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Abstract

Since first introduced by Sudakov and Vu in 2008, the study of resilience problems in

random graphs received a lot of attention in probabilistic combinatorics. Of particular interest

are resilience problems of spanning structures. It is known that for spanning structures

which contain many triangles, local resilience cannot prevent an adversary from destroying

all copies of the structure by removing a negligible amount of edges incident to every vertex.

In this paper we generalise the notion of local resilience to H-resilience and demonstrate its

usefulness on the containment problem of the square of a Hamilton cycle. In particular, we

show that there exists a constant C ą 0 such that if p ě C log3 n{
?
n then w.h.p. in every

subgraph G of a random graph Gn,p there exists the square of a Hamilton cycle, provided that

every vertex of G remains on at least a p4{9` op1qq-fraction of its triangles from Gn,p. The

constant 4{9 is optimal and the value of p slightly improves on the best-known appearance

threshold of such a structure and is optimal up to the logarithmic factor.

1 Introduction

One of the central questions of extremal graph theory concerns determining sufficient conditions

for the containment of (spanning) structures. Some of the most influential examples, dating back

to the middle of the previous century, include Turán’s theorem [38] and Dirac’s theorem [13].

The former states that having more than tn2{4u edges in a graph with n vertices is sufficient in

order for a triangle to exist, while the latter states that a graph with minimum degree rn{2s is

Hamiltonian. Several years later, first Pósa [14], and then Seymour [34], conjectured that for any

integer k ě 2, a graph G with n vertices and minimum degree δpGq ě kn{pk ` 1q contains the

k-th power of a Hamilton cycle. For a cycle C and an integer k P N, the k-th power of a cycle

(k-cycle for short) is obtained by including an edge between all pairs of vertices with distance

on C of at most k. The second power of a cycle is also called the square of a cycle. It required

the development of powerful tools, most notably Szemerédi’s regularity lemma and the blow-up

lemma, before this conjecture was finally proven by Komlós, Sárközy, and Szemerédi [22], at

least for all sufficiently large values of n.

Theorem 1.1 ([22]). For any k P N, there exists an n0 P N such that if G has order n with

n ě n0 and δpGq ě kn{pk ` 1q, then G contains the k-th power of a Hamilton cycle.

For more history on the problem and similar embedding questions we refer the reader to the

literature, cf. e.g. [9, 10, 16, 23, 21, 27] and the survey [25].
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Generalising the type of problems considered in the above theorem, we arrive at the following

Dirac-type question: given a graph property P , what is the minimum number α such that every

graph G on n vertices and minimum degree at least αn satisfies G P P? This leads to the notion

of local resilience that we now introduce formally.

Definition 1.2 (Local resilience). Let G “ pV,Eq be a graph and P a monotone increasing

graph property. The local resilience of G with respect to P is defined as:

rpG,Pq :“ mintr : DG̃ Ď G such that each v P V satisfies

degG̃pvq ď r ¨ degGpvq and G´ G̃ does not have Pu.

Looking back at the aforementioned results, Dirac’s theorem implies that the local resilience

of the complete graph Kn with respect to Hamiltonicity is at least n{2 and the theorem of

Komlós, Sárközy, and Szemerédi implies that the local resilience of ‘containment of the k-th

power of a Hamilton cycle’ is at least n{pk ` 1q. Moreover, it is not too difficult to construct

examples that show that both of these results are optimal (consider, for example, k “ 2 and a

complete 3-partite graph with two parts of size pn´ 1q{3 and one of size pn` 2q{3).

In this paper we study how Theorem 1.1 can be transferred to the setting of random graphs.

Such transference results recently received considerable attention including several breakthrough

results by Balogh, Morris, and Samotij [5], Conlon and Gowers [11], Conlon, Gowers, Samotij,

and Schacht [12], Saxton and Thomason [32], and Schacht [33].

We denote by Gn,p the probability space of all graphs with vertex set rns :“ t1, . . . , nu where

each edge appears randomly with probability p :“ ppnq P p0, 1q, independently of all other edges.

A systematic study of local resilience in random graphs was initiated by Sudakov and Vu [37]

and already led to many beautiful and deep results, see e.g. [3, 1, 8, 24, 26, 28, 29] and the recent

surveys [7, 36]. Inspired by other transference results (such as the ones mentioned above as well

as many more) from dense graphs to the random setting, one may be tempted to guess that

with high probability1 a random graph is such that every subgraph with minimum degree roughly

p2{3` op1qqnp contains the square of a Hamilton cycle.

On second thoughts, however, one easily sees that this cannot hold for p " log n{
?
n. An

adversary can remove all the edges with both endpoints lying in the neighbourhood of an arbitrary

vertex v, thus preventing v from being in a triangle (which implies in particular that v cannot be

contained in any square of a cycle); note that the deletion of these edges changes the degree of

every other vertex only by opnpq. In fact, Huang, Lee, and Sudakov [19] and Balogh, Lee, and

Samotij [4] showed that an adversary can always prevent as many as Ωpp´2q vertices from being

in triangles by deleting opnpq edges touching each vertex, as long as 1{
?
n ! p ! 1. The former

result shows the claim even when p is a fixed constant, independent of n.

In this paper we overcome the obstacles that the notion of local resilience encounters with

respect to containment of spanning structures (that contain triangles). For this we generalise

the notion of local resilience. More precisely, we restrict the adversary to only remove a fraction

of certain substructures touching each vertex. In the classic definition of local resilience these

substructures correspond to edges. For obtaining the square of a Hamilton cycle it turns out

that one should replace edges by triangles. This then motivates the following question:

How many triangles at a vertex does an adversary have to destroy in order to obtain a graph

without the square of a Hamilton cycle?

1We say that an event holds with high probability (w.h.p. for short), if the probability that it holds tends to 1

as n tends to infinity.
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We capture this question under the notion of K3-resilience, or more generally H-resilience as

given in the following definition.

Definition 1.3. Let H be a fixed graph and let P be a monotone increasing graph property.

For a graph G, the H-resilience of G with respect to P is defined as

rHpG,Pq :“ mintr : DG̃ Ď G such that the removal of G̃ destroys at most an r-fraction

of copies of H in G at every vertex and G´ G̃ does not have Pu.

In the main result of this paper we show that the above definition can be used in order to

determine the resilience of Gn,p with respect to the containment of the square of a Hamilton

cycle.

Theorem 1.4. The K3-resilience of Gn,p w.r.t. the containment of the square of a Hamilton

cycle is w.h.p. 5{9˘ op1q, provided that p " n´1{2 log3 n.

In other words, the above theorem shows that w.h.p. the adversary needs to delete more

than a p5{9q-fraction of the triangles lying on each vertex in order to destroy all copies of the

square of a Hamilton cycle in Gn,p. The density value p is optimal up to the logarithmic factor,

as a simple application of the first moment method shows that for p ! n´1{2 a random graph

Gn,p w.h.p. does not contain the square of a Hamilton cycle. Additionally, this result marginally

improves upon the current appearance threshold for the square of a Hamilton cycle in Gn,p by

Nenadov and the second author [30], by a log n factor in the density p.

The second result of the paper rephrases the above theorem in slightly different terms. From

Theorem 1.1 we know that in the dense case it is sufficient to require that the minimum degree is

at least 2n{3. Although the analogous statement cannot be true in the case of random graphs, we

prove that w.h.p. every spanning subgraph which satisfies the correct minimum degree condition

and the additional property that each edge is contained in αnp2 triangles, contains the square of

a Hamilton cycle. Before we can state this result precisely, we need a definition.

Definition 1.5. Let Γ be a graph on n vertices. We denote by GpΓ, n, α, pq the family of all

spanning subgraphs G Ď Γ that satisfy the following properties:

1. for every v P V pGq: degGpvq ě p2{3` αqnp, and

2. for every tu, vu P EpGq: |NGpuq XNGpvq| ě αnp2.

With this at hand we can state the second result of the paper.

Theorem 1.6. For every α ą 0 there exists a positive constant C :“ Cpαq, such that a random

graph Γ „ Gn,p w.h.p. has the following property, provided that p ě Cn´1{2 log3 n. Each member

of GpΓ, n, α, pq contains the square of a Hamilton cycle.

As in the first result of the paper, the value of p is almost optimal. Furthermore, the constant

2{3 in the definition of the class GpΓ, n, α, pq cannot be improved, as the same counterexample

as in the dense case works in this scenario as well. Even though the type of conditions in

two theorems above look quite different at first sight, we prove Theorem 1.4 by a reduction to

Theorem 1.6.

The proof of Theorem 1.6 uses the so-called absorbing method. In particular, we make use of

a strategy paved by Nenadov and the second author [30]. This method is discussed in Section 6.

In Section 2 we introduce some notation and probabilistic tools, and state several useful lemmas

about properties of (random) graphs, culminating in Lemma 2.9 about edge expansion properties.

3



In Section 3 we give the proof of Theorem 1.4 by a reduction to Theorem 1.6. We also show in

this section that the constant 5{9 in Theorem 1.4 is best possible. In Section 4 we introduce

several classes and definitions of graphs which we rely on throughout the paper. In Section 5 we

give the proof of Theorem 1.6 modulo several lemmas. Each of the subsequent Sections 6–7.3 are

dedicated to the proof of one of the technical lemmas and/or claims. Finally, we conclude by

discussing some related open problems in Section 8.

2 Tools and preliminaries

Our graph theoretic notation is standard (see, e.g. [6]). In particular, for a graph G “ pV,Eq we

denote by NGpvq the neighbourhood of a vertex v P V and by degGpvq its size, i.e. degGpvq “

|NGpvq|. Similarly, for X Ď V we write NGpXq for the union of neighbourhoods of vertices in

X, that is NGpXq :“ tu : tv, uu P E and v P Xu. Furthermore, for X,Y Ď V , we let NGpX,Y q

denote NGpXq X Y and if X consists of a single vertex we abbreviate NGptxu, Y q to NGpx, Y q.

If X,Y Ď V are disjoint subsets of vertices we write eGpX,Y q for the number of edges with one

endpoint in X and the other in Y . We use a set of edges I Ď E interchangeably as a set of edges

and a (sub)graph. In particular, we write degIpvq to denote the number of edges from I that are

incident to a vertex v and eIpX,Y q for the number of edges in I that have an endpoint in each

of the subsets X and Y . We omit the subscript G (resp. I) whenever it is clear from the context

to which graph G we refer to. For k, ` P N and a cycle C` with ` vertices, we let Ck` denote the

k-th power of C`, that is a graph obtained by adding an edge between any two vertices of C`
which are at distance at most k. Given two graphs H and G, and a function f : V pHq Ñ V pGq,

we say that f is an embedding of H into G if it is an injection and for all tv, uu P EpHq we have

tfpuq, fpvqu P EpGq.

For an integer k ě 2 and a set V we write
`

V
k

˘

for the family of all subsets of V with cardinality

exactly k. We write V k to denote the family of all ordered k-tuples of V whose entries are pairwise

different, that is V k :“ tpv1, . . . , vkq : vi P V for all i P rks and vi ‰ vj for all 1 ď i ă j ď ku.

An element of V k is usually denoted by a lower case bold letter. Given w “ pv1, . . . , vkq P V
k,

we write w to denote the tuple obtained by reversing the order in w, i.e. w “ pvk, . . . , v1q.

Moreover, for two ordered tuples w1 and w2, the tuple w1w2 is an ordered tuple obtained by

concatenation of w1 and w2. For a function g applicable to the elements of a tuple px1, . . . , xnq

we for convenience shorten pgpx1q, . . . , gpxnqq to gpx1, . . . , xnq.

For an integer n P N we write rns :“ t1, . . . , nu. Given a, b, c, x P R we write x P pa ˘ bqc

to denote pa´ bqc ď x ď pa` bqc. We make use of the standard asymptotic notation, o, O, ω,

Ω, and Θ. For two functions a and b, we write a ! b to denote a “ opbq and similarly a " b

for a “ ωpbq. All logarithms are with respect to base e. We omit floors and ceilings whenever

they are not of importance. Lastly, we write C5.1 to indicate that the constant C5.1 is given by

Theorem/Lemma/Claim 5.1.

The following statement about r-star-matchings is an easy corollary of Hall’s matching

theorem [17]. A star of size r (r-star, for short) is a complete bipartite graph K1,r with the

vertex adjacent to all others being the centre.

Lemma 2.1 (r-star-matching). Let r ě 1 be an integer and let G “ pAYB,Eq be a bipartite

graph. If for every subset A1 Ď A it holds that |NpA1q| ě r|A1|, then G contains a collection of

pairwise disjoint r-stars, such that the centres of these stars cover all vertices in A.

Proof. Consider the ‘blow-up’ of G in which each vertex in A is replaced by r copies that are

connected to the same vertices as the original vertex. Then this new graph satisfies Hall’s
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condition and thus contains a matching that saturates all copies of the vertices in A. The

corollary follows by contracting the copies of each vertex.

We also make use of a generalised version of Hall’s theorem due to Haxell which has recently

seen a surge of applications in embedding spanning structures into random graphs, especially in

the resilience setting.

Theorem 2.2 ([18]). Let H “ pAYB,Eq be an r-uniform hypergraph such that |AX e| “ 1 and

|BXe| “ r´1 for every edge e P E. If for every A1 Ď A and B1 Ď B such that |B1| ď p2r´3q|A1|

there is an edge e P E intersecting A1 but not B1, then H contains an A-saturating matching

(that is, a collection of vertex-disjoint hyperedges whose union contains A).

We repeatedly make use of the following two standard tail estimates used in random graph

theory, cf. e.g. [2, 15].

Lemma 2.3 (Chernoff’s inequality). Let X „ Binpn, pq and let µ :“ ErXs. Then for all

0 ă a ă 1:

• Pr rX ă p1´ aqµs ă e´a
2µ{2, and

• Pr rX ą p1` aqµs ă e´a
2µ{3.

Moreover, the inequalities above also hold if X has the hypergeometric distribution with the same

mean.

Theorem 2.4 (Janson’s inequality). Let p P p0, 1q and consider a family tHiuiPI of subgraphs

of the complete graph on the vertex set rns. Let Γ „ Gn,p. For each i P I, let Xi denote the

indicator random variable for the event tHi Ď Γu and, for each ordered pair pi, jq P I ˆ I with

i ‰ j, write Hi „ Hj if EpHiq X EpHjq ‰ ∅. Let

X :“
ÿ

iPI
Xi,

µ :“ ErXs “
ÿ

iPI
pepHiq,

∆ :“
ÿ

pi,jqPIˆI
Hi„Hj

ErXiXjs “
ÿ

pi,jqPIˆI
Hi„Hj

pepHiq`epHjq´epHiXHjq.

Then for all 0 ă γ ă 1 we have

PrrX ă p1´ γqµs ď e
´

γ2µ2

2pµ`∆q .

Next, we collect several facts about random graphs mostly concerning the number of edges

and triangles between certain subsets, as well as a simple edge expansion property.

Lemma 2.5. For every ε P p0, 1{100q and p :“ ppnq P p0, 1q, the random graph Γ „ Gn,p w.h.p.

satisfies the following.

Let s ě ε´10 log n{p2 be an integer. Then there are at least p1´ n´6q
`

n
s

˘

subsets W Ď V pΓq

of size s such that the following holds. For every W 1 ĎW of size |W 1| ě ε|W | and every family

of pairs P Ď
`

V pΓqrW
2

˘

of size |P| ě ε´10 log n{p2 and such that no vertex of Γ appears in more

than 1` 1{p pairs from P, we have

ÿ

tu,vuPP
|Npu,W 1q XNpv,W 1q| ď p1` εq|P||W 1|p2.
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Proof. An easy application of Chernoff’s inequality (Lemma 2.3) and the union bound shows

that w.h.p. every pair of vertices u, v P V pΓq have a common neighbourhood which satisfies

|Npuq X Npvq| ď p1 ` ε6qnp2. For a set W 2 Ď V pΓq and a triple pu, v, wq P pV pΓq rW 2q ˆ

pV pΓqrW 2q ˆW 2, we define a random variable

Xu,v,w “

#

1, if tu, vu P P and tu, vu Ď Npwq,

0, otherwise.

Suppose that w.h.p. for all P as in the statement of the lemma and all W 2 Ď V pΓq, |W 2| ě

ε´7 log n{p2, the following holds:

ÿ

tu,vuPP

ÿ

wPW 2

Xu,v,w ě p1´ ε
3q|P||W 2|p2. (1)

Condition on the fact that Γ „ Gn,p satisfies these two properties, which happens with high

probability. We claim that this is sufficient in order to show the lemma.

Let W Ď V pΓq be a subset of size s ě ε´10 log n{p2 chosen uniformly at random among all

such subsets. For a fixed pair u, v P V pΓq, from Chernoff’s inequality we have

Pr
“

|Npu,W q XNpv,W q| ą p1` ε3q|W |p2
‰

ď e´pε
3{3q|W |p2

ď e´ε
´6 logn ă 1{n9,

and so by the union bound we conclude that with probability at least 1´ opn´6q for every two

vertices u, v P V pΓq it holds that

|Npu,W q XNpv,W q| ď p1` ε3q|W |p2. (2)

Let W 1 Ď W be of size |W 1| ě ε|W |, let X “
ř

tu,vuPP
ř

wPW 1 Xu,v,w, and note that X counts

exactly the quantity we are interested in. Take W 2 :“W rW 1. Then, trivially,

X “
ÿ

tu,vuPP

ÿ

wPW 1

Xu,v,w “
ÿ

tu,vuPP

ÿ

wPW

Xu,v,w ´
ÿ

tu,vuPP

ÿ

wPW 2

Xu,v,w.

The first term on the right hand side of the previous equation is by (2) bounded from above by

p1` ε3q|P||W |p2. If |W 2| ě ε3|W | ě ε´7 log n{p2, then we can use the lower bound from (1) to

obtain

X ď p1`ε3q|P||W |p2´p1´ε3q|P||W 2|p2 ď p1`ε3q|P||W 1|p2`2ε3|P||W |p2 ď p1`εq|P||W 1|p2,

where the last inequality holds because |W 1| ě ε|W | and ε ă 1{100. In case |W 2| ă ε3|W | we

have |W 1| ě p1´ ε3q|W | and thus from (2) we have

X ď p1` ε3q|P||W |p2 ď
1` ε3

1´ ε3
|P||W 1|p2 ď p1` εq|P||W 1|p2,

since ε ă 1{100. In conclusion, W satisfies the assertion of the lemma with probability at least

1´ opn´6q which implies the desired statement. It remains to show that (1) is indeed true.

Denote the left hand side of (1) by X2. By linearity of expectation we have µ :“ ErX2s “
|P||W 2|p2. For two triples pu1, v1, w1q and pu2, v2, w2q we write pu1, v1, w1q „ pu2, v2, w2q if their

corresponding random variables are dependent. Note that pu1, v1, w1q and pu2, v2, w2q can only

be dependent if |tu1, v1u X tu2, v2u| “ 1 and w1 “ w2. Thus

∆ :“
ÿ

pu1,v1,w1q„pu2,v2,w2q

p3 ď |P||W 2|
2

p
p3 “ 2µ.
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By Janson’s inequality (Theorem 2.4) it follows that

PrrX2 ă p1´ ε3q|P||W 2|p2s ď e´ε
6µ2{p6µq “ e´ε

6|P||W 2|p2{6.

Let us denote ε´10 log n{p2 by t. By the union bound over all choices of P and W 2 and by using

standard bounds on binomial coefficients, we get

n2
ÿ

x“t

ˆ

n2

x

˙ n
ÿ

y“ε3t

ˆ

n

y

˙

e´
ε6

6
xyp2

ď

n2
ÿ

x“t

n
ÿ

y“ε3t

e2x logn ¨ ey logn ¨ e´
ε9

6
xyp2

ď

n2
ÿ

x“t

n
ÿ

y“ε3t

ep2x`yq logn´maxtx,yu¨ 1
6ε

logn

ď

n2
ÿ

x“t

n
ÿ

y“ε3t

e´10 maxtx,yu logn ď n3 ¨ e´10ε´10 log2 n{p2
ă 1{n8.

This implies that with probability at least 1´ opn´5q we have

ÿ

tu,vuPP

ÿ

wPW 2

Xu,v,w ě p1´ ε
3q|P||W 2|p2,

for all permissible P and W 2, as required.

Lemma 2.6. For every ε P p0, 1{300q and p :“ ppnq P p0, 1q, the random graph Γ „ Gn,p w.h.p.

satisfies the following.

Let s ě ε´3 log n{p2 be an integer. Then there are at least p1´n´6q
`

n
s

˘

subsets W Ď V pΓq of

size s such that the following holds. For every family of pairs P Ď
`

V pΓqrW
2

˘

such that no vertex

of Γ appears in more than 1` ε{p pairs from P and |P| ď 1` ε{p2, we have

ˇ

ˇ

ˇ

ď

tu,vuPP

`

Npu,W q XNpv,W q
˘

ˇ

ˇ

ˇ
“ p1˘ 5εq|P||W |p2.

Proof. Fix a P as in the statement and let U denote the set of vertices of Γ not appearing in

P; note that |U | “ p1 ´ op1qqn. Let q denote the probability for a vertex w P U to be in the

common neighbourhood of u and v, for some tu, vu P P, and let Eu,v denote this event for fixed

u and v. By the union bound we have that q ď |P|p2. As for the lower bound on q, we use the

inclusion-exclusion principle (Bonferroni’s inequality) to get

q ě
ÿ

tu,vuPP
PrrEu,vs ´

ÿ

tu,vuXtu1,v1u|ă2

PrrEu,v ^ Eu1,v1s

“
ÿ

tu,vuPP
PrrEu,vs ´

ÿ

|tu,vuXtu1,v1u|“0

PrrEu,v ^ Eu1,v1s ´
ÿ

|tu,vuXtu1,v1u|“1

PrrEu,v ^ Eu1,v1s.

Using the fact that no vertex of Γ appears in more than 1` ε{p pairs from P,

q ě |P|p2 ´ |P|p|P| ´ 1qp4 ´ |P|ε
p
p3 ě p1´ 2εq|P|p2.

Let us denote
Ť

tu,vuPP
`

Npu, Uq XNpv, Uq
˘

by Z. Observe that the expected size of Z is |U |q

and thus by Chernoff’s inequality and our estimates for q we get

Prr|Z| ď p1´ 4εq|P|np2s ď Prr|Z| ď p1´ εq|U |qs ď e´
ε2

2
p1´2εq|P||U |p2

ď e´
ε2

8
|P|np2

. (3)

7



Similarly, we have

Prr|Z| ě p1` 4εq|P|np2s ď Prr|Z| ě p1` εq|U |qs ď e´
ε2

3
p1´2εq|P||U |p2

ď e´
ε2

12
|P|np2

. (4)

Since np2 ě ε´3 log n, by combining (3) and (4) together with the union bound over all choices

for P we get that with high probability for all such sets P and u, v P P
ˇ

ˇ

ˇ

ď

tu,vuPP

`

Npu, Uq XNpv, Uq
˘

ˇ

ˇ

ˇ
“ p1˘ 4εq|P|np2. (5)

Condition on Γ „ Gn,p satisfying this. Let W Ď V pΓq be a set of size s ě ε´3 log n{p2 chosen

uniformly at random among all such sets. Let P be as in the statement of the lemma, and note

that (5) is fulfilled for P and the corresponding set U . By Chernoff’s inequality, we have

ˇ

ˇ

ˇ

ď

tu,vuPP

`

Npu,W q XNpv,W q
˘

ˇ

ˇ

ˇ
“ p1˘ 5εq|P||W |p2,

with probability at least

1´ e´
2ε2

3
|P||W |p2

ě 1´ e´
2
3ε

logn ě 1´ n´6,

as required.

The following definition is used at various places throughout the paper. It captures essential

properties of a random graph Γ „ Gn,p and its subgraphs G P GpΓ, α, ε, pq which are used in

order to prove the main result. Some of the properties follow easily from others; we list them all

separately for ease of reference later on.

Definition 2.7. Let ε, α ą 0, p P p0, 1q, and n P N. Let Γ be a graph on n vertices and

G P GpΓ, n, 2α, pq. We say that a subset W Ď V pGq is pα, ε, pq-good with respect to Γ and G if

the following properties hold:

(G1) For every two disjoint subsets X ĎW , Y Ď V pΓq of sizes |X|, |Y | ě ε´3 log n{p we have

eΓpX,Y q “ p1˘ εq|X||Y |p.

(G2) For every v P V pΓq we have degΓpv,W q “ p1˘ εq|W |p.

(G3) For every v P V pGq we have degGpv,W q “ p1˘ εq degGpvq
|W |
n .

(G4) For every v P V pGq we have degGpv,W q ě p2{3` αq|W |p.

(G5) For every tu, vu P EpGq we have |NGpu,W q XNGpv,W q| ě α|W |p2.

(G6) For all subsets W 1 Ď W of size |W 1| ě ε|W | and all P Ď
`

V pGqrW
2

˘

of size |P| ě
ε´10 log n{p2 such that no vertex of G appears in more than 1` 1{p pairs from P , we have

ÿ

tu,vuPP
|NGpu,W

1q XNGpv,W
1q| ď p1` εq|P||W 1|p2.

(G7) For every set of edges P Ď EpGq avoiding W such that no vertex of G appears in more

than 1` ε{p edges from P and |P| ď 1` ε{p2, we have

ˇ

ˇ

ˇ

ď

tu,vuPP

`

NGpu,W q XNGpv,W q
˘

ˇ

ˇ

ˇ
ě α|P||W |p2.
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In order to be precise, whenever speaking about pα, ε, pq-good sets, one would always need

to specify graphs Γ and G as well. However, for a cleaner exposition, we omit it as these two

graphs are always clear from the context and almost always are the random graph Γ „ Gn,p
and its subgraph G P GpΓ, α, ε, pq. The following proposition shows that w.h.p. an overwhelming

majority of sets W are pα{2, ε, pq-good with respect to Γ „ Gn,p and its subgraph G which

belongs to the class GpΓ, α, ε, pq, for a certain choice of parameters. Namely, a random choice of

W is typically good.

Proposition 2.8. For every α ą 0 there exists a positive constant ε :“ εpαq such that the

random graph Γ „ Gn,p w.h.p. satisfies the following for every G P GpΓ, n, α, pq.
Let s ě ε´10 log n{p2 be an integer. Then there are at least p1´ n´5q

`

n
s

˘

subsets W Ď V pGq

such that W is pα{2, ε, pq-good.

Proof. Choose ε ą 0 sufficiently small so that the arguments below follow through. One can

easily show with Chernoff’s inequality and the union bound that w.h.p. Γ „ Gn,p is such that

• (density) eΓpX,Y q “ p1˘ εq|X||Y |p, for every X,Y Ď V pΓq with |X|, |Y | ě ε´3 log n{p;

• (degree) degΓpvq “ p1˘ ε{2qnp, for every v P V pΓq; and

• (codegree) |NΓpuq XNΓpvq| ď p1` ε{2qnp
2, for every u, v P V pΓq.

Furthermore, with high probability, Γ satisfies both the conclusion of Lemma 2.5 and that of

Lemma 2.6. Condition on these five events from now on.

Let G Ď Γ be a member of GpΓ, n, α, pq and let H :“ Γ´G. We choose a set W uniformly

at random among all subsets of size s and aim to show that with probability at least 1´ opn´5q

such a set satisfies all (G1)–(G7), which would imply the desired statement. Property (G1)

follows directly from the density event we conditioned on above. Properties (G2)–(G5) follow

from the degree event we conditioned on above, the definition of GpΓ, n, α, pq, and then the fact

that W is chosen u.a.r., Chernoff’s inequality, and a simple union bound. Moreover, (G6) holds

for W with probability at least 1´ n´6 by the conclusion of Lemma 2.5, since G Ď Γ.

Finally, let us look at (G7). By the conclusion of Lemma 2.6, with probability at least 1´n´6,

W is one of the subsets for which the following holds: for any subset of edges P Ď EpGq avoiding

W such that |P| ď 1` ε{p2 and no vertex of G appearing in more than 1` ε{p edges from P,

we have
ˇ

ˇ

ˇ

ď

tu,vuPP

`

NΓpu,W q XNΓpv,W q
˘

ˇ

ˇ

ˇ
ě p1´ 5εq|P||W |p2. (6)

From the codegree event we conditioned on above and the definition of the class GpΓ, n, α, pq we

further get that

|NHpuq XNHpvq| ď p1` ε{2´ αqnp
2 ď p1´ 3α{4qnp2,

for every edge tu, vu P EpGq. Moreover, as W is chosen uniformly at random, by Chernoff’s

inequality and the union bound we also have that with probability at least 1 ´ opn´5q, every

tu, vu P EpGq satisfies

|NHpu,W q XNHpv,W q| ď p1´ 3α{4` εq|W |p2. (7)

By combining (6) and (7) we get
ˇ

ˇ

ˇ

ď

tu,vuPP

`

NGpu,W q XNGpv,W q
˘

ˇ

ˇ

ˇ
ě

ˇ

ˇ

ˇ

ď

tu,vuPP

`

NΓpu,W q XNΓpv,W q
˘

ˇ

ˇ

ˇ
´

ÿ

tu,vuPP

ˇ

ˇNHpu,W q XNHpv,W q
ˇ

ˇ

ě p1´ 5εq|P||W |p2 ´ |P|p1´ 3α{4` εq|W |p2

ě pα{2q|P||W |p2,

where the last inequality follows for small enough ε ą 0. This concludes the proof.
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2.1 Edge expansion and triangles

In this section we provide some expansion tools that we make use of in our proof. Before we

state them, we give some motivational background. A standard approach for showing that two

vertices a and b are connected by a path of length, say, `, is to inductively prove a lower bound

on the number of vertices that can be reached by paths of length i, starting from each a and

b. To prove such a bound one usually relies on expansion properties of vertices in certain sets.

In our case, we do not want to find paths, but square paths (see Section 4 for details), where

each new vertex is given by a triangle lying on a previous edge. In particular, we build such

paths by starting from an edge and determining how many edges (instead of vertices) we can

reach starting from this edge. Correspondingly, we need expansion properties of edges instead of

vertices. The goal of this section is to provide such expansion properties.

More precisely, we are trying to understand the following setup. Suppose we are given three

disjoint subsets of vertices W1,W2,W3 of a graph G. Assume further that F12 Ď EGpW1,W2q is

some set of edges from G between W1 and W2. What we are interested in is the set of edges

F23 :“
 

tw2, w3u P EGpW2,W3q : Dw1 PW1 s.t. tw1, w2u P F12 and tw1, w3u P EpGq
(

that ‘extend’ an edge from F12 to the set W3 via a triangle. Namely, we are aiming at providing

some bound on |F23| in terms of |F12|.

Lemma 2.9. For every α ą 0 there exists a positive constant ε :“ εpαq such that for sufficiently

large n and all p :“ ppnq P p0, 1q, every graph Γ on n vertices and G P GpΓ, n, 2α, pq satisfy the

following.

Let ñ ě ε´22 log2 n{p2 be an integer. Let W1,W2,W3 Ď V pGq be three disjoint pα, ε, pq-good

sets of size ñ each, let X ĎW3 be of size |X| ď ε4ñ, and F12 Ď EGpW1,W2q be a subset of edges.

Then the following statements hold, where U ĎW2 is the set of vertices incident to the edges in

F12, and F23 is as defined above.

(1) If |U | ě |X|{ log n and degF12
pvq ď ε{p for all v P W1 YW2, then there exists a subset

U 1 Ď U of size |U 1| “ p1´εqmint|U |, ε{p2u and an pαñp2{2q-star-matching in F23 saturating

U 1 and avoiding X in W3.

(2) If |F12| ě ε´17ñ log2 n and degF12
pv,W1q ď

ε´4 logn
p for all v P U , then eF23pU,W3 rXq ě

ε´4|F12|.

(3) If |F12| ě ε´5ñ log n and degF12
pv,W1q ě

ε´4 logn
p for all v P U , then eF23pU,W3 rXq ě

αñp
4 |U |.

(4) If |F12| ě
ε´5 logn

p ñ and ε´4 logn
p ď degF12

pv,W1q ď
ñp
3 for all v P U , then eF23pU,W3rXq ě

p1` α{4q|F12|.

(5) If |F12| ě
ε´10 logn

p ñ and degF12
pv,W1q ě

ñp
3 for all v P U , then eF23pU,W3 r Xq ě

p1´ ε2qeGpU,W3q and there exists a subset L Ď U of size |L| ě p1´ 3ε3q|U |, such that for

every u P L we have degF23
pu,W3 rXq ě p1´ 2ε3qdegGpu,W3q.

(6) If |U | ě 2
3 ñ and degF12

pv,W1q ě
ñp
3 for all v P U , then there exists L Ď W3 rX of size

|L| ě p1´ εqñ, such that for every u P L we have degF23
pu,W2q ě p1{3` α{2qñp.

(7) If |F12| ě ε´18ñ log2 n and eF23pW2,W3rXq ă ε´3|F12|, then there exists a subset L ĎW2

such that for every v P L we have degF12
pv,W1q ě ε´4 log n{p and eF12pW1, Lq ě p1 ´

εq|F12|.

(8) If |F12| ě εñ2p and eF23pW2,W3 rXq ă p1`µα{8q|F12|, then there exists a subset L ĎW2

such that for every v P L we have degF12
pv,W1q ą ñp{3 and eF12pW1, Lq ě p1 ´ µq|F12|,
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for every µ P p32ε{α, 1q.

(9) If |F12| ě εñ2p, then eF23pW2,W3 rXq ě p1´
?
εq|F12|.

Let ε :“ εpαq ą 0 be a small enough constant such that all the arguments follow through.

We prove the statements one by one.

Proof of (1) in Lemma 2.9. Fix an arbitrary set Ũ Ď U of size |Ũ | “ mint|U |, ε{p2u. Every

subset A Ď Ũ , by using property (G7) applied for a single edge from F12 incident to each a P A

(as P), satisfies

|NF23pAq| ě α|A|ñp2.

Lemma 2.1 thus implies there exists an pαñp2q-star-matching M in F23 saturating Ũ . Let ŨX be

the largest subset of Ũ such that for each v P ŨX at least half of its edges in M are incident to

vertices in X. It must be that |ŨX | ď ε|Ũ | as otherwise we have

|X| ě |ŨX | ¨ pα{2qñp
2 ě εmint|U |, ε{p2u ¨ pα{2qñp2

ě mintε´20|U | log2 n, ε3ñu ě mint|X| log n, ε3ñu,

which contradicts our assumptions on |X|. Thus, by setting U 1 :“ Ũ r ŨX , we have for each

vertex from U 1 that half of its edges from the matching M avoid X and that suffices.

Proof of (2) in Lemma 2.9. Let F 112 Ď F12 be a largest subset of the edges from F12 obtained by

keeping at most ε{p edges incident to every vertex in U . Note that

|F 112| ě |F12| ¨
ε{p

ε´4 log n{p
ě
ε5|F12|

log n
ě ε´12ñ log n. (8)

We define a sequence J1, . . . , Jt of disjoint subsets of F 112 as follows. Let J1 be a largest subset

of F 112 such that no vertex of W1 is incident to more than ε{p edges from J1. Assume we have

defined J1, . . . , Ji for some i ě 1. We then define Ji`1 as a largest subset of F 112 r pJ1 Y ¨ ¨ ¨ Y Jiq

such that no vertex from W1 is incident to more than ε{p edges from Ji`1. We set t to be the

smallest integer such that |J1| ` ¨ ¨ ¨` |Jt| ě |F
1
12|{2. Note that from (G2) it follows that for every

i P rts

|Ji| ě
|F 112|

2
¨

ε{p

p1` εqñp
ě
ε|F 112|

4ñp2

(8)
ě
ε´10 log n

p2
.

By using property (G6) for Ji (as P), X (as W 1), and the previous inequality, we get that for

every i P rts it holds that eF23pJiqpU,Xq ď 2ε4|Ji|ñp
2, where F23pJiq denotes the edges in F23

obtained by extending only the edges belonging to Ji. This further shows that

eF23pJ‹qpU,Xq ď 2ε4|J‹|ñp2, (9)

where J‹ :“ J1 Y ¨ ¨ ¨ Y Jt.

Next, consider an arbitrary v P U . As every such v is incident to at most ε{p edges in J‹ by

definition, we have by (G7) applied for edges of J‹ incident to v (as P) that degF23
pv,W3q ě

α degJ‹pv,W1qñp
2. Thus, it follows that

eF23pJ‹qpU,W3q ě α|J‹|ñp2. (10)

From the previous inequality and the fact that |J‹| ě |F 112|{2, we obtain

eF23pU,W3 rXq ě eF23pJ‹qpU,W3q ´ eF23pJ‹qpU,Xq
(9),(10)
ě α|J‹|ñp2 ´ 2ε4|J‹|ñp2

ě pα{2q|J‹|ñp2 ě pα{4q|F 112|ñp
2

(8)
ě
pε5α{4qñp2

log n
|F12| ě ε´4|F12|,

where the last inequality follows from the assumption on ñ.
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Proof of (3) in Lemma 2.9. From (G2) we have that |U | ě |F12|{pp1`εqñpq ě ε´4 log n{p. Thus,

by (G1) and the fact that |X| ď ε4ñ, we get

eGpU,Xq ď 2ε4|U |ñp. (11)

Consider an arbitrary v P U and let N1 :“ NF12pv,W1q and N3 :“ NF23pv,W3q. From the fact

that |N1| ě ε´3 log n{p, (G5), and (G1) applied for N1 (as X) and N3 (as Y ), we know

|N1| ¨ αñp
2 ď eGpN1, N3q ď p1` εq|N1|maxtε´3 log n{p, |N3|up.

By the assumption on ñ we cannot have |N1|αñp
2 ď p1 ` εq|N1|ε

´3 log n, hence it must be

|N3| ě pα{2qñp. Together with (11) we get

eF23pU,W3 rXq “ eF23pU,W3q ´ eF23pU,Xq ě pα{2q|U |ñp´ 2ε4|U |ñp ě pα{4q|U |ñp,

completing the proof.

Proof of (4) in Lemma 2.9. Let U 1 Ď U be a subset of vertices in U defined as

U 1 :“ tv P U : degF23
pv,W3q ă p1{3` α{2qñpu.

Assume for the moment that we can show eF12pU
1,W1q ď ε|F12|. Then we would have

p1´ εq|F12| ď eF12pU r U 1,W1q ď |U r U 1| ¨
ñp

3
, (12)

where the upper bound follows from the assumption on degF12
pv,W1q. From this we get that

|U r U 1| ě ε´4 log n{p (with room to spare). Therefore, by the definition of U 1 and (G1) applied

for X and U r U 1 (as Y ) we obtain

eF23pU,W3 rXq ě eF23pU r U 1,W3q ´ eF23pU r U 1, Xq

ě |U r U 1|
`

p1{3` α{2qñp´ p1` εq|X|p
˘

ě |U r U 1|p1{3` α{2´ 2ε4qñp,

where the last step follows from |X| ď ε4ñ. This, together with (12) shows

eF23pU,W3 rXq ě |U r U 1| ¨ p1{3` α{4qñp ě 3p1´ εq|F12|p1{3` α{4q ě p1` α{4q|F12|,

as desired. It remains to prove eF12pU
1,W1q ď ε|F12|. Towards a contradiction assume this is

not the case.

For every v P U 1 let Lv :“ NF12pv,W1q and Rv :“ NG´F23pv,W3q. Observe that by (G4) and

the definition of U 1 we have

|Rv| ě p1{3` α{2qñp. (13)

Moreover, the definition of Rv gives eGpLv, Rvq “ 0. On the other hand, property (G1), as

|Lv|, |Rv| ě ε´4 log n{p, states eΓpLv, Rvq “ p1˘ εq|Lv||Rv|p. Let

L1v :“ tw P Lv : degΓpw,Rvq ě p1´ εq|Rv|pu. (14)

It immediately follows from (G1) that |L1v| ě p1´ εq|Lv|. Hence, the assumption eF12pU
1,W1q ě

ε|F12| implies

ÿ

vPU 1

|L1v| ě
ÿ

vPU 1

p1´ εq|Lv| “ p1´ εqeF12pU
1,W1q ě p1´ εq ¨ ε|F12| ě

ε´3 log n

p
¨ ñ.
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Consequently, by averaging over vertices in W1, there is a vertex w PW1 and a set Uw Ď U 1 such

that |Uw| ě ε´3 log n{p and w P L1v for all v P Uw.

Set T :“
Ť

vPUw
NΓpw,Rvq. Note that all vertices in T are connected to w in Γ, however

none is connected to w in G due to the way Rv’s are defined. For all v P Uw we have

degGpv, T q ě |Rv X T | ě |NΓpw,Rvq|
(14)
ě p1´ εq|Rv|p

(13)
ě p1{3` α{4qñp2.

Therefore,

eΓpUw, T q ě eGpUw, T q ě |Uw| ¨ p1{3` α{4qñp
2.

Since |Uw| ě ε´3 log n{p, we get from (G1) applied for Uw (as X) and T (as Y ) that

|T | ě
p1{3` α{4q

1` ε
ñp ě p1{3` α{8qñp.

Lastly, as T Ď NΓ´Gpw,W3q, (G2) and (G4) provide the desired contradiction.

Proof of (5) in Lemma 2.9. From (G2) we get that |U | ě |F12|{pp1` εqñpq ě ε´9 log n{p2. Let

U 1 Ď U be defined as

U 1 :“ tv P U : degF23
pv,W3q ă p1´ ε

3q degGpv,W3qu. (15)

Assume for the moment that we can show eGpU
1,W3q ď ε3 ¨ eGpU,W3q. Then

|U 1| ¨ p2{3` α{2qñp
(G4)
ď eGpU

1,W3q ď ε3 ¨ eGpU,W3q
(G1)
ď ε3 ¨ p1` εq|U |ñp.

This implies |U 1| ď 2ε3|U |. Since |X| ď ε4ñ, we deduce from (G1) that there can be at most

ε´3 log n{p ď ε3|U | vertices in U with degree into X larger than 2ε4ñp. Let L be the vertices in

U rU 1 that do not have this property. Therefore, |L| ě |U | ´ |U 1| ´ ε3|U | ě p1´ 3ε3q|U | and for

all v P L

degF23
pv,W3 rXq

(15)
ě p1´ ε3qdegGpv,W3q ´ 2ε4ñp ě p1´ 2ε3q degGpv,W3q.

Moreover, by definition of U 1 and (G1) applied for X and U r U 1 (as Y ), since |X| ď ε4ñ, we

obtain

eF23pU,W3 rXq ě eF23pU r U 1,W3q ´ eF23pU r U 1, Xq

ě

´

ÿ

vPUrU 1
p1´ ε3q degGpv,W3q

¯

´ 2ε4|U r U 1|ñp
(G4)
ě

ÿ

vPUrU 1
p1´ 2ε3qdegGpv,W3q.

This together with the assumption eGpU
1,W3q ď ε3 ¨ eGpU,W3q further shows

eF23pU,W3 rXq ě
ÿ

vPUrU 1
p1´ 2ε3qdegGpv,W3q ě p1´ 2ε3qeGpU r U 1,W3q

ě p1´ 2ε3qp1´ ε3qeGpU,W3q ě p1´ ε
2qeGpU,W3q,

as desired. It remains to prove eGpU
1,W3q ď ε3 ¨ eGpU,W3q. Towards a contradiction assume

this is not the case.

For every v P U 1 let Lv :“ NF12pv,W1q and Rv :“ NG´F23pv,W3q. Observe that by (G4) and

the definition of U 1 we have |Rv| ě ε3 ¨ degGpv,W3q ě p2ε
3{3qñp. Moreover, the definition of

Rv gives eGpLv, Rvq “ 0. On the other hand, property (G1), as |Lv|, |Rv| ě ε´4 log n{p, states

eΓpLv, Rvq “ p1˘ εq|Lv||Rv|p. Let

R1v :“ tw P Rv : degΓpw,Lvq ě p1´ εq|Lv|pu. (16)

13



It immediately follows from (G1) that |R1v| ě p1´ εq|Rv|. Hence, the assumption eGpU
1,W3q ą

ε3 ¨ eGpU,W3q implies

ÿ

vPU 1

|R1v| ě
ÿ

vPU 1

p1´ εq|Rv| ě
ÿ

vPU 1

p1´ εq ¨ ε3 ¨ degGpv,W3q ě
ε3

2
eGpU

1,W3q ą
ε6

2
eGpU,W3q.

Next, using (G3), we know that p1` εqeGpU,W3q ě p1´ εqeGpU,W1q and thus

ÿ

vPU 1

|R1v| ě
ε6

4
eGpU,W1q ě

ε6

4
|F12| ě

ε´3 log n

p
¨ ñ.

Consequently, by averaging over vertices in W3, there is a vertex w PW3 and a set Uw Ď U 1 such

that |Uw| ě ε´3 log n{p and w P R1v for all v P Uw.

Set T :“
Ť

vPUw
NΓpw,Lvq. Note that all vertices in T are connected to w in Γ, however none

is connected to w in G. For all v P U 1w we now have

degGpv, T q ě |Lv X T | ě |NΓpw,Lvq|
(16)
ě p1´ εq|Lv|p ě p1{3´ ε{3qñp

2,

where the last inequality follows from the assumption degF12
pv,W1q ě ñp{3. Therefore,

eΓpUw, T q ě eGpUw, T q ě |Uw| ¨ p1{3´ ε{3qñp
2.

Since |Uw| ě ε´3 log n{p we get from (G1) applied for Uw (as X) and T (as Y ) that

|T | ě
1{3´ ε{3

1` ε
ñp ě p1{3´ 2εqñp.

Lastly, as T Ď NΓ´Gpw,W1q, (G2) and (G4) provide the desired contradiction.

Proof of (6) in Lemma 2.9. Note that |F12| ě |U | ¨ ñp{3 ě ε´10ñ log n{p. By part p5q of this

lemma, we get

eF23pU,W3 rXq ě p1´ ε2qeGpU,W3q. (17)

Let

L :“ tu PW3 rX : degF23
pu,W2q ě p1{3` α{2qñpu.

We aim to show that |L| ě p1 ´ εqñ. Assume towards a contradiction that this is not the

case. Together with (G4) and the assumption |X| ď ε4ñ this implies that there exists a set

Q ĎW3 r pX Y Lq of size |Q| ě pε{2qñ such that for each v P Q we have

degG´F23
pv,W2q ě p1{3` α{2qñp. (18)

Let Q1 :“ tv P Q : degG´F23
pv, Uq ě pα{4qñpu. If |Q1| ě pε{4qñ then eG´F23pU,Q

1q ě

pεα{16qñ2p, which together with (G1) applied for U (as X) and Q1 (as Y ) contradicts (17).

Therefore, |Q1| ď pε{2qñ. From (G1) we then get

eG´F23pW2 r U,QrQ1q ď p1` εqmaxtε´3 log n{p, |W2 r U |u ¨ |QrQ1|p. (19)

On the other hand, from (18) and the definition of Q and Q1 we have

eG´F23pW2 r U,QrQ1q ě p1{3` α{4q|QrQ1|ñp.

Together with (19) we deduce

maxtε´3 log n{p, |W2 r U |u ě
1{3` α{4

1` ε
ñ ě p1{3` α{8qñ,

which contradicts the assumption |U | ě p2{3qñ.
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Proof of (7) in Lemma 2.9. Let S :“ tv P U : degF12
pv,W1q ă ε´4 log n{pu and let FS Ď F12 be

the subset of edges that are incident to S. Observe that if |FS | ă ε|F12| we are done. So assume

otherwise. By using part p2q of this lemma with FS (as F12) we get

eF23pW2,W3 rXq ě eF23pS,W3 rXq ě ε´4|FS | ě ε´3|F12|,

contradicting the starting assumption eF23pW2,W3 rXq ă ε´3|F12|.

Proof of (8) in Lemma 2.9. Define sets S,M,L Ď W2 (which may be thought of as ‘small’,

‘medium’, and ‘large’) as

S “ tv PW2 : 1 ď degF12
pv,W1q ď ε´4 log n{pu,

M “ tv PW2 : ε´4 log n{p ď degF12
pv,W1q ď ñp{3u,

L “ tv PW2 : ñp{3 ă degF12
pv,W1qu,

and denote by FS , FM , and FL the subsets of edges in F12 incident to S, M , and L, respectively.

Note that FS , FM , and FL partition the set F12. We claim that

(i) if |FS | ě ε4|F12|, then eF23pS,W3 rXq ě p1` α{4q|FS |,

(ii) if |FM | ě ε4|F12|, then eF23pM,W3 rXq ě p1` α{4q|FM |, and

(iii) if |FL| ě ε4|F12|, then eF23pL,W3 rXq ě p1´ 3εq|FL|.

To see this assume first that |FS | ě ε4|F12|. Then |FS | ě ε5ñ2p ě ε´17ñ log2 n and we can thus

apply part p2q of this lemma to S (as U) and FS (as F12) to get

eF23pS,W3 rXq ě ε´4|FS | ě p1` α{4q|FS |.

Next, assume |FM | ě ε4|F12|. Then again |FM | ě ε´5ñ log n{p and we can apply part p4q of this

lemma to M (as U) and FM (as F12) to get

eF23pM,W3 rXq ě p1` α{4q|FM |.

Lastly, assume |FL| ě ε4|F12|. Then |FL| ě ε´10ñ log n{p and we can apply part p5q of this

lemma to L (as U) and FL (as F12) to get

eF23pL,W3 rXq ě p1´ ε2qeGpL,W3q. (20)

Moreover, from (G3) applied for all v P L and W1,W3 (as W ), we have p1 ` εqeGpL,W3q ě

p1´ εqeGpL,W1q. Therefore, together with (20):

eF23pL,W3 rXq ě p1´ ε2qeGpL,W3q ě p1´ ε
2q

1´ ε

1` ε
eGpL,W1q,

from which the third property follows as, trivially, eGpL,W1q ě |FL|.

Having these three properties at hand, we are ready to prove the lemma. If |FL| ě p1´µq|F12|

we are done, so assume the contrary. Observe that this implies that at least one of |FS |, |FM | has

size at least ε4|F12|. If |FL| is strictly smaller than ε4|F12|, then either at least one of |FS | and

|FM | has size at least p1´ 2ε4q|F12| or both have size at least ε4|F12|. Thus by piq and piiq we get

eF23pW2,W3 rXq ě maxtp1` α{4qp1´ 2ε4q|F12|, p1` α{4qp1´ ε
4q|F12|u ą p1` α{8q|F12|,

which is a contradiction to the assumption of the lemma. Therefore, |FL| ě ε4|F12| and at least

one of |FS | and |FM | has size at least |F12| ´ |FL| ´ ε4|F12| or both have size at least ε4|F12|.

Thus, again by piq and piiq,

eF23pW2,W3 rXq ě max
 

p1` α{4qp|F12| ´ ε
4|F12| ´ |FL|q, p1` α{4qp|F12| ´ |FL|q

(

` p1´ 3εq|FL|

ě p1` α{4qp1´ ε4q|F12| ´ p3ε` α{4q|FL|.
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Using our assumption |FL| ă p1 ´ µq|F12| and µ ě 32ε{α this implies eF23pW2,W3 r Xq ě

p1` µα{8q|F12|, again contradicting the assumption of the lemma.

Proof of (9) in Lemma 2.9. Clearly, if eF23pW2,W3 r Xq ě p1 ` 4εq|F12| we are done. Let us

assume the opposite. By applying part p8q of this lemma with 32ε{α (as µ) we obtain a set

L ĎW2 such that for each v P L it holds that degF12
pv,W1q ą ñp{3 and

eF12pW1, Lq ě p1´ 32ε{αq|F12| ě p1´ ε
2{3q|F12|. (21)

Next, we use part p5q of this lemma with L (as U) and EF12pW1, Lq (as F12) to conclude

eF23pL,W3 rXq ě p1´ ε2qeGpL,W3q. (22)

By taking together (21) and (22), we finally get

eF23pL,W3 rXq ě p1´ ε2qeGpL,W3q
(G3)
ě p1´ ε2qp1´ 2εqeGpW1, Lq

ě p1´ 3εqeF12pW1, Lq
(21)
ě p1´ 3εqp1´ ε2{3q|F12| ě p1´

?
εq|F12|,

and the assertion follows.

3 Proof of Theorem 1.4

The proof of Theorem 1.4 is split into two natural parts. In Theorem 3.1 we show that the

K3-resilience of Gn,p w.r.t. the containment of C2
n is w.h.p. at most 5{9`α, for any α ą 0. Next,

in Theorem 3.2 we show that the K3-resilience is w.h.p. at least 5{9´ α, for any α ą 0. Both of

the theorems rely on the following fact: for every ε ą 0 a random graph Γ „ Gn,p w.h.p. has the

property that each vertex is contained in p1˘ εq
`

n
2

˘

p3 triangles, provided that p " n´2{3 log1{3 n

(see, e.g. [2, Theorem 8.5.4]).

The proof of the upper bound of K3-resilience stems from a simple construction and an

application of Janson’s inequality. We actually show that w.h.p. there exists a subgraph G of

Gn,p such that each vertex is contained in p4{9 ´ γq
`

n
2

˘

p3 triangles and G does not contain a

family of more than p1´ γqn{3 vertex-disjoint triangles. This is sufficient since C2
n contains tn{3u

vertex-disjoint triangles.

Theorem 3.1. For every γ ą 0, there exists a positive constant C :“ Cpγq such that for all

p ě Cn´2{3 log1{3 n a random graph Γ „ Gn,p w.h.p. contains a spanning subgraph G Ď Γ in

which each vertex is contained in at least p4{9 ´ γq
`

n
2

˘

p3 triangles and such that G does not

contain a family of more than p1´ γqn{3 vertex-disjoint triangles.

Proof. Let V pGq “ V1 Y V2 be a partition of the vertex set of G such that

|V1| “

R

´1

3
`

2γ

3

¯

n

V

and |V2| “ n´ |V1|.

Observe that |V2| “ p2{3´ 2γ{3´ op1qqn. Furthermore, let G be the graph obtained from Γ by

removing all edges with both endpoints in V1. For a vertex v P V pGq let Tv denote the family of

all triangles in Kn which contain v and do not have more than one vertex in V1. Set

X “
ÿ

TPTv

XT , µ “ ErXs, and ∆ “
ÿ

T1,T2PTv
T1„T2

ErXT1XT2s,
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where XT is an indicator random variable for the event tT Ď Γu. Note that X is a random

variable counting the number of triangles in G that contain v. We aim to show that

Pr

„

X ă p4{9´ γq

ˆ

n

2

˙

p3



ď e´2 logn, (23)

for every v P V pGq.

Let us estimate µ and ∆ for an arbitrary vertex v P V1. We have

µ “
ÿ

TPTv

ErXT s “

ˆ

|V2|

2

˙

p3 ě
`

2{3´ 2γ{3´ op1q
˘2n2p3

2
ě p4{9´ 8γ{9q

ˆ

n

2

˙

p3. (24)

Note that if two triangles T1, T2 P Tv do not share an edge, they are independent and thus

T1  T2. Therefore, we can bound ∆ as follows:

∆ “
ÿ

T1,T2PTv
T1„T2

ErXT1XT2s ď |V2|
3p5 ď

5µ2

|V2|p
. (25)

Let us choose ε such that p1´εqp4{9´8γ{9q ě 4{9´γ and apply Janson’s inequality (Theorem 2.4)

with ε (as γ) to obtain

Pr

„

X ă p4{9´ γq

ˆ

n

2

˙

p3



ď PrrX ă p1´ εqµs ď e
´

ε2µ2

2pµ`∆q ď e
´

ε2µ2

4 maxtµ,∆u

ď maxte´ε
2µ{4, e´ε

2|V2|p{20u,

where the last step follows from (24) and (25). Since |V2|p " log n and µ ě p4{9 ´ 8γ{9 ´

op1qqC3 log n, by choosing C large enough with respect to ε and γ we obtain (23) for every vertex

in V1. The proof of (23) for the case when v P V2 follows analogously and is omitted. By (23)

and the union bound over all vertices we get that w.h.p. each vertex v P V pGq is contained in at

least p4{9´ γq
`

n
2

˘

p3 triangles in G.

Let F be the largest family of vertex-disjoint triangles in G. Since G does not contain an

edge with both endpoints in V1, there is no triangle in F with more than one vertex in V1. This

implies that |V pFq X V2| ě 2|V pFq X V1|, which further shows

|V pFq| ď 3{2 ¨ |V2| ď 3{2 ¨ p2{3´ 2γ{3qn ď p1´ γqn,

completing the proof.

The following lower bound on the K3-resilience is proven by a reduction to Theorem 1.6.

Theorem 3.2. For every γ ą 0, there exists a positive constant C :“ Cpγq such that a random

graph Γ „ Gn,p w.h.p. satisfies the following, provided that p ě Cn´1{2 log3 n. Every spanning

subgraph G Ď Γ in which each vertex is contained in at least p4{9` γq
`

n
2

˘

p3 triangles contains

the square of a Hamilton cycle.

Proof. Choose ε ą 0 such that p1` εqp4{9` 5γ{12q ă 4{9` γ{2 and ε ď γ{4, and set C “ 10{ε.

Let G Ď Γ be an arbitrary spanning subgraph of Γ such that each vertex of G is contained in at

least p4{9` γq
`

n
2

˘

p3 triangles. Let G1 Ď G be a subgraph obtained by removing each edge of G

which is contained in fewer than εnp2 triangles. We aim to show that G1 has minimum degree at

least p2{3` γ{4qnp. If this is the case then by Theorem 1.6 we are done.

First, we show that by removing the edges which are contained in only a few triangles, we

did not significantly change the overall number of triangles each vertex is in. As np “ ωplog nq,
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w.h.p. we have that every v P V pΓq satisfies degΓpvq ď p1 ` εqnp. Moreover, each edge in

EpGqrEpG1q is contained in at most εnp2 triangles, which implies that we did not remove more

than εnp2 ¨ p1`εqnp ď 2εn2p3 triangles from G touching a single vertex. Since G has the property

that each vertex is contained in at least p4{9` γq
`

n
2

˘

p3 triangles, the previous observation and

the choice of ε show that in G1 each vertex is in at least p4{9` γ{2q
`

n
2

˘

p3 triangles.

In order to finish the argument we use the following claim, whose proof follows below.

Claim 3.3. The following holds w.h.p. For every vertex v P V pΓq and every subset S Ď NΓpvq

of size |S| ě p2{3qnp, we have epSq ď p1` εq
`

|S|
2

˘

p.

With this claim we can easily complete the proof of the theorem. Suppose for contradiction

that v P V pG1q is a vertex with degree smaller than p2{3` γ{4qnp. By the claim above and the

choice of ε we have that v is contained in at most

p1` εqp2{3` γ{4q2
n2p3

2
ď p1` εqp4{9` 5γ{12q

n2p3

2
ă p4{9` γ{2q

ˆ

n

2

˙

p3,

triangles—a contradiction.

Proof of Claim 3.3. It suffices to show that the claim holds for a fixed vertex v with probability

at least 1´ e´ωplognq, as the claim then follows by the union bound over all vertices. Let v be a

vertex from Γ and let S Ď NΓpvq. Recall, we have that degΓpvq ď p1` εqnp with probability at

least 1´ e´ωplognq. Similarly we have

Pr

„

epΓrSsq ą p1` εq

ˆ

|S|

2

˙

p



ď e´ε
2p|S|2 qp{3. (26)

By using (26) and the union bound, the probability that the assertion of the claim fails is at most

p1`εqnp
ÿ

s“p2{3qnp

ˆ

p1` εqnp

s

˙

e´ε
2sps´1qp{6 ď

p1`εqnp
ÿ

s“p2{3qnp

´2enp

s

¯s
e´ε

2sps´1qp{6

ď

p1`εqnp
ÿ

s“p2{3qnp

p3eqnpe´ε
2s2p{12 ď

p1`εqnp
ÿ

s“p2{3qnp

pe3 log 3´ε2sp{12qs

ď

p1`εqnp
ÿ

s“p2{3qnp

e´2s ď n ¨ e´Ωpnpq,

where in the second to last inequality we used the fact that ε2sp{12 ě ε2np2{18 ě 3 log 3. Finally,

since np “ ωplog nq, the claim follows.

4 Definitions of some graphs

The following graphs are used often throughout the paper and we thus give their definitions here,

for easier reference later on. We note that most of these come from or were inspired by similar

definitions in [30].

An `-square-path, denoted by P 2
` , is a graph defined on a vertex set tv1, . . . , v`u such that

vi and vj are connected by an edge if 1 ď i ă j ď i` 2 (see Figure 1).

Given a graph G “ pV,Eq and a,b P V 2, we say that G contains a square-path connecting a

to b, if there exists an ` P N and an embedding g : V pP 2
` q Ñ V pGq such that a “ pgpv1q, gpv2qq

and b “ pgpv`´1q, gpv`qq. Note that due to the fact that a and b are (ordered) pairs of vertices, a
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v1 v2 v3 v4 v5 v6 v7 v8

Figure 1: The 8-square-path P 2
8 .

path connecting a to b is not the same as a path connecting b to a. However, a path connecting

a to b is also a path connecting b to a. It is easy to see that one can connect two square-paths

in order to get a longer square-path.

Proposition 4.1. Let G be a graph and a,b, c P V pGq2 disjoint pairs of vertices. Suppose that

in G there exists a square-path connecting a to b and a square-path connecting b to c (and thus

also c to b) such that these paths are internally vertex-disjoint. Then the union of these two

paths is a square-path that connects a to c.

A pb, `q-pseudo-path Sb` , where b P t1, 2u, is a graph defined on the vertex set tu1, . . . , u`u

with the edge set

EpSb` q :“
ď̀

i“2

tui´1, uiu Y
ď

iPt3,...,`u
i is odd

tui´2, uiu Y
ď

iPt4,...,`u
i is even

tui´1´b, uiu.

Observe that a p1, `q-pseudo-path is isomorphic to an `-square-path; a p2, `q-pseudo-path is

depicted in Figure 2.

u1 u2 u3 u4 u5 u6 u7 u8

Figure 2: The p2, 8q-pseudo-path S2
8

The notion of a pb, `q-pseudo-path connecting a to b is defined in a natural way, similarly as

above.

An `-backbone-path B`, is a graph defined on the vertex set

W` “
ď

iPr`s

twi,1, wi,2, wi,3, wi,4u.

We set wa
i “ pwi,1, wi,2q and wb

i “ pwi,3, wi,4q, for every i P r`s. The edge set of B` is given by

the union of following graphs (see Figure 3):

• edges tw1,1, w1,2u and tw1,3, w1,4u;

• the 4-square-path pwa
i ,w

b
i q for every 2 ď i ď `;

• the 4-square-path pwa
1 ,w

a
2q;

• the 4-square-path pwb
i ,w

a
i`2q for every 1 ď i ď `´ 2;

• the 4-square-path pwb
`´1,w

b
`q.

Given a graph G and a,b P V 2, we say that a backbone-path connecting a to b is an

embedding g : V pB`q Ñ V pGq, for an appropriate ` P N, such that a “ pgpw1,2q, gpw1,1qq and

b “ pgpw1,4q, gpw1,3qq.

The connection between backbone-paths and pseudo-paths is given by the following proposi-

tion.
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w2,1

w2,2

w2,3

w2,4

w4,1

w4,2

w4,3
w4,4

w5,1

w5,2

w5,3
w5,4

w3,1

w3,2

w3,3

w3,4

w1,4

w1,3w1,2
w1,1

Figure 3: The graph B5

Proposition 4.2. Let G be a graph, a,b, c P V pGq2 disjoint pairs of vertices, and `1, `2 P N
are such that both `1 and `1 ` `2 ´ 2 are divisible by four. Suppose that in G there exists a

p2, `1q-pseudo-path connecting a to b and a p2, `2q-pseudo-path connecting c to b such that these

paths are internally vertex-disjoint. Then the union of these two paths is a backbone-path that

connects a to c.

Proof. One easily verifies that Figure 4 describes an embedding of the two pseudo-paths whose

union is a backbone-path. We omit the details.

w2,1

w2,2

w2,3

w2,4

w4,1

w4,2

w4,3
w4,4

w5,1

w5,2

w5,3
w5,4

w3,1

w3,2

w3,3

w3,4

w1,4

w1,3w1,2
w1,1

(a) Blue arrows indicate the order of the vertices mapped

by g1.

w2,1

w2,2

w2,3

w2,4

w4,1

w4,2

w4,3
w4,4

w5,1

w5,2

w5,3
w5,4

w3,1

w3,2

w3,3

w3,4

w1,4

w1,3w1,2
w1,1

(b) Red arrows indicate the order of the vertices mapped

by g2.

Figure 4: An embedding of a graph B5 by combining two 2-pseudo-paths.

The reason behind a rather complex looking definition of a backbone-path should become

more apparent once we make use of it as a building block for absorbers later on (see Figure 5).

An pb, `q-connecting-path Cb` , for b P t1, 2u and ` divisible by four, is a graph on ` vertices
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defined as

Cb` :“

#

P 2
` , if b “ 1,

B`{4, if b “ 2.

5 Proof of Theorem 1.6

Our proof strategy uses the absorbing method, in particular following a variant used by Nenadov

and the second author in [30]. Let A be a graph and a,b P V pAq2 disjoint pairs of vertices of A.

Given a subset X Ď V pAq, we say that A is an pa,b, Xq-absorber if for every subset X 1 Ď X

there exists a square-path P Ď A connecting a to b such that V pP q “ V pAqrX 1.

The following lemma shows that one can find an absorber in a member of GpΓ, n, α, pq for a

large subset X and Γ „ Gn,p. The proof of the Absorbing Lemma is deferred to Section 6.

Lemma 5.1 (Absorbing Lemma). For every α ą 0, there exists a positive constant C :“ Cpαq

such that w.h.p. for a random graph Γ „ Gn,p every G P GpΓ, n, α, pq has the following property.

Let s ě C log4 n{p2 be an integer. Then there are at least p1´ n´3q
`

n
s

˘

subsets W Ď V pGq

of size s satisfying the following. For every subset X Ď V pGqrW of size |X| ď |W |{pC log2 nq

there exists an pa,b, Xq-absorber A in G such that V pAq rX Ď W , where a,b P W 2 are two

disjoint pairs of vertices.

In order to construct absorbers one typically resorts to what is usually called a Connecting

Lemma. Intuitively, it allows us to connect certain pairs of vertices by vertex-disjoint copies of

a fixed graph F through a reservoir of vertices W . For ease of reference, we now define such a

notion formally.

Definition 5.2. Let t, ` P N, let G be a graph, and let W Ď V pGq be a subset of vertices of G.

Given a family I “ tpxi,yiquiPrts Ď V pGq4 of pairwise disjoint 4-tuples and b P t1, 2u, we say

that a collection tFi Ď GuiPrts of subgraphs of G forms an pI, b, `q-matching in W if the following

holds:

• Fi is a copy of a pb, `q-connecting-path connecting xi to yi, for every i P rts,

• V pFiqr txi,yiu ĎW , and

• V pFiq X V pFjq “ ∅ for all distinct i, j P rts.

In other words, a pb, I, `q-matching ‘connects’ prescribed tuples of vertices from I with copies

of pb, `q-connecting-paths. The Connecting Lemma shows that under certain conditions such a

matchings exist.

Lemma 5.3 (Connecting Lemma). For every b P t1, 2u and every α ą 0, there exist positive

constants ε :“ εpαq and C :“ Cpαq such that w.h.p. for a random graph Γ „ Gn,p every

G P GpΓ, n, α, pq has the following property.

Let s ě C log4 n{p2 be an integer. Then there are at least p1´ n´4q
`

n
s

˘

subsets W Ď V pGq of

size s satisfying the following. For every family of disjoint 4-tuples txi,yiuiPrts Ď pV pGqrW q4,

such that t log n ď ε6|W |, there exists an ptxi,yiuiPrts, b, 4 log nq-matching in W .

In [30] the authors rely on Janson’s inequality in order to show such a statement. As we are

working with a subgraph of a random graph, we cannot apply this technique here. The proof

of the Connecting Lemma thus becomes a much more challenging task and requires a detailed

analysis of ‘expansion of the edges’ in certain subsets. We defer it to Section 7.
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5.1 Proof of the main result

Let us first briefly give an overview of the various steps of the proof. The first step is to

partition the graph uniformly at random into sets U , W , and X such that |U | “ |W | “ Θpnq

and |X| “ Θpn{ log2 nq. Next, we find an pa,b, Xq-absorber A for some a,b P W 2, such that

V pAqrX Ď W . Let W 1 denote the vertices of W which are not part of the absorber, and let

U 1 “ U YW 1. In the third step, we construct t vertex-disjoint square-paths P1, . . . , Pt in U 1 such

that
ˇ

ˇ

ˇ
U 1 r

ď

iPrts

V pPiq
ˇ

ˇ

ˇ
! |X|{ log n and t ! |X|{ log n.

Let us denote the set of vertices from U 1 not contained in any Pi by Q. Using the Connecting

Lemma with X as the ‘reservoir’ (set W in Lemma 5.3) we connect P1, . . . , Pt, vertices from Q,

and pairs a and b into a square-path P such that P connects b to a and V pGq rX Ď V pP q.

Let X 1 be the set of vertices from X contained in P . By the definition of the absorber A there

exists a square-path P 1 connecting a to b such that V pP 1q “ V pAqrX 1. By combining P and

P 1 we obtain the square of a Hamilton cycle. In the remainder of the section we formalise this

argument.

Let C1 “ C5.1pαq, C2 “ C5.3pαq, ε1 “ ε2.8pαq, ε2 “ ε5.3pαq, ε “ mintε1, ε2, 1{p4C1qu, and

C “ maxtε´2C1C2, 100u. Let G be a member of GpΓ, n, α, pq and let V pGq “ X1 YX2 YW YU

be a partition of V pGq chosen uniformly at random, where X :“ X1 YX2, such that

|X| “

Z

εn

2C1 log2 n

^

, |X1| “ tε|X|u, |W | “ tεnu, and |U | “ n´ |X| ´ |W |.

Note that w.h.p. W satisfies the conclusion of the Absorbing Lemma (Lemma 5.1), X2 the

conclusion of the Connecting Lemma (Lemma 5.3), and all four sets are pα{2, ε, pq-good by

Proposition 2.8. From now on we fix such a choice of subsets.

We apply Lemma 5.1 with W and X to obtain an pa0,b0, Xq-absorber A for some a0,b0 PW
2,

such that V pAq r X Ď W . We can indeed do this, as |W | ě εn ´ 1 ě C1 log4 n{p2 and

|X| ď |W |{pC1 log2 nq. Let us denote by W 1 the subset of vertices from W , which are not

contained in A. Furthermore, let U 1 :“ U YW 1. Next, we use the following claim whose proof is

given at the end of the section.

Claim 5.4 (Covering Claim). For every ε ą 0, there exists a positive constant K :“ Kpεq

such that w.h.p. the following holds. The induced subgraph GrU 1s contains t ď K log logn

vertex-disjoint square-paths P1, . . . , Pt such that
ˇ

ˇU 1 r
Ť

iPrts V pPiq
ˇ

ˇ ď ε|U 1|{ log3 n.

By applying the Covering Claim with ε10 (as ε) we get that there is a constant K “ K5.4pε
10q

and that w.h.p. GrU 1s contains t ď K log logn vertex-disjoint square-paths P1, . . . , Pt which

contain all but at most
ε10|U 1|

log3 n
ď

ε10n

log3 n
ď
ε8|X|

log n
(27)

vertices from U 1. We denote the set of uncovered vertices by Q and the end-pairs of Pi by ai and

bi, for every i P rts.

We next show that there exists a matching between Q and X1 which saturates Q by verifying

Hall’s condition. Recall, X1 is pα{2, ε, pq-good. Let Q1 Ď Q be an arbitrary subset of Q and let

us denote NGpQ1, X1q by Z. If |Q1| ď ε´3 log n{p, then for a vertex v P Q1

|Z| ě degGpv,X1q ě p2{3` α{2q|X1|p ě
ε2np

4C1 log2 n
ě
ε´3 log n

p
ě |Q1|, (28)
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where the second to last inequality follows from the bound on p. On the other hand, if

|Q1| ě ε´3 log n{p then by (G1) we have

|Q1|p2{3` α{2q|X1|p ď eGpQ1, Zq ď p1` εq|Q1|maxt|Z|, ε´3 log n{pup,

which implies |Z| ě |X1|{4 (with room to spare) as otherwise we get |X1| ď 4ε´3 log n{p, which

is not true, again by the bound on p. Since |Z| ě |X1|{4 we have by (28) that |Z| ě |Q1| and

thus by Hall’s theorem (Lemma 2.1) there exists a matching between Q and X1 which saturates

Q. Let us denote the edges of the matching by mi for all i P t1, . . . , |Q|u.

As the last step, we apply the Connecting Lemma (Lemma 5.3) with X2 (as W ) and with

the following family of 4-tuples (as I):

tpbi,ai`1quiPt0,...,t´1u Y pbt,m1q Y tpmi,mi`1quiPr|Q|´1s Y pm|Q|,a0q,

in order to obtain a square path P which connects b0 to a0 and contains all vertices from

V pGqr V pAq and possibly some vertices from X2. Note that we can indeed apply the lemma as

|X2| ě p1´ εq
εn

2C1 log2 n
´ 2 ě

C2 log4 n

p2

and by (27) we have

t` |Q| ` 1 ď K log logn`
ε8|X|

log n
` 1 ď

ε6|X2|

log n
.

Finally, let X 1 Ď X be the set of vertices from X contained in P . By the definition of the

pa0,b0, Xq-absorber A there exists a path P 1 connecting a0 to b0 such that V pP 1q “ V pAqrX 1.

By combining P and P 1 we obtain the square of a Hamilton cycle in G, which concludes the

proof of Theorem 1.6.

In the next subsection we provide the missing proof of the Covering Claim.

5.2 Proof of the Covering Claim

The goal of this subsection is to show that GrU 1s contains op|X|{ log nq vertex-disjoint square-

paths which contain all but at most op|X|{ log nq vertices from U 1. In an earlier paper by some

of the authors [35] we proved that w.h.p. any subgraph of Gn,p contains the square of a Hamilton

cycle on p1´ op1qqn vertices, provided that p " plog n{nq1{2. The proof of Claim 5.4 relies on

this result which we thus state precisely.

Theorem 5.5 (Škorić, Steger, Trujić [35]). For every ε, α ą 0 there exist positive constants

C :“ Cpε, αq and b :“ bpε, αq, such that if p ě Cplog n{nq1{2 then the random graph Γ „ Gn,p
has the following property with probability at least 1´ e´bn

2p{ log2 n. Every spanning subgraph of Γ

with minimum degree at least p2{3 ` αqnp, contains the square of a cycle on at least p1 ´ εqn

vertices.

As a corollary we get the following statement.

Corollary 5.6. For every ε, α ą 0 there exists a positive constant C :“ Cpε, αq, such that if

p ě Cplog4 n{nq1{2 then the random graph Γ „ Gn,p w.h.p. has the following property. Every

subgraph G Ď Γ of size vpGq ě εn{ log3 n with minimum degree at least p2{3` αqvpGqp, contains

the square of a cycle on at least p1´ εqvpGq vertices.
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Proof. Let C 1 “ C5.5pε, αq, b “ b5.5pε, αq, and let C “ maxt1000{pεbq, C 1{
?
εu. Note that for all

subgraphs G Ď Γ of size s, such that s ě εn{ log3 n, we have

p ě C
´ log4 n

n

¯1{2
ě C

´ε log4 n

s log3 n

¯1{2
ě C 1

´ log s

s

¯1{2
.

Thus, for a fixed subgraph G of size s with the required minimum degree we have by Theorem 5.5

that with probability at least 1´ e´bs
2p{ log2 s, G contains the square of a cycle on at least p1´ εqs

vertices. Since
bs2p

log2 s
ě s ¨

bεnp

log5 n
ě s ¨

bεC ¨
?
n

log2 n
ě 1000s log n,

we may additionally do the union bound over all s ě εn{ log3 n and all subsets of size s.

With Corollary 5.6 at hand we are ready to give the proof of Claim 5.4 by using a bootstrapping

technique developed by Nenadov and the second author [31].

Proof of Claim 5.4. Without loss of generality we assume that ε is sufficiently small w.r.t. α.

Recall that U is pα{2, ε, pq-good and |U | ě p1´ 2εq|U 1|, so for each v P U 1 we have by (G4)

degGpv, U
1q ě degGpv, Uq ě p2{3` α{2q|U |p ě p1´ 2εqp2{3` α{2q|U 1|p ě p2{3` α{4q|U 1|p.

Let q be the largest integer such that |U 1|{2q´1 ě rn{ log3 ns and note that q “ Oplog log nq.

Consider a uniformly at random chosen partition U 1 “ V1 Y ¨ ¨ ¨ Y Vq such that Vi “ t|U 1|{2iu for

all i P rq ´ 1s and

|Vq| “ |U
1| ´ p|V1| ` ¨ ¨ ¨ ` |Vq´1|q ě |U

1| ´ |U 1|

q´1
ÿ

i“1

2´i “ |U 1|{2q´1.

Similarly, |Vq| ď |U
1|{2q´1 ` q. Since p " n´1{2 log3 n we have

|Vi| ě |U
1|{2q´1 ´ 1 ě

n

2 log3 n
ě

log2 n

p
. (29)

Thus, as Vi is a random subset of U 1, by a simple application of Chernoff’s inequality for a

hypergeometric distribution we get

PrrdegGpv, Viq ă p2{3` α{8q|Vi|ps “ e´Ωp|Vi|pq ă 1{n2,

where the last inequality follows from (29). Using the union bound over all v P U 1 and i P rqs we

have that w.h.p. for each v P U 1 and each i P rqs

degGpv, Viq ě p2{3` α{8q|Vi|p.

Since p " n´1{2 log3 n we have that w.h.p. Corollary 5.6 holds when applied with ε{8 (as ε)

and α{16 (as α). Having this in mind, we prove by induction on i P rqs that GrV1 Y ¨ ¨ ¨ Y Vis

contains i square-paths which cover all but at most pε{4q|Vi| vertices from V1 Y ¨ ¨ ¨ Y Vi. Since

q “ Oplog lognq and

|Vq| ď |U
1|{2q´1 ` q ď

2n

log3 n
` q ď

4n

log3 n
,

we have that by setting i “ q the induction implies the claim.

By Corollary 5.6 we directly get that there exists a square-path in GrV1s which covers all

but at most pε{8q|V1| vertices from V1, settling the base case. Assume now that the hypothesis
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holds for some 1 ď i ă q and let P1, . . . , Pi be the square-paths guaranteed by the hypothesis.

Furthermore, let Q Ď V1 Y ¨ ¨ ¨ Y Vi denote the subset of vertices not contained in any of the Pi’s.

Then |Q| ď pε{8q|Vi| ď ε|Vi`1| and for every v P U 1 we have

degGpv,QY Vi`1q ě degGpv, Vi`1q ě p2{3` α{8q|Vi`1|p

ě p2{3` α{8q
|Q| ` |Vi`1|

1` ε
p ě p2{3` α{16q|QY Vi`1|p,

(30)

where the last inequality follows from the assumption on ε. Therefore, by Corollary 5.6 we know

that GrQ Y Vi`1s contains a square-path Pi`1 which covers all but at most pε{8q|Q Y Vi`1| ď

pε{4q|Vi`1| vertices. Observe that we can indeed use Corollary 5.6 since |Vi`1| ě n{p2 log3 nq

and by (30) we have that δpGrQ Y Vi`1sq ě p2{3 ` α{16q|Q Y Vi`1|p. As the vertices from

pV1 Y ¨ ¨ ¨ Y ViqrQ are already contained in V pP1q Y ¨ ¨ ¨ Y V pPiq, this shows that the hypothesis

holds for i` 1.

6 Proof of the Absorbing Lemma

Our strategy for constructing an absorber for a set X consists of two steps. In the first step we

find an pai,bi, txiuq-absorber Ai (a single-vertex absorber) for each xi P X, such that they are

pairwise disjoint. In the second step, by using the Connecting Lemma, we find a square-path

from bi to ai`1, for every 1 ď i ď m´ 1, such that they are pairwise disjoint and also disjoint

from Ai’s. It is easy to see that this gives an pa1,bm, Xq-absorber: given X 1 Ď X, for every

xi P X we choose a square-path in Ai depending on whether xi P X
1 or xi R X

1.

We use the following construction for a single-vertex absorber.

Claim 6.1. Let Ax be a graph obtained as the union of following graphs and edges

B` Y tw1,2, w1,3u Y
ď

iPr4s

tw1,i, xu Y
ď

iPr`s

Ui,

where Ui is a square-path connecting wb
i to wa

i`1 for every 1 ď i ă `, such that all the square-

paths are pairwise vertex-disjoint and also disjoint from B` (except for the pairs of vertices

they connect). Furthermore, vertex x is not contained in either B` or any Ui. Then Ax is a

pwa
1 ,w

b
`, txuq-absorber.

Proof. There are only two cases we need to consider: X 1 “ ∅ and X 1 “ txu. We specify the

desired square-path from wa
1 to wb

` in each case by giving the ordering in which we traverse the

vertices of such a path (see Figure 5):

• X 1 “ ∅: wa
1 , x,w

b
1, U1,w

a
2 ,w

b
2, U2,w

a
3 ,w

b
3, U3,w

a
4 , . . . ,w

b
`´1, U`´1,w

a
` ,w

b
`,

• X 1 “ txu: wa
1 ,w

a
2, U1,w

b
1,w

a
3, U2,w

b
2,w

a
4, U3,w

b
3, . . .w

a
` , U `´1,w

b
`´1,w

b
`.

Now, we are ready to present the proof of the Absorbing Lemma. For the convenience of the

reader we first restate the lemma.

Lemma 5.1 (Absorbing Lemma). For every α ą 0, there exists a positive constant C :“ Cpαq

such that w.h.p. for a random graph Γ „ Gn,p every G P GpΓ, n, α, pq has the following property.

Let s ě C log4 n{p2 be an integer. Then there are at least p1´ n´3q
`

n
s

˘

subsets W Ď V pGq

of size s satisfying the following. For every subset X Ď V pGqrW of size |X| ď |W |{pC log2 nq

there exists an pa,b, Xq-absorber A in G such that V pAq rX Ď W , where a,b P W 2 are two

disjoint pairs of vertices.
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x

U1

U2

U3

U4

wa
1 wb

1

wa
2

wb
2

wa
3

wb
3

wa
4 wb

4

wa
5wb

5

(a) The square-path from wa
1 to wb

5 including x.

U1

U2

U3

U4

wa
1 wb

1

wa
2

wb
2

wa
3

wb
3

wa
4

wb
4

wa
5

wb
5

(b) The square-path from wa
1 to wb

5 without x.

Figure 5: A single-vertex absorber Ax. Note that both square-paths use all vertices of Ax.

Proof of Lemma 5.1. Let ε1 “ ε5.3pαq, ε
2 “ ε2.8pαq, ε “ mintε1, ε2, 1{100u, C 1 “ C5.3pε

1, αq, and

C “ 40 maxtC 1, ε´6u. Let W “ W1 Y ¨ ¨ ¨ YW7 be such that Wi’s are pairwise vertex-disjoint,

all of size |Wi| ě ts{10u, and chosen uniformly at random from G among all sets of prescribed

size. By the union bound, with probability at least 1´ opn´3q it holds that for all i P r7s, Wi

is pα{2, ε, pq-good by Proposition 2.8, and satisfies the conclusion of the Connecting Lemma

(Lemma 5.3). From now on fix such a choice of sets Wi (and thus W ) and note that it is sufficient

to show the conclusion of the lemma for this particular W .

Let X “ tx1, . . . , xmu Ď V pGqrW be a subset of vertices such that m ď s{pC log2 nq and

observe that 4|X| log2 n ď ε6|Wi|. Furthermore, let Sxi be the subgraph of Axi (as defined in

Claim 6.1) induced on the vertex set tw1,1, w1,2, w1,3, w1,4, xiu. We aim to construct a vertex-

disjoint collection tSxiuiPrms in G, such that each Sxi contains xi and no other vertex from X.

We do this in four steps.

Step 1. First, we show that there exists a matching M1 between X and W1 saturating X.

Let X 1 Ď X be a subset of X and let us denote NGpX
1,W1q by Z. If |X 1| ď ε´3 log n{p then for

a vertex xi P X
1

|Z| ě |NGpxi,W1q| ě p2{3` α{2q|W1|p ě p2C{30q log4 n{p ě |X 1|,

where the second inequality follows from (G4). If we assume |X 1| ą ε´3 log n{p (and hence

|Z| ě ε´3 log n{p by analysis from above) then by (G1) and (G4) we have

|X 1|p2{3` α{2q|W1|p ď eGpX
1, Zq ď p1` εq|X 1||Z|p,

which implies |Z| ě |W1|{2 ě |X
1|. Thus, Hall’s condition is satisfied and the desired matching

M1 exists. Let us denote the matched vertex of some xi P X in M1 by M1pxiq.

Step 2. In the next step, we want to find a family of m vertex-disjoint triangles T1, such

that each triangle contains exactly one edge from M1 and intersects W2 in exactly one vertex.

We achieve this again with the help of Hall’s matching theorem (Lemma 2.1). Let X 1 Ď X and

let us denote
ď

xiPX 1

`

NGpxi,W2q XNGpM1pxiq,W2q
˘
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by Z. By applying (G7) to the edges of M1 incident to the vertices of X 1 or its arbitrary subset

of size ε{p2 in case |X 1| ą ε{p2 (as P) we have

|Z| ě α ¨mintε{p2, |X 1|u|W2|p
2 ě α ¨mintε|W2|, |X

1| ¨ pC{10q log4 nu ě |X 1|,

and by Lemma 2.1 we conclude that the desired collection T1 exists. For xi P X let us denote

by ui “ pui,1, ui,2q the two vertices sharing the triangle with xi from T1, where ui,1 P W1 and

ui,2 PW2.

Step 3. In a manner analogous to that seen in the second step, we find a collection T2 of m

vertex-disjoint triangles such that each triangle in T2 contains exactly one vertex from W3 and

vertices xi and ui,2, for every i P rms. Let us denote by vi,1 the third vertex in the triangle from

T2 which contains xi and ui,2.

Step 4. In the last step, we find a collection T3 of m vertex disjoint triangles such that each

triangle in T3 contains exactly one vertex from W4 and vertices xi and vi,1, for every i P rms.

Let us denote by vi,2 the third vertex in the triangle from T3 which contains xi and vi,1 and

vi “ pvi,1, vi,2q.

This completes the first part of the embedding scheme as we have constructed the vertex-

disjoint collection tSxiuiPrms containing vertices from X.

The rest of the proof consists of three consecutive applications of the Connecting Lemma

(Lemma 5.3). First, by applying it with b “ 2, W5 (as W ), and tpui,viquiPrms (as tpxi,yiqui) we

conclude that there exists a

`

tpui,viquiPrms, 2, 4 log n
˘

-matching

in W5. We can apply the Connecting Lemma as |W5| ě pC{10q log4 n{p2 and m log n ď ε6|W5|.

Let ` “ log n and let gi be the embedding of the backbone-path B` given by the above matching,

for each i P rms. Next, consider the family of 4-tuples tpgipw
b
jq, gipw

a
j`1qquiPrms,jPr`´1s. We

apply the Connecting Lemma with b “ 1, W6 (as W ), and tpgipw
b
jq, gipw

a
j`1qquiPrms,jPr`´1s (as

tpxi,yiqui) to conclude that there exists a

`

tpgipw
b
jq, gipw

a
j`1qquiPrms,jPr`´1s, 1, 4 log n

˘

-matching

in W6. We can do that as |W6| ě pC{10q log4 n{p2 and 4m log2 n ď ε6|W6|. Let us denote pairs

gipw
a
1q and gipw

b
`q by ai and bi, for every i P rms. By Claim 6.1 we conclude that the set

X YW1 Y ¨ ¨ ¨ YW6 contains an pai,bi, txiuq-absorber Ai for each i P rms, such that all Ai’s are

pairwise vertex-disjoint.

Lastly, using the vertices in W7 we connect all Ai’s into a single absorber for the set X.

Consider the family of 4-tuples tpbi,ai`1quiPrm´1s. By applying the Connecting Lemma with

b “ 1, W7 (as W ), and tpbi,ai`1quiPrm´1s (as tpxi,yiqui), there exists an

`

tpbi,ai`1quiPrm´1s, 1, 4 log n
˘

-matching

in W7. We can do that as |W7| ě pC{10q log4 n{p2 and m log n ď ε6|W7|. If we denote the

square-paths connecting bi to ai`1 (given by the last application of the Connecting Lemma) by

Q1, Q2, . . . , Qm´1, then Proposition 4.1 implies that

A “
ď

iPrms

Ai Y
ď

iPrm´1s

Qi

is an pa1,bm, Xq-absorber: consider some subset X 1 Ď X and for each i P rms let Pi Ď Ai be the

square-path from ai to bi which contains xi if and only if xi R X
1 and, moreover, contains all
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other vertices in Ai. Such a path exists as Ai is an pai,bi, txiuq-absorber. Then

a1

P1

b1

Q1

a2

P2

b2

Q2

¨ ¨ ¨

Qm´1

am

Pm
bm

is a square-path from a1 to bm which contains all vertices in A except those in X 1. This concludes

the proof of the lemma.

7 Proof of the Connecting Lemma

In the remainder of the paper we give the proof of the Connecting Lemma. For the convenience

of the reader let us first restate the lemma.

Lemma 5.3 (Connecting Lemma). For every b P t1, 2u and every α ą 0, there exist positive

constants ε :“ εpαq and C :“ Cpαq such that w.h.p. for a random graph Γ „ Gn,p every

G P GpΓ, n, α, pq has the following property.

Let s ě C log4 n{p2 be an integer. Then there are at least p1´ n´4q
`

n
s

˘

subsets W Ď V pGq of

size s satisfying the following. For every family of disjoint 4-tuples txi,yiuiPrts Ď pV pGqrW q4,

such that t log n ď ε6|W |, there exists an ptxi,yiuiPrts, b, 4 log nq-matching in W .

The proof relies on the following lemma whose proof we defer to the next subsection. The

idea behind it is that even after removal of a not too large subset X from the reservoir W , we can

find a copy of a pb, 4 log nq-connecting path, or in the phrasing of the lemma above—a ‘matching’,

connecting at least one pair xi to the corresponding pair yi.

Lemma 7.1. For every b P t1, 2u and every α ą 0, there exist positive constants ε :“ εpαq

and C :“ Cpαq such that w.h.p. for a random graph Γ „ Gn,p every G P GpΓ, n, 2α, pq has the

following property.

Let s ě C log4 n{p2 be an integer. Then there are at least p1´ n´4q
`

n
s

˘

subsets W Ď V pΓq of

size s satisfying the following. For every family of disjoint 4-tuples txi,yiuiPrts Ď pV pGqrW q4,

such that t log n ď ε6|W |, and every subset X ĎW of size |X| ď 8t log n, there exists an i P rts

and an ptpxi,yiqu, b, 4 log nq-matching in W rX.

Proof of Lemma 5.3. For given α, let ε “ ε7.1pα{2q and C “ C7.1pε, α{2q. Set ` “ 4 log n

and I “ tpxi,yiquiPrts. Let W be one of the p1 ´ n´4q
`

n
s

˘

subsets satisfying the conclusion of

Lemma 7.1.

We define an `-uniform hypergraph H on the vertex set I YW whose edge set is defined as

follows. For every 4-tuple pxi,yiq and every set Y ĎW of size `´ 4, we add an edge pxi,yiq Y Y

if and only if G contains a pb, `q-connecting-path connecting xi to yi and its internal vertices

belong to Y . Clearly, if there is an I-saturating matching in H, then there is an pI, b, `q-matching

in W . We use Haxell’s criteria (Theorem 2.2) in order to show this.

Let I 1 Ď I and X ĎW be arbitrary subsets such that |X| ď 2|I 1| ¨ `. It is enough to show

that for some pxi,yiq P I 1 there is a pb, `q-connecting-path connecting xi to yi whose internal

vertices are completely contained in the set W rX. This in turn implies that H contains an edge

intersecting I 1 and not intersecting X and the condition of Theorem 2.2 is satisfied. Applying

Lemma 7.1 with I 1 (as tpxi,yiquiPrts) gives us exactly that. Namely, we may apply the lemma

since |I 1| log n ď t log n ď ε6|W | and |X| ď 2|I 1| ¨ ` ď 8t log n.
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7.1 Proof of Lemma 7.1

Let us set ε “ mint1{2300, α10, ε2.8p2αqu, C “ 5ε´27, and take m “ 4 log n ´ 4. Let G be an

arbitrary member of GpΓ, n, 2α, pq. Let s ě C log4 n{p4 and ñ :“ s{p5 log nq ě ε´27 log3 n{p2. Let

W be a set of size s chosen uniformly at random among all such sets. As by Proposition 2.8 w.h.p.

Γ is such that for every G P GpΓ, n, 2α, pq at least p1´ n´5q
`

n
ñ

˘

sets of size ñ are pα, ε, pq-good, it

follows by Chernoff’s inequality for hypergeometrically distributed random variables that with

high probability at least p1´ n´4q
`

s
ñ

˘

subsets W 1 ĎW of size ñ are pα, ε, pq-good. In particular,

w.h.p. Γ is such that for every G P GpΓ, n, 2α, pq, there are at least p1´ n´4q
`

n
s

˘

sets W Ď V pGq

of size s which in turn contain at least p1´ n´4q
`

s
ñ

˘

subsets of size ñ which are pα, ε, pq-good.

Condition on this event and let W be one of those p1´ n´4q
`

n
s

˘

sets of size s.

Fix an arbitrary X ĎW of size |X| ď 8t log n. We now show the existence of disjoint subsets

W1, . . . ,Wm of W which for all i P rms satisfy:

(W1) |Wi| “ ñ, for ñ :“
Q

|W |
5 logn

U

ě
ε´27 log3 n

p2 ,

(W2) Wi is pα, ε, pq-good, and

(W3) |X XWi| ď ε5ñ.

Consider a uniformly at random chosen collection W1, . . . ,Wm of disjoint subsets of W satisfying

(W1). We claim that such a random collection satisfies (W2) and (W3) with positive probability.

First, as each Wi is u.a.r. chosen from W which contains p1´n´4q
`

s
ñ

˘

subsets which are good, (W2)

follows the union bound over all i P rms. As for (W3), observe first that |X| ď 8t log n ď 8ε6|W |.

If |X| ď ε´3 log2 n then the claim holds vacuously. Otherwise another application of Chernoff’s

inequality and the union bound implies that with probability at least

1´ 4 log n ¨ e´ε
2|X|{p6 lognq ě 1´ 4 log n ¨ e´ logn{p6εq ě 1´ n´5,

we have

|X XWi| ď p1` εq|X|
ñ

|W |
ď p1` εq ¨ 8ε6ñ ď ε5ñ,

for every i P rms. As maxtε´3 log2 n, ε5ñu “ ε5ñ, it holds that |X XWi| ď ε5ñ. From now on we

thus assume that we have disjoint subsets W1, . . . ,Wm that satisfy (W1)–(W3). For convenience,

we also set Xi :“ X XWi and W̃i :“Wi rXi, for every i P rms.

The goal of the remainder of the proof is to show that there exists an embedding g of a

pb,m`4q-pseudo-path connecting xi to yi, for some i P rts. In order to do this, we first introduce

a couple of definitions. Let f : t0, . . . ,mu Ñ Z be a function defined as:

fpiq “

#

i´ 1, if i is even,

i´ b, otherwise.

Note that this function can be used to describe the left neighbour other than ui´1 of a vertex

ui, i ě 3, in a pb, `q-pseudo-path. Indeed, the two left neighbours are ufpi´1q and ui´1. Next, we

define a graph that is the union of all pb, `q-pseudo-paths that start in a set of given edges.

Definition 7.2 (Projection graph). Let π : rms Ñ rms be a permutation of the set rms and

let tpai, biquiPrts Ď pV pGqrW q2, denoted by I, be a set of t disjoint ordered pairs. We define an

pI, πq-projection graph F on the vertex set

V pF q “W´1 YW0 YWπp1q Y ¨ ¨ ¨ YWπpmq,
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where W´1 “ ta1, . . . , atu and W0 “ tb1, . . . , btu. The edge set of F is defined inductively as

follows. Let E0 be the edges between the sets W´1 and W0, i.e. all edges in
Ť

iPrtstai, biu. Then

for all j P rms we let

Ej :“
 

tu, vu, tw, vu : v P W̃πpjq and tu,wu P Ej´1pWπpfpj´1qq,Wπpj´1qq, tw, vu, tu, vu P E
(

.

Lastly, we set the edge set of F to E0 Y ¨ ¨ ¨ Y Em (Figure 6).

W−1 W0 Wπ(1) Wπ(2) Wπ(3) Wπ(4)

a1

a2

a3

b1

b2

b3
Xπ(1) Xπ(2) Xπ(3) Xπ(4)

Figure 6: An example of a projection graph F where m “ 4 and b “ 2. Dashed edges do not belong to the

projection graph F .

To understand this definition, observe that Ej´1 are exactly those edges for which an edge

expansion into W̃πpjq ‘extends’ the pseudo-path constructed so far by a vertex from W̃πpjq.

Crucially, even though the vertex set of F is defined as the union of the sets Wi, the edge set

consists only of edges that run between W̃i’s.

The next proposition thus follows immediately.

Proposition 7.3. Let b P t1, 2u, let π : rms Ñ rms be a permutation of the set rms, and let

tpai, biquiPrts Ď pV pGqrW q2, denoted by I, be a family of t disjoint ordered pairs. Furthermore,

let F be an pI, πq-projection graph. Then for each j, where 1 ď j ď m{2, and each edge

tv, wu P EF pWπp2j´1q,Wπp2jqq, there exists an i P rts and an embedding of a pb, 2j ` 2q-pseudo-

path in F connecting pai, biq to pv, wq that contains exactly one vertex from each set Wi, i P rms,

and no vertex from the set X.

The following claim is the main tool in the proof of Lemma 7.1. The proof of the claim is

technical and quite involved and thus it is presented in the next section. In the remainder of this

section, we show how the claim implies Lemma 7.1.

Claim 7.4. Let t1 P N be such that t{3 ď t1 ď t. Let π : rms Ñ rms be a permutation of the set

rms and let tpai, biquiPrt1s Ď pV pGqrW q2, denoted by I, be a set of t1 disjoint edges in G. Then

there exists pai, biq P I such that

eF pWπpm{2´1q,Wπpm{2qq ě
2

3
ñ2p and eF pWπpm{2`1q,Wπpm{2`2qq ě

2

3
ñ2p,

where F is the ptpai, biqu, πq-projection graph.

Having the previous claim at hand, we finish the proof of Lemma 7.1. Let π1 be the identity

permutation of the set rms and let π2 be a permutation of rms defined as π2piq “ m´ i` 1. Let

Ix be the largest subset of txiuiPrts such that for every xi P Ix it holds that

eF 1pWm{2´1,Wm{2q ě
2

3
ñ2p,
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where F 1 is the pIx, π1q-projection graph. If |Ix| ď t{2 then by applying Claim 7.4 with

txiuiPrts r Ix (as I) and π1 (as π) we get a contradiction with the maximality of Ix. Thus

|Ix| ą t{2. Similarly, let Iy be the largest subset of tyiuiPrts such that for every yi P Iy it holds

that

eF 2pWπ2pm{2`1q,Wπ2pm{2`2qq ě
2

3
ñ2p,

where F 2 is the pIy, π2q-projection graph. As in the case of Ix it must be that |Iy| ą t{2. The

fact that both Ix and Iy are larger than t{2 implies that there must be a single integer i‹ P rts

such that

eFxpWm{2´1,Wm{2q ě
2

3
ñ2p and eFypWπ2pm{2`1q,Wπ2pm{2`2qq ě

2

3
ñ2p, (31)

where Fx and Fy are the ptxi‹u, π1q-projection graph and the ptyi‹u, π2q-projection graph, re-

spectively.

Let `1 “ m{2. Note that tπ2pm´ `1 ` 2q, π2pm´ `1 ` 1qu “ t`1 ´ 1, `1u. Hence, from (31)

we have

eFxpW`1´1,W`1q ě
2

3
ñ2p and eFypW`1´1,W`1q ě

2

3
ñ2p.

This implies, by (G1), that there must exist an edge e “ tu, vu such that

e P EFxpW`1´1,W`1q X EFypW`1´1,W`1q.

By Proposition 7.3 and the definitions of π1 and π2 we get that there exist two embeddings

g1 and g2 of a pb, `1 ` 2q-pseudo-path and a pb, `1 ` 4q-pseudo-path such that:

• pg1pu1q, g1pu2qq “ xi‹ and pg2pu1q, g2pu2qq “ yi‹ ,

• g1puiq PWi´2, for every i P t3, . . . , `1u,

• g2puiq PWm´i`3, for every i P t3, . . . , `1 ` 2u,

• g1pu`1`1q “ u, g1pu`1`2q “ v, and

• pg2pu`1`3q, g2pu`1`4qq “

#

pv, uq, if b “ 1,

pu, vq, if b “ 2.

Using Proposition 4.1 and Propositions 4.2 we conclude that there exists an ptpxi,yiqu, b,m` 4q-

matching in W rX, as desired. This concludes the proof of Lemma 7.1. It remains to prove

Claim 7.4.

7.2 Proof of Claim 7.4

In this subsection we give the proof of Claim 7.4. As the choice of the permutation π does

not play a role in the proof, we assume π is the identity permutation and we completely omit

it from the definition of the projection graph. Thus, throughout the section when we write

I-projection graph we mean pI, πq-projection graph, where π is the identity permutation. For a

projection graph F , we refer to a pair of bipartite graphs F rWfpiq,Wis and F rWfpi`1q,Wi`1s as

the i-th step of F . Next, we introduce some terminology and define when a step is expanding or

non-expanding.

Definition 7.5. Let F be a projection graph. Let C ě 1 be a real number and let i ě 1. We

say that the i-th step of F is C-expanding if

eF pWfpi`1q,Wi`1q ě C ¨ eF pWfpiq,Wiq.

Otherwise, it is C-non-expanding.
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Due to the asymmetry in the definition of pseudo-paths (for b “ 2), it is easier to not consider

every step, but to group steps into blocks of two.

Definition 7.6. Let F be a projection graph. Let C ě 1 be a real number and let i ě 1. We

say that the i-th block is C-expanding in F , if at least one of the 2i-th and the p2i` 1q-st step of

F are C-expanding. Otherwise, it is C-non-expanding.

To understand how the two definitions relate, it is helpful to observe that for the edges

between blocks, i.e. the red edges in Figure 7, we have pW2i´1,W2iq “ pWfp2iq,W2iq, by the

definition of f .

W̃2i W̃2i+1

i-th block

Figure 7: If i-th block is expanding, then the right set of red edges is larger than the left set of red edges.

(Note: this expansion does not follow from the definition, but requires some proofs.)

The intuition behind expanding blocks is that the number of edges in F ‘after’ an expanding

block should be larger than the number of edges in F ‘before’ it (see Figure 7). The following

claim makes this precise.

Claim 7.7. Let F be a projection graph and 1 ď i ď m{2´ 2.

(i) Suppose eF pW2i´1,W2iq ě ε´21ñ log2 n. If the i-th block is p1{εq-expanding, then

eF pW2i`1,W2i`2q ě p1{
?
εq ¨ eF pW2i´1,W2iq,

and otherwise

eF pW2i`1,W2i`2q ě
α2

256
ñ2p.

(ii) Suppose eF pW2i´1,W2iq ě 2εñ2p. If the i-th block is p1` 4
?
εq-expanding, then

eF pW2i`1,W2i`2q ě p1` 2
?
εq ¨ eF pW2i´1,W2iq,

and otherwise

eF pW2i`3,W2i`4q ě p2{3` α{2qñ
2p.

The proof of the claim is quite technical and relies mostly on properties given by Lemma 2.9

about expansion of edges and triangles; we defer it to the next section. With this claim at hand

we are ready to give the proof of Claim 7.4.

Proof of Claim 7.4. As mentioned earlier, we assume w.l.o.g. that π is the identity permutation

as the actual choice of π does not play a role in the proof. The proof comprises of four natural

steps:

(1) starting from the edges in I show that eF pW2i´1,W2iq ě ε´21ñ log2 n, for all m{80 ď i ď

m{2;
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(2) starting from the edges obtained in the previous step show that eF pW2i´1,W2iq ě 2εñ2p,

for all m{40 ď i ď m{2;

(3) knowing that starting from all edges in I we can reach 2εñ2p edges in some number of

steps, show that there is at least one edge e P I such that eF 1pW2i´1,W2iq ě 2εñ2p, for all

m{10 ď i ď m{2, where F 1 is the e-projection graph;

(4) starting from the edges obtained in the previous step show that eF 1pW2i´1,W2iq ě p2{3qñ
2p,

for all m{5 ď i ď m{2.

Step (1). Let us first deal with the trivial case in which p ą ε2. For j ě 0 and a vertex

v PWj with degF pv,Wfpjqq ě 1, by (G5) and as |Xj`1| ď ε5ñ (recall, (W3)), it holds that

degF pv,Wj`1q ě αñp2 ´ |Xj`1| ě αε4ñ´ ε5ñ ě ε5ñ,

and thus also eF pW2i´1,W2iq ě ε5ñ2 " ñ log2 n, for all i ě 1.

In the remainder of the proof we assume p ď ε2. We first show by induction that the following

invariant is true for every j P t0, 1, . . . ,mu: there exists Ej Ď EF pWfpjq,Wjq such that

(i) |Ej XWj | ě mintε2ñ, |I|p1{εqju and |Ej XWfpjq| ě p1´ jε` fpjqεqmintε2ñ, |I|p1{εqfpjqu,
where Ej XWj and Ej XWfpjq denote the set of vertices from Wj and Wfpjq incident to

the edges in Ej , respectively,

(ii) for each v PWfpjq YWj we have degEj pvq ď ε{p.

The base of the induction j “ 0 holds trivially as, by assumption, the starting set of edges is

a matching of size |I|. Thus, let j ě 1 and let us assume the hypothesis holds for all values

smaller than j. Let Ej´1 Ď EF pWfpj´1q,Wj´1q be as given by the induction hypothesis for

j ´ 1. Consider first the case fpjq “ j ´ 2. Note that then fpj ´ 1q “ j ´ 2 as well and thus

|Ej´1XWfpj´1q| ě p1´ εqmintε2ñ, |I|p1{εqj´2u. We apply Lemma 2.9 p1q with Wj´1,Wj´2,Wj

(as W1,W2,W3) and Ej´1 (as F12) to conclude that there exists a subset U 1 Ď Ej´1 XWj´2 of

size

|U 1| ě p1´ εqmint|Ej´1 XWj´2|, ε{p
2u ě p1´ 2εqmintε2ñ, |I|p1{εqj´2, ε{p2u

and an pαñp2{2q-star-matching M saturating U 1. We may indeed apply the lemma by piiq and

since

|Xj | ď |X| ď 4t log n ď 12|I| log n.

As αñp2{2 ě 1{ε4, Ej :“ M satisfies all the required properties. In case fpjq “ j ´ 1 we

apply Lemma 2.9 p1q with Wj´2,Wj´1,Wj (as W1,W2,W3). Observing that |Ej´1 XWj´1| ě

mintε2ñ, |I|p1{εqj´1u, and doing the same analysis as in the previous case shows that the invariant

holds also in this case.

With these preparations at hand we can now finish the proof. For j ě m
200 ě

logn
200 , piq implies

|Ej XWj | ě p1´ 2εqmintε2ñ, |I|p1{εqlogn{200u ě ε3ñ,

as ε is chosen in order for logp1{εq ą 200 to hold. Next, for every m
100 ď i ď m

2 , we apply

Lemma 2.9 p1q with Wfp2i´1q,W2i´1,W2i (as W1,W2,W3) and E2i´1 (as F12) to conclude that

for every subset U Ď E2i´1XW2i´1 of size |U | “ mintε{p2, |E2i´1XW2i´1|u there exists a subset

U 1 Ď U of size p1 ´ εq|U | and an pαñp2{2q-star-matching M saturating U 1 (note that degree

assumption needed for Lemma 2.9 p1q holds by piiq). This further implies

eF pW2i´1,W2iq ě p1´ εq|E2i´1 XW2i´1| ě p1´ εqε
3ñ ¨ pα{2qñp2 ě ε4ñ2p2 ě ε´21ñ log2 n.
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Step (2). Fix i “ m{80. From Step p1q we know that eF pW2i´1,W2iq ě ε´21ñ log2 n. From

Claim 7.7 piq, and the fact that pα2{256qñ2p ě ε´21ñ log2 n, we further have that for all j ě i` 1

eF pW2j´1,W2jq ě min
!

ε´pj´iq{2 ¨ eF pW2i´1,W2iq,
α2

256
ñ2p

)

.

Recall that m ě log n and that we have chosen ε sufficiently small so that ε´pj´iq{2 ě n2 for all

j ě i`m{80. The assertion in Step (2) then follows as α2{256 ě 2ε.

Step (3). Fix i “ m{40. From Step p2q we know that eF pW2i´1,W2iq ě 2εñ2p. Let

I “ I1 Y ¨ ¨ ¨ Y Irñ1{3s be an arbitrary partition of I such that |Ij | ď |I|{rñ1{3s and let Fj be the

Ij-projection graph, for every j P t1, . . . , rñ1{3su. Since

rñ1{3s
ÿ

j“1

eFj pW2i´1,W2iq ě eF pW2i´1,W2iq,

there must be a j‹ P t1, . . . , rñ1{3su such that

eFj‹ pW2i´1,W2iq ě
2εñ2p

rñ1{3s
ě ε´21ñ log2 n,

where the second inequality holds as ñ2{3p ě ε´21 log2 n. By the same argument as in the

Step p2q, this time for Fj‹ and i, we get that for k “ i` m
80

eFj‹ pW2k´1,W2kq ě pα
2{256qñ2p,

implying that we can repeat the argument from above and partition Ij‹ into rñ1{3s parts. The

claim follows by applying this argument successively at most two more times.

Step (4). Fix i “ m{10 and let e P I be the edge obtained in Step p3q and F 1 the e-projection

graph. From Step p3q we know that eF 1pW2i´1,W2iq ě pα
2{256qñ2p. Let us choose a constant

L :“ Lpα, εq such that p1` 2
?
εqL´2pα2{256q ą 2. Observe that not all blocks i, . . . , i` L´ 2,

can be p1` 4
?
εq-expanding as then Claim 7.7 piiq would imply

eF 1pW2pi`L´2q´1,W2pi`L´2qq ě p1` 2
?
εqL´2 ¨

α2

256
ñ2p ě 2ñ2p,

which is a contradiction with (G1). Let i‹ P ri, i`L´2s be the smallest index such that the i‹-th

block is p1`4
?
εq-non-expanding. Then eF 1pW2i‹`3,W2i‹`4q ě p2{3`α{2qñ

2p, by Claim 7.7 piiq.

If the pi‹ ` 2q-nd block is p1` 4
?
εq-expanding then

eF 1pW2i‹`5,W2i‹`6q ě p1` 2
?
εq ¨ eF 1pW2i‹`3,W2i‹`4q ě p2{3` α{2qñ

2p.

If, on the other hand, the pi‹`2q-nd block is p1`4
?
εq-non-expanding, then eF 1pW2i‹`7,W2i‹`8q ě

p2{3` α{2qñ2p, by Claim 7.7 piiq. In addition, by applying Lemma 2.9 p9q to W2i‹`3, W2i‹`4,

W2i‹`5 (as W1,W2,W3) and EF 1pW2i‹`3,W2i‹`4q (as F12) we obtain by symmetry that

eF 1pW2i‹`3,W2i‹`5q, eF 1pW2i‹`4,W2i‹`5q ě p1´
?
εqeF 1pW2i‹`3,W2i‹`4q.

Applying Lemma 2.9 p9q again, this time to Wfp2i‹`5q,W2i‹`5,W2i‹`6 (as W1,W2,W3) and

EF 1pWfp2i‹`5q,W2i‹`5q (as F12), we obtain

eF 1pW2i‹`5,W2i‹`6q ě p1´
?
εq2eF 1pW2i‹`3,W2i‹`4q ě p2{3qñ

2p,

by our choice of ε.

Repeating this argument, that is starting from EF 1pW2i‹`5,W2i‹`6q or EF 1pW2i‹`7,W2i‹`8q

depending on whether the pi‹ ` 2q-nd block was p1 ` 4
?
εq-expanding or not, shows that

eF 1pW2j´1,W2jq ě p2{3qñ
2p for all j P ri‹ ` 2,m{2s, and the claim follows since i‹ ď m{5 ´ 2

(recall that we had set m “ 4 log n´ 4 and thus m{2 is even).

This completes the proof of Claim 7.4.
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7.3 Proof of Claim 7.7

In this section we provide the proof of the assertions in Claim 7.7. We start with some general

remarks. Recall that the i-th block consists of steps 2i and 2i ` 1. Recall also that step 2i

extends edges between sets W2i´1 and W2i into set W2i`1 rX2i`1 via triangles. Similarly, step

2i` 1 extends edges between sets Wfp2i`1q and W2i`1 into set W2i`2 rX2i`2. These extensions

exactly mimic the setting covered by Lemma 2.9. However, the actual set Wfp2i`1q depends on

the value of b of the b-pseudo-path that we want to construct. In order to hide this difference

we often use variables t1, . . . , t4 as follows: t4 “ 2i ` 2, t3 “ 2i ` 1, t2 “ fp2i ` 1q, and t1 is

the unique element from t2i, 2i ´ 1u r tt2u. One easily checks that this implies that we can

always apply Lemma 2.9 with Wt1 ,Wt2 ,Wt3 to address the 2i-th step and to Wt2 ,Wt3 ,Wt4 (as

W1,W2,W3) to address the p2i` 1q-st step.

Proof of piq in Claim 7.7: i-th block is p1{εq-expanding. If both steps 2i and 2i ` 1 are p1{εq-

expanding then the claim follows directly from the definition of an expanding step together with

the observation that fpjq “ j ´ 1 whenever j is even. Thus, let us assume that one of the two

steps is p1{εq-non-expanding. We aim to prove the following for every j ě 1:

If eF pWfpjq,Wjq ě ε´21ñ log2 n then eF pWfpj`1q,Wj`1q ě
α

16
eF pWfpjq,Wjq. (32)

Note that this implies the claim regardless of whether the non-expanding step is the first or the

second step within the block, as then

eF pW2i`1,W2i`2q ě
1

ε
¨
α

16
eF pW2i´1,W2iq ě

1
?
ε
¨ eF pW2i´1,W2iq,

which is what we wanted to prove.

We now prove (32). So assume eF pWfpjq,Wjq ě ε´21ñ log2 n, for some j ě 1. Observe that

the definition of the function f implies that (32) involves exactly three sets Wj . Indeed, by the

definition of f we have fpj ` 1q P tj, fpjqu. Let t2 “ fpj ` 1q and t1 be the unique element

from tj, fpjqur tt2u. Let S ĎWt2 be the set of vertices with the degree at most ε´4 log n{p in

EF pWt1 ,Wt2q and set M :“Wt2 r S. Furthermore, let us denote EF pWt1 , Sq and EF pWt1 ,Mq

by IS and IM , respectively. If |IS | ě eF pWt1 ,Wt2q{2 then by applying Lemma 2.9 (2) with

Wt1 ,Wt2 ,Wj`1 (as W1,W2,W3), S (as U), and IS (as F12) we get

eF pS,Wj`1q ě
1

ε4
eF pWt1 , Sq “

1

ε4
|IS | ě

1

2ε4
eF pWfpjq,Wjq ě

α

16
eF pWfpjq,Wjq.

On the other hand, if |IM | ě eF pWt1 ,Wt2q{2, by applying Lemma 2.9 (3) with Wt1 ,Wt2 ,Wj`1

(as W1,W2,W3), M (as U), and IM (as F12) we get

eF pM,Wj`1q ě
αñp

4
|M | ě

ÿ

vPM

α

8
degIM pv,Wt1q “

α

8
|IM | ě

α

16
eF pWfpjq,Wjq,

where the second inequality follows from (G2).

Proof of piq in Claim 7.7: i-th block is p1{εq-non-expanding. Set t4 “ 2i ` 2, t3 “ 2i ` 1, t2 “

fp2i` 1q, and let t1 be the unique element from t2i, 2i´ 1ur tt2u.
By assumption, the steps 2i and 2i` 1 are both p1{εq-non-expanding. Thus, in particular

eF pWt2 ,Wt3q ă p1{εqeF pWt1 ,Wt2q. Additionally, since eF pWt1 ,Wt2q ě ε´21ñ log2 n, we can

apply Lemma 2.9 (7) with Wt1 ,Wt2 ,Wt3 (as W1,W2,W3), and EF pWt1 ,Wt2q (as F12) to get a

set L2 ĎWt2 such that for every v P L2 we have degF pv,Wt1q ě ε´4 log n{p and

eF pWt1 , L2q ě p1´ εqeF pWt1 ,Wt2q. (33)
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The previous inequality implies eF pWt1 , L2q ě ε´20ñ log n and thus by applying Lemma 2.9 (3)

with Wt1 ,Wt2 ,Wt3 (as W1,W2,W3), L2 (as U), and EF pWt1 , L2q (as F12) we conclude

eF pL2,Wt3q ě
αñp

4
|L2|

(G2)
ě

α

8
eF pWt1 , L2q

(33)
ě

α

10
eF pWt1 ,Wt2q (34)

Since the i-th block is non-expanding we have eF pWt3 ,Wt4q ď p1{ε
2qeF pWt1 ,Wt2q and thus

eF pWt3 ,Wt4q ă
1

ε2
eF pWt1 ,Wt2q

(34)
ď

1

ε2

10

α
eF pL2,Wt3q ă

1

ε3
eF pL2,Wt3q.

Hence, we can apply Lemma 2.9 (7) with Wt2 ,Wt3 ,Wt4 (as W1,W2,W3), and EF pWt2 ,Wt3q (as

F12) to get a set L3 ĎWt3 such that for every v P L3 we have degF pv,Wt2q ě ε´4 log n{p and

eF pWt2 , L3q ě p1´ εqeF pWt2 ,Wt3q ě p1´ εqeF pL2,Wt3q. (35)

Note that w.l.o.g. we may assume that L3 contains all vertices v P Wt3 with degF pv,Wt2q ě

ε´4 log n{p. As (34) and (35) imply eF pWt2 , L3q ě ε´19ñ log n, we can apply Lemma 2.9 (3) with

L3 (as U) to obtain

eF pWt3 ,Wt4q ě eF pL3,Wt4q ě
αñp

4
|L3|.

If |L3| ě pα{32qñ then we are done. In the remainder of the proof we show that such an

assumption is actually true. Towards a contradiction assume that |L3| ă pα{32qñ. Observe that

(recall, (W1) for Wt1 in order to apply (G2))

|L2|
(G2)
ě

eF pWt1 , L2q

p1` εqñp

(33)
ě
p1´ εqeF pWt1 ,Wt2q

p1` εqñp
ě
p1´ εqε´21 log2 n

p1` εqp
ě
ε´19 log2 n

p
. (36)

Let now S Ď Y ĎWt3 be sets defined as

Y :“ tv PWt3 : degF pv, L2q ą ε|L2|pu and S :“ Y r L3.

If |Y | ě pα{16qñ, then |S| ě pα{32qñ, as we assumed |L3| ă pα{32qñ, and thus

eF pW2, Sq ě eF pL2, Sq ě |S| ¨ ε|L2|p
(36)
ě

εα

32
ñ ¨ ε´19 log2 n ě ε´17ñ log2 n.

Recall that all vertices in Wt3 r L3 have degree in F at most ε´4 log n{p into Wt2 . Therefore,

Lemma 2.9 (2) applied with Wt2 ,Wt3 ,Wt4 (as W1,W2,W3), S (as U), and EF pW2, Sq (as F12)

shows

eF pS,Wt4q ě ε´4eF pWt2 , Sq ě ε´3|S||L2|p
(36)
ě ε´3 ¨

α

16
p1´ 2εqeF pWt1 ,Wt2q ą ε´2eF pWt1 ,Wt2q,

which is a contradiction with our assumption that the i-th block is p1{εq-non-expanding. Therefore,

|Y | ă pα{16qñ. However, as by (G1) and (36) we know that there are at most ε´3 log n{p vertices

v PWt3 with degGpv, L2q ě 2|L2|p, we then get

eF pL2,Wt3q ď |Y | ¨ 2|L2|p`
ε´3 log n

p
¨ 2ñp` ñ ¨ ε|L2|p ď

´α

8
` ε` ε

¯

|L2|ñp ă
αñp

4
|L2|,

which is a contradiction with the first inequality in (34). We conclude |L3| ě pα{32qñ and the

claim follows.

Proof of piiq in Claim 7.7: i-th block is p1` 4
?
εq-expanding. Note that if both steps 2i and 2i`

1 are p1`4
?
εq-expanding, then the statement follows directly from the definition of an expanding

step. Thus, let us assume one of the two steps is p1 ` 4
?
εq-non-expanding and let us denote
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that step with t P t2i, 2i ` 1u. Furthermore, let t2 “ fpt ` 1q and let t1 be the unique

element from tfptq, tur tt2u. By applying Lemma 2.9 (9) with Wt1 ,Wt2 ,Wt`1 (as W1,W2,W3)

and EF pWt1 ,Wt2q (as F12) we get eF pWfpt`1q,Wt`1q ě p1 ´
?
εqeF pWfptq,Wtq. From here we

conclude

eF pW2i`1,W2i`2q ě p1` 4
?
εqp1´

?
εqeF pW2i´1,W2iq ě p1` 2

?
εqeF pW2i´1,W2iq,

which is what we wanted to prove.

Proof of piiq in Claim 7.7: i-th block is p1` 4
?
εq-non-expanding. Set t4 “ 2i ` 2, t3 “ 2i ` 1,

t2 “ fp2i` 1q, and let t1 be the unique element from t2i, 2i´ 1ur tt2u. Let us define L2 and L3

as

L2 “ tv PWt2 : degF pv,Wt1q ą ñp{3u and L3 “ tv PWt3 : degF pv,Wt2q ą ñp{3u.

Our first goal is to show |L3| ě p2{3` α{4qñ. As the i-th block is p1` 4
?
εq-non-expanding,

we know that eF pWt2 ,Wt3q ă p1` 4
?
εqeF pWt1 ,Wt2q and thus by Lemma 2.9 (8) applied with

Wt1 ,Wt2 ,Wt3 (as W1,W2,W3), EF pWt1 ,Wt2q (as F12), and 32
?
ε{α (as µ) we conclude

eF pWt1 , L2q ě p1´ 32
?
ε{αqeF pWt1 ,Wt2q ě p1´ ε

1{3qeF pWt1 ,Wt2q. (37)

Next, by Lemma 2.9 (5) with Wt1 ,Wt2 ,Wt3 (as W1,W2,W3), L2 (as U), and EF pWt1 , L2q (as

F12) we get

eF pL2,Wt3q ě p1´ ε
2qeGpL2,Wt3q

(G3)
ě p1´ 3εqeGpWt1 , L2q ě p1´ 3εqeF pWt1 , L2q. (38)

This together with (37) implies

eF pWt2 ,Wt3q ě eF pL2,Wt3q ě p1´ 3εqeF pWt1 , L2q ě p1´ 2ε1{3qeF pWt1 ,Wt2q. (39)

Once again using the fact that the i-th block is p1` 4
?
εq-non-expanding, we get

eF pWt3 ,Wt4q ă p1` 4
?
εq2eF pWt1 ,Wt2q ď p1` 4

?
εq2p1´ 2ε1{3q´1eF pL2,Wt3q

ď p1` 4ε1{3qeF pL2,Wt3q.
(40)

Next, we apply Lemma 2.9 (8) with Wt2 ,Wt3 ,Wt4 (as W1,W2,W3), EF pL2,Wt3q (as F12), and

32ε1{3{α (as µ). We can do that since by (39) and (40) we know that eF pL2,Wt3q ě εñ2p and

eF pWt3 ,Wt4q ă p1` µα{8qeF pL2,Wt3q. Therefore, Lemma 2.9 (8) and (38) imply

eF pL2, L3q ě
`

1´ 32ε1{3

α

˘

eF pL2,Wt3q ě p1´ ε
1{4qeF pL2,Wt3q

(38)
ě p1´ 2ε1{4qeGpL2,Wt3q. (41)

Furthermore, (41) and (G4) show

eF pL2, L3q ě p1´ 2ε1{4qeGpL2,Wt3q ě p1´ 2ε1{4q ¨ |L2|p2{3` αqñp ě p2{3` α{2q|L2|ñp.

From (G1), the fact that |L2| ě pε{2qñ (follows from (37) and (G2)), and eF pL2, L3q ě p2{3`

α{2q|L2|ñp, we obtain |L3| ě p2{3` α{4qñ.

Next, we define

L “ tv PW2i`1 : degF pv,W2i`2q ą ñp{3u and L1 “ tv PW2i`2 : degF pv,W2i`1q ą ñp{3u.

We aim to show that |L|, |L1| ě p2{3qñ. Since |L3| ě p2{3` α{4qñ, we can apply Lemma 2.9 (6)

with Wfp2i`1q,W2i`1,W2i`2 (as W1,W2,W3), and L3 (as U) to conclude that |L1| ě p1´ εqñ, as

37



desired. Similarly, applying Lemma 2.9 (5) with Wfp2i`1q,W2i`1,W2i`2 (as W1,W2,W3), L3 (as

U), and EF pWt2 , L3q (as F12) we get that there exists a L13 Ď L3 of size |L13| ě p1´ 3ε3q|L3| such

that for all v P L13 we have degF pv,W2i`2q ě p2{3` α{2qñp. Clearly L13 Ď L and |L13| ě p2{3qñ.

Set r5 “ 2i` 3, r4 “ fp2i` 3q, and let r3 be the unique element from t2i` 2, 2i` 1ur tr4u.

Moreover, let L4 and L5 be defined as

L4 “ tv PWr4 : degF pv,Wr3q ą ñp{3u and L5 “ tv PWr5 : degF pv,Wr4q ą ñp{3u.

Note that, depending on fp2i ` 3q, the set L4 lies either in W2i`1 or W2i`2. Thus, since

|L|, |L1| ě p2{3qñ and L4 P tL,L1u, we have |L4| ě p2{3qñ as well.

Having this at hand we can finally show eF pW2i`3,W2i`4q ě p2{3` α{2qñ
2p. By applying

Lemma 2.9 (6) with Wr3 ,Wr4 ,Wr5 (as W1,W2,W3), and L4 (as U) we get that |L5| ě p1 ´

εqñ. Finally, we apply Lemma 2.9 (5) with Wr4 ,Wr5 ,W2i`4 (as W1,W2,W3), L5 (as U), and

EF pWr4 , L5q (as F12) to obtain

eF pW2i`3,W2i`4q ě p1´ ε
2qeGpL5,W2i`4q

(G3)
ě p1´ ε2q ¨ |L5|p2{3` αqñp ě p2{3` α{2qñ

2p.

This concludes the proof of Claim 7.7.

8 Concluding remarks

In this paper we introduce the notion of H-resilience which measures the fraction of H-copies

touching a given vertex that an adversary may delete without destroying a certain given property.

We demonstrate the usefulness of the definition by showing that the K3-resilience of Gn,p w.r.t.

the containment of the square of a Hamilton cycle is w.h.p. 5{9 ˘ op1q. In other words, the

adversary needs to delete more than a p5{9q-fraction of the triangles lying on a vertex in order to

destroy all copies of C2
n in Gn,p. Our result is optimal with respect to the constant 5{9 and the

density p up to logarithmic factors.

Having the notion of H-resilience at hand, one can ask for similar statements for other

(spanning) graph properties. Of particular interest is the question of the K3-resilience of Gn,p
with respect to the containment of a triangle factor. Theorem 3.1 shows that also here the

resilience is at most 5{9 ` op1q. Moreover, as C2
n contains a triangle factor, provided 3 | n, it

follows that this is the correct one whenever p " n´1{2 log3 n. However, the threshold for the

appearance of a triangle factor is significantly lower than the threshold for the appearance of a

C2
n, cf. the seminal result of Johansson, Kahn, and Vu [20]. In light of this, we conjecture that

the resilience variant of this result holds when p is close to the threshold for having a K3-factor.

An analogous construction as in Theorem 3.1 shows that the Kr-resilience for a Kr-factor is

at most 1´p1´ 1{rqr´1. It is thus tempting to conjecture that this value is also the Kr-resilience

of Gn,p w.r.t. containment of a Kr-factor, provided that p " n´2{rplog nq1{epKrq, as well as Cr´1
n ,

provided that p " n´1{r. The conjecture is true in the case when p “ 1, as every graph with

p1´ 1{rqr´1
`

n
r´1

˘

copies of Kr at each vertex must have a minimum degree of at least pr´ 1qn{r

and the statement thus follows from the theorem of Hajnal and Szemerédi [16] and Theorem 1.1.
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[9] J. Böttcher, M. Schacht, and A. Taraz. Proof of the bandwidth conjecture of Bollobás and Komlós.

Mathematische Annalen, 343(1):175–205, 2009. 1
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[23] J. Komlós, G. N. Sárközy, and E. Szemerédi. Proof of the Alon-Yuster conjecture. Discrete

Mathematics, 235(1-3):255–269, 2001. 1

[24] M. Krivelevich, C. Lee, and B. Sudakov. Resilient pancyclicity of random and pseudorandom graphs.

SIAM Journal on Discrete Mathematics, 24(1):1–16, 2010. 1
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