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Abstract

A conjecture of Berge suggests that every bridgeless cubic graph can have its
edges covered with at most five perfect matchings. Since three perfect matchings
suffice only when the graph in question is 3-edge-colourable, the rest of cubic graphs
falls into two classes: those that can be covered with four perfect matchings, and
those that need at least five. Cubic graphs that require more than four perfect
matchings to cover their edges are particularly interesting as potential counterex-
amples to several profound and long-standing conjectures including the celebrated
cycle double cover conjecture. However, so far they have been extremely difficult to
find.

In this paper we build a theory that describes coverings with four perfect match-
ings as flows whose flow values and outflow patterns form a configuration of six
lines spanned by four points of the 3-dimensional projective space P3(F2) in general
position. This theory provides powerful tools for investigation of graphs that do not
admit such a cover and offers a great variety of methods for their construction. As
an illustrative example we produce a rich family of snarks (nontrivial cubic graphs
with no 3-edge-colouring) that cannot be covered with four perfect matchings. The
family contains all previously known graphs with this property.

Keywords: cubic graph, snark, perfect matching, covering, cycle double cover
conjecture

AMS subject classifications: 05C21, 05C70, 05C15.

1 Introduction

Ever since Petersen proved his Perfect Matching Theorem [29], perfect matchings in cubic
graphs have been regarded as their fundamental structures. An extension of Petersen’s
theorem due to Schönberger [32], later generalised by Plesńık [30], implies that every
bridgeless cubic graph G contains a set of perfect matchings that together cover all the
edges of G (see also [21, p. 192] and [22, Corollary 3.4.3]). A natural question arises as
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to what is the minimum number of perfect matchings needed to cover all edges of a given
bridgeless cubic graph G; this number is called the perfect matching index of G and is
denoted by π(G) (an alternative term excessive index also occurs, see [1, 7].)

Figure 1: Graphs of order 34 and 46 that cannot be covered with four perfect matchings

Clearly, π(G) ≥ 3 for every bridgeless cubic graph G with equality achieved if and
only if the graph is 3-edge-colourable. On the other hand, no constant upper bound for
the perfect matching index of a cubic graphs is known. However, a conjecture attributed
to Berge (see [27] or [33]) suggests that π(G) ≤ 5 for every bridgeless cubic graph G.
If this conjecture is true, then the perfect matching index of every snark, a 2-connected
cubic graph with no 3-edge-colouring, is to be either 4 or 5.

Cubic graphs with π = 4 enjoy several important properties well known to hold for
3-edge-colourable graphs. For example, every cubic graph with π = 4 satisfies the 5-cycle
double conjecture (see [17, Theorem 3.1] and [34, Theorem 3.1 (2)]), the 7/5-conjecture of
Alon and Tarsi and Jaeger [34, Theorem 3.1 (1)] on shortest cycle covers, the Fan-Raspaud
[9] conjecture on three perfect matchings with empty intersection, and others. Therefore
cubic graphs with π ≥ 5 are of particular interest, providing potential counterexamples
to these and several other related conjectures such as the Fulkerson conjecture.

Very little is known about cubic graphs with π ≥ 5. One major difficulty in their
study comes from the fact that they appear to be extremely rare and therefore hard to
find. The smallest such graph is the Petersen graph. Arbitrarily large examples with
connectivity 2 can be easily derived from the Petersen graph, so the real problem is
constructing nontrivial examples different from the Petersen graph. In 2009, Fouquet and
Vanherpe [11, Problem 4.3] asked whether there exists a cyclically 4-edge-connected cubic
graph with π ≥ 5 different from the Petersen graph. The first such graph was reported
by Brinkmann et al. [3] in 2013 as a result of an exhausting computer search. In the list
comprising all 64 326 024 cyclically 4-edge-connected cubic snarks of girth at least 5 with
π ≥ 4 on up to 36 vertices there are only two that cannot be covered with four perfect
matchings: the Petersen graph and the graph on 34 vertices displayed in Figure 1 (left).
Another sporadic example, on 46 vertices, was discovered by Hägglund [14, Section 3];
it is depicted on Figure 1 (right). Esperet and Mazzuoccolo [7] generalised the former
graph to an infinite family of windmill snarks with π ≥ 5. A similar infinite family, which
takes the other graph from Figure 1 as its basis, was provided by Chen [4]. Both graphs
from Figure 1 are included in another infinite family of graphs with π ≥ 5, the family of
treelike snarks constructed by Abreu et al. [1], which we now discuss in a greater detail.

In some sense, treelike snarks are much richer in form than the windmill snarks and
the snarks of Chen. Their construction makes use of cubic Halin graphs. A Halin graph
H consists of a plane tree S with no 2-valent vertices and a circuit C passing through
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all the leaves of S in such a way that H = C ∪ S remains embedded in the plane. It
follows that the circuit C, called the perimeter circuit, forms the boundary of the outer
face of H, while the tree S, the inscribed tree of H, is contained in the interior of C.
Halin [15] introduced these graphs in 1971 as a class of minimally 3-connected graphs.
However, the cubic Halin graphs were studied much earlier by Rademacher [31] in 1965
and by Kirkman [19] as early as in 1856.

A treelike snark is formed from a cubic Halin graph H by substituting each vertex
of the perimeter circuit C of H with a 11-vertex subgraph FPs found in both graphs
from Figure 1, called the Petersen fragment of [1]. This makes a significant difference in
comparison with the windmill snarks and the family of Chen where more general building
blocks can be used.

One of the notable aspects of the study of cubic graphs with π ≥ 5 is the increasing
difficulty of proving that four perfect matchings are not enough to cover their edges. This
problem becomes evident if we compare the proof of Esperet and Mazzuoccolo [7] for the
windmill snarks with that for the family constructed by Chen [4], and even more so if we
take into account the proof for treelike snarks [1], where a substatial computer assistance
is required. The reason for this lies in the lack of a simple characterisation of graphs with
perfect matching index 5 or more. This fact was realised already by Hägglund [14] who
posed the following problem.

Problem (Hägglund [14], Problem 3). Is it possible to give a simple characterisation of
cubic graphs with perfect matching index equal to 5?

In response to Hägglund’s question we provide a characterisation of graphs with perfect
matching index not exceeding 4. We describe them as the graphs that admit a proper edge-
colouring by points of the configuration T of ten points and six lines in the 3-dimensional
projective space P3(F2) = PG(3, 2), over the 2-element field, spanned by four points in
general position (see Figure 2). The defining property of the colouring requires any three
edges incident with the same vertex to carry colours that form a line of T . Although
this result seems to be nothing more than a simple observation, it provides a surprisingly
powerful tool for the study of both cubic graphs that can, as well as those that cannot,
be covered with four perfect matchings. Especially useful is the property that the such
colourings are in fact nowhere-zero flows with values in the group Z4

2.

p1 + p2

p3

p2 + p3

p2p1
p2 + p4

p4

p1 + p4

p1 + p3

p3 + p4

Figure 2: A tetrahedron in PG(3, 2) spanned by points p1, p2, p3, and p4

We demonstrate the power of our approach by presenting a far-reaching generalisation
of treelike snarks. The new family of graphs, which we call Halin snarks, contains all
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previously known nontrivial examples of graphs with π ≥ 5. In particular, the treelike
snarks, the windmill snarks, and the snarks constructed by Chen [4] are all Halin snarks.
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Bk
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Di
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Figure 3: A Halin snark

The construction of a Halin snark is similar to that of a treelike snark. It starts with
a cubic Halin graph H = C ∪ S where C is the perimeter circuit and S is the inscribed
tree of H. Each vertex of C is substituted by a Halin fragment F , a generalisation of
the Petersen fragment FPs mentioned above. It is formed from the union of two graphs
D and B: the graph D is obtained from an arbitrary bridgeless cubic graph G with
π(G) ≥ 5 by removing two adjacent vertices u and v and retaining the four dangling
edges; the graph B is obtained from an arbitrary cubic bipartite graph G′ by removing
a path u′w′v′ of length 2 and retaining the five dangling edges. The dangling edges of D
formerly incident in G with v are then welded with those of B formerly incident in G′

with u′, thereby producing F .
Each Halin fragment F has five dangling edges arranged in two pairs, which correspond

to the vertices u and v′, and one singleton, which corresponds to the vertex w′. The
construction of a Halin snark is now finished by substituting each vertex vi of the perimeter
circuit C of H with a Halin fragment Fi in such a way that the lonely dangling edge of
Fi will replace the edge of S incident with Vi, and each of pairs of dangling edges of Fi
will replace one edge of C incident with vi following a cyclic orientation of C. Finally, the
pairs of dangling edges from Halin fragments Fi and Fj corresponding to adjacent vertices
vi and vj of C are welded in such a way that a cubic graph is obtained (see Figure 3).
We denote the resulting graph by H] = C] ∪ S where S is the inherited inscribed tree
of H and C] is the graph obtained from the perimeter circuit by performing all required
substitutions.

If each Halin fragment Fi used for the construction of H] is created from a cubic graph
Gi with π(G) ≥ 5 and from a bipartite cubic graph G′i, both cyclically 4-edge-connected
and of girth at least 5, then the same holds for the resulting graph H].

The proof that every Halin snark has perfect matching index at least 5 relies on simple
geometric considerations involving the projective space PG(3, 2) combined with nowhere-
zero flow arguments. It is completely computer-free.

The methods developed along the way permit further extensions of the family of
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Halin snarks, suggesting that the class of all cubic graphs with perfect matching index at
least 5 may have a very complicated structure. In particular, the following theorem is a
consequence of our results.

Theorem. For every even integer n ≥ 42 there exists a cyclically 4-edge-conncected cubic
graph G of girth at least 5 on n vertices such that π(G) ≥ 5.

Taking into account the exhaustive computer search performed by Brinkmann et al.
[3] mentioned earlier, Theorem 1 leaves the existence of a cyclically 4-edge-connected
cubic graph G of girth at least 5 on n vertices with π(G) ≥ 5 open only for n = 38 and
n = 40. This is a significant progress as all previously known constructions combined are
capable of producing only graphs of order n = 12m− 2, where m ≥ 3 (see [1, 4, 7]).

This paper is organised as follows. The next section contains a brief survey of ter-
minology and notation used later in the paper. Section 3 presents a characterisation of
cubic graphs that cannot be covered with four perfect matching in terms of flows with
additional geometric structure within the projective space PG(3, 2). Geometric language
is further developed in Section 4 with focus on objects consisting of two or three points.
Transformation of geometric objects via the flows corresponding to coverings with four
perfect matchings is studied in the next three sections. In Section 8, the accumulated
knowledge is applied to proving that all Halin snarks have perfect matching index at least
5 and that they are nontrivial snarks whenever the building blocks are taken from cycli-
cally 4-edge-connected graphs with girth at least 5. The next section deals with circular
flow number of Halin snarks, which is shown to be at least 5 whenever the building have
this property. A few final remarks conclude the paper.

The present paper serves as an introduction to the topic and its results will be exten-
sively used in our subsequent papers.

2 Preliminaries

All graphs in this paper are finite and for the most part simple and cubic (3-valent).
Multiple edges and loops may occur, but they will usually be excluded by imposing
additional restrictions.

Graphs can be assembled from smaller building blocks called multipoles. Similarly to
graphs, each multipole M has its vertex set V (M), its edge set E(M), and an incidence
relation between vertices and edges. Each edge of M has two ends, and each end may,
but need not be, incident with a vertex of M . An edge that is not incident with a vertex
is called a dangling edge; its free end is called a semiedge. A multipole with k semiedges
is called a k-pole. Any two edges s and t, each with a free end, can be coalesced into a
new edge s ∗ t, the junction of s and t, by identifying a free end of s with a free end of t;
the incidences of s ∗ t are naturally inherited from s and t.

Semiedges in multipoles are often grouped into pairwise disjoint sets, called connectors.
A semiedge not occurring in any connector is said to be residual. In this paper, most
multipoles will be dipoles. A dipole is a multipole with two connectors referred to as
the input connector and the output connector. A dipole D(I, O) with input connector I
of size a, output connector O of size b, and with c residual semiedges, will be called an
(a, b; c)-pole. If c = 0, we speak of an (a, b)-pole. For an (a, a)-pole D(I, O) we define its
closure [D] to be a graph obtained from D by ordering the semiedges in both connectors
and performing the junction of the i-th semiedge of the output connector to the i-th
semiedge of the input connector.
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A common way of constructing multipoles is by removing vertices from a graph. The
following multipoles obtained from a cubic graph G will be repeatedly used throughout
the paper: Let v, uv, and uwv be paths in G of length 0, 1, and 2, respectively. Denote by
Gv, Guv, and Guwv, respectively, the 3-pole, the (2, 2)-pole, and the (2, 2; 1)-pole obtained
from G by removing the corresponding path and arranging the resulting semiedges in
such a way that the edges formerly incident with the same vertex belong to the same
connector. To be more precise, in both Guv and Guwv the semiedges formerly incident
with u will be assigned to the input connector, those formerly incident with v will be
assigned to the output connector, and the semiedge incident with w will be residual. The
semiedges of Gv will all belong to its single connector.

An edge colouring of a graph or a multipole X is an assignment of colours from a set
Z of colours to the edges of X in such a way that the edges with adjacent edge ends
receive distinct colours. It means that all edge colourings in this paper are proper. A
k-edge-colouring is one where |Z| = k colours. A 3-edge-colouring is also known as a Tait
colouring. A 2-connected cubic graph with no 3-edge-colouring is called a snark. A snark
is nontrivial if it is cyclically 4-edge-connected and has girth at least 5.

A natural generalisation of a Tait colouring is the concept of a local Tait colouring of
a cubic graph proposed by Archdeacon [2] and developed in [16, 20, 24], and elsewhere. It
allows for an unlimited number of colours but requires that the colours of any two edges
meeting at a vertex always determine the same third colour. Local Tait colourings can be
conveniently described in terms of colourings by points of a partial Steiner triple system
such that the colours meeting at any vertex form a triple of the system; for details see,
for example, [20].

Local Tait colourings that occur in the present paper are at the same time nowhere-
zero flows. The pertinent definitions are therefore in order. Given an abelian group A,
an A-flow on a graph G consists of an orientation of G and a function φ : E(G) → A
such that, at each vertex, the sum of all incoming values equals the sum of all outgoing
ones (Kirchhoff’s law). A flow which only uses non-zero elements of the group is said to
be nowhere-zero. For the existence of an A-flow on G the choice of the edge directions
is immaterial for one can reverse the orientation of any edge and replace the value on it
by its negative without violating the Kirchhoff law. Furthermore, if x = −x for every
x ∈ A, then orientation can be ignored altogether. This is the case of local Tait colourings
encountered in this paper.

3 Covering cubic graphs with four perfect matchings

The aim of this section is to translate the problem of covering a cubic graph with four
perfect matchings into the language of flows whose values and flow patterns around ver-
tices are restricted to points and lines of a tetrahedron in the 3-dimensional projective
space over the 2-element field F2. This new language will be crucial for the remainder of
the paper. We start with the necessary geometric background.

The n-dimensional projective space Pn(F2) = PG(n, 2) over the 2-element field F2

is an incidence geometry whose points can be identified with the nonzero vectors of the
(n+1)-dimensional vector space Fn+1

2 and lines are formed by the triples {x, y, z} of points
such that x + y + z = 0. The 2-dimensional projective space PG(2, 2) is the well-known
Fano plane which has 7 points and 7 lines. The 3-dimensional projective space PG(3, 2)
has 15 points and 35 lines.

An automorphism of PG(n, 2) is called a collineation. It maps lines to lines and hence
collinear points to collinear points. It is well known [6] that each collineation of PG(n, 2)
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is induced by a bijective linear transformation Fn+1
2 → Fn+1

2 .
A tetrahedron in PG(3, 2) is a configuration T consisting of ten points and six lines

spanned by a set of four points of PG(3, 2) in general position; it means that no three of
the points lie on the same line. Two points of T that lie on the same line of T are said to
be collinear in T , otherwise they are non-collinear in T .

Consider a fixed tetrahedron T = T (p1, p2, p3, p3) spanned by points p1, p2, p3, and p4

in general position; these four points are the corner points of T . With every pair {c1, c2}
of distinct corner points T contains the entire line {c1, c1 + c2, c2}. The point c1 + c2 is the
midpoint of the line {c1, c1 + c2, c2}. Clearly, there are six midpoints in T . Thus, in total,
T has four corner points and six midpoints arranged in six lines (see Figure 2). Observe
that each line ` = {c1, c1 + c2, c2} of T is uniquely determined by either its two corner
points or by its midpoint; accordingly, ` will be denoted by 〈c1, c2〉 or by 〈c1 + c2〉.

There are exactly five points of PG(3, 2) that are not included in T . In order to
describe them in geometric terms recall that four points x1, x2, x3, and x4 of PG(3, 2) are
in general position if and only if they form a basis of the vector space F4

2. Every vector
y ∈ F4

2 can therefore be uniquely expressed as a linear combination

y = α1p1 + α2p2 + α3p3 + α4p4

where the coefficients αi are from F2 = {0, 1}. The number of nonzero coefficients in this
expression is the weight of y with respect to T , and will be denoted by |y|T . The subscript
T will be dropped whenever T is clear from the context. We emphasise that the weight
|y|T coincides with the Hamming weight only when T is spanned by the unit vectors of F2.

According to our definition of weight, the zero vector has weight 0, the corner points
of T have weight 1, and midpoints have weight 2. The remaining five points of PG(3, 2)
have weight 3 and 4 and can be characterised as follows. In T , consider a triangle t, by
which we mean a set consisting of six points arranged in three lines spanned by three
distinct corner points c1, c2, and c3; we denote the triangle t by 〈c1, c2, c3〉. The point
c1 + c2 + c3 of PG(3, 2), which obviously does not belong to T , can be regarded as the
centre of t. There are four triangles in T ; their centres provide four of the five points of
PG(3, 2) missing in T . The last missing point is p1 + p2 + p3 + p4, the barycentre of the
entire T .

Let us consider an arbitrary coveringM of a cubic graph G with four perfect matchings
M1, M2, M3, and M4, not necessarily distinct; thus E(G) = M1 ∪M2 ∪M3 ∪M4. Every
vertex v of G is incident with all the members ofM and each edge incident with v belongs
to a member of M. It follows that one of the edges at v is covered by two members of
M while the remaining two are covered by a single member of M. If we label each edge
e with the binary vector (x1, x2, x3, x4) where xi = 0 if and only if e belongs to Mi we
obtain a mapping

ψ = ψM : E(G)→ Z4
2. (1)

This mapping is easily seen to be a proper edge-colouring of G, in fact, a local Tait
colouring in the sense of [20]. Even more, it is a nowhere-zero Z4

2-flow because for each
i ∈ {1, 2, 3, 4} the i-th coordinate mapping

e 7→ ψ(e)i

coincides with the characteristic function of a cycle, the 2-factor complementary to Mi,
and hence is a flow.

The flow ψM has an additional geometric structure evinced by the fact that the set of
values of φ forms the tetrahedron spanned by the points (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1),
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and (1, 1, 1, 0) (representing the perfect matchings M1, M2, M3, and M4, respectively)
and the flow values around each vertex form a line of the tetrahedron. Such a flow will
be called tetrahedral. To be more precise, let φ : E(G)→ Z4

2 an edge-valuation of a cubic
graph G and let T = T (p1, p2, p3, p4) be a tetrahedron in PG(3, 2). We say that φ is a
T -flow if, for each edge e of G, the value φ(e) is a point of T , and for each vertex v of
G, the set {φ(e1), φ(e2), φ(e3)}, where e1, e2, and e3 are the edges incident with v, is a
line of T . If the particular tetrahedron T is irrelevant, we just say that φ is a tetrahedral
flow. Note that any tetrahedral flow is a nowhere-zero flow because any three points
constituting a line of T sum to zero and the value φ(e) = 0 doe not occur. Since φ is also
a proper edge-colouring, it will sometimes be referred to as a tetrahedral colouring (or a
T -colouring whenever a tetrahedron T is specific) and the values φ(e) as colours. It may
be worth mentioning that a tetrahedral flow is also an instance of a B-flow in the sense
of Jaeger [18, p. 73], where B is a subset of an abelian group A not containing zero such
that B = −B. However, it is endowed with an additional geometric structure.

With this preparation we can proceed to the main result of this section.

Theorem 3.1. A cubic graph can have its edges covered with four perfect matchings if and
only if it admits a tetrahedral flow. Moreover, there exists a one-to-one correspondence
between coverings of G with four perfect matchings and T -flows, where T is an arbitrary
fixed tetrahedron in PG(3, 2).

Proof. It suffices to prove the second statement. We first do it for the tetrahedron T1

spanned by the points (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), and (1, 1, 1, 0), and then supply a
general argument.

As mentioned in the preceding paragraphs, given a covering M = {M1,M2,M3,M4}
of G with four perfect matchings, the mapping ψM defined by (1) is a T1-flow. For the
converse, let φ be an arbitrary T1-flow on G. For each i ∈ {1, 2, 3, 4} define Ni to be the
set of all edges where the i-coordinate of the point ψ(e) equals 0. Taking into account
the structure of lines in T1 it is not difficult to see that each Ni is a perfect matching
of G and that N = {N1, N2, N3, N4} covers all the edges of G. Thus every T1-flow φ on
G determines a covering N = Nφ of G with four perfect matchings. Furthermore, if we
start from a T1-flow φ on G, construct the corresponding covering = Nφ, and then derive
the T1-flow ψN from it, we can easily check that ψN = φ. Similarly, if we start with a
covering M, derive ψ = ψM, and then Nψ, we can conclude that Nψ =M. This means
that we have established a one-to-one correspondence between coverings of G with four
perfect matchings and T1-flows.

Now let T = T (p1, p2, p3, p4) be an arbitrary tetrahedron in PG(3, 2) with corner
points p1, p2, p3, and p4. Since the set {p1, p2, p3, p4} forms a basis of F4

2, there ex-
ists a linear transformation Θ of F4

2 which takes the basis {p1, p2, p3, p4} to the ba-
sis {(0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)}. This mapping induces a collineation of
PG(3, 2), which means that Θ takes a line to a line and, consequently, transforms T
into T1. In particular, if ψ is a T -flow on G, then Θψ is a T1-flow, and if φ is a T1-flow,
then Θ−1φ is a T -flow. This allows us to conclude that the assignment ψ 7→ Θψ estab-
lishes a one-to-one correspondence between T -flows and T1-flows on G. Combining this
correspondence with the one-to-one correspondence between T1-flows on G and coverings
of G with four perfect matchings we obtain the desired result.

The significance of Theorem 3.1 resides in the fact that it enables us to move freely
between the coverings of cubic graphs with four perfect matchings and the tetrahedral
flows. With this correspondence in hand, we can replace reasoning about 1-factors and
2-factors in cubic graphs with algebraic calculus in the group Z4

2 combined with the
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geometry of the projective space PG(3, 2) and then translate the results back to graph
structure.

Remark 3.2. We discuss the relationship between T1-flows and T -flows described in the
second part of the previous proof for the special case of the tetrahedron T0 spanned by
the points (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1). Observe that both T0 and T1

have the same set of midpoints, namely the points with exactly two coordinates equal
to 1. The linear transformation Λ of F4

2 determined by the matrix

AΛ =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


swaps each unit vector of F4

2 with its antipode, the vector obtained by from it by inter-
changing zeros with ones, while leaving the midpoints fixed; in particular, Λ2 = id. The
corresponding collineation maps T0 isomorphically to T1 and vice versa. Now, if φ is an
arbitrary Ti-flow on a cubic graph G for i ∈ {0, 1}, then the corresponding T1−i-flow Λφ
can be obtained simply by replacing each flow value of weight 1 with respect to Ti with
its antipode (which is of weight 1 in the other tetrahedron) while leaving the flow values
of weight 2 intact.

This correspondence has a useful consequence that if φ is an arbitrary T0-flow on a
cubic graph G, then for each i ∈ {1, 2, 3, 4} the set Mi = {e ∈ E(G);φ(e)i = 1} is a
perfect matching of G and M = {M1,M2,M3,M4} is a covering of G with four perfect
matchings. The correspondence also works in the reverse direction.

4 Small geometric objects in PG(3, 2)

One way of applying Theorem 3.1 to proving that a cubic graph cannot be covered with
four perfect matchings is by analysing conflicting behaviour of tetrahedral flows on the
components resulting from the removal of an edge-cut from the graph. The sets of flow
values on the edges of the cut form geometric objects in PG(3, 2) which in turn can be
used to describing the conflicts. In this section we introduce several types of objects,
mainly of size 2, that will serve for this purpose.

We say that two sets A and B of points of a tetrahedron T in PG(3, 2) have the same
shape if there exists a collineation of PG(3, 2) that preserves T and takes A to B. A
geometric shape in T , or simply a shape, is an equivalence class of all point sets having
the same shape. The shape of a set of points of T is a geometric shape it belongs to.

Let Π = Π(T ) be the set of all pairs {p, q} where p and q are points of T , not
necessarily distinct.

We distinguish the following seven types of objects in Π(T ):

(i) A line segment is a pair {c1, c2} where c1 and c2 are any two distinct corner points
of T . A line segment is a subset of a line consisting of its two corner points. The set
of all line segments of T will be denoted by ls. Clearly, there are six line segments
in T .

(ii) A half-line is a pair {c1, c1 + c2} where c1 and c2 are any two distinct corner points
of T . A half-line is a subset of a line consisting of a corner point and a midpoint. It
means that each line has two half-lines. The point c1 it the origin of the half-line,
and c2 is its target. The set of all half-lines of T will be denoted by hl. There are
twelve half-lines in T .
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(iii) An angle is a pair {c1 + c2, c1 + c3} where c1, c2, and c3 are any three distinct corner
points of T . An angle consists of the midpoints of two intersecting lines of T . Their
corner points form a triangle. Clearly, each triangle 〈c1, c2, c3〉 in T has three angles.
On the other hand, each angle belongs to a unique triangle. The set of all angles of
T will be denoted by ang. There are twelve distinct angles in T .

(iv) An altitude is a pair {c1, c2 + c3} where c1, c2, and c3 are any three distinct corner
points of T . An altitude consist of a corner point of a triangle t = 〈c1, c2, c3〉 and
the midpoint of the line of t not incident with the chosen the corner point. Each
triangle has three altitudes. The set of all altitudes of T will be denoted by alt.
There are twelve altitudes in T .

(v) An axis is a pair {c1 + c2, c3 + c4} where c1, c2, c3, and c4 are all four corner points
of T in some order. An axis consists of the midpoints of two skew (non-intersecting)
lines of T . The set of all axes of T will be denoted by ax. Any tetrahedron T in
PG(3, 2) has three axes. The lines of PG(3, 2) spanned by the axes of T all meet
at the barycentre of T .

(vi) A double corner point is a degenerate pair {c, c} where c is an arbitrary corner point
of T . The set of all such pairs will be denoted by dc.

(vii) A double midpoint is pair {m,m} where m is an arbitrary midpoint of T . The set
of all such pairs will be denoted by dm.

The pairs under items (i)-(ii) are collinear, those under (iii)-(v) are non-collinear, and
the pairs under items (vi)-(vii) are degenerate. Clearly, for a pair {p, q} ∈ Π(T ) the sum
p+ q is a point of T if and only if {p, q} is collinear.

We now show that the items (i)-(vii) represent all geometric shapes of pairs of points
of any tetrahedron in PG(3, 2).

Proposition 4.1. The set σ = {ls, hl, ang, alt, ax, dc, dm} provides a complete list of
shapes of pairs of points of an arbitrary tetrahedron in PG(3, 2).

Proof. It is not difficult to see that each of the sets ls, hl, ang, alt, ax, dc, and dm

contains pairs of the same shape. On the other hand, different members of σ consist of
pairs of different shape. Since

|ls|+ |hl|+ |ang|+ |alt|+ |ax|+ |dc|+ |dm| = 55 =

(
10

2

)
+ 10 = |Π(T )|,

each pair of points of T belongs to precisely one element of σ. This implies that the set
σ is the complete set of shapes of pairs of points of T .

From among the shapes of 3-element point sets only two will be important for us – lines
(of course) and circles. We define a circle in a tetrahedron T as any subset {m1,m2,m3}
of T which consists of three distinct midpoints sharing a triangle. It means that there
exist three corner points c1, c2, and c3 of T such that m1 = c1 + c2, m2 = c2 + c3, and
m3 = c3 + c1. In particular, m1 + m2 + m3 = 0, so {m1,m2,m3} is a line of PG(3, 2).
Clearly, all circles have the same shape, but the shape of a circle in T is different from
that of a line in T .

Lemma 4.2. For arbitrary points x, y, and z of a tetrahedron T in PG(3, 2), the equality
x+ y + z = 0 holds if and only if {x, y, z} is a line or a circle of T .
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Proof. If {x, y, z} is a line of T or a circle of T , then indeed x+y+z = 0. For the converse
let x, y, and z be arbitrary points of T such that x + y + z = 0. Since all of them are
non-zero vectors, they must be pairwise distinct. Consider any two of them, say x and y.
If they are collinear, then {x, y, z} is clearly a line. If they are non-collinear, then {x, y}
is either an angle, an axis, or an altitude. In the latter two cases, z = x+ y is not a point
of T . If {x, y} is an angle, then z is the third midpoint of the triangle spanned by the
corner points of the lines 〈x〉 and 〈y〉. In other words, {x, y, z} is a circle of T .

5 Transitions through (2,2)-poles

The next two sections provide a background material for the study of conflicts of tetra-
hedral flows on edge-cuts of size 4 and 5. For this purpose it is convenient to partition
the semiedges of 4-poles and 5-poles arising from the removal of these cuts into two con-
nectors of size 2 and, in the latter case, one additional residual semiedge. After choosing
an input connector we can follow how input values of a tetrahedral flow transform into
output values, and from this information we can derive a transition relation for a dipole.

Consider an arbitrary (2,2)-pole X = X(I, O) with input connector I = {g1, g2} and
output connector O = {h1, h2}, and let T be a fixed tetrahedron in PG(3, 2). We say
that X has a transition

{x, y} → {x′, y′}

or that {x, y} → {x′, y′} is a transition through X, if there exists a T -flow φ on X such
that {φ(g1), φ(g2)} = {x, y} and {φ(h1), φ(h2)} = {x′, y′}. If X admits both transitions
{x, y} → {x′, y′} and {x′, y′} → {x, y}, we write

{x, y} ←→ {x′, y′}.

The set of all transitions through X forms a binary relation TΠ(X) on the set Π = Π(T )
of point pairs of T .

For convenience, we often refer to the symbol {x, y} → {x′, y′} as a transition even
without a reference to a particular (2, 2)-pole, as opposed to a transition through a (2, 2)-
pole defined above. There is no danger of confusion.

From the Kirchhoff law we deduce that for each transition {x, y} → {x′, y′} through
a (2, 2)-pole we have x+ y = x′ + y′. This value will be called the trace of the transition.
A transition whose trace is 0 is said to be vanishing. A non-vanishing transition {x, y} →
{x′, y′} is collinear if both pairs {x, y} and {x′, y′} are collinear, that is, if there exist lines
` and `′ of T such that {x, y} ⊆ ` and {x′, y′} ⊆ `′.

Each transition {x, y} → {x′, y′} between pairs of points induces the transition be-
tween their shapes. In this way we obtain a transition s → t, where s is the shape of
{x, y}, t is the shape of {x′, y′}, and s, t ∈ {ls, hl, ang, alt, ax, dc, dm} = σ. Since our
transitions are derived from flows, in most cases there is no need to distinguish between
the shapes dc and dm as both of them represent the zero total flow through a connector.
This permits us to merge the shapes dc and dm into a single shape dc ∪ dm, which we
denote by dpt and call the double point. Accordingly, we obtain the merged set of shapes

Σ = {ls, hl, ang, alt, ax, dpt}

and denote the corresponding induced transition relation by TΣ(X) or simply by T(X). In
what follows, this transition relation will become one of our main tools for the investigation
of cubic graphs that cannot be covered with four perfect matchings.
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Before stating our next theorem we need one more definition. We say that a transition
{x, y} → {x′, y′} is stationary if {x, y} and {x′, y′} have the same shape in Σ. If all
transitions through a (2, 2)-pole X are stationary, then X itself is called stationary.

Theorem 5.1. All transitions through an arbitrary (2, 2)-pole X are stationary except
possibly those of the form ls→ ang or ang→ ls. In particular, all transitions involving
a half-line, an altitude, an axis, or a double point must have one of the following forms:

hl→ hl, alt→ alt, ax→ ax, and dpt→ dpt.

Proof. Consider an arbitrary transition {x, y} → {x′, y′} through a (2, 2)-pole X, and let
φ be a T -flow on X that induces it. Kirchhoff’s law implies that x + y = x′ + y′, which
means that x+y and x′+y′ must have the same weight. If |x+y| = 2, then each of {x, y}
and {x′, y′} is either an angle or a line segment. Thus if the transition {x, y} → {x′, y′}
with |x+ y| = 2 is not stationary, then it has the form ang→ ls or ls→ ang.

It remains to verify that all the remaining transitions through X are stationary. If
|x+y| = 0, then x = y and x′ = y′, and we obtain the transition dpt→ dpt. If |x+y| = 1,
then x+ y = x′+ y′ is a corner point, and therefore both {x, y} and {x′, y′} must be half-
lines. Similarly, if |x + y| = 3, then x + y is the centre of a triangle, which means that
both {x, y} both {x′, y′} are altitudes. Finally, if |x + y| = 4, then {x, y} both {x′, y′}
are necessarily axes. This yields the transitions hl → hl, alt → alt, and ax → ax,
respectively.

The previous theorem implies that the transition relation T(X) of every (2, 2, )-pole
X is contained in the set

A = {dpt→ dpt, hl→ hl, alt→ alt, ax→ ax,

ang→ ang, ang→ ls, ls→ ang, ls→ ls}. (2)

The elements of A will be called admissible transitions.

Remark 5.2. It is obvious that Theorem 5.1 can be substantially strengthened as Kirch-
hoff’s law provides additional restrictions to admissible transitions. The following state-
ments hold for any transition {x, y} → {x′, y′} through an arbitrary (2, 2)-pole X. Their
proofs are easy and therefore are left to the reader.

(i) If {x, y} → {x′, y′} has the form hl → hl, then {x, y} and {x′, y′} are half-lines
with the same target, not necessarily identical.

(ii) If {x, y} → {x′, y′} has the form ls→ ls, then {x, y} = {x′, y′}.

(iii) If {x, y} → {x′, y′} has the form ang → ls, then {x′, y′} is the segment of the line
of the opposite to the angle {x, y} in the triangle containing {x′, y′}. To be more
precise, if {x, y} = {c1 +c2, c1 +c3}, then {x′, y′} = {c2, c3} for suitable corner points
c1, c2, and c3.

(iv) If {x, y} → {x′, y′} has the form ang→ ang, then either {x, y} = {x′, y′}, or {x, y}
and {x′, y′} are opposite angles of the rectangle formed by the union of triangles
determined by {x, y} and {x′, y′}, respectively. The value x + y = x′ + y′ is the
midpoint of the line forming a diagonal of the rectangle.

(v) If {x, y} → {x′, y′} has the form alt → alt, then {x, y} and {x′, y′} are altitudes
of the same triangle.
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(vi) There are no restrictions on transitions of the form ax→ ax and dpt→ dpt.

It is natural to ask whether all the admissible transitions can actually occur in some
dipole. The answer is positive but we defer it until Example 5.6 which is preceded by the
next two theorems.

Consider a cubic graphG with perfect matching index greater than 4, pick two adjacent
vertices u and v, and form the (2, 2, )-pole D(I, O) = Guv. Our next theorem reveals the
fundamental property of the dipole constructed in the just described way: for every non-
vanishing transition {x, y} → {x′, y′} through D(I, O) at most one of the pairs {x, y} is
collinear.

Theorem 5.3. Let G be a cubic graph with π(G) ≥ 5, let u and v be adjacent vertices
of G, and let D(I, O) = Guv. If {x, y} → {x′, y′} is an arbitrary transition through D,
then at most one of the pairs {x, y} and {x′, y′} is collinear. In other words, D has no
collinear transition.

Proof. If {x, y} → {x′, y′} is a vanishing transition, then both pairs {x, y} and {x′, y′}
are degenerate and hence not collinear. Assume that {x, y} → {x′, y′} is a non-vanishing
transition through D, and let φ be a T -flow on D which induces it. Suppose to the
contrary that both pairs {x, y} and {x′, y′} are collinear. It follows that there exist lines
` and `′ in T such that {x, y} ⊆ ` and {x′, y′} ⊆ `′. Since x + y = x′ + y′ = t for some
point t of T , we see that t ∈ `∩ `′. If we extend the flow φ on D to the entire graph G by
assigning the value t to the edge uv, the edges around u will be properly coloured from
the line ` and those around v will be properly coloured from `′. It follows that G has a
T -flow, contradicting Theorem 3.1. Hence X has no collinear transition.

Theorem 5.3 implies that every (2, 2)-pole Guv obtained from a cubic graph G with
π(G) ≥ 5 by removing two adjacent vertices and arranging the dangling edges in the usual
manner behaves like a collinearity destroying gadget : if the input pair of a transition is
collinear, then the output pair must be non-collinear, and vice versa. More generally, every
(2, 2)-pole X which has no collinear transitions will be called a collinearity destroying
dipole, or briefly a decollineator.

The following result provides a characterisation of decollineators.

Theorem 5.4. The following statements are equivalent for an arbitrary (2, 2)-pole X.

(i) X is a decollineator, that is, X admits no collinear transition.

(ii) X has no transitions of the form ls→ ls or hl→ hl.

(iii) The cubic graph G created from X by adding to X two adjacent vertices and attach-
ing each of them to a connector of X has π(G) ≥ 5.

Proof. (i) ⇒ (ii): Let X be a decollineator. Theorem 5.1 implies that the only possible
transitions through X are the admissible transitions constituting the set A. Of them,
only ls→ ls and hl→ hl are collinear. So X has no transitions of the form ls→ ls or
hl→ hl.

(ii) ⇒ (iii): Let X be a (2, 2)-pole that admits no transitions of the form ls→ ls or
hl→ hl, and let G be the cubic graph formed from X by adding two adjacent vertices and
attaching each of them to a connector of X. By Theorem 3.1 it is sufficient to show that
G has no T -flow. If G had one, say φ, then the three edges around u and v would receive
values from lines `u and `v of T , respectively. Under the induced flow on X, the semiedges
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of the input connector receive values x and y from `u, and those of the output connector
receive values x′ and y′ from `v. It means that X has a transition {x, y} → {x′, y′} which
is collinear, contrary to the assumption.

(iii) ⇒ (i): This implication follows directly from Theorem 5.3.

Theorems 5.1-5.4 combined readily imply the following.

Corollary 5.5. Every decollineator D has its transition relation T(D) contained in the
set

D = {dpt→ dpt, alt→ alt, ax→ ax, ang→ ang, ang→ ls, ls→ ang}. (3)

The next example shows that each admissible transition occurs in some (2, 2)-pole.

Example 5.6. The decollineator Guv where G is the Petersen graph has all admissible
non-collinear transitions. The transition relation of the (2, 2)-pole consisting of two ad-
jacent vertices, with input semiedges attached to one vertex and the output semiedges
attached to the other vertex, is the set {ls→ ls, hl→ hl} comprising the two collinear
transitions.

We finish this section with two results that reveal interesting behaviour of bipartite
cubic graphs.

Proposition 5.7. Let G be a bipartite cubic graph and v an arbitrary vertex of G. Then
for every tetrahedral flow on the 3-pole Gv the flow values of the three semiedges of Gv

form a line of the tetrahedron.

Proof. Let x, y, and z be the values assigned to the semiedges of Gv. From Kirchhoff’s
law we know that x + y + z = 0. By Lemma 4.2, the triple {x, y, z} is either a line or a
circle of T . If {x, y, z} is a circle, then the edges carrying a value of weight 1 must form
a 2-factor F of G − v. Since G − v has an odd number of vertices, F contains an odd
circuit, and hence G is not bipartite, contrary to the assumption. Therefore {x, y, z} is a
line, as claimed.

Proposition 5.8. Let G be an arbitrary bipartite cubic graph, and let u and v be adjacent
vertices of G. Then Guv is a stationary (2, 2)-pole.

Proof. Suppose to the contrary that Guv is not stationary. Theorem 5.1 then implies that
the dipole Guv admits a transition ang → ls or its reverse. Without loss of generality
we may assume that Guv admits ang → ls. Let φ be a T -flow of Guv that induces this
transition. Then φ gives rise to a T -flow of G−u under which the values on the semiedges
of Gu form a circle. This contradicts Proposition 5.7.

6 Weighted transitions through (2,2;1)-poles

Consider an arbitrary (2, 2; 1)-pole Y = Y (I, O; r) with input connector I = {g1, g2},
output connector O = {h1, h2}, and residual semiedge r. Let T be a tetrahedron in
PG(3, 2), let {x, y} and {x′, y′} be elements of Π(T ), and finally let i ∈ {1, 2}. We say
that X has a transition

{x, y} i→ {x′, y′}

if there exists a T -flow φ on Y such that {φ(g1), φ(g2)} = {x, y}, {φ(h1), φ(h2)} = {x′, y′},
and the residual value φ(r) has weight i. For emphasis, such a transition will be called
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a weighted transition. However, whenever the context permits it, the adjective ‘weighted’
will be dropped.

Every weighted transition {x, y} i→ {x′, y′} between pairs of points induces a transition

s
i→ t where s is the shape of {x, y} and t is the shape of {x′, y′}. Although the weight i

of a transition {x, y} i→ {x′, y′} is uniquely determined by {x, y} and {x′, y′}, the same

might not hold for s
i→ t. The reason resides in the fact that the same shapes may

correspond to different geometric positions of the corresponding pairs of points within the

tetrahedron. Hence, the weight of a transition s
i→ t carries an information that cannot

be immediately recovered from s and t.
Most of the terminology developed in Section 5 for unweighted transitions directly

modifies to weighted transitions. In particular, a vanishing weighted transition is one
where either the input pair or the output pair is a double point.

Our first aim is to study the weighted transitions through a (2, 2; 1)-pole Guwv obtained
from a bipartite cubic graph G by removing a path uwv, where the input I = {g1, g2}
and the output O = {h1, h2} are formed by the semiedges formerly incident with u and v,
respectively, and the residual semiedge is the one formerly incident with w. For brevity,
such a (2, 2; 1)-pole will be called bipartite. Analogously we say that a (2, 2)-pole Guv

arising from a bipartite cubic graph by removing two adjacent vertices is bipartite.

We need two lemmas.

Lemma 6.1. Let G be a bipartite graph and let uwv be a path of length 2 in G. For
an arbitrary tetrahedral flow on the (2, 2; 1)-pole Guwv, the total number of non-residual
semiedges receiving a value of weight 2 does not exceed 2.

Proof. Let {A,B} be a bipartition of G. Since G is regular, we have |A| = |B| = m for
some integer m. Without loss of generality we may assume that u and v belong to A while
w belongs B. Under any given T -flow on G − {u,w, v}, each vertex of G − {u,w, v} is
incident with exactly one edge that carries a value of weight 2. Let p̄ denote the number
of semiedges of Guwv formerly incident with the vertex p ∈ {u,w, v} that receive a flow
value of weight 2. Counting the edges with a value of weight 2 leaving A and those leaving
B yields

ū+ v̄ + (m− 2) = w̄ + (m− 1),

which simplifies to
ū+ v̄ = w̄ + 1.

However, w̄ ≤ 1, so ū+ v̄ ≤ 2, which is equivalent to the statement of this lemma.

Lemma 6.2. In an arbitrary k-pole Q endowed with a tetrahedral flow, the number of
semiedges carrying a value of weight 2 has the same parity as k.

Proof. This is a direct consequence of the fact that in a multipole furnished with a tetra-
hedral flow every vertex is incident with exactly one edge that carries a value of weight 2.

The combination of Lemmas 6.1 and 6.2 significantly restricts potential transitions
through a (2, 2; 1)-pole Guwv arising from a bipartite graph G. In the next theorem we
specify a set B of weighted transitions that can occur for such a (2, 2; 1)-pole. The subse-
quent Remark 6.4 confirms that B is a minimal transition set with this property because
it actually occurs as the transition relation for a suitable bipartite (2, 2; 1)-pole Guwv.

The diagram of B is depicted in Figure 4. In this diagram, and in all other diagrams
representing weighted transition relations, undirected connections between two shapes s
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and t indicate the existence of both the transition s
i→ t and t

i→ s. Transitions of
weight 2 are represented by bold lines.

alt

ls

ang dpt hl

ax

Figure 4: The set of transitions B through bipartite (2, 2; 1)-poles

Theorem 6.3. Let G be a bipartite cubic graph and let uwv be a path of length 2 in G.
Then T(Guvw) ⊆ B.

Proof. Let {x, y} i→ {x′, y′} be an arbitrary transition through Guwv and let z be the
corresponding residual value. Since B is a symmetric relation, from each pair of transitions

{x, y} i→ {x′, y′} and {x′, y′} i→ {x, y} through Guvw, whenever they exist, it is sufficient
to check the one with |x|+ |y| ≥ |x′|+ |y′|.

To prove the required inclusion we consider three main cases depending on the weight
of x and y. Throughout the proof we therefore distinguish between the shapes dc and dm.

In our discussion we will say that a weighted transition s
i→ t through Guwv is valid if it

occurs in B.

Case 1. |x| = |y| = 2. From Lemma 6.1 we get that |x′| = |y′| = 1.

Case 1.1. x = y. In this case x′ + y′ = z 6= 0, so {x′, y′} is a line segment. Hence, we

have a valid transition dm
2→ ls.

Case 1.2. x 6= y. This time {x, y} is either an axis or an angle. First assume that
{x, y} is an axis. Then x′ + y′ 6= 0 for otherwise we would have z = x + y, where x + y
is not a point of the tetrahedron. Therefore {x′, y′} is a line segment. From Lemma 6.2

we infer that |z| = 2, which yields a valid transition ax
2→ ls. Next assume that {x, y}

is an angle. Recall that {x′, y′} is a pair of corner points. If x′ = y′, then we obtain the

valid transition ang
2→ dc with residue z = x + y, which is the third point of the circle

{x, y, x + y}. If x′ 6= y′, then {x′, y′} is a line segment, and by Lemma 6.2 the residual

value is a midpoint. We have thus obtained the transition ang
2→ ls, which again is valid.

Case 2. |x| = |y| = 1.

Case 2.1. x = y. If z is a midpoint, then Lemma 6.2 implies that |x′| = |y′|. If
|x′| = |y′| = 1, then x′ + y′ = z 6= 0, so {x′, y′} is a line segment. Thus we have obtained

the transition dc
2→ ls, which is again valid.

If z is a corner point, then from Lemma 6.2 we infer that |x′| 6= |y′|, which in turn
implies that |x|+ |y| < |x′|+ |y′|, a contradiction.

Case 2.2. x 6= y. In this case {x, y} is a line segment. If z is a corner point, we again
get a cotradiction with |x| + |y| < |x′| + |y′|. Assume therefore that z is a midpoint.
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Then |x′| = |y′| = 1. We claim that in this situation x′ = y′. If not, then {x′, y′} is a

line segment, which gives rise to the transition ls
2→ ls. However, any T -flow on Guwv

corresponding to this transition would induce a T -flow on Gw under which the values on
the semiedges of Gw form a circle {x + y, z, x′ + y′}. This contradicts Proposition 5.7.

Hence x′ = y′, which again gives rise to a valid transition ls
2→ dc.

Case 3. |x| 6= |y|. This means that {x, y} is either an altitude or a half-line. If z is a
midpoint, Lemma 6.2 yields that |x′| 6= |y′|, which implies that {x′, y′} is either a half-line

or an altitude as well. The resulting transitions are hl
2→ hl, alt

2→ alt, and hl
2→ alt

or its reverse, all of them valid.
If z is a corner point, then |x′| = |y′|, by Lemma 6.2. However, Lemma 6.1 excludes

the possibility that |x′| = |y′| = 2, so |x′| = |y′| = 1. If x′ = y′, then {x, y} cannot be
an altitude, because otherwise z = x+ y whence z would not be a point of T . Therefore

{x, y} is a half-line and we obtain the valid transition hl
1→ dc. Finally, if x′ 6= y′, then

{x′, y′} is a line segment, which yields transitions hl
1→ ls and alt

1→ ls, both of them
valid.

To summarise, we have covered all the possibilities for the input pair {x, y} and verified
that all the transitions from {x, y} through Guvw, where G is a bipartite graph, are
contained in B. Moreover, every transition contained in B occurs as a valid transition at
least once. This completes the proof.

Remark 6.4. The inclusion T(Guvw) ⊆ B can actually be achieved with equality for
suitable bipartite graphs. This situation takes place, for example, for both the complete
bipartite graph K3,3 and the Heawood graph, the unique cubic bipartite graph of girth 6
on 14 vertices [10]. In the former case, verification can be easily done directly, but for the
Heawood graph a computer was necessary.

It may be interesting to mention that if the shapes dc and dm are distinguished,

then the transition dc
2→ ls does not exist for K3,3, while dm

2→ ls does. On the other

hand, the Heawood graph admits both transitions dc
2→ ls and dm

2→ ls. In some cases,
distinguishing between dc and dm does make sense and can be used for the construction
of graphs with perfect matching index at least 5.

7 Composing dipoles and their transitions

In order to be able to construct rich families of graphs with perfect marching index at
least 5 we will employ several operations on dipoles as well as on their transition relations.
The definitions come with no surprise, but we include them in order to avoid ambiguity.

Given an (2, 2; d1)-pole M1 and an (2, 2; d2)-pole M2, we can construct an (2, 2; d1+d2)-
pole M1 ◦M2, the join of M1 and M2, by joining the output connector of M1 with the
input connector of M2. The input and the output of M1 ◦M2 are inherited from M1 and
M2, respectively. The join is clearly associative, which means that (M1 ◦M2) ◦M3 =
M1 ◦ (M2 ◦M3). If both M1 and M2 are (2, 2)-poles, we will also refer to M1 ◦M2 as their
composition.

Given two (2, 2; 1)-poles M1 and M2, we can construct a new (2, 2; 1)-pole M1 �M2,
the composition of M1 and M2, by attaching the two residual semiedges of M1 ◦M2 to a
new vertex, say v, and by adding a new dangling edge incident with v which will become
the residual edge of M1 �M2.

Technically speaking, the dipoles M1 ◦M2 and M1 �M2 are not uniquely determined
by M1 and M2 as they depend on the ordering of semiedges involved in the operation.
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However, all our subsequent statements concerning M1 ◦M2 or M1�M2 will equally hold
for both possible outcomes of either of these operations.

Similarly to dipoles, we can also compose their transition relations. As expected,
unweighted transitions p→ s and s→ t of dipoles M1 and M2, respectively, give rise to
the transition p→ t of M1 ◦M2. Conversely, a transition p→ q through M1 ◦M2 occurs
only when there exist transitions p→ s through M1 and s→ t through M2 for a suitable

shape s ∈ Σ. If exactly one of the transitions p → s and s → t is weighted, say s
i→ t,

then its weight is inherited into the resulting transition p
i→ t. If both transitions are

weighted, say p
i→ s and s

j→ t, then the composite transition p
k→ s through M1 �M2

is defined if and only i + j ≤ 3, in which case its weight is k = 3 − ij. The last rule is
a consequence of the fact that each vertex of a (2, 2; 1)-pole carrying a T -flow is incident
with two edges with value of weight 1 and one edge with value of weight 2. The same rules
apply not just to transition relations of dipoles but also to arbitrary sets of transitions.
So, if T(M1) ⊆ R1 and T(M2) ⊆ R2 we can conclude that T(M1 ◦ M2) ⊆ R1 ◦ R2

or T(M1 �M2) ⊆ R1 � R2, depending on which composition operation applies to M1

and M2.

The next two lemmas are easy but useful.

Lemma 7.1. The following statements hold:

(i) T(M1 ◦M2) = T(M1) ◦T(M2) for any two (2, 2)-poles M1 and M2.

(ii) T(M1 �M2) = T(M1)�T(M2) for any two (2, 2; 1)-poles M1 and M2.

Lemma 7.2. If X is an arbitrary (2, 2)-pole or (2, 2; 1)-pole and Y is a stationary (2, 2)-
pole, then T(X ◦ Y ) ⊆ T(X) and T(Y ◦X) ⊆ T(X).

Composition of dipoles can be conveniently utilised in constructing dipoles with various
useful transition properties. Preventing collinear transitions, which is defining property
of decollineators, is one of them. Another important type of a dipole is (2, 2)-pole which
does not permit any transition of the form ang → ang. We call it a deangulator. The
smallest example of a deangulator is the (2, 2)-pole of the form Guv obtained from G = K4,
the complete graph on four vertices, where uv is any edge of K4. Another example can
be constructed from the Petersen graph by severing two edges at distance 2 and forming
each connector from the half-edges of the same edge. Restricting the consideration to
the weights of points it is easy to verify that neither of these dipoles has a transition
{x, y} → {x′, y′} where |x| = |y| = |x′| = |y′| = 2. Consequently, no transition of the
form ang→ ang through them is possible.

The next proposition can be applied to the construction of new decollineators and
thereby, having in mind Theorem 5.4 (iii), to the construction of new cubic graphs with
π(G) ≥ 5.

Proposition 7.3. If D1 and D2 are decollineators and U1 and U2 are deangulators, then
D1 ◦ Ui ◦D2 is a decollineator and U1 ◦Di ◦ U2 is a deangulator for each i ∈ {1, 2}.
Proof. By Theorem 5.4 it suffices to prove that the (2, 2)-pole D = D1 ◦ Ui ◦D2 has no
transitions of the form hl → hl and ls → ls. The former transition is immediately
excluded by Theorem 5.1. In order to exclude the latter, consider an arbitrary transition
through D starting with a line segment. Applying the assumptions and Theorem 5.1 to
D1, U , and D2 we conclude that the only feasible sequence of transitions through them
is ls→ ang→ ls→ ang, where the first transition is through D1, the second is through
Ui, and the third is through D2. The resulting transition through D is ls→ ang, which
proves that D has no transition ls→ ls as well. The proof for U1 ◦Di ◦U2 is similar.
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Figure 5: The set of weighted transitions D ◦ B

Example 7.4. We finish this section by exploring the transition relation of a Halin
fragment. Recall that a Halin fragment is a (2, 2; 1)-pole of the form F = D ◦ B where
D is a decollineator, which can be taken to be a (2, 2)-pole Guv obtained from a cubic
graph G with π(G) ≥ 5 by removing a path uv of length 1, and B is a (2, 2; 1)-pole Kuwv

arising from a cubic bipartite graph K by removing a path uwv of length 2. Clearly,
T(D ◦ B) ⊆ D ◦ B. If D is a decollineator constructed from the Petersen graph and the
(2, 2; 1)-pole B is created from the complete bipartite graph K3,3, then the resulting Halin
fragment coincides with the Petersen fragment FPs, the basic building block of treelike
snarks. It can be shown that T(FPs) = D ◦ B.

With this information we can easily generalise the family of windmill snarks intro-
duced in [7]. Take three Halin fragments F1, F2, and F3 and form a cubic graph W =
W (F1, F2, F3) by first creating their composition F1 ◦ F2 ◦ F3, then attaching the three
residual semiedges to a new vertex, and finally by taking a closure of the resulting (2, 2)-
pole. We claim that π(W ) ≥ 5. If W had a covering with four perfect matchings, then
the corresponding T -flow would induce a directed closed walk of length 3 in the diagram
of the transition relation D ◦ B with the property that exactly one of the transitions has
weight 2. A straightforward check with the help of Figure 5 reveals that such a closed
walk does not exist. Therefore π(W ) ≥ 5, as claimed.

If the bipartite constituent Bi of each of the three Halin fragments Fi = Di ◦ Bi is
constructed from K3,3, then W coincides with a windmill snark of Esperet and Mazzuoc-
colo [7]. Moreover, if we choose each Fi to be the Petersen fragment, then W becomes
isomorphic to the snark shown in Figure 1 (left). It is therefore appropriate to call the
family of graphs of the form W (F1, F2, F3), where F1, F2, and F3 are arbitrary Halin
fragments, the generalised windmill snarks.

8 Halin snarks

In this section we put to use the knowledge gathered in the previous sections and prove
that Halin snarks cannot be covered with four perfect matchings. We also prove that
they are nontrivial snarks whenever the building blocks employed for their construction
originate from cyclically 4-edge-connected graphs of girth at least 5.

Recall that a Halin snark arises from a Halin graph H = C ∪ S, where C is the
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perimeter circuit and S is the inscribed tree, by substituting the vertices of C with Halin
fragments. As mentioned earlier, a Halin fragment is a (2, 2; 1)-pole F = D ◦ B where
D is a decollineator and B is a bipartite (2, 2; 1)-pole. Let v0, v1, . . . , vk−1 be the vertices
of C arranged in a cyclic order, and let Fi = Di ◦ Bi, with i ∈ {0, 1, 2, . . . , k − 1}, be a
Halin fragment that substitutes the vertex vi in the construction. We now form a Halin
snark H] by, first, performing a junction of the output connector of Fi with the input
connector of Fi+1 for each i ∈ {0, 1, . . . , k − 1} taken modulo k; then, by adding in the
tree S ′ = S − {v0, . . . , vk−1}; and, finally, by attaching the residual semiedge of each Fi
to the unique vertex v′i of S ′ adjacent in S to vi. For convenience, we identify the vertex
of Fi adjacent to v′i with vi. As a result, S is inherited from H to H] in its entirety, and
so we can write H] = C] ∪ S where C] is a subgraph obtained from H] by the removal of
all 3-valent vertices of S.

It is not difficult to show that every Halin snark H] is indeed a snark, meaning that
it admits no proper 3-edge-colouring. One can argue, for example, by using the fact that
in each Halin fragment Di ◦Bi the (2, 2)-pole Di is isochromatic [5, p. 13]. Therefore, for
every 3-edge-colouring of H] – which can be taken a nowhere-zero Z2 × Z2-flow on H]

– the Kirchhoff law fails at each vertex vi, forcing the zero value on the edge viv
′
i that

connects Bi to S. We omit the details because in Theorem 8.5 we prove a stronger result,
namely that π(H]) ≥ 5.

According to our definition, Halin snarks need not be nontrivial in general. The next
proposition shows that their nontriviality can easily be achieved if the building blocks are
by properly choosen.

Proposition 8.1. If H] is a Halin snark such that each Halin fragment Fi = Di ◦Bi has
both the decollineator Di and the bipartite (2, 2; 1)-pole Bi constructed from a cyclically
4-edge-connected cubic graph of girth at least 5, then H] is cyclically 4-edge-connected,
with girth at least 5.

Proof. Let H] be a Halin snark satisfying the assumptions. It is easy to see that H]

has girth at least 5. We claim that H] is cyclically 4-edge-connected. Obviously, none
of the multipoles used in the construction has a k-edge-cut with k < 4 separating a
subgraph containing a cycle from the rest of H]. Moreover, all Halin graphs are 3-edge-
connected [15]. Thus, every cycle-separating edge-cut is either entirely contained in one
of the multipoles – and then it is an l-cut for l ≥ 4 – or its mapping to the original Halin
graph cuts the perimeter circuit twice, and thus is a cycle separating m-edge cut with
m ≥ 5.

We now proceed to the proof that every Halin snark H] has π(H]) ≥ 5. The idea is to
modify the argument of Example 7.4 by engaging induction. For this purpose we extend
the weighted transition relation D ◦ B to the set

M = D ◦ B ∪ {ax 1→ hl, ls
1→ hl} (4)

whose diagram of M is displayed in Figure 6 (left).

The following property of M will be crucial for the inductive proof.

Proposition 8.2. If M1 and M2 are arbitrary (2, 2; 1)-poles such that T(M1) ⊆ M and

T(M2) ⊆M, then T(M1 �M2) ⊆M�M− {dpt 1←→ alt}.

Proof. If T(M1) ⊆M and T(M2) ⊆M, then clearly T(M1�M2) ⊆M�M; the diagram

ofM�M is displayed in Figure 6 (right). We show that the transitions dpt
1→ alt and
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Figure 6: The transition relationsM (left) andM�M andM′ (right); transitions added
to D ◦ B are dotted, those of M�M that do not occur in M′ are dashed.

alt
1→ dpt, which occur inM�M and in the diagram are represented by a dashed line,

do not belong to T(M1 �M2).

Suppose to the contrary that M1�M2 admits the transition dpt
1→ alt, and let φ be

the corresponding T -flow. Since the diagram of M has a single directed path from dpt

to alt, namely dpt
2→ ang

1→ alt, the induced transitions through M1 and M2 must be

dpt
2→ ang and ang

1→ alt, respectively. It follows that the two edges joining M1 to M2

receive from φ the values forming an angle {c1 +c2, c1 +c3}, where c1, c2, and c3 are corner
points of T . Since the flow through the input connector of M1 is 0, the Kirchhoff law tells
us that the residual edge of M1 receives the value (c1 + c2) + (c1 + c3) = c2 + c3. The
value on the residual edge of M2 must therefore be either c2 or c3, which in turn implies
that the flow through the output connector of M1 �M2 will be either (c2 + c3) + c2 = c3

or (c2 + c3) + c3 = c2. In both cases, the outflow from M1 �M2 has weight 1, while an

altitude has trace of weight 3. This contradiction excludes the transition dpt
1→ alt. The

reverse transition alt
1→ dpt can be handled similarly.

For brevity we set

M′ =M�M− {dpt 1←→ alt}. (5)

It is easy to check that M′ ⊆M, which immediately implies the following result.

Corollary 8.3. If M1 and M2 are (2, 2; 1)-poles such that T(M1) ⊆M and T(M2) ⊆M,
then T(M1 �M2) ⊆M′ ⊆M.

We divide the proof of the fact that π(H]) ≥ 5 for every Halin snark into three smaller
steps, Theorems 8.5, 8.6, and 8.8, each dealing with a particular dipole contained in it.
All three statements have an independent value as they can be applied in the construction
of graphs with perfect matching index at least 5.

Definition 8.4. Let H] = C]∪S be a Halin snark, with H = C ∪S being the underlying
Halin graph, C being the perimeter circuit, and S the inscribed tree. A Halin (2, 2; 1)-pole
X is a (2, 2, 1)-pole created from H] by removing one Halin fragment F = B ◦D from C]

and keeping the dangling edges. The connectors of X are formed in a natural manner:
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each consists of the semiedges joined in H] to a connector of F . A Halin (2, 2)-pole Y
is a (2, 2)-pole created from H] in a similar manner with the exception that one does
not remove the entire Halin fragment F = D ◦ B, where D is a decollineator and B is
a bipartite (2, 2; 1)-pole, but removes only D. Finally, an extended Halin (2, 2)-pole Z is
a (2, 2)-pole created from H] by severing a pair of edges that connect two consecutive
Halin fragments in C]. In all three cases the output connector coincides with the output
connector of the Halin fragment preceding F with respect to the cyclic ordering around C].

Theorem 8.5. Every Halin (2, 2; 1)-pole X satisfies T(X) ⊆M′.

Proof. Consider a Halin (2, 2; 1)-pole X constructed from a Halin snark H] = C] ∪ S by
removing one Halin fragment. Let H = C∪S be the underlying Halin graph. Throughout
the proof we refer to the notation introduced in the beginning of this section.

We prove the result by induction on the number of trivalent vertices of the inscribed
tree S of H. If S has only one trivalent vertex, then, up to a cyclic shift of indices,
X = F0 � F1 where F0 and F1 are Halin fragments. Since T(F0) ⊆M and T(F1) ⊆M,
Proposition 8.2 implies that T(X) = T(F0 � F1) ⊆ M′. This establishes the basis of
induction.

For the induction step consider an arbitrary Halin (2, 2; 1)-pole X where the inscribed
tree has k ≥ 2 trivalent vertices, and assume that the result is true for all Halin (2, 2; 1)-
poles whose inscribed trees have fewer than k trivalent vertices. The perimeter circuit of
H has k+2 vertices v0, v1, . . . , vk+1, which means that H] comprises k+2 Halin fragments
F0, F1, . . . , Fk, Fk+1. Without loss of generality we may assume that X is constructed by
removing Fk+1. Let w be the vertex of X incident with its residual semiedge, and let w1

and w2 be the neighbours of w in X. For i ∈ {1, 2} let Si denote the component of S−wwi
containing the vertex wi, and let S ′i be the tree obtained from Si by adding to it the vertex
w and the edge wwi. Recall that H is planar with S being a plane tree. Therefore there
exists an index r with 0 ≤ r < k such that the vertices v0, . . . , vr are the leaves of S1 and
the vertices vr+1, . . . , vk are the leaves of S2. Now we can form two smaller Halin graphs
H1 = C1 ∪ S ′1 and H2 = C2 ∪ S ′2, where C1 is the circuit that runs through the vertices
v0, . . . , vr, and w, while C2 is the circuit that runs through the vertices vr+1, . . . , vk, and w.
From these Halin graphs we can build Halin snarks H]

1 and H]
2 where w is substituted

(say) by Fk+1 and the remaining perimeter vertices are substituted by the same Halin
fragments as in H]. By removing Fk+1 from both H]

1 and H]
2 we obtain Halin (2, 2; 1)-

poles X1 and X2, respectively. It is easy to see that X1 � X2 is isomorphic to X. The
induction hypothesis implies that T(X1) ⊆M′ and T(X2) ⊆M′. Since M′ ⊆M, from
Proposition 8.2 eventually get T(X) = T(X1 ◦X2) ⊆ M′. This concludes the induction
step as well as the entire proof.

Theorem 8.6. Every transition through a Halin (2, 2)-pole has the form

ls→ ls or hl→ hl.

Proof. Let Y be an arbitrary Halin (2, 2)-pole. Definition 8.4 implies that Y can be
obtained from a bipartite (2, 2; 1)-pole B and a Halin (2, 2; 1)-pole X by taking the join
B ◦X and then performing the junction of the residual semiedges of B and X. It follows
that a transition s → t through Y can only exist provided that there exists a transition

s
i→ q through B and a transition q

j→ t through X such that i = j. Furthermore,
by Theorem 5.1, the resulting transition s → t must be admissible, which means that
it belongs to the set A displayed in Equation (2). Theorem 6.3 and Theorem 8.5 imply
that T(B) ⊆ B and T(X) ⊆ M′. By inspecting the relations B and M′ and excluding
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all results that are not admissible we conclude that only the following five combinations

(s
i→ q) ∈ B and (q

i→ t) ∈M′ are possible:

hl
1→ ls

1→ hl ls
2→ ang

2→ ls

hl
2→ alt

2→ hl ls
1→ alt

1→ ls

hl
1→ dpt

1→ hl

In all the cases we obtain either ls→ ls or hl→ hl. The theorem is proved.

We have just proved that all transitions through a Halin (2, 2)-pole are collinear. A
Halin (2, 2)-pole is thus an example of a collineator, a (2, 2)-pole whose transition relation
is contained in the set C = {ls→ ls, hl→ hl} of all collinear transitions.

Remark 8.7. Both transitions from Proposition 8.6 can actually be achieved by the
Halin (2, 2)-pole on 26 vertices obtained from the windmill snark of order 34 depicted in
Figure 1 (left) by deleting one decollineator on 8 vertices.

Theorem 8.8. Every transition through an extended Halin (2, 2)-pole has the form

ang→ ls.

Proof. Let Z be an arbitrary extended Halin (2, 2)-pole. Definition 8.4 implies that Z =
D ◦Y where D is a decollineator and Y is a Halin (2, 2)-pole. By using Corollary 5.5 and
Theorem 8.6 we can conclude that a transition s→ t through Z can only exist when there
exists a transition s → q in D, and q → t is one of ls → ls and hl → hl. However, D
has no transition involving hl, so q = ls and hence s = ang and t = ls, as required.

Theorem 8.9. Every Halin snark has perfect matching index at least 5.

Proof. Every Halin snark G can be expressed as G = [Z] where Z is an extended Halin
(2, 2)-pole. Now, if we had π(G) ≤ 4, then G would have a tetrahedral flow, and hence
the (2, 2)-pole Z would admit a stationary transition. However, Theorem 8.8 shows that
this is not the case. Therefore π(G) ≥ 5.

The next theorem makes use of the fact that the family of Halin snarks is quite rich.

Theorem 8.10. For every even integer n ≥ 42 there exists a nontrivial snark of order
n with perfect matching index at least 5.

Proof. We prove that there exists a nontrivial Halin snark of every even order n ≥ 42.
We know that there exists a treelike snark order n = 12k − 2 for every integer k ≥ 3.
These snarks are clearly nontrivial and are Halin. It is therefore sufficient to establish the
existence of nontrivial Halin snarks of order n for the remaining five even residue classes
modulo 12. To this end, we prove the following two claims.

Claim 1. If there exists a nontrivial Halin snark on n vertices, then there is also one on
n+ 12 vertices.

Proof of Claim 1. Let H] = C] ∪ T be a nontrivial Halin snark of order n. In H], choose
an arbitrary Halin fragment Fh = Dh ◦ Bh ⊆ C], where Dh is a decollineator and Bh is
a bipartite (2, 2; 1)-pole. Take the Heawood graph, denoted by Hw, which is a bipartite
vertex- and edge-transitive cubic graph of girth 6 on 14 vertices, and create the (2, 2)-pole
Guv for any fixed edge uv of G = Hw; denote it by MHw. Now, construct a new graph K
by replacing in H] the Halin fragment Fh = Dh ◦Bh with the (2, 2; 1)-pole Dh ◦Bh ◦MHw.
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It is easy to see that Bh ◦MHw is again a bipartite (2, 2; 1)-pole, so Dh ◦ (Bh ◦MHw) is
a Halin fragment and K is a Halin snark. Its order is n + 12, and since Hw is cyclically
6-edge-connected (see [28, Theorem 17]), K is also nontrivial. This completes the proof
of Claim 1.

To finish the proof it suffices to prove the following.

Claim 2. There exist nontrivial Halin snarks of order 42, 44, 48, 50, and 52.

Proof of Claim 2. In order to construct a nontrivial Halin snark of order 42 we start
with the windmill snark W34 of order 34, shown in Figure 1 (left). It is created from the
unique Halin graph of order 4, the complete graph K4, by substituting each vertex of the
perimeter circuit with the Petersen fragment. Recall that the Petersen fragment can be
expressed as FPs = DPs ◦B where DPs is the decollineator constructed from the Petersen
graph and B is the bipartite (2, 2; 1)-pole Guwv created from the complete bipartite graph
K3,3. Let us change K3,3 to the Heawood graph to obtain a bipartite (2, 2; 1)-pole BHw of
order 11. Replacing in W34 the Petersen fragment with the Halin fragment DPs◦BHw gives
rise to a Halin snark G42 of order 42. Again, G42 is nontrivial because Hw is cyclically
6-edge-connected.

Nontrivial Halin snarks of order 44, 48, 52, can be constructed in a manner simi-
lar to G42. Instead of the Heawood graph one has to use, respectively, the generalised
Petersen graph GP (8, 3) (known as the Möbius-Kantor graph), the generalised Petersen
graph GP (10, 3) (known as the Desargues graph), and the generalised Petersen graph
GP (12, 5) (nicknamed the Nauru graph), all of them vertex- and edge-transitive cubic
bipartite graphs of girth 6 (see [10]). They are all cyclically 6-edge-connected due to [28,
Theorem 17], implying that the resulting Halin snarks are nontrivial.

Finally, we construct a nontrivial Halin snark of order 50. For this purpose we use the
graph G42 constructed above, choose one Petersen fragment FPs = DPs ◦B left intact by
the construction of G42 from W34, and replace it with DPs ◦BHw. The number of vertices
increases by 8 to 50, and the result is obviously a nontrivial Halin snark.

The proof is complete.

9 Circular flows on Halin snarks

In this section we show that Halin snarks provide a rich source of graphs with circular
flow number at least 5. Such graphs are particularly interesting for the outstanding 5-
flow conjecture of Tutte and therefore have been extensively studied in a number of recent
papers [1, 8, 13, 23].

Given a real number r ≥ 2, we define a nowhere-zero real-valued r-flow as an R-flow
φ such that 1 ≤ |φ(e)| ≤ r − 1 for each edge e of G. A nowhere-zero modular r-flow is
an R/rZ-flow φ such that 1 ≤ φ(e) (mod r) ≤ r − 1 for each edge e. Here x (mod r)
denotes the unique real number x′ ∈ [0, r) ⊆ R such that x − x′ is a multiple of r. It is
a well-known folklore fact that a graph admits a nowhere-zero real-valued r-flow if and
only if it admits a nowhere-zero modular r-flow.

The circular flow number of a graph G, denoted by Φc(G), is the infimum of the set of
all real numbers r such that G has a nowhere-zero r-flow. This parameter was introduced
by Goddyn et al. in [12] as fractional flow number and was shown to be a minimum and
a rational number for every (finite) bridgeless graph.

Theorem 9.1. Let G be a Halin snark in which all decollineators have been obtained from
snarks with circular flow number at least 5. Then Φc(G) ≥ 5.
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Proof. Let H be a Halin graph with perimeter circuit C = (v0v1 . . . vk−1) and inscribed
tree S, and let H] be a Halin snark created from H using decollineators obtained from
graphs with circular flow number at least 5. Recall that every Halin graph contains a
triangle; without loss of generality we may assume that v0v1u is a triangle in H, with u
being a vertex of S. Set e0 = v0u and e1 = v1u.

Suppose to the contrary that Φc(H
]) = r < 5, and let φ be a nowhere-zero modular

r-flow on H]. Define the flow through a dipole X as the sum of flow-values (in R/rZ)
on the dangling edges of the input connector directed towards the dipole; of course, this
value coincides with the sum of flow-values on the dangling edges in the output connector
of X directed away from X.

For i ∈ {0, 1, . . . , k− 1} let ai denote the flow through the decollineator Di of H]. By
our assumption, each Di arises from a snark with circular flow number at least 5, so each
ai lies in the interval (−1, 1). Without loss of generality we may assume that a1 ∈ [0, 1).
As φ is an r-flow, both φ(e0) and φ(e1) are contained in the interval [1, r − 1]. It follows
that both a0 and a2 are contained in (−1, 0]. This in turn implies that φ(e0) ∈ [1, 2) and
φ(e1) ∈ (−2,−1], provided that e0 and e1 are in directed from u. However, the third
edge incident with u now receives a value from the interval (−1, 1), which contradicts the
definition of a nowhere-zero r-flow.

The just proved theorem significantly generalises the result of Abreu et al. [1, Theo-
rem 9] that the circular flow number of every treelike snark is at least 5. Indeed, every
treelike snark can serve as an ingredient for a Halin fragment that satisfies the assump-
tions of Theorem 9.1 and thus gives rises to new snarks with circular flow number at least
5. Clearly, this process can be iterated indefinitely.

10 Concluding remarks

The methods introduced in this paper can be used to produce a great variety of families
of snarks with perfect matching index at least 5. For example, Halin dipoles treated in
Theorems 8.6 and 8.8 can be variously combined with bipartite (2; 2; 1)-poles and dipoles
constructed on the basis of Propositions 5.8 and 7.3. The family of Halin snarks itself
can be easily extended to a family of snarks of the form H] ∪ S, where S is a planar
forest with any number of components rather than being just a tree. One possibility to
construct such a snark is to start with a Halin snark expressed as G = [D◦Y ] where D is a
decollineator and Y is a Halin (2, 2)-pole. Since Y is a collineator and the composition of
two collineators is again a collineator, we can create a graph G+

1 = [D◦(Y1◦. . .◦Yk)] where
Y1, . . . , Yk are arbitrary Halin (2, 2)-poles. Corollary 5.5 and Theorem 8.6 immediately
imply that G+

1 has no tetrahedral flow, whence π(G+
1 ) ≥ 5. Another possibility is to take

a graph G+
2 = [Z1 ◦ . . . ◦ Zk] where Z1, . . . , Zk are extended Halin (2, 2)-poles. In this

case, the fact that π(G+
2 ) ≥ 5 follows from Theorem 8.8. We can also develop special

constructions such as superposition [26] or a construction of nontrivial snarks with π ≥ 5
and circular flow number strictly smaller than 5, see [25].

Our methods unfortunately fail for nontrivial snarks with perfect matching index at
least 5 of small order. We therefore leave the following open problem.

Problem 10.1. Do there exist nontrivial snarks of orders 38 and 40 with perfect matching
index at least 5?

If 4-cycles are permitted, then the answer to this question is positive. Cyclically 4-
edge-connected snarks with π ≥ 5 containing a quadrilateral can be easily created from
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the snark shown in Figure 1 (left) by replacing one or two copies of the bipartite (2, 2; 1)-
pole on three vertices obtained from the complete bipartite graph K3,3 with a similar
(2, 2; 1)-pole created from the graph of the 3-dimensional cube.
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