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Graph functionality™

Bogdan Alecuf Aistis Atminas? Vadim Lozin®

Abstract

In the present paper, we introduce the notion of graph functionality, which gen-
eralises simultaneously several other graph parameters, such as degeneracy or clique-
width, in the sense that bounded degeneracy or bounded clique-width imply bounded
functionality. Moreover, we show that this generalisation is proper by revealing classes
of graphs of unbounded degeneracy and clique-width, where functionality is bounded by
a constant. We also prove that bounded functionality implies bounded VC-dimension,
i.e., graphs of bounded VC-dimension extend graphs of bounded functionality, and this
extension is also proper.

Keywords: Clique-width; Permutation graph; Hereditary class; Graph representation

1 Introduction

Let G = (V, E) be a simple graph, i.e., an undirected graph without loops and multiple
edges. We denote by A = Ag the adjacency matrix of G and by A(z,y) the element of this
matrix corresponding to vertices z,y € V, i.e., A(x,y) = 1 if z and y are adjacent, and
A(z,y) = 0 otherwise.

Let us now introduce the central notion studied in this paper:

Definition 1. We say that a vertex y € V' is a function of vertices z1, ...,z € V if there
exists a Boolean function f of k variables such that for any vertex z € V — {y, z1,..., 21},
we have A(y,z) = f(A(x1,2),...,A(xg, 2)). The functionality fun(y) of a vertex y is the
minimum k such that y is a function of k vertices.

In particular, the functionality of an isolated vertex is 0, and the same is true for a dom-
inating vertex, i.e., a vertex adjacent to all the other vertices in the graph. More generally,
the functionality of a vertex y does not exceed the number of its neighbours (the degree
of ) and the number of its non-neighbours. One more simple example of vertices of small
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functionality is given by twins, i.e., vertices = and y that have the same set of neighbours
different from = and y. Twins are functions of each other, and their functionality is (at
most) 1. The same is true for anti-twins, i.e., vertices whose neighbourhoods complement
each other.

From a practical point of view, representing vertex’s adjacency as a function can be of
interest in the area of graph learning and graph mining, since it makes graphs amenable
to the techniques of Logical Analysis of Data [13], which is based on Boolean methods
for pattern detection. This approach provides a tool for revealing dependencies that are
hidden in the structure of the graph and for identifying alliances that are more complex
than “friends” or “enemies”.

From a theoretical point of view, the importance of this approach is due to the fact that
it defines a new complexity measure, which we call graph functionality, and that we define
as follows:

Definition 2. The functionality fun(G) of a graph G is

max min fun(y),
o in ()

where the maximum is taken over all induced subgraphs H of G.

Functionality is defined by analogy with degeneracy, which it generalises: if we replace
fun(y) with degree(y) in the above definition, we obtain the degeneracy of G. Taking the
maximum over induced subgraphs ensures that functionality never increases when taking
induced subgraphs.

Similarly to many other graph parameters, the notion of graph functionality becomes
valuable when its value is small, i.e., is bounded by a constant independent of the size of
the graph. In particular, graphs of small functionality admit compact representation, as
was shown in [2]. That paper does not formally define the notion of graph functionality,
but the results proved there imply that graphs of bounded functionality can be represented
by binary words of length O(nlog,n). The same is true for various other parameters, such
as vertex degree, degeneracy, arboricity, tree-width or clique-width. In this paper, we show
that the notion of graph functionality provides a common generalisation of all of them in
the sense that bounded vertex degree, degeneracy, arboricity, tree-width or clique-width
implies bounded functionality. We prove this in Section 2. Moreover, in the same section
we show that this generalisation is proper by revealing classes of graphs where functionality
is bounded but the other parameters are not. This includes permutation graphs, line graphs
and, more generally, the intersection graphs of 3-uniform hypergraphs. On the other hand,
in Section 3 we show that bounded functionality implies bounded VC-dimension, i.e., graphs
of bounded VC-dimension extend graphs of bounded functionality, and this extension also
is proper.

Throughout the paper, we consider only simple graphs and use standard terminology
and notation. In particular, for a graph G, we denote by V(G) and E(G) the vertex set and
the edge set of G, respectively. The neighbourhood N (v) of a vertex v € V(G) is the set



of vertices of G adjacent to v, and the degree of v is |N(v)|. A vertex of degree 0 is called
isolated. The closed neighbourhood of v is N[v] = {v} U N(v). A chordless cycle of length
n is denoted C,. A graph H is an induced subgraph of a graph G if H can be obtained
from G by vertex deletions. A class X of graphs is hereditary if it is closed under taking
induced subgraphs. We also define a parameter to be hereditary if it never increases when
taking induced subgraphs. Note that all parameters in this paper are hereditary, including
functionality, as noted earlier.

2 Graphs of small functionality

From the discussion in the introduction, it follows that graphs of bounded functionality
extend graphs of bounded vertex degree. More generally, they extend graphs of bounded
degeneracy, where the degeneracy of G is the minimum k such that every induced subgraph
of G has a vertex of degree at most k. A notion related to degeneracy is that of arboricity,
which is the minimum number of forests into which the edges of G can be partitioned. The
degeneracy of G is always between the arboricity and twice the arboricity of G and hence
graphs of bounded functionality extend graphs of bounded arboricity too.

One more important graph parameter is cliqgue-width. Many algorithmic problems
that are generally NP-hard become polynomial-time solvable when restricted to graphs
of bounded clique-width [7]. Clique-width is a relatively new notion and it generalises
another important graph parameter, tree-width, studied in the literature for decades.
Clique-width is stronger than tree-width in the sense that graphs of bounded tree-width
have bounded clique-width. In Section 2.1, we show that functionality is stronger than
clique-width by proving that graphs of bounded clique-width have bounded functionality.
Then in Sections 2.3 and 2.4, we identify classes of graphs where functionality is bounded,
but degeneracy and clique-width are not.

2.1 Graphs of bounded clique-width

The notion of clique-width of a graph was introduced in [6]. The clique-width of a graph
G is denoted cwd(G) and is defined as the minimum number of labels needed to construct
G by means of the following four graph operations:

e creation of a new vertex v with label ¢ (denoted i(v)),

e disjoint union of two labelled graphs G and H (denoted G & H),
e connecting vertices with specified labels ¢ and j (denoted 7; ;) and
e renaming label i to label j (denoted p;—,;).

Every graph can be defined by an algebraic expression using the four operations above.
This expression is called a k-expression if it uses k different labels. For instance, the cycle Cs
on vertices a, b, c,d, e (listed along the cycle) can be defined by the following 4-expression:
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Alternatively, any algebraic expression defining G can be represented as a rooted bi-
nary tree, whose leaves correspond to the operations of vertex creation, the internal nodes
correspond to the @-operations, and the root is associated with G. The operations 1 and
p are assigned to the respective edges of the tree. Figure 1 shows the tree representing the
above expression defining a Cs.
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Figure 1: The tree representing the expression defining a Cj

Among various examples of graphs of bounded clique-width we mention distance-heredi-
tary graphs. These are graphs of clique-width at most 3 [9]. Every graph in this class can
be constructed from a single vertex by successively adding either a pendant vertex or a twin
(true or false) [5]. From this characterization we immediately conclude that the functionality
of distance-hereditary graphs is at most one. More generally, in the next theorem we show
that functionality is bounded for all classes of graphs of bounded clique-width.

Theorem 1. For any graph G, fun(G) < 2cwd(G) — 1.

Proof. Let G be a graph of clique-width k£ and let T" be a rooted tree corresponding to a
k-expression that describes G. For a node v of the rooted tree T, let T}, be a subtree of
T induced by the node v and all its descendants. We can choose v in such a way that T,
has more than k leaves, and neither of the two children of v has this property (if no such
v exists, we are done, since G has at most k vertices). Since T, has more than k leaves,
at least two of them, say x and y, have the same label at node v. On the other hand, T,
has at most 2k leaves by the choice of v. Therefore, G contains at most 2k — 2 vertices
that distinguish z and y, since z and y are not distinguished outside of T,. As a result, the
functionality of both x and y is at most 2k — 1.

It is known (see, e.g., [8]) that the clique-width of an induced subgraph of G cannot
exceed the clique-width of G. Therefore, every induced subgraph of G has a vertex of
functionality at most 2k — 1. Thus, the functionality of G is at most 2k — 1. O

In the proof of Theorem 1, the bound on functionality is achieved in a very specific way:
in any graph of bounded clique width, there must exist two vertices whose neighbourhoods
have small symmetric difference. In the next section, we formalise this idea by introducing
a parameter which is intermediate between clique-width and functionality.

2.2 Graphs of bounded symmetric difference

Given a graph G and a pair of vertices z,y in G, let us denote by sd(z,y) the number of
vertices different from x and y that are adjacent to exactly one of x and y. In other words,



if x and y are non-adjacent, then sd(x,y) is the size of the symmetric difference of N(x)
and N(y). We will refer to sd(z,y) as the size of the symmetric difference even if x and y
are adjacent. Also, we write

sd(G) = m}z}xx’yrél‘l/r(lH) sd(z,y),
where the maximum is taken over all induced subgraphs H of G. With some abuse of
terminology we call sd(G) the symmetric difference of G.

Implicitly, this parameter was used in the proof of Theorem 1, which shows that bounded
clique-width implies bounded symmetric difference. We also observed in the proof that
bounded symmetric difference implies bounded functionality. Let us state both of these
facts in our new terminology.

Theorem 2. For any graph G, sd(G) < 2cwd(G) — 2.
Proof. This follows immediately from the proof of Theorem 1. O
Theorem 3. For any graph G, fun(G) < sd(G) + 1.

Below, we show that both implications are proper. In particular, in the rest of this
section we describe a class of graphs of bounded symmetric difference and unbounded clique-
width. Also, in Sections 2.3 and 2.4 we describe classes of graphs of bounded functionality
and unbounded symmetric difference.

Unit interval graphs have bounded symmetric difference

A unit interval graph is the intersection graph of intervals of the same length on the real
line. In this class clique-width is unbounded [9], and so is degeneracy. We now prove that
symmetric difference and hence functionality of unit interval graphs is bounded. This shows,
in particular, that bounded symmetric difference does not imply bounded clique-width.

Theorem 4. The symmetric difference of unit interval graphs is at most 1 and functionality
s at most 2.

Proof. Let G be a unit interval graph with n vertices and assume without loss of generality
that G has no isolated vertices (by adding isolated vertices to a graph we increase neither its
functionality nor symmetric difference). Take a unit interval representation for G = (V, E)
with the interval endpoints all distinct. We label the vertices vy,...,v, in the order in
which they appear on the real line (from left to right), and denote the endpoints of interval
I; corresponding to vertex v; by a; < b;. We will bound

n—1
S = Z Sd(UZ', Ui+1)-
=1

Note that any neighbour of v; which is not a neighbour of v;+1 needs to have its right
endpoint between a; and a;11. Similarly, any neighbour of v;11 but not of v; needs to have



its left endpoint between b; and b; 1. In other words, sd(v;, v;4+1) is bounded above by the
number of endpoints in (a;, ai+1) U (bi, bit1) (we say bounded above and not equal, since
it might happen that b; lies between a; and a;y1, without contributing to the symmetric
difference).

The key is now to note that any endpoint can be counted at most once in the whole
sum S, since all (a;,a;4+1) are disjoint (and the same applies to the (b;,b;+1)), and the a’s
can only appear between b’s (and vice-versa). In fact, a; and b, are never counted in S,
and if ao is between b; and by, then v1 must be isolated, so ao is not counted either. The
sum is thus at most 2n — 3. Since it has n — 1 terms, one of the terms, say sd(vy, vi+1),
must be at most 1. Therefore, the functionality of both v; and v¢11 is at most 2.

Since the class of unit interval graphs is hereditary, we conclude that the symmetric
difference of any unit interval graph is at most 1 and the functionality is at most 2. O

We remark that 2 is the best bound on functionality we can obtain for this class, since
we can easily construct unit interval graphs where each vertex has degree and co-degree
greater than 1, and with no twins or anti-twins.

2.3 Permutation graphs

Let m be a permutation of the elements in {1,2,...,n}. The permutation graph of 7 is a
graph with vertex set {1,2,...,n} in which two vertices ¢ and j are adjacent if and only if
(i—7)(7(i)—7(j)) < 0. Clique-width is known to be unbounded in the class of permutation
graphs [9], and so is degeneracy.

For the purpose of this section, we associate a permutation 7 with its plot, i.e., the
set of points (i,7(7)) in the plane. We label those points by 7 (i) and define the geometric
neighbourhood of a point k to be the union of two regions in the plane: the one above and
to its left, and the one below and to its right. Then it is not difficult to see that the set of
points of the permutation lying in the geometric neighbourhood of k is precisely the set of
neighbours of vertex k in the permutation graph of 7.

Figure 2: Geometric representation of m = 614253, with the neighbourhood of 4 shaded

Theorem 5. The functionality of permutation graphs is at most 8.



Proof. Since the class of permutation graphs is hereditary, it suffices to show that every
permutation graph contains a vertex of functionality at most 8. Let G be a permutation
graph corresponding to a permutation w. The proof will be given in two steps: first, we
show that if there is a vertex with a certain property in G (yet to be specified), then this
vertex is a function of 4 other vertices. Second, we show how to find vertices that are “close
enough” to having that property.

Step 1: Consider the plot of 7. Among any 3 horizontally consecutive points, one is
vertically between the two others. We call such a point vertical middle (in the permutation
from Figure 2, the vertical middle points are 4, 2 and 3). Similarly, among any 3 verti-
cally consecutive points, one is horizontally between the two others, and we call this point
horizontal middle (in Figure 2, the horizontally middle points are 2, 5 and 4).

Now let us suppose that 7 has a point x that is simultaneously a horizontal and a
vertical middle point. Then z is part of a triple z, b, ¢ (not necessarily in that order) of
horizontally consecutive points, where b is the bottom point (the lowest in the triple) and ¢
is the top point (the highest in the triple). Also, x is part of a triple x, [, r (not necessarily
in that order) of vertically consecutive points, where [ is the leftmost and r is the rightmost
point in the triple (see Figure 3a for an illustration).

In general, x can be at any of the 9 intersection points of pairs of 3 consecutive vertical
and horizontal lines, i.e., x is somewhere in X (see Figure 3b). We also have l € L, r € R,
t € T and b € B for the surrounding points (see Figure 3b). The important thing to note
is that, since the points are consecutive, those are the only points of the permutation lying
in the shaded area X UL U RUT U B. Any point different from x,[,r,t,b lies in one of @1,

Q2, Q3 or Q4.

R Q2 T Q1
t
l o I X R
Q3 B Q4
]
b
(a) The geometric neighbourhood corresponding (b) Partition of the plot

to (N(r)NN(b)) U(N()NN())

Figure 3: A middle point x and its four surrounding points

It is not difficult to see that the geometric neighbourhood corresponding to (N(r) N
N(D)U(N()NN(t)) (see Figure 3a) will always contain Q2 and @4, and will never intersect



Q1 or Q3. Therefore, the function that describes how = depends on {l,r,t,b} can be written
as follows:
f(@r, e, 21, 20) = 2y V 2124,

where x,., xp, 17, T4 are Boolean variables corresponding to points 7, b, [, ¢, respectively, and
the Boolean AND is simply denoted by juxtaposition of the variables. In other words, a
vertex y & {x,l,r t,b} is adjacent to x if and only if

f(A(y,r), A(y,b), A(y,1), A(y, 1)) = 1.

Step 2: Let us relax the simultaneous middle point condition to the following one:
amongst every 5 vertically (respectively horizontally) consecutive points, call the middle
three weak horizontal (respectively wvertical) middle points. For instance, in Figure 2, the
weak horizontal middle points are 4, 2 and 5 and the weak vertical ones are 4, 2, 5 and 3.
Note that if the number of points is divisible by 5, at least % of them are weak vertical and
at least % of them are weak horizontal middle points. Using this observation it is not hard
to deduce that if there are at least 13 points, then more than half of them are weak vertical
and more than half of them are weak horizontal middle points. Therefore, there must exist
a point x that is simultaneously both. We can deal with this case only, as the functionality
of any graph on at most 12 vertices is at most 6, which is due to the fact that every vertex
has at most 6 neighbours or non-neighbours. If x is simultaneously a weak vertical and a
weak horizontal middle point, then there must exist quintuples I, x, m1, mo, r and ¢, x, ms,
my, b (not necessarily in that order), where z is a simultaneous weak middle point in both
directions, while m1, mg, mz and my are the other weak middle points in their respective
quintuples. By removing mi, meo, ms and my4 from the graph, we find ourselves in the
configuration of Step 1 and conclude that x is a function of {l,,t,b} in the reduced graph.
Therefore, in the original graph z is a function of {l,r,t,b, m1, ma, m3, m4}, concluding the
proof. ]

Permutation graphs have unbounded symmetric difference

In this section, we show that symmetric difference in the class of permutation graphs is
unbounded. Together with Theorem 5 this proves that bounded functionality does not
imply bounded symmetric difference, and together with Theorem 1 this gives an alternative
proof of the known fact that permutation graphs have unbounded clique-width.

Theorem 6. For any t € N, there is a permutation graph G with sd(G) > t.

Proof. Given two vertices x1 and xo of a permutation graph G, the symmetric difference of
their neighbourhoods can be represented geometrically as an area in the plane (see Figure 4).
More precisely, a vertex different from x1 and zg lies in the symmetric difference of their
neighbourhoods if and only if the corresponding point of the permutation lies in the shaded
area.

In order to prove the theorem, it suffices, for each ¢t € N, to exhibit a set S; of points
in the plane (with no two on the same vertical or horizontal line) such that for any pair



Z2

Figure 4: Geometric symmetric difference of two points x; and 9

x1, X2 € Sy, there are at least t other points of S; lying in the geometric symmetric difference
of 1 and x2. Such a construction immediately gives rise to a permutation and thus a
permutation graph where the symmetric difference of the neighbourhoods of any pair of
vertices is at least .

We construct sets S; in the following way (see Figure 5 for an example):

e start with all the points with integer coordinates between 0 and ¢ inclusive;

e apply to those points the counterclockwise rotation about the origin sending the vector
(1,0) to the unit vector with direction (¢ + 1,1) (applying this rotation ensures none
of the points share a horizontal or a vertical line).

Figure 5: The set Sg

To see that these sets have indeed the desired property, let x1,z9 € S;. For simplicity,
we will use the coordinates of the points before the rotation. Suppose z; = (aj,b;) and
x9 = (ag,bz). There are four possible cases (after switching z1 and z9 if necessary):

e If a; = ay and by < be, then the ¢ points (k,b2), (I,b1) with £ < a1 < [ are in the
symmetric difference.



e Similarly, if b = be and a1 < ag, then the ¢ points (a1, k), (ag,l) with k < by <[ are
in the symmetric difference.

e If a1 < ao and by < by, the following points all lie in the symmetric difference of x
and xo:
1) (
2) (
3) (
) (

4) Points (a2, k) with by < k < be (in the right region).

Points with k£ < b; (in the bottom region).

ag, )
) with by < k < by (in the left region).
)
)

Gy

Points (a,

Points (ag, k) with by < k (in the top region).

(
(
(
(

In particular, (1) and (3) account for at least by + ¢ — ba points, while (2) and (4)
account for 2(by — b1) others. We conclude that in total, at least ¢ + (ba — b1) > ¢
points lie in the symmetric difference of z; and x».

e If a1 < ao and by > by, the following points all lie in the symmetric difference of x
and xo:

(1)

(2)

(3)

(4)

4) Points (k,b2) with ag < k (in the right region).

Points (k,bs) with a; <k < az (in the bottom region).
Points (k,b1) with k < ay (in the left region).

Points (k,b1) with a1 < k < ag (in the top region).

(

Summing up, we find again at least ¢ points in the symmetric difference of z; and xs.

O

2.4 Intersection graphs

The line graph of a graph G is the intersection graph of its edges. It is known (see, e.g., [11])
that clique-width is unbounded in the class of line graphs. The same is true for degeneracy,
since line graphs contain arbitrarily large cliques.

Theorem 7. The functionality of line graphs is at most 6.

Proof. Let G be a graph and H be the line graph of G. Since the class of line graphs is
hereditary, it suffices to prove that H has a vertex of functionality at most 6. We will prove
a stronger result showing that every vertex of H has functionality at most 6.

Let z be a vertex in H, i.e., an edge in G. We denote the two endpoints of this edge
in G by a and b. Assume first that both the degree of a and the degree of b are at least 4.
Let Y = {y1,y2,y3} be a set of any three edges of G different from z that are incident to a,
and let Z = {z1, 22, 23} be a set of any three edges of G different from x that are incident
to b.

We claim that a vertex v € {x}UY U Z is adjacent to x in H if and only if it is adjacent
to every vertex in Y or to every vertex in Z. Indeed, if v is adjacent to = in H, then the
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edge v intersects the edge x in G. If the intersection consists of a, then v is adjacent to
every vertex in Y in the graph H, and if the intersection consists of b, then v is adjacent to
every vertex in Z in the graph H. Conversely, let v be adjacent to every vertex in Y, then
v must intersect the edges y1,y2,y3 in G at vertex a, in which case v is adjacent to x in H.
Similarly, if v is adjacent to every vertex in Z, then v intersects the edges z1, 292, z3 in G at
vertex b and hence v is adjacent to x in H.

Therefore, in the case when both a and b have degree at least 4 in G, the function that
describes how x depends on {y1,y2,ys3, 21, 22, 23} in the graph H can be written as follows:
F(W1, Y2, Y3, 21, 22, 23) = Y112y3 V 212223.

If the degree of a is less than 4, we include in Y all the edges of G distinct from x
which are incident to a (if there are any) and remove the term y;ys2ys from the function.
Similarly, if the degree of b is less than 4, we include in Z all the edges of G distinct from z
which are incident to b (if there are any) and remove the term z;z22z3 from the function. If
both terms have been removed, the function is defined to be identically 0, i.e., no vertices
are adjacent to x in H, except for those in Y U Z. O

Having proved that the intersection graph of edges, i.e., the intersection graph of a family
of 2-subsets, has bounded functionality, it is natural to ask whether the intersection graph
of a family of k-subsets has bounded functionality for k£ > 2. This question is substantially
harder and we answer it only for k = 3.

Line graphs of 3-uniform hypergraphs have bounded functionality

We will denote a 3-uniform hypergraph with the ground set V' by (V,S), where S is a set
of 3-element subsets of V' (the hyperedges). We will use variables s, s, 1, s2, ... to denote
hyperedges, i.e., the elements of S, and variables v, vy, vo, ... to denote the elements of V.
We will say that two hyperedges s and s’ intersect if sNs’ # (). We start with a preparatory
result.

Lemma 1. Let (V,S) be a S-uniform hypergraph and v € V. Then one of the following
holds:

e There are 3 hyperedges s1, s2, 53 such that s; Ns; = {v} for all1 <i < j <3.

o There are 4 vertices vi,va,vs,vq Such that each hyperedge s € S that contains v also
contains at least one of the vy, v, v3 or v4.

Proof. Consider the set & = {s\{v} : s € S,v € s}. This is the set of pairs of vertices
that are obtained by removing vertex v from the hyperedges that contain v. Therefore,
(V,€) can be viewed as a graph. The lemma now says that either this graph contains a
matching with 3 edges (as a subgraph) or it contains 4 vertices that any edge is adjacent to
(vertex cover of size 4). The proof of this is now easy. One can take a maximal matching
M, and if it has at least 3 edges, then we are done. In the other case, when the maximal
matching M has at most two edges, take v;’s to be the vertices of the matching. If needed,
add arbitrary vertices to obtain a set of 4 vertices. By maximality of the matching, every
hyperedge contains at least one of the vertices selected, hence we are done as well. O
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The following two easy observations will be needed in the course of the proof.

Observation 1. Let (V,S) be a 3-uniform hypergraph. Suppose hyperedges si,s2,s3 € S
pairwise intersect at exactly one vertex, say {v} = s1Ns2 = s2Ns3 = s3MNs;. In other words,
s1 = {v,v1,v2}, s2 = {v,v3,v4}, 51 = {v,v5, 06}, for some distinct vertices vi,vo,...,vs.
Let F' = {(vi,vj,vx) : 1 <37 <2,3<j<4,5<k <6} be the set of 8 hyperedges that
intersect each of si,s9,s3 in exactly one vertex that is different from v. Then one can
easily determine whether a given edge s’ € S\ F’ contains vertex v or not by looking at the
intersection of s’ with s1, s2, s3. Indeed, s’ contains v if and only if s’ intersects each of sq,
S9 and s3.

Observation 2. Let (V,S) be a 3-uniform hypergraph. Suppose hyperedges si, s2,53 € S
pairwise intersect at exactly 2 vertices. In other words, s; = {v1,v2,v3}, s2 = {v1,v2,v4}
and s3 = {v1,v2,v5}, for some distinct vertices vy, v9,v3,v4,v5 € V. Let F’ be the set
containing the hyperedge {vs, v4,v5}. Then one can easily determine whether a given edge
s’ € S\F’ contains at least one of the vertices vy, vy or not by looking at the intersection of
s’ with sq, s9, s3. Indeed, s’ contains v1, vo or both if and only if s’ intersects each of s1, s9
and ss3.

Definition 3. Let (V,S) be a 3-uniform hypergraph and let v1,v2 € V. We will call the
pair {vy,ve} thick if there are at least 32 hyperedges in S that contain {vq,v2}.

We will split our analysis into two cases. In the first lemma we will show that the inter-
section graphs of 3-uniform hypergraphs without thick pairs have bounded functionality.
In the second lemma we will provide a structural theorem about hypergraphs containing
thick pairs, from which a bounded functionality result follows easily as well. We note that
in the case without thick pairs, we provide a bound on functionality for any vertex of the
intersection graph. Meanwhile, in the case of hypergraphs with thick pairs, for any given
bound M one can find a hypergraph and a hyperedge such that corresponding vertex in the
intersection graph has functionality at least M. Thus a structural result is needed in this
case, to show that we can find a particular hyperedge in any given hypergraph with thick
pairs, such that the functionality of the vertex corresponding to the hyperedge is bounded
by a constant, that does not depend on the hypergraph.

We start with the case when there are no thick pairs.

Lemma 2. Let (V,S) be a S-uniform hypergraph without thick pairs. Then for any hy-
peredge s € S there is a set of hyperedges F' C S\{s} of size |F| < 462 such that for any
s’ € S\(FU{s}), one can determine whether s’ intersects s by looking at the intersections
of s with the hyperedges of F.

Proof. Let s be any hyperedge in the hypergraph. Since we assume that there are no thick
pairs, there are at most 30 x 3 hyperedges in (V,S) that intersect s in exactly 2 vertices.
We denote this set of at most 90 hyperedges by Fi. Let v € s, and consider the hyperedges
in (V,S\(F1 U {s})) that contain vertex v. By Lemma 1 we can distinguish between the
following two cases.
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e Assume there exist 3 hyperedges s, s2, s3 in (V,S\(F1 U{s})) that pairwise intersect
at vertex v only. In this case, we denote by Fb the set of at most 11 hyperedges
consisting of s1, s9, s3 and all the hyperedges in & that have exactly one vertex in
each of s;\{v}, s2\{v} and s3\{v}. According to Observation 1 we can determine
whether a given hyperedge s’ € S\ (F; U F, U {s}) contains v or not by looking at the
intersection of s’ with s1, s2, s3.

e Suppose now that there exists a set of vertices {v1,v2,v3,v4} such that every hyper-
edge in (V,S\(F1 U {s})) that contains v also contains at least one of vy, wvs,v3 or
vg4. In this case, we denote by Fh the set of all the hyperedges that contain at least
one of the pairs {v,v1}, {v,v2}, {v,v3} or {v,v4}. By our assumption on no thick
pairs, the set Fb contains at most 31 x 4 = 124 edges. Observe that no hyperedge
s' € S\(F1 U Fy U {s}) intersects v.

By analogy with building the set F5 for the vertex v, we build two more sets F3 and Fj
for the other two vertices contained in the hyperedge s, i.e., for the vertices in s\{v}.
Now it is easy to see that the set F' = Fy U Fy U F3 U Fy allows us to determine whether
a given hyperedge s’ € S\(F U {s}) intersects s or not. Note that F has size at most
90 + 3 x 124 = 462. O

In our next result, we will show that a 3-uniform hypergraph with a thick pair contains
one of the structures presented in Figure 6, which we call “fly”, “windmill”, and “broken
windmill” (the hyperedges are represented by triangles).

% V1 bounded degree

(a) A “fly” ) A “windmill” A “broken windmill”
Figure 6: Substructures that appear in a 3-uniform hypergraph with a thick pair

To prove the result about these three structures, we need the following observation.

Observation 3. Let (V,S) be a 3-uniform hypergraph and let v € V' be a vertex that does
not belong to any thick pair. Then one of the following holds:

e FEither there are 3 hyperedges s1, s2, s3 that pairwise intersect only at vertex v.
e Or vertex v is contained in at most 124 hyperedges of (V,S).
Proof. From Lemma 1, it follows that either there are 3 hyperedges s1, s9, s3 that pairwise

intersect only at vertex v, or there are 4 vertices v1, v9, v3 and vy such that every hyperedge
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that contains v also contains at least one of vy, v9,v3 or v4. Note that in the second case,
since neither of {v, v}, {v,v2}, {v,v3} and {v,v4} is thick, there are at most 31 hyperedges
containing one of these pairs. Therefore, there are at most 31 x 4 = 124 hyperedges that
contain v. This finishes the proof of the observation. O

Lemma 3. Let (V,S) be a 3-uniform hypergraph that contains a thick pair. Then it contains
one of the following:

o A “fly”, which is a hyperedge s = {v1,va,v3} together with hyperedges si,S2, 3, S4,
S5, S¢ such that s1,s2,s3 intersect s at {vi,ve} and sy, ss, s¢ intersect s at {vy,vs}.

o A “windmill”, which is a hyperedge s = {v1,va,v3} together with hyperedges s1, s2, S3,
S4, S5, S¢ such that s1, s2,s3 intersect s at {va,v3} and such that the pairwise inter-
section of sy, S5, S¢ 1S vertex vy.

o A “broken windmill”, which is a hyperedge s = {v1,va,v3} together with hyperedges
1, 82,83 such that s1, 2,83 intersect s at {ve,vs} and there are only at most 124
hyperedges in (V,S\{s}) that contain vertex v;.

Proof. Let us call a hyperedge s = {v1,va,v3} € S thick if it contains a thick pair, i.e. if
at least one of {vy,va}, {va,v3} and {v1,v3} is a thick pair. Let E denote the set of all
thick pairs, T' C S denote the set of all thick hyperedges, and W C V denote the set of all
vertices belonging to thick hyperedges.

First of all, we note that if there is a thick hyperedge s = {v1,v2,v3} € S containing
two thick pairs {v1,ve} and {v1,v3}, then we can choose three hyperedges, different from
s containing {v1,v2} and three hyperedges different from s containing {v1,v3}, and hence
we obtain a ”fly”. We also note that each vertex of W belongs to some thick pair, or else a
“windmill” or a “broken windmill” appears. Indeed, assume s = {vy,va,v3} is a hyperedge
with a thick pair {vg,v3} and v; does not belong to any thick pair. Then, by Observation 3,
either there are at most 124 hyperedges containing vertex vy in (V,S\{s}) or there are three
hyperedges in (V,S\{s}) that pairwise intersect only at vertex v;. Together with any three
hyperedges that contain the vertices of the thick pair {vy, v3} and are different from s, this
gives us either a “windmill” or a “broken windmill”.

Thus, from now onwards, let us assume that every vertex of W belongs to a thick pair
and that each thick hyperedge contains exactly one thick pair, as otherwise we are done
by the previous paragraph. As any thick pair belongs to at least 32 thick hyperedges, the
inequality |T'| > 32|E| follows. Further, as each thick pair contains exactly two vertices of
W and each vertex of W is contained in some thick pair, we have |W| < 2|E|. We conclude
that |T| > 32|E| > 16|W|. Now, as each hyperedge s € T contains exactly one thick pair,
we can define a function f: T — W sending s € T to v € W such that s\{v} is the thick
pair contained in s. As |T'| > 16|WW|, by pigeonhole principle, there will be a vertex v € W
such that |f~!(v)| > 16. In other words, some vertex v forms a hyperedge in T' with 16
different thick pairs eq,ea,..., €16, i.e., {v} Ue; € T foralli € 1,2,...,16.

We finish the proof by considering whether some four of these pairs ey, es, ..., e16 share
a vertex in common or not. Suppose first that four of these pairs, say e, eo, €3, 4, have a
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vertex w in common. Denote these pairs by e; = {w, 2z}, ea = {w,u1}, e3 = {w,u2} and
eq = {w,us}. Then s = {v,w, z}, with s = {v,w,u1}, so = {v,w,u2}, s3 = {v,w,us},
together with any three hyperedges that contain the thick pair e; = {w, z} and are different
from s, gives us a “fly”. Alternatively, assume that no four pairs of e1,es, ..., e share a
vertex in common. Then a graph G with the edges set {eq,ea,...,e16} has degree at most
3 and hence it must contain a matching of size at least 4. Indeed, by observing that each
edge of G is incident to at most 4 other edges, one can pick any edge and remove all incident
edges repeatedly at least 4 times to obtain the required matching of size 4. Now, as each
of these four edges is a thick pair and forms a hyperedge with v, we can easily see that a
“windmill” appears. In both cases we obtain a desired structure, hence we are done. ]

Corollary 1. Let (V,S) be a 3-uniform hypergraph that contains a thick pair. Then there
is a hyperedge s € S and a set of hyperedges F' C S\{s} of size |F'| < 128 such that for any
s’ € S\(F U{s}), one can determine whether s" intersects s by looking at the intersections
of s with the hyperedges of F'.

Proof. We use the notation of the statement of Lemma 3. Let s be a hyperedge given by
Lemma 3 belonging either to a “fly” or to a “windmill” or to a “broken windmill”.

If s belongs to a “fly”, then we can take F' to consist of 6 hyperedges si, so,..., Sg
together with 2 further possible hyperedges on the wings of the fly (if the hypergraph
contains it) on vertices (s1 U so U s3)\{v1,v2} and (s4 U s5 U sg)\{v1,v3}. It now follows
from Observation 2 that intersecting any hyperedge s’ € S\(F U s), with s1,s2 and s3 one
can determine whether s’ contains either vy or ve. Similarly, intersecting with sy, s5, sg,
determines whether s’ contains either vy or v3. Hence, by looking at the intersection of the
edges of F' with s’ we can determine whether s’ intersects s or not.

If s belongs to a “windmill”, we can take F' to consist of 6 hyperedges si, So, ..., Sg
together with one possible hyperedge on (s1 U so U s3)\{v2,v3} and 8 possible hyperedges
on (sq4 U ss U sg)\{v1} that have one vertex in each wing of the “windmill”. By Observa-
tion 2 intersection of s’ with s1, s2, s3 determines whether s’ contains either vs or v3, while
Observation 1 allows us to determine whether s’ contains v by looking at the intersection
of s’ with s4, s5 and sg. Thus, again we can determine whether s’ intersects s.

If s belongs to a “broken windmill”, we can take F' to consist of all the hyperedges
that contain vertex vy, of which there are at most 124, also with s1, s9, s3 and one further
possible hyperedge on the set (s1 U sg U s3)\{va,v3}. Now F' contains at most 128 edges
and it is clear by Observation 2 that this set determines whether s’ intersects s or not. [

From Lemma 2 and Corollary 1 we deduce our main result of this section.

Theorem 8. Intersection graphs of 3-uniform hypergraphs have functionality bounded by
462.
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3 Graphs of large functionality

Knowing what is good without knowing what is bad is just half-knowledge. Therefore, in
this section we turn to graphs of large functionality.

When we talk about graphs of large functionality we assume that we deal with an infinite
family X of graphs, because in any finite collection of graphs functionality is bounded
by a constant. Moreover, we can further assume that X is hereditary. Indeed, if X is
not hereditary, we can extend it to a hereditary class by adding all induced subgraphs
of graphs in X, and this extension has (un)bounded functionality if and only if X has,
because functionality is hereditary. Any hereditary class of graphs of bounded functionality
has 20(n198:7) Jahelled graphs with n vertices, since graphs of bounded functionality can
be represented by binary words of length O(nlogyn) [2]. In the terminology of [4], these
are classes with (at most) factorial speed of growth, or simply (at most) factorial classes.
Therefore, in every superfactorial class functionality is unbounded. This is the case, for
instance, for bipartite, co-bipartite and split graphs, since each of these classes contains at
least 27°/4 labelled graphs with n vertices. This fact allows us to establish a relationship
between functionality and yet another important graph parameter known as VC-dimension,
which is of use in statistical learning theory.

A set system (X, .S) consists of a set X and a family S of subsets of X. A subset A C X
is shattered if for every subset B C A there is a set C € S such that B = AN C. The
VC-dimension of (X, S) is the cardinality of a largest shattered subset of X.

The VC-dimension of a graph G = (V, E) was defined in [3] as the VC-dimension of
the set system (V,.S), where S the family of closed neighbourhoods of vertices of G, i.e.,
S ={N[v] : veV(G)}. We denote the VC-dimension of G by vc(G).

Theorem 9. There exists a function f such that for any graph G, ve(G) < f(fun(Q@)).

Proof. Fix a k and consider the class X of all graphs of functionality at most k. Clearly,
X} is hereditary. Assume X} contains graphs of arbitrarily large VC-dimension and let
G1,Go, ... be an infinite sequence of graphs from X} with strictly increasing values of the
VC-dimension. Let Y be the hereditary class containing all these graphs and all their
induced subgraphs. Then Y is a hereditary subclass of X} with unbounded VC-dimension.
It is was shown in [14] that the only minimal hereditary classes of graph of unbounded
VC-dimension are bipartite, co-bipartite and split graphs. But then Y and hence X}
contains one of these three classes, which is a contradiction to the fact that functionality is
unbounded in these classes. Therefore, there is a constant f(k) bounding the VC-dimension
of graphs in Xj, which proves the result. O

Since large VC-dimension implies large functionality, it would be natural to construct
graphs of large functionality through constructing graphs of large VC-dimension. The latter
is an easy task. Indeed, consider the bipartite graph D,, = (A, B, F) with two parts |A| =n
and |B| = 2". For each subset C' C A we create a vertex in B whose neighbourhood coincide
with C. Clearly, the VC-dimension of D,, is n and hence with n growing the functionality
of D,, grows as well.
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However, this example is not very interesting in the sense that D,, contains vertices of
low functionality (of low degree) and hence graphs of large functionality are hidden in D,,
as proper induced subgraphs. A much more interesting task is constructing graphs where
all vertices have large functionality. In what follows, we show that this is the case for
hypercubes.

Let V,, = {0,1}" be the set of binary sequences of length n and let v,w € V,,. The
Hamming distance d(v,w) between v and w is the number of positions in which the two
sequences differ. A hypercube @y, is the graph with vertex set V,, = {0,1}", in which two
vertices are adjacent if and only if the Hamming distance between them equals 1.

Theorem 10. Functionality of the hypercube @y, is at least (n —1)/3.

Proof. By symmetry, it suffices to show that the vertex v = 00...0 € V,, has functionality
at least (n — 1)/3. Let v be a function of vertices in a set S C V,\{v}. To provide a
lower bound on the size of S, and hence a lower bound on the functionality of v, for each
i = 1,2,...,n consider the set S; = {w € S : d(w,v) = i}, i.e., the set of all binary
sequences in S that contain exactly ¢ 1s. Also, consider the following set:

I={ie{1,2,....,n}:3z2=2129...2, € S1US2U S35 with z = 1}.

Suppose |I| < n — 2. Then there exist two positions ¢ and j such that for any sequence
2= z122...2p, € S1US2 U S3, we have z; = 0 and z; = 0. Consider the following two
vertices:

® U =ujUs... Uy with up =1 if and only if k = 4,
e w=wwy... w, with wp, =1if and only if k =7 or k = j.

We claim that v and w are not adjacent to any vertex z € S. First, it is not hard
to see that for any z € S; U Sy U S3 we have d(z,u) > 2 and d(z,w) > 2. Indeed, any
z € 51U S9 U Sy differs from v and w in position i, i.e., z; = 0 and u; = w; = 1, and there
must exist a k # ¢,j with 2z = 1 and ux, = wi, = 0. Also, it is not difficult to see that
d(z,u) > 2 and d(z,w) > 2 for any vertex z € S\ (51 U S2 U S3), because any such z has at
least four 1s, while u and w have at most two 1s. Therefore, by definition, v and w are not
adjacent to any vertex in S.

We see that the assumption that |I| < n — 2 leads to the conclusion that there are two
vertices u, w € @Q,\(S U {v}) which are non-adjacent to any vertex in S, but have different
adjacencies to v. This contradicts the fact that v is a function of the vertices in S. So, we
must conclude that I has size at least n — 1. As each vertex in S7; U Sg U S3 has at most
three 1s, we conclude that S; U Sy U S3 must contain at least |I|/3 = (n — 1)/3 vertices.
This completes the proof of the theorem. O

Theorem 9 shows that graphs of bounded VC-dimension constitute an extension of
graphs of bounded functionality, while Theorem 10 shows that this extension is proper,
since the hereditary closure of hypercubes constitutes a proper subclass of bipartite graphs.
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4 Concluding remarks and open problems

In this paper, we proved a number of results about graph functionality. However, many
questions on this topic remain unanswered. Some of them are motivated by the results
presented in the paper, for instance:

Problem 1. Is functionality bounded for interval graphs and for intersection graphs of
k-uniform hypergraphs for k > 37

Many other questions are motivated by related research. Of particular interest is the no-
tion of implicit representation [12]. Similarly to bounded functionality, any hereditary class
that admits an implicit representation is at most factorial. However, the question whether
all factorial classes admit implicit representations, also known as the implicit graph repre-
sentation conjecture, is widely open. Note that for non-hereditary classes the conjecture is
not valid (see, e.g., [15]). We ask whether there is any relationship between the two notions
in the universe of hereditary classes.

Problem 2. Does implicit representation of graphs in a hereditary class imply bounded
functionality in that class and/or vice versa?

One more open question is inspired by a result in [2] showing that if the family of prime
(with respect to modular decomposition) graphs in a hereditary class X is factorial, then
the entire class X is factorial.

Problem 3. Is it true that if prime (with respect to modular decomposition) graphs in a
hereditary class X have bounded functionality, then all graphs in X have bounded func-
tionality?

We note that a similar question for implicit representations is open too. Omne more
question is motivated by the fact that graphs of bounded functionality generalise both
graphs of bounded degree and graphs of bounded rank-width, where isomorphism can be
tested in polynomial time [10].

Problem 4. Can isomorphism be tested in polynomial time for graphs of bounded func-
tionality?

Finally, we observe that polynomial-time algorithms available for graphs of bounded
clique-width cannot, in general, be extended to graphs of bounded functionality, because
many NP-hard problems remain intractable for graphs of bounded vertex degree. However,
bounded degree is frequently helpful for designing fixed-parameter tractable algorithms.

Problem 5. Identify NP-hard problems that are fixed-parameter tractable on graphs of
bounded functionality.
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