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Abstract

Shrub-depth and rank-depth are dense analogues of the tree-depth
of a graph. It is well known that a graph has large tree-depth if and only
if it has a long path as a subgraph. We prove an analogous statement
for shrub-depth and rank-depth, which was conjectured by Hliněný,
Kwon, Obdržálek, and Ordyniak [Tree-depth and vertex-minors, Eu-
ropean J. Combin. 2016]. Namely, we prove that a graph has large
rank-depth if and only if it has a vertex-minor isomorphic to a long
path. This implies that for every integer t, the class of graphs with no
vertex-minor isomorphic to the path on t vertices has bounded shrub-
depth.
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1 Introduction

Nešetřil and Ossona de Mendez [17] introduced the tree-depth of a graph
G, which is defined as the minimum height of a rooted forest whose closure
contains the graphG as a subgraph. This concept has been proved to be very
useful, in particular in the study of graph classes of bounded expansion [18].
Similar to the grid theorem for tree-width of Robertson and Seymour [24], it
is known that a graph has large tree-depth if and only if it has a long path as
a subgraph, see [17, Proposition 6.1]. For more information on tree-depth,
the readers are referred to the surveys [20, 17] by Nešetřil and Ossona de
Mendez.

There have been attempts to define an analogous concept suitable for
dense graphs. For tree-width, this line of research has resulted in width
parameters such as clique-width [3] and rank-width [22]. In a conference
paper published in 2012, Ganian, Hliněný, Nešetřil, Obdržálek, Ossona de
Mendez, and Ramadurai [8] introduced the shrub-depth of a graph class, as
an extension of tree-depth for dense graphs. Recently, DeVos, Kwon, and
Oum [6] introduced the rank-depth of a graph as an alternative to shrub-
depth and showed that shrub-depth and rank-depth are equivalent in the
following sense.

Theorem 1.1 (DeVos, Kwon, and Oum [6]). A class of graphs has bounded
rank-depth if and only if it has bounded shrub-depth.

Theorem 1.1 allows us to work exclusively with rank-depth going for-
ward, and we omit the definition of shrub-depth. The definition of rank-
depth is presented in Section 2.

One useful feature of rank-depth is that it does not increase under tak-
ing vertex-minors. In other words, if H is a vertex-minor of G, then the
rank-depth of H is at most that of G. This allows us to consider obstruc-
tions for having small rank-depth in terms of vertex-minors. DeVos, Kwon,
and Oum [6] showed that the rank-depth of the n-vertex path is larger than
log n{ logp1 ` 4 log nq for n ě 2 and thus graphs having a long path as a
vertex-minor have large rank-depth. Hliněný, Kwon, Obdržálek, and Ordy-
niak [11] conjectured that the converse is also true. Their original conjecture
was stated in terms of shrub-depth but is equivalent by Theorem 1.1. We
prove their conjecture as follows.

Theorem 1.2. For every positive integer t, there exists an integer Nptq
such that every graph of rank-depth at least Nptq contains a vertex-minor
isomorphic to the path on t vertices.
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Courcelle and Oum [4] showed that there is a CMSO1 transduction that
maps a graph to its vertex-minors. Therefore, Theorem 1.2 implies that a
class G of graphs has bounded rank-depth if and only if for every CMSO1

transduction τ , there exists an integer t such that Pt R τpGq, which was con-
jectured by Ganian, Hliněný, Nešetřil, Obdržálek, and Ossona de Mendez [7].

If we apply the same proof for bipartite graphs, then we prove the fol-
lowing theorem on pivot-minors of graphs. Pivot-minors are more restricted
in a sense that every pivot-minor of a graph is a vertex-minor but not every
vertex-minor is a pivot-minor. This theorem allows us to deduce a corollary
for binary matroids of large branch-depth.

Theorem 1.3. For every positive integer t, there exists an integer Nptq such
that every bipartite graph of rank-depth at least Nptq contains a pivot-minor
isomorphic to Pt.

The paper is organized as follows. In Section 2, we review vertex-minors
and rank-depth and prove a few useful properties related to rank-depth.
In Section 3, we present the proof of Theorem 1.2. In Section 4, we obtain
Theorem 1.3 and discuss its consequence to binary matroids of large branch-
depth. Finally, in Section 5 we conclude the paper by giving some remarks
on linear χ-boundedness of graphs with no Pt vertex-minors.

2 Preliminaries and basic lemmas

All graphs in this paper are simple, meaning that neither loops nor parallel
edges are allowed. For two sets X and Y , we write X∆Y for pXzY qYpY zXq.

Let G be a graph. We write V pGq and EpGq for the vertex set and the
edge set of G, respectively. For a vertex v of G, we write NGpvq to denote
the set of all neighbors of v in G. For a vertex v of G, let G ´ v denote the
graph obtained from G by removing v and all edges incident with v. For an
edge e of G, let G´ e denote the graph obtained from G by removing e. For
a vertex subset S of G, we write GrSs for the subgraph of G induced by S.
We write G for the complement of G; that is, u and v are adjacent in G if
and only if they are not adjacent in G.

We write ApGq for the adjacency matrix of G over the binary field, that
is, the V pGq ˆ V pGq matrix over the binary field such that the px, yq-entry
is one if x ‰ y and x is adjacent to y in G, and zero otherwise. For an
X ˆ Y matrix M and X 1 Ď X, Y 1 Ď Y , we write M rX 1, Y 1s for the X 1 ˆ Y 1

submatrix of M .
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v1 w1

v2 w2

v3 w3

v4 w4

Figure 1: The graph K4 m K4.

Let Pn denote the path on n vertices, and let Kn denote the complete
graph on n vertices. The radius of a tree is the minimum r such that there
is a node having distance at most r from every node.

For two n-vertex graphs G and H with fixed orderings tv1, v2, . . . , vnu
and tw1, w2, . . . , wnu on their respective vertex sets, let G m H be the
graph with vertex set V pGq Y V pHq such that pG m HqrV pGqs “ G, pG m

HqrV pHqs “ H, and for all i, j P t1, 2, . . . , nu, viwj P EpG m Hq if and only
if i ě j. See Figure 1 for an example. An induced subgraph isomorphic to
G m H for some G and H is called a semi-induced half-graph in [19].

2.1 Vertex-minors

For a vertex v of a graph G, local complementation at v is an operation
which results in a new graph G ˚ v on V pGq such that

EpG ˚ vq “ EpGq∆txy : x, y P NGpvq, x ‰ yu.

For an edge uv of a graph G, the operation of pivoting uv, denoted G ^ uv,
is defined as G ^ uv :“ G ˚ u ˚ v ˚ u. See Oum [21] for further background
and properties of local complementation and pivoting. In particular, note
that if G is bipartite, then so is G ^ uv.

A graph H is locally equivalent to G if H can be obtained from G by a
sequence of local complementations. A graph H is pivot equivalent to G if
H can be obtained from G by a sequence of pivots. A graph H is a vertex-
minor of G if H is an induced subgraph of a graph that is locally equivalent
to G. Finally, a graph H is a pivot-minor of G if H is an induced subgraph
of a graph that is pivot equivalent to G.

For a subset S of V pGq, let ρGpSq be the rank of the S ˆ pV pGqzSq
submatrix of ApGq. This function is called the cut-rank function of G. It
is easy to show that the cut-rank function is invariant under taking local
complementations, again see Oum [21]. Thus we have the following fact.
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Lemma 2.1. If H is a vertex-minor of G and X Ď V pGq, then

ρHpX X V pHqq ď ρGpXq.

The following lemmas will be used to find a long path.

Lemma 2.2 (Kim, Kwon, Oum, and Sivaraman [12, Lemma 5.6]). The
graph Kn m Kn has a pivot-minor isomorphic to Pn`1.

Lemma 2.3 (Kwon and Oum [14, Lemma 2.8]). The graph Kn m Kn has a
pivot-minor isomorphic to P2n.

2.2 Rank-depth

We now review the notion of rank-depth, which was introduced by DeVos,
Kwon, and Oum [6]. A decomposition of a graph G is a pair pT, σq of a
tree T and a bijection σ from V pGq to the set of leaves of T . The radius
of a decomposition pT, σq is the radius of the tree T . For a non-leaf node
v P V pT q, the components of the graph T ´ v give rise to a partition Pv of
V pGq by σ. The width of v is defined to be

max
P 1ĎPv

ρG

˜

ď

XPP 1

X

¸

.

The width of the decomposition pT, σq is the maximum width of a non-leaf
node of T . We say that a decomposition pT, σq is a pk, rq-decomposition of
G if the width is at most k and the radius is at most r. The rank-depth of a
graphG is the minimum integer k such thatG admits a pk, kq-decomposition.
If |V pGq| ă 2, then there is no decomposition and the rank-depth is zero.
Note that every tree in a decomposition has radius at least one and therefore
the rank-depth of a graph is at least one if |V pGq| ě 2.

By Lemma 2.1, it is easy to see the following.

Lemma 2.4 (DeVos, Kwon, and Oum [6]). If H is a vertex-minor of G,
then the rank-depth of H is at most the rank-depth of G.

The next two lemmas will serve as a base case for induction in the proof
of Theorem 1.2.

Lemma 2.5. Let G be a graph of rank-depth m. Then G has a connected
component of rank-depth at least m ´ 1.
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Proof. If m ă 2, then it is trivial, as the one-vertex graph has rank-depth
zero. Thus, we may assume that m ě 2.

Suppose for contradiction that every connected component of G has
rank-depth at most m´ 2. Let C1, C2, . . . , Ct be the connected components
of G. For each i P t1, 2, . . . , tu,

• if Ci contains at least two vertices, then we take an pm ´ 2,m ´ 2q-
decomposition pTi, σiq where ri is a node of Ti having distance at most
m ´ 2 to every node of Ti, and

• if Ci consists of one vertex, then let Ti be the one-node graph on triu
and let σi : V pCiq Ñ triu be the uniquely possible function.

We obtain a new decomposition pT, σq of G by taking the disjoint union
of Ti’s and adding a new node r and adding edges rri for all i P t1, 2, . . . , tu.
For every vertex v of G, define σpvq “ σipvq if v is a vertex of Ci. Then
pT, σq has depth at most m ´ 1 and width at most m ´ 2. This contradicts
the assumption that G has rank-depth m.

We conclude that G has a connected component of rank-depth at least
m ´ 1.

The following lemma can be proven similarly to Lemma 2.5. For a graph
G of rank-depth m and a non-empty vertex set A, it is easy to check that
G ´ A has rank-depth at least m ´ |A|, and by Lemma 2.5, G ´ A has a
connected component of rank-depth at least m ´ |A| ´ 1. But, by a direct
argument, we can guarantee that there is a connected component of G ´ A

of rank-depth at least m ´ |A|. We include the full proof for completeness.

Lemma 2.6. Let G be a graph of rank-depth m and A be a non-empty proper
subset of V pGq. Then G ´ A has a connected component of rank-depth at
least m ´ |A|.

Proof. If |A| ě m, then any connected component has rank-depth at least
zero. Thus, we may assume that |A| ă m. This implies that m ě 2 as A is
non-empty.

Suppose for contradiction that every connected component of G ´ A

has rank-depth at most m ´ |A| ´ 1. Let C1, C2, . . . , Ct be the connected
components of G ´ A. For each i P t1, 2, . . . , tu,

• if Ci contains at least two vertices, then we take an pm ´ |A| ´ 1,m ´
|A|´1q-decomposition pTi, σiq where ri is a node of Ti having distance
at most m ´ |A| ´ 1 to every node of Ti, and

6



• if Ci consists of one vertex, we set Ti to be the one-node graph on triu
and let σi : V pCiq Ñ triu be the uniquely possible function.

We obtain a new decomposition pT, σq of G by taking the disjoint union
of Ti’s and adding a new node r and adding edges rri for all i P t1, 2, . . . , tu,
and additionally appending |A| leaves to r and assigning each vertex of A
to a distinct leaf with the map σ. For every vertex v of G ´ A, define
σpvq “ σipvq if v is a vertex of Ci. Then pT, σq has depth at most m ´ |A|
and width at most m´ 1. Because |A| ě 1, this contradicts the assumption
that G has rank-depth m.

We conclude that G ´ A has a connected component of rank-depth at
least m ´ |A|.

Lemma 2.7. Let m and d be positive integers. Let G be a graph with a
vertex partition pA,Bq such that connected components of GrAs and GrBs
have rank-depth at most m and ρGpAq ď d. Then G has rank-depth at most
m ` d ` 1.

Proof. Let C1, . . . , Cp be the connected components of GrAs, andD1, . . . ,Dq

be the connected components of GrBs. For each i P t1, 2, . . . , pu,

• if Ci contains at least two vertices, then we take an pm,mq-decomposition
pTi, σiq where ri is a node of Ti having distance at most m to every
node of Ti, and

• if Ci consists of one vertex, then set Ti as the one-node graph on triu
and σi : V pCiq Ñ triu as the uniquely possible function.

Similarly, we define pFj , µjq for each Dj where fj is a node of Fj having
distance at most m to every node of Fj .

Now, we obtain a new decomposition pT, σq of G as follows. Let T

be the tree obtained by taking the disjoint union of all of Ti’s and Fj ’s,
adding new vertices x and y, an edge xy, edges xri for all i P t1, . . . , pu,
and edges yfj for all j P t1, . . . , qu. Define σpvq “ σipvq if v is a vertex of
Ci, and σpvq “ µjpvq if v is a vertex of Dj . Then pT, σq has depth at most
m ` 2 and width at most m ` d. Because d ě 1, G has rank-depth at most
maxtm ` 2,m ` du ď m ` d ` 1.

2.3 Rank-width

We now review the definition of rank-width. A rank-decomposition of a
graph G is a pair pT,Lq of a tree T whose vertices each have degree either
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one or three, and a bijection L from V pGq to the set of leaves of T . The
width of an edge e of T is the cut-rank in G of the set of all leaves assigned
to one of the components of T ´ e. The width of the rank-decomposition
pT,Lq is the maximum width of an edge of T . Finally, the rank-width of
G is the minimum width over all rank-decompositions of G. Graphs with
at most one vertex do not admit rank-decompositions and we define their
rank-width to be zero.

3 The proof

We write Rpn; kq to denote the minimum number N such that every col-
oring of the edges of KN with k colors induces a monochromatic complete
subgraph on n vertices. The classical theorem of Ramsey [23] implies that
Rpn; kq exists.

The following lemma is well known. We include its proof for the sake of
completeness.

Lemma 3.1. Let G be a graph of rank-width at most q and let M Ď V pGq.
If |M | ě 3k ` 1 for a positive integer k, then there is a vertex partition
pX,Y q of G such that ρHpXq ď q and minp|M X X|, |M X Y |q ą k.

Proof. Suppose that there is no such vertex partition. Let pT,Lq be a rank-
decomposition of width at most q. For each edge uv of T , let us orient e

towards v if the component of T ´ e containing u has at most k vertices
in LpMq. By the assumption, every edge is oriented. Since T is acyclic,
there is a node w of T such that all edges of T incident with w are oriented
towards w. But this implies that |M | ď 3k, a contradiction.

For a path P with an endpoint x and a graph H and a non-empty subset
of vertices S Ď V pHq, we denote by pP, xq ` pH,Sq the graph obtained from
the disjoint union of P and H by adding all edges between x and S. We
now prove our main proposition; Theorem 1.2 will follow quickly after.

Proposition 3.2. For all positive integers a, b, t, q, there exists an integer
fpa, b, t, qq such that every graph of rank-width at most q and rank-depth
at least fpa, b, t, qq has a vertex-minor isomorphic to either Pt or pPa, xq `
pH,Sq where x is an endpoint of Pa, H is a connected graph of rank-depth
at least b, and S is a non-empty subset of V pHq.

Proof. For all positive integers b, t, q, we set

fp1, b, t, qq :“ b ` 2,

8



A1 x1

A2 x2

A3 x3

H3

Figure 2: The graph G1rA1 Y ¨ ¨ ¨ Y Ar Y V pHrqs, when r “ 3 and a “ 5.

and for a ě 2, we set

u :“ maxp3 ¨ p2q ´ 1q ` 1, t ´ 1q,

r :“ Rpu ` 1; 2a´1q,

gi :“

#

b ` q ` 2 if i “ r,

fpa ´ 1, gi`1, t, qq if i P t0, 1, 2, . . . , r ´ 1u,

fpa, b, t, qq :“ g0.

We prove the proposition by induction on a. Let G be a graph whose rank-
depth is at least fpa, b, t, qq and rank-width is at most q. If a “ 1, then it has
a component G1 of rank-depth at least b ` 1 by Lemma 2.5. Let v P V pG1q.
By Lemma 2.6, G1 ´ v has a connected component H of rank-depth at least
b. So, pG1rtvus, vq ` pH,NGpvq X V pHqq is the second outcome.

Thus, we may assume that a ě 2. Suppose that G has no vertex-minor
isomorphic to Pt. We claim that G contains the second outcome.

Let H0 :“ G. Observe that H0 has rank-depth at least fpa, b, t, qq “ g0.
For i P t1, 2, . . . , ru, we recursively find tuples pAi, xi,Hi, Siq from Hi´1

such that

• Ai is isomorphic to Pa´1 and xi is an endpoint of Ai,

• Hi is a connected graph of rank-depth at least gi,

• Si is a non-empty subset of V pHiq, and

• pAi, xiq ` pHi, Siq is a vertex-minor of Hi´1.

Let i P t1, 2, . . . , ru and assume that Hi´1 is a given graph of rank-depth
at least gi´1. Then by the induction hypothesis, Hi´1 has a vertex-minor
pAi, xiq ` pHi, Siq where Ai is isomorphic to Pa´1, xi is an endpoint of Ai,
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Hi is a connected graph of rank-depth at least gi, and Si is a non-empty
subset of V pHiq. By the choice of functions g0, g1, . . . , gr, we can obtain the
tuples for all i P t1, 2, . . . , ru.

Observe that for i ă j, no vertex in V pAiqztxiu has a neighbor in Hi,
and therefore, the sequence of local complementations to obtain pAj , xjq `
pHj , Sjq from Hj´1 does not change previous paths A1, . . . , Aj´1, but may
change the edges between x1, x2, . . ., xj´1.

By definition, Hr is connected and has rank-depth at least gr. Let G1 be
the graph obtained from G by following the sequence of local complemen-
tations to obtain pA1, x1q ` pH1, S1q, . . . , pAr, xrq ` pHr, Srq. See Figure 2
for a depiction. Note that G1rV pHiq Y txius is connected for each i, as Hi

is connected, Si is non-empty, and we apply local complementations only
inside Hi to obtain later Hj’s.

If for some i P t1, 2, . . . , ru,NG1
pxiqXV pHrq “ H, then by taking a short-

est path from xi to V pHrq in the graph G1rV pHiq Y txius, we can directly
obtain the second outcome. So, we may assume that each of tx1, x2, . . . , xru
has a neighbor in V pHrq.

Note that for i ă j, only the endpoint xi in Ai can have a neighbor in Aj

in G1, and therefore, there are 2a´1 possible ways of having edges between Ai

and Aj in G1. Since r “ Rpu`1; 2a´1q, by applying the theorem of Ramsey,
we deduce that there exists a subset W Ď t1, 2, . . . , ru of size u`1 such that
for all i ă j with i, j P W , tℓ : the ℓ-th vertex of Aj is adjacent to xi in G1u
are identical.

If xi has a neighbor in V pAj ´ xjq in G1 for some i ă j with i, j P W ,
then G1 has Ku m Ku or Ku m Ku as an induced subgraph. Since u ě
t ´ 1, by Lemmas 2.2 and 2.3, G1 contains a pivot-minor isomorphic to Pt,
contradicting the assumption. So, for all i ă j with i, j P W , xi has no
neighbors in V pAj ´ xjq.

Note that txi : i P W u is an independent set or a clique in G1. If it is an
independent set, then for some i1 P W , we set

• G2 :“ G1 and W 1 :“ W zti1u.

If txi : i P W u is a clique, then we choose a vertex xi1 for some i1 P W and
locally complement at xi1 . Then txi : i P W zti1uu becomes an independent
set. We set

• G2 :“ G1 ˚ xi1 and W 1 :“ W zti1u.

Let M :“ txi : i P W 1u and H :“ G2rV pHrq Y M Y txi1us.
By definition, H is locally equivalent to the graph G1rV pHrqYMYtxi1 us.

Thus, as the latter is connected, H is also connected. Similarly, since Hr “
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G1rV pHrqs has rank-depth at least gr, H has rank-depth at least gr. Also,
note that H has rank-width at most q and M is an independent set of size
u ě 3 ¨ p2q ´ 1q ` 1 in H. Thus, by Lemma 3.1, H admits a vertex partition
pX,Y q such that |M X X| ą 2q ´ 1, |M X Y | ą 2q ´ 1, and ρHpXq ď q.

Since H has rank-depth at least gr “ b ` q ` 2 and ρHpXq ď q, by
Lemma 2.7, HrXs or HrY s has a connected component of rank-depth at
least b`1. Without loss of generality, we assume that HrXs has a connected
component Q of rank-depth at least b ` 1.

Now, if M XY has a vertex xi that has no neighbor in Q, then by taking
a shortest path from xi to Q in H, along with Ai, we can find the second
outcome.

Thus, we may assume that in H, all vertices in M XY have a neighbor in
Q. Since ρHpXq ď q, there are at most 2q ´ 1 distinct non-zero rows in the
matrix ApHqrM XY, V pQqs. As |M XY | ě 2q, by the pigeon-hole principle,
H has two vertices xi1 and xi2 in M X Y for some i1, i2 P W 1 that have the
same neighborhood in Q.

First assume that xi1 has exactly one neighbor in Q, say w. As Q has
rank-depth at least b ` 1, Q ´ w has a connected component Q1 having
rank-depth at least b by Lemma 2.6. Then

pG2rV pAi1q Y twus, wq ` pQ1, NG2
pwq X V pQ1qq

is the required second outcome. So, we may assume that xi1 has at least
two neighbors in Q. Let w be a neighbor of xi1 in Q.

Since xi1 and xi2 have the same neighborhood in Q and they are not
adjacent, if we pivot xi2w, then the edges between xi1 and NHpxi1q X V pQq
are removed and xi2 becomes the unique neighbor of xi1 in V pQq Y txi2u.
Note that G2rV pQqYtxi2us is connected, and thus pG2^xi2wqrV pQqYtxi2us
is also connected. As Q has rank-depth at least b ` 1, pG2 ^ xi2wqrV pQq Y
txi2us ´ xi2 has a connected component Q1 that has rank-depth at least b.
Then

ppG2 ^ xi2wqrV pAi1q Y txi2us, xi2q ` pQ1, NG2^xi2
wpxi2q X V pQ1qq

is the second outcome. This proves the proposition.

Proposition 3.2 implies the following result.

Theorem 3.3. For all positive integers t and q, there exists an integer
F pt, qq such that every graph of rank-width at most q and rank-depth at least
F pt, qq contains a vertex-minor isomorphic to Pt.
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Proof. We take F pt, qq :“ fpt ´ 1, 1, t, qq where f is the function in Propo-
sition 3.2.

A circle graph is the intersection graph of chords on a circle. It is easy to
see that Pt is a circle graph. We can derive Theorem 1.2 by taking q “ βpPtq
from the following recent theorem.

Theorem 3.4 (Geelen, Kwon, McCarty, and Wollan [10]). For every circle
graph H, there exists an integer βpHq such that every graph of rank-width
more than βpHq contains a vertex-minor isomorphic to H.

Theorem 1.2. For every positive integer t, there exists an integer Nptq
such that every graph of rank-depth at least Nptq contains a vertex-minor
isomorphic to Pt.

Proof. We take Nptq :“ F pt, βpPtqq where β is the function given in Theo-
rem 3.4 and F is the function from Theorem 3.3. If a graph has rank-width
more than βpPtq, then by Theorem 3.4, it contains a vertex-minor isomor-
phic to Pt. So, we may assume that a graph has rank-width at most βpPtq.
Then by Theorem 3.3, it contains a vertex-minor isomorphic to Pt.

4 Pivot-minors

We can prove a stronger result on bipartite graphs, by slightly modifying
the proof of Proposition 3.2. Suppose that a given graph G is bipartite in
the proof of Proposition 3.2. The only place that we have to apply local
complementation instead of pivoting is when the set txi : i P W u is a clique,
and we want to change it into an independent set. But if G is bipartite, then
the obtained set txi : i P W u has no triangle, and so it is an independent set
since |W | ě 3. Therefore, we can proceed only with pivoting. For bipartite
graphs, we can use the following theorem due to Oum [21], obtained as a
consequence of the grid theorem for binary matroids [9].

Theorem 4.1 (Oum [21]). For every bipartite circle graph H, there exists
an integer γpHq such that every bipartite graph of rank-width more than
γpHq contains a pivot-minor isomorphic to H.

Thus we deduce the following theorem for bipartite graphs.

Theorem 1.3. For every positive integer t, there exists an integer Nptq such
that every bipartite graph of rank-depth at least Nptq contains a pivot-minor
isomorphic to Pt.
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Figure 3: The fan graph F5.

Theorem 1.3 allows us to obtain the following corollary for binary ma-
troids, solving a special case of a conjecture of DeVos, Kwon, and Oum [6] on
general matroids. We need a few terms to state the corollary. The branch-
depth of a matroid is defined analogously to the definition of the rank-depth
obtained by replacing the cut-rank function with the matroid connectivity
function [6]. Let Ft be the fan graph, that is the union of Pt with one vertex
adjacent to all vertices of Pt, see Figure 3. As usual, MpFtq denotes the
cycle matroid of Ft.

Corollary 4.2. For every positive integer t, there exists an integer Nptq
such that every binary matroid of branch-depth at least Nptq contains a
minor isomorphic to MpFtq.

Proof. It is known [2, 21] that the connectivity function of a binary matroid
is equal to the cut-rank function of a corresponding bipartite graph, called a
fundamental graph. Furthermore for two binary matroids M and N , if N is
connected, and a fundamental graph of N is a pivot-minor of a fundamental
graph of M , then either N or N˚ is a minor of M , see Oum [21, Corollary
3.6]. Since pMpFtqq˚ has a minor isomorphic to MpFt´1q, we deduce the
corollary from Theorem 1.3, because the path graph P2t´1 is a fundamental
graph of MpFtq.

We show that the class tKn m Kn : n ě 1u has unbounded rank-depth,
while for every positive integer n, Kn m Kn has no pivot-minor isomorphic
to P5. It implies that contrary to Theorem 1.3, the class of graphs having
no Pn pivot-minor has unbounded rank-depth for each n ě 5.

Kwon and Oum [16, Lemma 6.5] showed that for every integer n ě 2,
Kn m Kn contains a vertex-minor isomorphic to P2n´2. Thus, tKn m Kn :
n ě 1u has unbounded rank-depth.

Now, we show that for n ě 1, Kn m Kn has no pivot-minor isomorphic
to P5. We prove a stronger statement that Kn m Kn has no pivot-minor
isomorphic to K1,3. Dabrowski et al. [5] characterized the class of graphs
having no pivot-minor isomorphic to K1,3 in terms of forbidden induced
subgraphs. See Figure 4 for bull, W4, and BW3.
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bull W4 BW3

Figure 4: The graphs bull, W4, and BW3.

Theorem 4.3 (Dabrowski et al. [5]). A graph has a pivot-minor isomorphic
to K1,3 if and only if it has an induced subgraph isomorphic to one of K1,3,
P5, bull, W4, and BW3.

Lemma 4.4. For n ě 1, Kn m Kn has no induced subgraph isomorphic to
one of K1,3, P5, bull, W4, and BW3.

Proof. As the maximum size of an independent set in KnmKn is 2, KnmKn

has no induced subgraph isomorphic to one of K1,3, P5, and bull.
Also Kn m Kn has no induced cycle of length 4 because such a cycle

should contain two vertices in each Kn but the edges between two Kn’s
have no induced matching of size 2. Therefore, it has no induced subgraph
isomorphic to W4 or BW3.

By Theorem 4.3 and Lemma 4.4, KnmKn has no pivot-minor isomorphic
to K1,3, and to P5. Thus, for all n ě 5, the class of graphs having no Pn

pivot-minor includes tKn m Kn : n ě 1u, which has unbounded rank-depth.
It may be interesting to see whether every graph with sufficiently large rank-
depth contains either Pn or Kn m Kn as a pivot-minor. We leave it as an
open question.

Question 1. Does there exist a function f such that for every n, every
graph with rank-depth at least fpnq contains a pivot-minor isomorphic to Pn

or Kn m Kn?

5 Concluding remarks

5.1 Linear χ-boundedness

We define linear rank-width. For an ordering pv1, v2, . . . , vnq of the vertex
set of a graph G, its width is defined as the maximum of ρGptv1, . . . , viuq
for all i P t1, 2, . . . , n ´ 1u, and the linear rank-width of G is defined as
the minimum width of all orderings of G. If |V pGq| ă 2, then the linear
rank-width of G is defined as 0.
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Graphs of bounded rank-depth have bounded linear rank-width, which
was already known through the notions of shrub-depth and linear clique-
width [7]. Kwon and Oum [15] proved it directly as follows.

Proposition 5.1 (Kwon and Oum [15]). Every graph of rank-depth k has
linear rank-width at most k2.

We write χpGq to denote the chromatic number of G and ωpGq to denote
the maximum size of a clique of G. A class C of graphs is χ-bounded if there
is a function f such that χpHq ď fpωpHqq for all induced subgraphs H of a
graph in C. In addition, if f can be taken as a polynomial function, then C
is polynomially χ-bounded. If f can be taken as a linear function, then C is
linearly χ-bounded.

Proposition 5.2 (Nešetřil, Ossona de Mendez, Rabinovich, and Siebertz [19]).
For every positive integer r, there exists an integer cprq such that for every
graph G of linear rank-width at most r,

χpGq ď cprqωpGq.

By combining Proposition 5.1 and Proposition 5.2, we can prove the
following, which answers a previous question by Kim, Kwon, Oum, and
Sivaraman [12].

Theorem 5.3. For every positive integer t, the class of graphs with no
vertex-minor isomorphic to Pt is linearly χ-bounded.

We remark that there is an alternative way to prove Theorem 5.3 without
using linear rank-width. First, DeVos, Kwon, and Oum [6, Lemma 4.10]
showed that if a graph has rank-depth k, then it has an pa, kq-shrubbery
where

a “ p1 ` op1qq2p22k`1p22k`2´1q`1qk{2.

(Please see [6] for the definition of an pa, kq-shrubbery.) Lemma 2.16 of
Nešetřil, Ossona de Mendez, Rabinovich, and Siebertz [19] states that every
class of bounded shrub-depth can be partitioned into bounded number of
vertex-disjoint induced subgraphs, each of which is a cograph. Its (short and
easy) proof shows that a graph with an pa, kq-shrubbery can be partitioned
into at most a vertex-disjoint induced subgraphs, each of which is a cograph.
Since cographs are perfect, we deduce that if G has rank-depth at most k,
then χpGq ď ωpGqp1 ` op1qq2p22k`1p22k`2´1q`1qk{2.
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C5 N Q

Figure 5: Obstructions for being a vertex-minor of a path.

5.2 When does the class of H-vertex-minor-free graphs have

bounded rank-depth?

For a set H of graphs, we say that G is H-minor-free if G has no minor
isomorphic to a graph in H, and G is H-vertex-minor-free if G has no vertex-
minor isomorphic to a graph in H. Robertson and Seymour [24] showed that
H-minor-free graphs have bounded tree-width if and only if H contains a
planar graph. As an analogue, Geelen, Kwon, McCarty, and Wollan [10]
showed that H-vertex-minor-free graphs have bounded rank-width if and
only if H contains a circle graph. Interestingly, Theorem 1.2 allows us
to characterize the classes H such that H-vertex-minor-free graphs have
bounded rank-depth. This is due to the following theorem; the equivalence
between (a) and (b) was shown by Kwon and Oum [13] and the equivalence
between (a) and (c) was shown by Adler, Farley, and Proskurowski [1].

Theorem 5.4 (Kwon and Oum [13]; Adler, Farley, and Proskurowski [1]).
Let H be a graph. The following are equivalent.

(a) H has linear rank-width at most one.

(b) H is a vertex-minor of a path.

(c) H has no vertex-minor isomorphic to C5, N , or Q in Figure 5.

We define linear rank-width in the next subsection. Here, we only need
the fact that linear rank-width does not increase when we take vertex-minors
and that paths have linear rank-width 1 and arbitrary large rank-depth to
deduce the following corollary from Theorems 5.4 and 1.2.

Corollary 5.5. Let H be a set of graphs. Then the following are equivalent.

(a) The class of H-vertex-minor-free graphs has bounded rank-depth.

(b) H contains a graph of linear rank-width at most one.

(c) H contains a graph with no vertex-minor isomorphic to C5, N , or Q.

16



Acknowledgement. The authors would like to thank anonymous review-
ers for their helpful suggestions.

References

[1] I. Adler, A. M. Farley, and A. Proskurowski. Obstructions for linear
rank-width at most 1. Discrete Appl. Math., 168:3–13, 2014.

[2] A. Bouchet. Connectivity of isotropic systems. In Combinatorial Math-
ematics: Proceedings of the Third International Conference (New York,
1985), volume 555 of Ann. New York Acad. Sci., pages 81–93. New York
Acad. Sci., New York, 1989.

[3] B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs.
Discrete Appl. Math., 101(1-3):77–114, 2000.

[4] B. Courcelle and S. Oum. Vertex-minors, monadic second-order logic,
and a conjecture by Seese. J. Combin. Theory Ser. B, 97(1):91–126,
2007.

[5] K. K. Dabrowski, F. Dross, J. Jeong, M. M. Kanté, O. Kwon, S. Oum,
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[20] J. Nešetřil and P. Ossona de Mendez. On low tree-depth decomposi-
tions. Graphs Combin., 31(6):1941–1963, 2015.

[21] S. Oum. Rank-width and vertex-minors. J. Combin. Theory Ser. B,
95(1):79–100, 2005.

[22] S. Oum and P. Seymour. Approximating clique-width and branch-
width. J. Combin. Theory Ser. B, 96(4):514–528, 2006.

[23] F. P. Ramsey. On a problem of formal logic. Proc. London Math. Soc.,
30(s2):264–286, 1930.

18



[24] N. Robertson and P. Seymour. Graph minors. X. Obstructions to tree-
decomposition. J. Combin. Theory Ser. B, 52(2):153–190, 1991.

19


	1 Introduction
	2 Preliminaries and basic lemmas
	2.1 Vertex-minors
	2.2 Rank-depth
	2.3 Rank-width

	3 The proof
	4 Pivot-minors
	5 Concluding remarks
	5.1 Linear -boundedness
	5.2 When does the class of H-vertex-minor-free graphs have bounded rank-depth?


