maximum average degree d− ǫ, Rk(G)
has diameter O(n(logn)d−1).

Theorem 1 is a generalisation of [2, Theorem 2]. In particular, it has
the following immediate consequences. By Euler’s formula, planar graphs,
triangle-free planar graphs and planar graphs of girth 5 have maximum av-
erage degrees strictly less than, respectively, 6, 4 and 7/2. Hence Theorem
1 affirms (and is stronger than) Conjecture 1 for planar graphs of girth 5
but is one color short of confirming the conjecture for planar graphs and
triangle-free planar graphs. It nevertheless generalises some best known ex-
isting results. More precisely, our theorem subsumes both [2, Corollary 5]
and [1, Theorem 1] restricted to planar graphs, as well as [2, Corollary 7]
and [6, Corollary 1].

2 The proof

In this section, we prove Theorem 1. Our approach is essentially a combina-
tion of the ones found in [1, 5]. We begin with some definitions.

Definition 1. Given a graph G, a coloring α of G and a subgraph H of G,
let αH denote the restriction of α to H .
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Definition 2. Let G be a graph, and let k be a nonnegative integer. A
subset S ⊆ V (G) is a k-independent set of G if S is an independent set of G
and every vertex of S has degree at most k in G.

Definition 3. For integers s ≥ 0 and t ≥ 1, a graph G is said to have degree
depth (s, t) if there exists a partition {V1, . . . , Vt} of V (G), called an s-degree
partition, such that V1 is an s-independent set of G and, for i ∈ {2, . . . , t},
Vi is an s-independent set of G \

⋃i−1

j=1
Vj.

In what follows, let G be a graph of degree depth (s, t) and with s-degree
partition {V1, . . . Vt}.

Definition 4. An ordering vn, . . . , v1 of V (G) is said to be embedded in

{V1, . . . , Vt} if, for every pair (vi, vj) ∈ V (G) × V (G) such that vi ∈ Vp and
vj ∈ Vq, i < j implies p ≤ q.

Notice that the ordering in Definition 4 is an s-degenerate ordering of G.
If H is a subgraph of G such that V (H) =

⋃h

j=1
Vj for some index h ∈

{1, . . . , t}, then H is called a layered subgraph of G, and h is its boundary.
In the next definition, we shall slightly abuse Definition 3.

Definition 5. If H is a layered subgraph of G with boundary h, then we
say that H has degree depth (s′, t) if, for each index j ∈ {1, . . . , h}, each
v ∈ V (H) ∩ Vj has at most s′ neighbors in

⋃t

i=j+1
Vi.

We have the following crucial lemma.

Lemma 1. Let s ≥ 0 and t ≥ 1 be integers, let G be a graph with degree

depth (s, t), and let F be a layered subgraph of G. Any (s + 2)-coloring of

G can be recolored, using only colors 1, . . . , s + 2, to some coloring of G in

which color s+ 2 is not used in F by O((s+ 1)2s−1ts) recolorings per vertex

of F and by not recoloring any vertex of G \ F .

Proof. Let {V1, . . . , Vt} be an s-degree partition of G, and let V (F ) = V1 ∪
. . . ∪ Vb, where b ≥ 1 is the boundary of F . Let vm, . . . , v1 be an ordering of
V (F ) that is embedded in {V1, . . . , Vb}. Let α be an (s + 2)-coloring of G,
and let h ∈ {1, . . . , b} be the smallest index such that Vh contains a vertex
with color s + 2 under α. Let W denote the subset of vertices of Vh with
color s + 2. For each color a ∈ {1, . . . , s + 1}, define Wa to be the subset
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of W whose vertices have no neighbor earlier in the ordering with color a.
More formally,

Wa = {vi ∈ W : α(vj) 6= a for all neighbors vj of vi with j > i},

and notice that

W =

s+1
⋃

i=1

Wi.

Claim 1. Let U =
⋃h−1

i=1
Vi. For each a ∈ {1, . . . , s+ 1}, there is a sequence

of recolorings in Rs+2(G) such that

• each vertex of U is recolored O((2t)s−1) times,

• each vertex of Wa is recolored at most once,

• no vertex of V (G) \ (U ∪Wa) is recolored, and

• at the end of the sequence, no vertex of U ∪Wa has color s+ 2.

Let us first show how to use the claim to prove the lemma. Applying
the sequence described in Claim 1 for each a ∈ {1, . . . , s + 1}, we obtain
a coloring in which color s + 2 is not used in U ∪ Vh by O((s + 1)(2t)s−1)
recolorings. The smallest index h′ such that Vh′ contains a vertex with color
s + 2 has now increased; hence at most b ≤ t such repetitions are needed
to obtain a coloring in which color s + 2 is not used in F , so each vertex is
recolored O((s+ 1)2s−1ts) times and the lemma follows. It remains to prove
the claim.

Proof of Claim 1. Let F ∗ = F [U ∪Wa] and note that F ∗ has degree depth
(s′, t) for some s′ ∈ {0, . . . , s}. We are going to apply induction on s′. The
base case s′ = 0 is trivial (simply immediately recolor the vertices of Wa)
so we can assume that s ≥ s′ > 0 and that Claim 1 and hence, by the
observation following the statement of Claim 1, also the lemma holds for
each subgraph K of G and layered subgraph of K of degree depth (s′ − 1, t).

In the inductive step, we are in fact going to establish the claim for
the pair ((s′, t), s + 2), where the first term of the pair corresponds to the
degree depth of F ∗ and the second term to the number of colors, assuming
its validity for the pair ((s′ − 1, t), s + 1). Let uk, . . . , u1 be an ordering of
the vertices of U that is embedded in {V1, . . . , Vh−1}. We first try to recolor
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immediately, whenever possible, each vertex of U to color s+2 starting with
uk and moving forward towards u1. Let γ denote the resulting coloring, let
S = {γ(v) = s + 2 : v ∈ V (G)} and let H = G[U \ S].

Subclaim 1. H has degree depth (s′ − 1, t).

Proof of Subclaim. By our choice of h, each vertex u ∈ U ∩ Vp for some
p ∈ {1, . . . , h− 1} either satisfies γ(u) = s+ 2 or has a neighbor u′ ∈ Vq for
some q ∈ {p+1, . . . , t} such that γ(u′) = s+2. This implies the subclaim.

By the above subclaim, we can apply the induction hypothesis to the pair
((s′−1, t), s+1) with H and G\S playing the roles of F and G, respectively.
This gives a sequence of recolorings (that uses only colors 1, . . . , s+ 1) from
γH to some coloring ζH of H such that

• color a is not used in ζH,

• the number of recolorings per vertex of H is O(2s−2ts−1), and

• no vertex of G \ (S ∪H) is recolored.

Clearly, this sequence of recolorings vacuously translates to a sequence of
recolorings in G from α to coloring ζ satisfying ζ(v) = ζH(v) if v ∈ V (H)
and ζ(v) = γ(v) if v ∈ V (G)\V (H). From ζ , we can now immediately recolor
each vertex of Wa to color a. It remains to recolor each vertex of U to a color
distinct from s+2. To do so, we simply repeat the above steps with the roles
of a and s + 2 interchanged. This takes again O(2s−2ts−1) recolorings per
vertex of H . Hence each vertex of H is recolored in total O((2t)s−1) times.
This proves the claim and hence completes the proof of the lemma.

We can prove our final lemma, from which Theorem 1 follows easily.

Lemma 2. Let s ≥ 0 and t ≥ 1 be integers, and let G be a graph with n
vertices and degree depth (s, t). Then Rs+2(G) has diameter O(ns(2t)s).

Proof. As before, we proceed by induction on the pair ((s, t), s + 2), where
the first term corresponds to the degree depth of G and the second term to
the number of colors. The base case s = 0 is trivial, so we can assume that
s > 0 and that the lemma holds for the pair ((s− 1, t), s+ 1).

5



Let α and β be two (s + 2)-colorings of G, and let {V1, . . . , Vt} be an
s-degree partition of G. It suffices to show that we can recolor α to β by
O(s(2t)s) recolorings per vertex. By Lemma 1 with F = G, we can recolor
α to some (s+1)-coloring α1 of G and β to some (s+1)-coloring β1 of G by
O(s2sts) recolorings per vertex.

Let vn, . . . , v1 be an ordering of V (G) that is embedded in {V1, . . . , Vt}.
We recolor α1 and β1 to new colorings α2 and β2 of G by trying to recolor,
from α1 and β1, immediately whenever possible each vertex of G to color
s+ 2 starting with vn and moving forward towards v1. Let S = {v ∈ V (G) :
α2(v) = s+ 2(= β2(v))}. As before, the graph H = G− S has degree depth
(s− 1, t). So we can apply our induction hypothesis to recolor αH

2 to βH
2 by

O((s−1)(2t)s−1) recolorings per vertex using only colors 1, . . . , s+1 (as this
sequence of recolorings does not use color s + 2, we need not worry about
adjacencies between H and S). This completes the proof.

Proof of Theorem 1. Let H be any subgraph of G, and let h = |V (H)|. An
independent set I of H is said to be special if I is a (d−1)-independent set of
H and |I| ≥ ǫh/d2. It was shown in [5] that H contains a special independent
set. This means that there is a partition {I1, I2, . . . , Iℓ} of V (G) such that
I1 is a special independent set of G and, for i ∈ {2, . . . , ℓ}, Ii is a special

independent set of G \
(

⋃i−1

j=1
Ij

)

. Thus G has degree depth (d − 1, ℓ). As

ℓ = f(n) satisfies the recurrence

f(n) ≤ f
(

n−
ǫn

d2

)

+ 1,

it follows that ℓ = O(logn), by the master theorem. The theorem now follows
by Lemma 2 with t = log n and s = d− 1.

Similarly, we can slightly improve on the constant c in the aforementioned
main result from [1].

Corollary 1. Let k, n ≥ 1 be integers, and let G be a k-degenerate graph

with n vertices. Then Rk+2(G) has diameter O(2knk+1).

Proof. Noting that every k-degenerate graph with n vertices has degree depth
(k, n), the corollary immediately follows from Lemma 2.
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