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Triangle resilience of the square of a Hamilton cycle

in random graphs

Manuela Fischer* Nemanja Skori¢* Angelika Steger* Milog Truji¢*

Abstract

Since first introduced by Sudakov and Vu in 2008, the study of resilience problems in
random graphs received a lot of attention in probabilistic combinatorics. Of particular interest
are resilience problems of spanning structures. It is known that for spanning structures
which contain many triangles, local resilience cannot prevent an adversary from destroying
all copies of the structure by removing a negligible amount of edges incident to every vertex.
In this paper we generalise the notion of local resilience to H-resilience and demonstrate its
usefulness on the containment problem of the square of a Hamilton cycle. In particular, we
show that there exists a constant C' > 0 such that if p > C'log® n/4/n then w.h.p. in every
subgraph G of a random graph G/, , there exists the square of a Hamilton cycle, provided that
every vertex of G remains on at least a (4/9 + o(1))-fraction of its triangles from G,,,. The
constant 4/9 is optimal and the value of p slightly improves on the best-known appearance
threshold of such a structure and is optimal up to the logarithmic factor.

1 Introduction

One of the central questions of extremal graph theory concerns determining sufficient conditions
for the containment of (spanning) structures. Some of the most influential examples, dating back
to the middle of the previous century, include Turan’s theorem [38] and Dirac’s theorem [13].
The former states that having more than |n?/4| edges in a graph with n vertices is sufficient in
order for a triangle to exist, while the latter states that a graph with minimum degree [n/2] is
Hamiltonian. Several years later, first Pésa [14], and then Seymour [34], conjectured that for any
integer k > 2, a graph G with n vertices and minimum degree §(G) > kn/(k + 1) contains the
k-th power of a Hamilton cycle. For a cycle C' and an integer k € N, the k-th power of a cycle
(k-cycle for short) is obtained by including an edge between all pairs of vertices with distance
on C' of at most k. The second power of a cycle is also called the square of a cycle. It required
the development of powerful tools, most notably Szemerédi’s regularity lemma and the blow-up
lemma, before this conjecture was finally proven by Komlés, Sarkozy, and Szemerédi [22], at
least for all sufficiently large values of n.

Theorem 1.1 ([22]). For any k € N, there exists an ng € N such that if G has order n with
n=ng and 0(G) = kn/(k + 1), then G contains the k-th power of a Hamilton cycle.

For more history on the problem and similar embedding questions we refer the reader to the
literature, cf. e.g. [9, 10, 16, 23, 21, 27] and the survey [25].
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Generalising the type of problems considered in the above theorem, we arrive at the following
Dirac-type question: given a graph property P, what is the minimum number « such that every
graph G on n vertices and minimum degree at least an satisfies G € P? This leads to the notion
of local resilience that we now introduce formally.

Definition 1.2 (Local resilience). Let G = (V, E) be a graph and P a monotone increasing
graph property. The local resilience of G with respect to P is defined as:

r(G,P) := min{r : 3G < G such that each v € V satisfies
degs(v) < r-degg(v) and G — G does not have P}.

Looking back at the aforementioned results, Dirac’s theorem implies that the local resilience
of the complete graph K, with respect to Hamiltonicity is at least n/2 and the theorem of
Komlés, Sarkozy, and Szemerédi implies that the local resilience of ‘containment of the k-th
power of a Hamilton cycle’ is at least n/(k + 1). Moreover, it is not too difficult to construct
examples that show that both of these results are optimal (consider, for example, kK = 2 and a
complete 3-partite graph with two parts of size (n — 1)/3 and one of size (n + 2)/3).

In this paper we study how Theorem 1.1 can be transferred to the setting of random graphs.
Such transference results recently received considerable attention including several breakthrough
results by Balogh, Morris, and Samotij [5], Conlon and Gowers [11], Conlon, Gowers, Samotij,
and Schacht [12], Saxton and Thomason [32], and Schacht [33].

We denote by G, ;, the probability space of all graphs with vertex set [n] := {1,...,n} where
each edge appears randomly with probability p := p(n) € (0, 1), independently of all other edges.
A systematic study of local resilience in random graphs was initiated by Sudakov and Vu [37]
and already led to many beautiful and deep results, see e.g. [3, 1, 8, 24, 26, 28, 29] and the recent
surveys [7, 36]. Inspired by other transference results (such as the ones mentioned above as well
as many more) from dense graphs to the random setting, one may be tempted to guess that
with high probability' a random graph is such that every subgraph with minimum degree roughly
(2/3 + o(1))np contains the square of a Hamilton cycle.

On second thoughts, however, one easily sees that this cannot hold for p » logn/y/n. An
adversary can remove all the edges with both endpoints lying in the neighbourhood of an arbitrary
vertex v, thus preventing v from being in a triangle (which implies in particular that v cannot be
contained in any square of a cycle); note that the deletion of these edges changes the degree of
every other vertex only by o(np). In fact, Huang, Lee, and Sudakov [19] and Balogh, Lee, and
Samotij [4] showed that an adversary can always prevent as many as (p~2) vertices from being
in triangles by deleting o(np) edges touching each vertex, as long as 1/4/n « p « 1. The former
result shows the claim even when p is a fixed constant, independent of n.

In this paper we overcome the obstacles that the notion of local resilience encounters with
respect to containment of spanning structures (that contain triangles). For this we generalise
the notion of local resilience. More precisely, we restrict the adversary to only remove a fraction
of certain substructures touching each vertex. In the classic definition of local resilience these
substructures correspond to edges. For obtaining the square of a Hamilton cycle it turns out
that one should replace edges by triangles. This then motivates the following question:

How many triangles at a vertex does an adversary have to destroy in order to obtain a graph
without the square of a Hamilton cycle?

!'We say that an event holds with high probability (w.h.p. for short), if the probability that it holds tends to 1
as n tends to infinity.



We capture this question under the notion of Kj-resilience, or more generally H -resilience as
given in the following definition.

Definition 1.3. Let H be a fixed graph and let P be a monotone increasing graph property.
For a graph G, the H-resilience of G with respect to P is defined as

re(G,P) := min{r : 3G < G such that the removal of G destroys at most an r-fraction

of copies of H in G at every vertex and G — G does not have P}.

In the main result of this paper we show that the above definition can be used in order to
determine the resilience of G,,;, with respect to the containment of the square of a Hamilton
cycle.

Theorem 1.4. The Ks-resilience of Gy, w.r.t. the containment of the square of a Hamilton
cycle is w.h.p. 5/9 + o(1), provided that p » n~'/?log3n.

In other words, the above theorem shows that w.h.p. the adversary needs to delete more
than a (5/9)-fraction of the triangles lying on each vertex in order to destroy all copies of the
square of a Hamilton cycle in G, ;,. The density value p is optimal up to the logarithmic factor,
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as a simple application of the first moment method shows that for p « n~
G p w.h.p. does not contain the square of a Hamilton cycle. Additionally, this result marginally
improves upon the current appearance threshold for the square of a Hamilton cycle in G, , by
Nenadov and the second author [30], by a logn factor in the density p.

The second result of the paper rephrases the above theorem in slightly different terms. From
Theorem 1.1 we know that in the dense case it is sufficient to require that the minimum degree is
at least 2n/3. Although the analogous statement cannot be true in the case of random graphs, we
prove that w.h.p. every spanning subgraph which satisfies the correct minimum degree condition
and the additional property that each edge is contained in anp? triangles, contains the square of

a Hamilton cycle. Before we can state this result precisely, we need a definition.

Definition 1.5. Let I" be a graph on n vertices. We denote by G(T',n, o, p) the family of all
spanning subgraphs G < I' that satisfy the following properties:

1. for every v € V(G): degg(v) = (2/3 + a)np, and
2. for every {u,v} € E(G): |Ng(u) n Ng(v)| = anp?.

With this at hand we can state the second result of the paper.

Theorem 1.6. For every o > 0 there exists a positive constant C' := C(«), such that a random
graph I ~ G, , w.h.p. has the following property, provided that p > Cn~1/2 log®n. Each member
of G(T',n,a,p) contains the square of a Hamilton cycle.

As in the first result of the paper, the value of p is almost optimal. Furthermore, the constant
2/3 in the definition of the class G(I', n, , p) cannot be improved, as the same counterexample
as in the dense case works in this scenario as well. Even though the type of conditions in
two theorems above look quite different at first sight, we prove Theorem 1.4 by a reduction to
Theorem 1.6.

The proof of Theorem 1.6 uses the so-called absorbing method. In particular, we make use of
a strategy paved by Nenadov and the second author [30]. This method is discussed in Section 6.
In Section 2 we introduce some notation and probabilistic tools, and state several useful lemmas
about properties of (random) graphs, culminating in Lemma 2.9 about edge expansion properties.



In Section 3 we give the proof of Theorem 1.4 by a reduction to Theorem 1.6. We also show in
this section that the constant 5/9 in Theorem 1.4 is best possible. In Section 4 we introduce
several classes and definitions of graphs which we rely on throughout the paper. In Section 5 we
give the proof of Theorem 1.6 modulo several lemmas. Each of the subsequent Sections 6-7.3 are
dedicated to the proof of one of the technical lemmas and/or claims. Finally, we conclude by
discussing some related open problems in Section 8.

2 Tools and preliminaries

Our graph theoretic notation is standard (see, e.g. [6]). In particular, for a graph G = (V, E) we
denote by Ng(v) the neighbourhood of a vertex v € V' and by degq(v) its size, i.e. degg(v) =
|Ng(v)|. Similarly, for X < V' we write Ng(X) for the union of neighbourhoods of vertices in
X, that is Ng(X) := {u: {v,u} € E and v € X}. Furthermore, for X, Y € V, we let Ng(X,Y)
denote Ng(X) nY and if X consists of a single vertex we abbreviate Ng({z},Y) to Ng(z,Y).
If X, Y € V are disjoint subsets of vertices we write eg(X,Y") for the number of edges with one
endpoint in X and the other in Y. We use a set of edges I < F interchangeably as a set of edges
and a (sub)graph. In particular, we write deg;(v) to denote the number of edges from I that are
incident to a vertex v and er(X,Y") for the number of edges in I that have an endpoint in each
of the subsets X and Y. We omit the subscript G (resp. I) whenever it is clear from the context
to which graph G we refer to. For k,/ € N and a cycle Cy with ¢ vertices, we let Cf denote the
k-th power of (Y, that is a graph obtained by adding an edge between any two vertices of Cy
which are at distance at most k. Given two graphs H and G, and a function f: V(H) — V(G),
we say that f is an embedding of H into G if it is an injection and for all {v,u} € E(H) we have
{f(u), f(0)} € E(G).

For an integer k > 2 and a set V we write (‘;) for the family of all subsets of V' with cardinality
exactly k. We write V¥ to denote the family of all ordered k-tuples of V whose entries are pairwise
different, that is V¥ := {(vy,...,vx) : v; € V for all i € [k] and v; # v; forall 1 <i < j < k}.
An element of V¥ is usually denoted by a lower case bold letter. Given w = (v1,...,v;) € V¥,
we write W to denote the tuple obtained by reversing the order in w, i.e. W = (vg,...,v1).
Moreover, for two ordered tuples w; and wo, the tuple wiwsy is an ordered tuple obtained by
concatenation of wi and wq. For a function g applicable to the elements of a tuple (z1,...,z,)
we for convenience shorten (g(x1),...,9(zyn)) to g(x1,...,2n).

For an integer n € N we write [n] := {1,...,n}. Given a,b,c,z € R we write x € (a + b)c
to denote (a — b)c < z < (a + b)e. We make use of the standard asymptotic notation, o, O, w,
Q, and ©. For two functions a and b, we write a < b to denote a = o(b) and similarly a » b
for a = w(b). All logarithms are with respect to base e. We omit floors and ceilings whenever
they are not of importance. Lastly, we write C5.1 to indicate that the constant C5 1 is given by
Theorem/Lemma/Claim 5.1.

The following statement about r-star-matchings is an easy corollary of Hall’s matching
theorem [17]. A star of size r (r-star, for short) is a complete bipartite graph K, with the
vertex adjacent to all others being the centre.

Lemma 2.1 (r-star-matching). Let r = 1 be an integer and let G = (A u B, E) be a bipartite
graph. If for every subset A" = A it holds that [N(A")| = r|A’|, then G contains a collection of
pairwise disjoint r-stars, such that the centres of these stars cover all vertices in A.

Proof. Consider the ‘blow-up’ of G in which each vertex in A is replaced by r copies that are
connected to the same vertices as the original vertex. Then this new graph satisfies Hall’s



condition and thus contains a matching that saturates all copies of the vertices in A. The
corollary follows by contracting the copies of each vertex. O

We also make use of a generalised version of Hall’s theorem due to Haxell which has recently
seen a surge of applications in embedding spanning structures into random graphs, especially in
the resilience setting.

Theorem 2.2 ([18]). Let H = (A v B, E) be an r-uniform hypergraph such that |Ane| =1 and
|Bre| =r—1 for every edge e € E. If for every A’ € A and B' < B such that |B'| < (2r —3)| 4’|
there is an edge e € E intersecting A’ but not B’, then H contains an A-saturating matching
(that is, a collection of vertex-disjoint hyperedges whose union contains A).

We repeatedly make use of the following two standard tail estimates used in random graph
theory, cf. e.g. [2, 15].

Lemma 2.3 (Chernoff’s inequality). Let X ~ Bin(n,p) and let p := E[X]. Then for all
O0<a<l:

o Pr[X < (1—a)u] <e *r2, and

o Pr[X > (14 a)u] < e *W3,
Moreover, the inequalities above also hold if X has the hypergeometric distribution with the same
mean.

Theorem 2.4 (Janson’s inequality). Let p € (0,1) and consider a family {H;}iez of subgraphs
of the complete graph on the vertex set [n]. Let I' ~ Gy ,. For each i € I, let X; denote the
indicator random variable for the event {H; < I'} and, for each ordered pair (i,j) € T x I with
i # j, write H; ~ H; if E(H;) ~ E(H;) # @. Let

X=X,

i€l
po=EX] =) pth),
i€l
A — Z E[XZ-XJ-] — 2 pe(Hi)"‘e(Hj)_e(HiﬁHj)'
(4,7)ETXT (4,§)€IXT
Hi~H; Hi~H;

Then for all 0 <~ < 1 we have
,\/2#2
PI‘[X < (1 — ’y)'u,] < e 2(p+Aa)
Next, we collect several facts about random graphs mostly concerning the number of edges
and triangles between certain subsets, as well as a simple edge expansion property.

Lemma 2.5. For every € € (0,1/100) and p := p(n) € (0,1), the random graph T' ~ Gy, w.h.p.
satisfies the following.

Let s = e 1%logn/p* be an integer. Then there are at least (1 —n~5)(") subsets W = V(')
of size s such that the following holds. For every W' < W of size |W'| = e|W| and every family
of pairs P < (V(F%\W) of size |P| = e %logn/p? and such that no vertex of I' appears in more
than 1+ 1/p pairs from P, we have

D IN( W) A N, W)| < (1+e)[P||W'|p*.
{u,v}eP



Proof. An easy application of Chernoff’s inequality (Lemma 2.3) and the union bound shows
that w.h.p. every pair of vertices u,v € V(I') have a common neighbourhood which satisfies
IN(u) n N(v)| < (14 %np? For a set W” < V(') and a triple (u,v,w) € (V([') ~ W") x
(V(T) N W") x W” we define a random variable

1, if {u,v} € P and {u,v} < N(w),
KXupw = .
0, otherwise.

Suppose that w.h.p. for all P as in the statement of the lemma and all W” < V(T'), [W’| >
e~ "logn/p?, the following holds:

Z Z Xypw = (1—¢ )|P|]W”|p (1)

{u,v}eP weW”

Condition on the fact that I' ~ G, satisfies these two properties, which happens with high
probability. We claim that this is sufficient in order to show the lemma.

Let W < V(I') be a subset of size s > ¢ 1%logn/p? chosen uniformly at random among all
such subsets. For a fixed pair u,v € V(I'), from Chernoff’s inequality we have

Pr[|N(u, W) A N(v,W)| > (1 + &%) |Wp?] < e ERIWI* < gmeClogn /9,

and so by the union bound we conclude that with probability at least 1 — o(n~%) for every two
vertices u,v € V(I') it holds that

IN(u, W) A N(v,W)| < (1+3)|W[p. (2)

Let W' € W be of size [W'| = e|[W|, let X = >, rep 2pens Xuww, and note that X counts
exactly the quantity we are interested in. Take W’ := W ~. W’. Then, trivially,

X = 2 Z Xu,v,w = Z Z Xu,v,w - Z Z Xu,v,w-

{u,v}eP weW”’ {u,v}eP weW {u,v}eP weW”

The first term on the right hand side of the previous equation is by (2) bounded from above by
(1+&3)|P||Wp? If [W”| = e3|W| = e " logn/p?, then we can use the lower bound from (1) to
obtain

X < (1+%)|PIWp* = (1 =) [PIIW"[p* < (1+%)[PI[W'[p* + 2P| Wp* < (1+¢)[P||W'p?,

where the last inequality holds because |W’| > ¢|W| and € < 1/100. In case |W”| < &3|W| we
have |[W’| = (1 — €%)|W| and thus from (2) we have

1+

X < (1+)P|[Wp* < -

IPHW’IP (1 +)[PIW'[p?,

since € < 1/100. In conclusion, W satisfies the assertion of the lemma with probability at least
1 — o(n~%) which implies the desired statement. It remains to show that (1) is indeed true.

Denote the left hand side of (1) by X”. By linearity of expectation we have u := E[X"] =
|P||[W"|p2. For two triples (u1,v1,w;) and (ug,va, we) we write (u,v1,w;) ~ (ug,va, ws) if their
corresponding random variables are dependent. Note that (u1,v1,w;) and (ug,v2,wy) can only
be dependent if [{u1,v1} N {u2,v2}| = 1 and wy = wy. Thus

2
A= > P’ < \PHW”\];pS = 2.

(u1,v1,w1)~(u2,v2,w2)

6



By Janson’s inequality (Theorem 2.4) it follows that
Pr[X” < (1 — &%) [P||[W"|p?] < e =¥ /(61 = =< IPIW"IP°/6

Let us denote e '°logn/p? by t. By the union bound over all choices of P and W” and by using
standard bounds on binomial coefficients, we get

2

< n2 S n —émyzﬁ < S 2zxlogn _ylogn —ga}ypz
(M) S (et eSS e oo 5
x

r=t y=e3¢ Y =t y=g3t

n
1
< Z e(?x-‘,—y) log n—max{z,y}5- logn

— —106=10 1602 1, /n2
< Z e 10 max{z,y} logn < n3 . e 10¢ log® n/p < 1/7’7,8

=t y=g3t
This implies that with probability at least 1 — o(n~°) we have

NN Xuww = (1) PIW P2,
{u,v}eP weW”

for all permissible P and W”, as required. O

Lemma 2.6. For every € € (0,1/300) and p := p(n) € (0,1), the random graph I' ~ Gy, ,, w.h.p.
satisfies the following.

Let s = e~®logn/p* be an integer. Then there are at least (1 —n~%) (") subsets W = V(T') of
size s such that the following holds. For every family of pairs P < (V(F%\W) such that no vertex
of ' appears in more than 1 + ¢/p pairs from P and |P| < 1 + ¢/p?, we have

LU (N W) A N, )| = (12 50|22
{u,v}eP

Proof. Fix a P as in the statement and let U denote the set of vertices of I' not appearing in
P; note that |U| = (1 — o(1))n. Let ¢ denote the probability for a vertex w € U to be in the
common neighbourhood of v and v, for some {u,v} € P, and let &, , denote this event for fixed
u and v. By the union bound we have that ¢ < |P|p?. As for the lower bound on ¢, we use the
inclusion-exclusion principle (Bonferroni’s inequality) to get

q = Z Pr[gu,v] - Z Pr[gu,v A Eu/,v’]
{u,v}eP {uvin{u v'}|<2
= 3 PrfE] - Y P aluw]l— DL Prfuu A fuw]
{u,v}eP [{u,v}n{u/,v'}=0 {u,v}n{u/ v'}=1

Using the fact that no vertex of I" appears in more than 1 + £/p pairs from P,

S
¢ = [Plp* — [P|(|P] - )p* — |7’|];p3 > (1 - 2¢)|Plp*.

Let us denote (Jg, ,1ep (N(u,U) n N(v,U)) by Z. Observe that the expected size of Z is |Ulq
and thus by Chernoff’s inequality and our estimates for g we get

62 52
Pr[|Z] < (1— 42)[P|np?] < Pr[|Z] < (1 —)|U]q] < e~ T =2)PIUIE < =5 1PIne® (3



Similarly, we have
52 52
Pr[|Z] = (1 + 4¢)|Pnp?] < Pr[|Z] = (1 + &)|U]q] < e~ T U-2IPIUR* < =T IPI? - (y)

Since np? = ¢ logn, by combining (3) and (4) together with the union bound over all choices
for P we get that with high probability for all such sets P and u,v € P

(N(u,U) ~ N(v, U))‘ = (1 + 4¢)[P|np?. (5)
{u,v}eP

Condition on I' ~ Gy, ,, satisfying this. Let W < V(T') be a set of size s > ¢~3logn/p? chosen
uniformly at random among all such sets. Let P be as in the statement of the lemma, and note
that (5) is fulfilled for P and the corresponding set U. By Chernoft’s inequality, we have

U (V@ W) o N, W)| = (1 52) [Pl
{u,v}eP

with probability at least

_2:? 2 _2 _
1 — e~ 5 IPIIWIp >1—¢ 3clogn > 1 _p6

b
as required. ]

The following definition is used at various places throughout the paper. It captures essential
properties of a random graph I' ~ G, , and its subgraphs G € G(I', o, ¢, p) which are used in
order to prove the main result. Some of the properties follow easily from others; we list them all
separately for ease of reference later on.

Definition 2.7. Let ¢,a > 0, p € (0,1), and n € N. Let I" be a graph on n vertices and
G e G(I',n,2a,p). We say that a subset W < V(G) is (o, ¢, p)-good with respect to I and G if
the following properties hold:

(G1) For every two disjoint subsets X € W, Y < V(I') of sizes |X|,|Y| = e~ logn/p we have

er(X,Y) = (1 £ ¢)|X[[Y]p.

Q

2 +&)|[Wp.
3 +¢)degg(v) W]

) For every v € V(I') we have degp(v, W) = (1

) ! L}
4) For every v € V(G) we have degq (v, W) = (2/3 + a)|W|p.

)

)

(®)

For every v € V(G) we have degq (v, W)

Q @

5) For every {u,v} € E(G) we have |Ng(u, W) n Ng(v, W)| = o|W|p?.

6) For all subsets W/ < W of size |W'| = ¢|W| and all P < (V(G%\W) of size |P| =

£~ 10log n/p? such that no vertex of G appears in more than 1+ 1/p pairs from P, we have

Q

(
(
(
(
(

>, INa(u, W) A Na(v, W) < (1 +)[P||W'|p°.
{u,v}eP

(G7) For every set of edges P < E(G) avoiding W such that no vertex of G appears in more
than 1 + ¢/p edges from P and |P| < 1 + ¢/p?, we have

U (Volw, W) o Nalo, W))| = alPI[Wp2
{u,v}eP



In order to be precise, whenever speaking about («, e, p)-good sets, one would always need
to specify graphs I' and G as well. However, for a cleaner exposition, we omit it as these two
graphs are always clear from the context and almost always are the random graph I' ~ G, ,,
and its subgraph G € G(T', a, &, p). The following proposition shows that w.h.p. an overwhelming
majority of sets W are (a/2,¢,p)-good with respect to I' ~ Gy, , and its subgraph G which
belongs to the class G(T', a, €, p), for a certain choice of parameters. Namely, a random choice of
W is typically good.

Proposition 2.8. For every a > 0 there exists a positive constant € := e(«) such that the
random graph T' ~ Gy, , w.h.p. satisfies the following for every G € G(I',n, a, p).

Let s = e 1%logn/p® be an integer. Then there are at least (1 —n=°)(7) subsets W = V(G)
such that W is (a/2, e, p)-good.

Proof. Choose € > 0 sufficiently small so that the arguments below follow through. One can
easily show with Chernoff’s inequality and the union bound that w.h.p. I' ~ G,, , is such that

o (density) er(X,Y) = (1 £ ¢)|X||Y]|p, for every X,Y < V(') with |X|,|Y| = e~ log n/p;

o (degree) degr(v) = (1 + ¢/2)np, for every v e V(I'); and

e (codegree) |Nr(u) n Np(v)| < (1 4 &/2)np?, for every u,v € V(I).

Furthermore, with high probability, I" satisfies both the conclusion of Lemma 2.5 and that of
Lemma 2.6. Condition on these five events from now on.

Let G < T be a member of G(I',n,a,p) and let H := ' — G. We choose a set W uniformly
at random among all subsets of size s and aim to show that with probability at least 1 — o(n~?)
such a set satisfies all (G1)—(GT7), which would imply the desired statement. Property (G1)
follows directly from the density event we conditioned on above. Properties (G2)—(G5) follow
from the degree event we conditioned on above, the definition of G(I', n, a, p), and then the fact
that W is chosen u.a.r., Chernoff’s inequality, and a simple union bound. Moreover, (G6) holds
for W with probability at least 1 — n~% by the conclusion of Lemma 2.5, since G < T'.

Finally, let us look at (G7). By the conclusion of Lemma 2.6, with probability at least 1 —n =5,
W is one of the subsets for which the following holds: for any subset of edges P < E(G) avoiding
W such that [P| < 1+ ¢/p? and no vertex of G appearing in more than 1 + ¢/p edges from P,
we have

U (Ne(w, W) o Ne(o, )| > (1= 52)[PIWp?. (6)
{u,v}eP
From the codegree event we conditioned on above and the definition of the class G(T', n, a, p) we
further get that

INg (1) n Nu(v)] < (14 /2 — a)np® < (1 — 3a/4)np?,

for every edge {u,v} € E(G). Moreover, as W is chosen uniformly at random, by Chernoff’s

inequality and the union bound we also have that with probability at least 1 — o(n~?), every
{u,v} € E(G) satisfies

|Ng(u, W) A Nz (v, W)| < (1 — 3a/4 + €)|[W|p°. (7)
By combining (6) and (7) we get

’ U (Ne(u, W) A~ No(, W))‘ > ‘ U Ve, W) NF(U,W))’ — Y |Nu(w, W) A Ny (v, W)]
{u,v}eP {u,v}eP {u,v}eP

> (1 5¢)|[P[[Wp* — |P|(1 - 3a/4 + )|W|p?

> (a/2)[P||Wp?,
where the last inequality follows for small enough € > 0. This concludes the proof. O



2.1 Edge expansion and triangles

In this section we provide some expansion tools that we make use of in our proof. Before we
state them, we give some motivational background. A standard approach for showing that two
vertices a and b are connected by a path of length, say, ¢, is to inductively prove a lower bound
on the number of vertices that can be reached by paths of length ¢, starting from each a and
b. To prove such a bound one usually relies on expansion properties of vertices in certain sets.
In our case, we do not want to find paths, but square paths (see Section 4 for details), where
each new vertex is given by a triangle lying on a previous edge. In particular, we build such
paths by starting from an edge and determining how many edges (instead of vertices) we can
reach starting from this edge. Correspondingly, we need expansion properties of edges instead of
vertices. The goal of this section is to provide such expansion properties.

More precisely, we are trying to understand the following setup. Suppose we are given three
disjoint subsets of vertices Wi, Wa, W3 of a graph G. Assume further that Fio © Eq (Wi, Wh) is
some set of edges from G between W7 and Wy. What we are interested in is the set of edges

F23 = {{wg,wg} € Eg(WQ, Wg) : E|’LU1 € W1 s.t. {wl,wQ} € F12 and {wl,wg} € E(G)}

that ‘extend’ an edge from Fjo to the set W3 via a triangle. Namely, we are aiming at providing
some bound on |Fb3| in terms of |Fial.

Lemma 2.9. For every o > 0 there exists a positive constant € := (a) such that for sufficiently
large n and all p :== p(n) € (0,1), every graph T' on n vertices and G € G(I',n, 2a, p) satisfy the
following.

Let 1 = e~ 22 log? n/p? be an integer. Let Wy, W, W3 € V(G) be three disjoint (v, e, p)-good
sets of size 7 each, let X © W3 be of size | X| < i, and Fia S Eq(W1, W2) be a subset of edges.
Then the following statements hold, where U < Wy is the set of vertices incident to the edges in
Fio, and Fbs is as defined above.

(1) If |U| = |X|/logn and degp,,(v) < €/p for all v e Wy U Wa, then there exists a subset
U' c U of size |U'| = (1—e) min{|U|,e/p?} and an (anp?/2)-star-matching in Fos saturating
U’ and avoiding X in W3.

(2) If |Fi2| = e Yiilog® n and degp,, (v, W1) < 5_4% for allve U, then ey, (U, W3\ X) >
8_4’F12|.

(3) If |Fi2| = e Pnlogn and degp,, (v, W1) > 5_4% for allv e U, then ep,, (U, W3\ X) >
Lﬁp|U’

; .

(4) If | Fra| = T2 and S5 < degpe, (v, W1) < % for allv € U, then ep,, (U, W3~ X) >
(1 + Ot/4)|F12‘

(5) If |Fi2| = ﬂ%ﬁ and degp,, (v, Wy) > %p for all v € U, then ep,,(U, W3 \ X) >
(1 — 2)eq(U, W3) and there exists a subset L € U of size |L| = (1 — 3¢®)|U]|, such that for
every u € L we have degp,, (u, W3~ X) = (1 — 2¢%) degq(u, W3).

(6) If |U| = %ﬁ and degp,, (v, W1) > %p for all v e U, then there exists L < W3~ X of size
|L| = (1 —€)n, such that for every u € L we have degp,, (u, Wa) = (1/3 + a/2)np.

(7) If |Fia| = e 8nlog? n and ep,,(Wa, W3~ X) < 73| F1a|, then there exists a subset L & Wy
such that for every v € L we have degp,,(v,W1) = e *logn/p and ep,(Wi,L) = (1 —
€)|F12‘.

(8) If |Fiz| = enp and ep,,(Wa, W3~ X) < (1 + pa/8)|Fia|, then there exists a subset L < Wy
such that for every v € L we have degp,, (v, W1) > np/3 and ep,,(W1,L) = (1 — p)|F1a],
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for every € (32¢/a, 1).
(9) If |Fia| = eii®p, then epy,(Wo, W3\ X) = (1 — /2)|F1a].

Let € := g(a) > 0 be a small enough constant such that all the arguments follow through.
We prove the statements one by one.

Proof of (1) in Lemma 2.9. Fix an arbitrary set U < U of size |U| = min{|U|,¢/p*}. Every
subset A < U, by using property (G7) applied for a single edge from Fis incident to each a € A
(as P), satisfies

’NF23(A)| = a’AWPQ-
Lemma 2.1 thus implies there exists an (afp?)-star-matching M in Fh3 saturating U. Let Ux be
the largest subset of U such that for each v € Ux at least half of its edges in M are incident to
vertices in X. It must be that |Ux| < €|U| as otherwise we have

X[ = [Ux|- (a/2)p* = e min{|U|, e/p?} - (o/2)itp?
> min{e~2°|U|log® n, e} = min{| X |log n, 37},

which contradicts our assumptions on |X|. Thus, by setting U’ := U~ UX, we have for each
vertex from U’ that half of its edges from the matching M avoid X and that suffices. O

Proof of (2) in Lemma 2.9. Let F|5 < Fia be a largest subset of the edges from Fijo obtained by
keeping at most £/p edges incident to every vertex in U. Note that

e/p - 5| Fyo|

F/ 2 F : =
[F1z] > |Fiol e~*logn/p logn

> e i logn. (8)

We define a sequence Ji,. .., J; of disjoint subsets of F}, as follows. Let J; be a largest subset
of F}, such that no vertex of Wj is incident to more than ¢/p edges from J;. Assume we have
defined Jy, ..., J; for some i > 1. We then define J; ;1 as a largest subset of F{y ~ (J1 U -+ U J;)
such that no vertex from Wj is incident to more than ¢/p edges from J; ;. We set ¢ to be the
smallest integer such that |Ji| + - - -+ |J;| = |F{,]/2. Note that from (G2) it follows that for every
i€ [t]

/ / 8) ~—10
il > [Fio|l €/ - e|Fyy 2| (2) 5 120gn
2 (1+e)np ~ 4np P

By using property (G6) for J; (as P), X (as W’), and the previous inequality, we get that for
every i € [t] it holds that ep,,(s,)(U, X) < 2¢*|J;|ap?, where Fa3(J;) denotes the edges in Fpy
obtained by extending only the edges belonging to J;. This further shows that

ermy (o) (U, X) < 26J* |7p?, (9)

where J* :=Jy u--- U Jp.

Next, consider an arbitrary v € U. As every such v is incident to at most £/p edges in J* by
definition, we have by (G7) applied for edges of J* incident to v (as P) that degp, (v, W3) >
adeg ;« (v, W1)fip®. Thus, it follows that

ey () (U, W3) = alJ*|iip?. (10)

From the previous inequality and the fact that |J*| = |F},|/2, we obtain

O00) Ly g e
€F23(U Wg\X) 6F23(J*)<U7W3)_eFQS(J*)(U7X) = Oé|J |np — 2 ’J ]np

eSa/4)np?

> (/2)|7*]ip? = (a/4)| Floliip® > < Fiol > e 4|,

logn

where the last inequality follows from the assumption on 7. ]
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Proof of (3) in Lemma 2.9. From (G2) we have that |U| = |Fi2|/((1+¢)np) = e *logn/p. Thus,
by (G1) and the fact that | X| < e*n, we get

ec(U, X) < 2¢4|U|np. (11)

Consider an arbitrary v € U and let Ny := Np, (v, W7) and N3 := Np,, (v, W3). From the fact
that |N1| = e 3logn/p, (G5), and (G1) applied for Ny (as X) and N3 (as Y), we know

|N1| - afip® < eq(N1, N3) < (1 + €)|N1| max{e 3 logn/p, | N3|}p.

By the assumption on 7 we cannot have |Nj|anp? < (1 + €)|Ni|e3logn, hence it must be
|N3| = (a/2)np. Together with (11) we get

e (U, W3\ X) = epy (U, W3) — epy (U, X) = (a/2)|U|Rp — 26" |Uap > (a/4)|U]ip,
completing the proof. O

Proof of (4) in Lemma 2.9. Let U’ < U be a subset of vertices in U defined as
={veU:degp,(v,W3) < (1/3 + a/2)np}.

Assume for the moment that we can show ep,, (U’, W) < €|F12|. Then we would have

n
(1 — 8)’F12’ 6F12(U AN U/ Wl) ‘U N U/| C

T (12)

where the upper bound follows from the assumption on degp,, (v, W1). From this we get that
U\ U'| = e *logn/p (with room to spare). Therefore, by the definition of U’ and (G1) applied
for X and U \ U’ (as Y') we obtain

€F23(U, W3 ~ X) = 6F23(U N U/,Wg) - €F23(U N UI,X>
> |UNU'|((1/3 + a/2)fip — (1 +¢)|X|p) = |UNU'|(1/3 + /2 — 2e*)7p,

where the last step follows from |X| < e*fi. This, together with (12) shows
ey (U, W3~ X) = [UNU'| - (1/3+ a/4)np = 3(1 — )| Fi2|(1/3 + a/4) = (1 + a/4)| F12|,

as desired. It remains to prove ep,,(U’', W1) < €|Fj2|. Towards a contradiction assume this is
not the case.
For every v € U’ let L, := Np,,(v, W1) and R, := Ng_p,, (v, W3). Observe that by (G4) and
the definition of U’ we have
|Ry| = (1/3 + a/2)np. (13)

Moreover, the definition of R, gives eg(Ly,, R,) = 0. On the other hand, property (G1), as
|Ly|, |Ry| = e *logn/p, states er(Ly, Ry) = (1 £ €)|Ly||Ro|p. Let

= {w e L, : degp(w, Ry) = (1 — ¢)| Ry |p}. (14)
It immediately follows from (G1) that |L)| > (1 — €)|L,|. Hence, the assumption ep, (U’, Wy) >

e|F12| implies

e 3logn

D L= Y (A =e)lLe] = (L —e)er, (U, W1) = (1 —¢) - &|Fia| > n

veU’ veU’
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Consequently, by averaging over vertices in Wi, there is a vertex w € Wy and a set U, € U’ such
that |Uy| = e 3logn/p and w € L, for all v € Uy,.
Set T' := |J,ep, Nr(w, Ry). Note that all vertices in T' are connected to w in I', however
none is connected to w in G due to the way R,’s are defined. For all v € U,, we have
(14) (13)
deg;(v,T) = |Ry n T| = |Np(w, Ry)| = (1 —¢)|Rolp = (1/3 + a/4)ap®.

Therefore,
er(Uw, T) = ec(Uw, T) = |Uy| - (1/3 + a/4)ip?.
Since |U,| = e~3logn/p, we get from (G1) applied for U,, (as X) and T (as Y) that

Wﬁp = (1/3 + a/8)np.

Lastly, as T'< Np_g(w, W3), (G2) and (G4) provide the desired contradiction. O

T >

Proof of (5) in Lemma 2.9. From (G2) we get that |U| > |Fiz|/((1 + €)fip) = e ?logn/p*. Let
U’ € U be defined as

U':={veU:degp,(v,IW3) < (1 - %) degq (v, W3)}. (15)

Assume for the moment that we can show eq(U’, W3) < &3 - eq(U, W3). Then
(G4) (G1)
U] - (2/3+ a/2)ip < eq(U',W3) <& eq(U,W3) < & (1 +¢)|U|np.
This implies |U’| < 2¢3|U|. Since |X| < €*#, we deduce from (G1) that there can be at most
e 3logn/p < e3|U| vertices in U with degree into X larger than 2e*7p. Let L be the vertices in
U \ U’ that do not have this property. Therefore, |L| > |U| — |U’| — £3|U| = (1 — 3¢®)|U| and for
allve L

(15)
degp, (v, W3\ X) = (1— e3) degg (v, W3) — 2p = (1 — 2¢3) degg (v, W3).

Moreover, by definition of U’ and (G1) applied for X and U \. U’ (as Y), since | X| < &7, we
obtain

€F23(U, W3 ~ X) = 6F23(U N U/,Wg) - 6F23<U N U/,X)

(G
> ( M (1 - %) degg(o, Wg)) U Tlip > Y (1 26%) degg(v, W)
veU~\U’ veU~\U’

This together with the assumption eq(U’, W3) < &3 - e(U, W3) further shows

ey (U, W3 N X) > Z (1 —2e%) degg (v, W3) = (1 — 2e3)eq(U \ U', W3)
veU\U’

> (1 —2e3(1 = ¥eq(U,W3) = (1 —eeq(U, W),

as desired. It remains to prove eq(U’, W3) < € - eq(U, W3). Towards a contradiction assume
this is not the case.

For every v € U’ let L, := Np,,(v, W1) and R, := Ng_p,, (v, W3). Observe that by (G4) and
the definition of U’ we have |R,| = €3 - deg (v, W3) = (2¢3/3)Ap. Moreover, the definition of
R, gives eq(Ly, R,) = 0. On the other hand, property (G1), as |L,|, |Ry| = ¢~*logn/p, states
eF(Lvnyu) = (1 * €>|LU||RU‘p’ Let

R, :={w € R, : degp(w, L,) = (1 — )| Ly|p}. (16)
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It immediately follows from (G1) that |R]| = (1 — ¢)|R,|. Hence, the assumption eq(U’, W3) >
e3 - eq(U, W3) implies
3 6
DRI D =)R| = X (1—2) & dogg(v.Wa) > Tea(U' W) > Se(U, Wa).
vel’ vel’ vel’

Next, using (G3), we know that (1 + e)eq(U, W3) = (1 — €)eq(U, W) and thus

6 6
2 IR = —ea(U,Wh) > o 2l =

vel’

e3logn
7-’)’1

Consequently, by averaging over vertices in W3, there is a vertex w € W3 and a set U,, < U’ such
that |Uy,| = e logn/p and w € R. for all v € Uy,

Set T := Uver Nr(w, L,). Note that all vertices in T" are connected to w in I', however none
is connected to w in G. For all v € U}, we now have

(16) B
deg;(v,T) = |Ly nT| = |Nr(w, L,)| =" (1 —¢)|Ly|p = (1/3 — £/3)7p?,
where the last inequality follows from the assumption degp,, (v, W1) = np/3. Therefore,
er(Uu,T) = eq(Uw, T) = |Uy| - (1/3 — /3)7p”

Since |Uy| = e 3logn/p we get from (G1) applied for Uy, (as X) and T (as Y) that

1/3 —¢/3 _ -
T| > /1+€/np > (1/3 — 2¢e)ap

Lastly, as T'< Nr_g(w, W1), (G2) and (G4) provide the desired contradiction. O

Proof of (6) in Lemma 2.9. Note that |Fia| = |U|-fip/3 = e %% logn/p. By part (5) of this

lemma, we get

ery (U, W3~ X) = (1 —e¥)eg(U, W3). (17)
Let
={ue W3\ X :degp,, (u,W2) > (1/3 + a/2)7p}.
We aim to show that |L| > (1 — e)n. Assume towards a contradiction that this is not the

case. Together with (G4) and the assumption |X| < &*# this implies that there exists a set
Q < W3~ (X uL)ofsize |Q| = (¢/2)n such that for each v € @ we have

degg_py, (v, Wa) = (1/3 + o/2)0p (18)

Let Q" := {v € Q : degg_p,,(v,U) = (o/4)ap}. If |Q'| = (¢/4)n then eg_p,(U,Q") =
(ea/16)7%p, which together with (G1) applied for U (as X) and Q' (as Y) contradicts (17).
Therefore, |Q'| < (¢/2)n. From (G1) we then get

€1y (Wo N U,Q ~ Q') < (1 +¢)max{c3logn/p, [Wo~U|} - |Q ~ Q'|p. (19)
On the other hand, from (18) and the definition of @ and Q" we have

eG-F(Wa N U,Q N Q") = (1/3 + a/4)|Q ~ Q'|np.
Together with (19) we deduce

1/3+a/4
1+¢

which contradicts the assumption |U| = (2/3)7n. O

max{e % logn/p, |Wa N U|} = > (1/3 + o/8)n,
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Proof of (7) in Lemma 2.9. Let S := {v € U : degp,, (v, W1) < e *logn/p} and let Fg < Fy be
the subset of edges that are incident to S. Observe that if |Fg| < €|Fj2| we are done. So assume
otherwise. By using part (2) of this lemma with Fg (as Fi2) we get

e (Wo, W3\ X) = epyy (S, Wi\ X) = e Fs| = e7?|Fial,
contradicting the starting assumption ep,, (Wa, W3 \ X) < 73| F1a|. O
Proof of (8) in Lemma 2.9. Define sets S, M,L < W (which may be thought of as ‘small’,
‘medium’, and ‘large’) as
S={veWsy:1<degp,(v,W1) < e *logn/p},
M={veWy:e logn/p < degp,, (v, W1) < np/3},
L ={veWy:np/3 <degp,(v,W1)},
and denote by Fg, Fjs, and F, the subsets of edges in Fis incident to S, M, and L, respectively.
Note that Fg, Fis, and Fy, partition the set F1o. We claim that
(i) if |Fs| = e*|Fia], then ep,, (S, W3\ X) > (1 + a/4)|Fs,
(i3) if |Far| = €*|Fiz|, then epy, (M, W3~ X) = (1 + a/4)|Fy|, and
(i4i) if |Fr| = *|Fia|, then ey, (L, W3~ X) = (1 — 3¢)|F1|.

To see this assume first that |Fg| > £*|Fya|. Then |Fs| > €°a%p = e i log? n and we can thus

apply part (2) of this lemma to S (as U) and Fyg (as Fi2) to get
ery (S, W3~ X) = e 4 Fs| > (1 + a/4)|Fs|.

Next, assume |Fys| = 4| Fia|. Then again |Fy/| = e ®filogn/p and we can apply part (4) of this
lemma to M (as U) and Fys (as Fi2) to get

6F23(M,W3 \X) = (1 + a/4)|FM|

Lastly, assume |F| > ¢%|Fjs|. Then |Fy| = e %Alogn/p and we can apply part (5) of this
lemma to L (as U) and Fy, (as Fi2) to get

ery (L, W3~ X) = (1 —e?)eq(L, W3). (20)

Moreover, from (G3) applied for all v € L and Wy, W3 (as W), we have (1 + ¢)eq(L, W3) =
(1 —e)eq (L, Wh). Therefore, together with (20):

€
L, Wh),
~|—56G( 1)

1
ery (L, W3~ X) = (1 —e?)eq(L, W3) = (1 — &%) .

from which the third property follows as, trivially, eq(L, W1) = |FL|.

Having these three properties at hand, we are ready to prove the lemma. If |Fr| > (1 —u)|Fi2|
we are done, so assume the contrary. Observe that this implies that at least one of |Fg|, |Fir| has
size at least €| Fyo|. If |Fy| is strictly smaller than e*|Fj2|, then either at least one of |Fg| and
| Far| has size at least (1 —2¢%)|Fia| or both have size at least ¢*|Fy2|. Thus by (i) and (i) we get

ey (Wa, W3 X)) = max{(1 + a/4)(1 — 2e)| Fra|, (1 4+ a/4)(1 — eV |Fia|} > (1 + a/8)|Fla],

which is a contradiction to the assumption of the lemma. Therefore, |Fy| > ¢*|Fj5| and at least

one of |Fs| and |Fy| has size at least |Fia| — |Fr| — €*|Fi2| or both have size at least €*|Fya.

Thus, again by (i) and (i7),

eFuy (W2, W N X) = max {(1 + a/4)(|Fiz| — &*|Fia| — [Fi]), (1 + a/4)(|Faa| — [FL)} + (1 — 3¢) | F|
> (1 + a/4)(1 — eh)|Fia| — (3¢ + o/4)|Fy|.
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Using our assumption |Fr| < (1 — p)|Fi2| and g > 32¢/a this implies ep,, (Wa, W3 N X) >
(1 + par/8)|Fi2|, again contradicting the assumption of the lemma. O

Proof of (9) in Lemma 2.9. Clearly, if ep,,(Wa, W3 . X) > (1 + 4¢)|F12| we are done. Let us
assume the opposite. By applying part (8) of this lemma with 32/« (as ) we obtain a set
L < Wy such that for each v € L it holds that degp,, (v, W) > fp/3 and

er, (Wi, L) = (1 - 32¢/a)|Fia| > (1 — &%/%)|Fya|. (21)
Next, we use part (5) of this lemma with L (as U) and Ep,, (Wi, L) (as Fi2) to conclude
ery (L, W3~ X) = (1 —e?)eq(L, Ws3). (22)

By taking together (21) and (22), we finally get
2 (G3) 2
ery (L, W3 N X) = (1 —e%)eq(L,W3) = (1 —¢*)(1—2¢)eq(Wi,L)

(21)
> (1 —3e)er, (Wi, L) = (1—3e)(1 —e¥®)|Fia| = (1 — e)|Flal,

and the assertion follows. ]

3 Proof of Theorem 1.4

The proof of Theorem 1.4 is split into two natural parts. In Theorem 3.1 we show that the
Kjs-resilience of G, ;, w.r.t. the containment of C?2 is w.h.p. at most 5/9 + a, for any o > 0. Next,
in Theorem 3.2 we show that the Kj-resilience is w.h.p. at least 5/9 — «, for any « > 0. Both of
the theorems rely on the following fact: for every ¢ > 0 a random graph I' ~ G}, , w.h.p. has the
property that each vertex is contained in (1 +¢) (g) p> triangles, provided that p » n—2/3 logl/ 3n
(see, e.g. [2, Theorem 8.5.4]).

The proof of the upper bound of Kjs-resilience stems from a simple construction and an
application of Janson’s inequality. We actually show that w.h.p. there exists a subgraph G of
Ghnp such that each vertex is contained in (4/9 — 7)(3;)p? triangles and G does not contain a
family of more than (1 —~)n/3 vertex-disjoint triangles. This is sufficient since C2 contains |n/3]
vertex-disjoint triangles.

Theorem 3.1. For every v > 0, there exists a positive constant C := C(v) such that for all
p=Cn~ %3 log1/3n a random graph I' ~ G, w.h.p. contains a spanning subgraph G < I' in
which each vertex is contained in at least (4/9 — ) (g)p3 triangles and such that G does not
contain a family of more than (1 — ~y)n/3 vertez-disjoint triangles.

Proof. Let V(G) = Vi u V3 be a partition of the vertex set of G such that

1 2

V| = [(%—7)4 and Vol = n — |V4].
3 3

Observe that |Va| = (2/3 — 27/3 — o(1))n. Furthermore, let G be the graph obtained from I" by

removing all edges with both endpoints in V;. For a vertex v € V(G) let T, denote the family of

all triangles in K, which contain v and do not have more than one vertex in V;. Set

X=> Xp, p=E[X], and A= ) E[XpXp]

TE% T%,ngjz,
1~12
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where X7 is an indicator random variable for the event {T' < I'}. Note that X is a random
variable counting the number of triangles in G that contain v. We aim to show that

Pr|X < (4/9—~)( " )p®| < e 2loem, (23)
| (5)7]

for every v € V(G).
Let us estimate p and A for an arbitrary vertex v € Vi. We have

w= 3 e = ()= -2y — o) L o -s9) (3% 1

TeTy 2

Note that if two triangles 11,715 € T, do not share an edge, they are independent and thus
Ty # Ts. Therefore, we can bound A as follows:

2

5
A=Y E[XpXp] < |Vf'p® < V“ . (25)
T1,T2€T, | 2|p
Ty ~To

Let us choose ¢ such that (1—¢)(4/9—8v/9) > 4/9—~ and apply Janson’s inequality (Theorem 2.4)
with ¢ (as y) to obtain

n 2,2 E21’L2

Pr [X < (4/9 — ) <2>p3] <Pr[X < (1 —e)u] <e 2Ha) e Tmax{nd)

< max{e*€2“/4, 6752%'1’/20},
where the last step follows from (24) and (25). Since |Va|p » logn and p > (4/9 — 8v/9 —
0(1))C?log n, by choosing C' large enough with respect to ¢ and v we obtain (23) for every vertex
in Vi. The proof of (23) for the case when v € V5 follows analogously and is omitted. By (23)
and the union bound over all vertices we get that w.h.p. each vertex v € V(G) is contained in at
least (4/9 —~)(%)p® triangles in G.

Let F be the largest family of vertex-disjoint triangles in G. Since G does not contain an
edge with both endpoints in Vi, there is no triangle in F with more than one vertex in Vj. This
implies that |V(F) n Va| = 2|V (F) n V|, which further shows

V() <3/2-[Va| 3/2-(2/3=29/3)n < (1 —)n,
completing the proof. O

The following lower bound on the Kjs-resilience is proven by a reduction to Theorem 1.6.

Theorem 3.2. For every v > 0, there exists a positive constant C := C(v) such that a random
graph I' ~ G, ,, w.h.p. satisfies the following, provided that p > Cn=12log3n. Every spanning
subgraph G < T in which each vertex is contained in at least (4/9 + ) (g)p?’ triangles contains
the square of a Hamilton cycle.

Proof. Choose € > 0 such that (1 +¢)(4/9 + 5v/12) < 4/9 + v/2 and € < v/4, and set C' = 10/e.
Let G < I" be an arbitrary spanning subgraph of I' such that each vertex of G is contained in at
least (4/9 + '7)(2’) p? triangles. Let G’ € G be a subgraph obtained by removing each edge of G
which is contained in fewer than enp? triangles. We aim to show that G’ has minimum degree at
least (2/3 + v/4)np. If this is the case then by Theorem 1.6 we are done.

First, we show that by removing the edges which are contained in only a few triangles, we
did not significantly change the overall number of triangles each vertex is in. As np = w(logn),
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w.h.p. we have that every v € V(I') satisfies degp(v) < (1 + €)np. Moreover, each edge in
E(G) ~ E(G") is contained in at most enp? triangles, which implies that we did not remove more
than enp?- (14 ¢)np < 2en?p? triangles from G touching a single vertex. Since G has the property
that each vertex is contained in at least (4/9 + =) (g) p? triangles, the previous observation and
the choice of & show that in G’ each vertex is in at least (4/9 +~/2)(;)p? triangles.

In order to finish the argument we use the following claim, whose proof follows below.

Claim 3.3. The following holds w.h.p. For every vertex v € V(I') and every subset S < Np(v)
of size |S| = (2/3)np, we have e(S) < (1 + 6)(“;‘)]).

With this claim we can easily complete the proof of the theorem. Suppose for contradiction
that v € V/(G’) is a vertex with degree smaller than (2/3 + v/4)np. By the claim above and the
choice of £ we have that v is contained in at most

,n2p n2p? n\ 4
(I1+¢€)(2/3+~/4) — S (14+¢e)(4/9 + 5’)//12)7 < (4/9+v/2) o )P
triangles—a contradiction. O

Proof of Claim 3.3. It suffices to show that the claim holds for a fixed vertex v with probability
at least 1 — e=(1°87) a5 the claim then follows by the union bound over all vertices. Let v be a
vertex from I" and let S € Np(v). Recall, we have that degp(v) < (1 + &)np with probability at
least 1 — e~«(°87)  Similarly we have

Pr [e(F[S]) > 1+ s)<|§‘>p] <e= (3w, (26)

By using (26) and the union bound, the probability that the assertion of the claim fails is at most

(1+e)n (1+e)n;
ZE ' ((1 i E)np> e~ s (s~ Lp/6 < i ’ <26ﬂ)867525(571)p/6
s=(2/3)np $ s=(2/3)np S
(1+z—:)np (1+€)TL])
< 2 (36)npe_€282p/12 < Z (63log3—523p/12)5
s=(2/3)np s=(2/3)np
(1+&)np
< Z e 2 <n-e )

s=(2/3)np

where in the second to last inequality we used the fact that e2sp/12 > £2np?/18 > 3log 3. Finally,
since np = w(logn), the claim follows. O

4 Definitions of some graphs

The following graphs are used often throughout the paper and we thus give their definitions here,
for easier reference later on. We note that most of these come from or were inspired by similar
definitions in [30].

An /-square-path, denoted by sz, is a graph defined on a vertex set {v1,..., vy} such that
v; and v; are connected by an edge if 1 <i < j < i+ 2 (see Figure 1).

Given a graph G = (V, E) and a,b € V2, we say that G contains a square-path connecting a
to b, if there exists an £ € N and an embedding g: V(P}?) — V(G) such that a = (g(v1), g(v2))
and b = (g(ve—1), g(ve)). Note that due to the fact that a and b are (ordered) pairs of vertices, a
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Figure 1: The 8-square-path PZ.

path connecting a to b is not the same as a path connecting b to a. However, a path connecting
a to b is also a path connecting b to a. It is easy to see that one can connect two square-paths
in order to get a longer square-path.

Proposition 4.1. Let G be a graph and a,b,c € V(G)? disjoint pairs of vertices. Suppose that
in G there exists a square-path connecting a to b and a square-path connecting b to ¢ (and thus
also € to b) such that these paths are internally verter-disjoint. Then the union of these two
paths is a square-path that connects a to c. ]

A (b, ¢)-pseudo-path Sg, where b € {1,2}, is a graph defined on the vertex set {uy,...,us}
with the edge set

L

B(Sy) = J{winut o | {wizuwto ([ {wiis )
=2 i€{3,...,t} ie{4,....0}
i is odd i is even

Observe that a (1,¢)-pseudo-path is isomorphic to an ¢-square-path; a (2, ¢)-pseudo-path is
depicted in Figure 2.

Figure 2: The (2,8)-pseudo-path S2

The notion of a (b, £)-pseudo-path connecting a to b is defined in a natural way, similarly as
above.
An /-backbone-path By, is a graph defined on the vertex set

Wy = U {wi 1, wiz2, wiz, wia}
ield]

We set w = (w;,1,w;2) and wf = (w;3,w;4), for every i € [¢]. The edge set of By is given by
the union of following graphs (see Figure 3):

e edges {wy 1, w12} and {wy 3, w1 4};

e the 4-square-path (w%, w?) for every 2 < i < /;

o the 4-square-path (w{,w$);

e the 4-square-path (W?,W?H) for every 1 < i < £ —2;

e the 4-square-path (ngil,wb).

Given a graph G and a,b € V2, we say that a backbone-path connecting a to b is an
embedding ¢g: V(By) — V(G), for an appropriate ¢ € N, such that a = (g(w1,2), g(w1,1)) and

b = (g(w1,4),9(w13)).
The connection between backbone-paths and pseudo-paths is given by the following proposi-
tion.
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Figure 8: The graph Bs

Proposition 4.2. Let G be a graph, a,b,c € V(G)? disjoint pairs of vertices, and 1,03 € N
are such that both {1 and ¢y + €5 — 2 are divisible by four. Suppose that in G there exists a
(2, ¢1)-pseudo-path connecting a to b and a (2, l2)-pseudo-path connecting € to b such that these
paths are internally vertex-disjoint. Then the union of these two paths is a backbone-path that

connects a to c.

Proof. One easily verifies that Figure 4 describes an embedding of the two pseudo-paths whose
union is a backbone-path. We omit the details. ]

(a) Blue arrows indicate the order of the vertices mapped (b) Red arrows indicate the order of the vertices mapped
by g1. by go.

Figure 4: An embedding of a graph Bs by combining two 2-pseudo-paths.

The reason behind a rather complex looking definition of a backbone-path should become
more apparent once we make use of it as a building block for absorbers later on (see Figure 5).
An (b, f)-connecting-path Cé’ , for b € {1,2} and ¢ divisible by four, is a graph on /¢ vertices
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defined as

b PZ, ifb=1,
By, ifb=2.

5 Proof of Theorem 1.6

Our proof strategy uses the absorbing method, in particular following a variant used by Nenadov
and the second author in [30]. Let A be a graph and a,b € V(A)? disjoint pairs of vertices of A.
Given a subset X < V(A), we say that A is an (a, b, X)-absorber if for every subset X' € X
there exists a square-path P € A connecting a to b such that V(P) = V(4) \ X'.

The following lemma shows that one can find an absorber in a member of G(I', n, i, p) for a
large subset X and I' ~ Gy, . The proof of the Absorbing Lemma is deferred to Section 6.

Lemma 5.1 (Absorbing Lemma). For every a > 0, there exists a positive constant C := C(«)
such that w.h.p. for a random graph T' ~ Gy, ,, every G € G(I',n, «, p) has the following property.

Let s > C'log*n/p? be an integer. Then there are at least (1 —n=3)(") subsets W < V(G)
of size s satisfying the following. For every subset X € V(G) ~W of size | X| < |[W|/(C'log?n)
there exists an (a,b, X)-absorber A in G such that V(A) ~ X < W, where a,b € W? are two
disjoint pairs of vertices.

In order to construct absorbers one typically resorts to what is usually called a Connecting
Lemma. Intuitively, it allows us to connect certain pairs of vertices by vertex-disjoint copies of
a fixed graph F through a reservoir of vertices W. For ease of reference, we now define such a
notion formally.

Definition 5.2. Let ¢,£ € N, let G be a graph, and let W < V(G) be a subset of vertices of G.
Given a family 7 = {(x;,¥i)}ie[] S V(G)* of pairwise disjoint 4-tuples and b € {1,2}, we say
that a collection {F; S G};e[y of subgraphs of G forms an (Z, b, £)-matching in W if the following
holds:

e F;is a copy of a (b, ¢)-connecting-path connecting x; to y;, for every i € [t],
o V(F) ~ {xi,y:} € W, and
o V(F;) nV(F;) = @ for all distinct i, j € [t].

In other words, a (b, Z, £)-matching ‘connects’ prescribed tuples of vertices from Z with copies
of (b, £)-connecting-paths. The Connecting Lemma shows that under certain conditions such a
matchings exist.

Lemma 5.3 (Connecting Lemma). For every b € {1,2} and every a > 0, there exist positive
constants € := e(a) and C := C(a) such that w.h.p. for a random graph I' ~ Gy, every
G e G(I',n,a,p) has the following property.

Let s > Clog* n/p? be an integer. Then there are at least (1 —n~4)(7) subsets W < V(G) of
size s satisfying the following. For every family of disjoint 4-tuples {X;,yi}ici S (V(G) N W),
such that tlogn < e8|W|, there exists an ({xi, Yi}ie[s), b, 4log n)-matching in W.

In [30] the authors rely on Janson’s inequality in order to show such a statement. As we are
working with a subgraph of a random graph, we cannot apply this technique here. The proof
of the Connecting Lemma thus becomes a much more challenging task and requires a detailed
analysis of ‘expansion of the edges’ in certain subsets. We defer it to Section 7.
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5.1 Proof of the main result

Let us first briefly give an overview of the various steps of the proof. The first step is to
partition the graph uniformly at random into sets U, W, and X such that |U| = |W| = ©(n)
and |X| = ©(n/log?n). Next, we find an (a, b, X)-absorber A for some a,b € W2, such that
V(A)~ X € W. Let W’ denote the vertices of W which are not part of the absorber, and let
U’ =U u W' In the third step, we construct ¢ vertex-disjoint square-paths Py, ..., P; in U’ such
that

< |X|/logn and t « |X|/logn.

‘U’ ~Yvw)
i€[t]

Let us denote the set of vertices from U’ not contained in any P; by (. Using the Connecting
Lemma with X as the ‘reservoir’ (set W in Lemma 5.3) we connect P, ..., P;, vertices from @,
and pairs a and b into a square-path P such that P connects b to a and V(G) ~ X < V(P).
Let X’ be the set of vertices from X contained in P. By the definition of the absorber A there
exists a square-path P’ connecting a to b such that V(P’) = V(A) \ X’. By combining P and
P’ we obtain the square of a Hamilton cycle. In the remainder of the section we formalise this
argument.

Let C; = C5.1(a), Cy = Cs3(), 1 = e95(a), €2 = €53(), € = min{ey, e9,1/(4C1)}, and
C = max{e2C1Cs,100}. Let G be a member of G(I',n,a,p) and let V(G) = X3 u Xo UW 0 U
be a partition of V(G) chosen uniformly at random, where X := X; u X, such that

X0 = || =Xl W= Lenl, and 0] =0 - ]~ 3]
1log™n

Note that w.h.p. W satisfies the conclusion of the Absorbing Lemma (Lemma 5.1), X5 the

conclusion of the Connecting Lemma (Lemma 5.3), and all four sets are («/2,¢,p)-good by

Proposition 2.8. From now on we fix such a choice of subsets.

We apply Lemma 5.1 with W and X to obtain an (ag, bg, X )-absorber A for some ag, by € W2,
such that V(A) ~ X < W. We can indeed do this, as |W| = en — 1 > C;log’n/p? and
|X| < |[W|/(C1log?n). Let us denote by W' the subset of vertices from W, which are not
contained in A. Furthermore, let U’ := U u W’. Next, we use the following claim whose proof is
given at the end of the section.

Claim 5.4 (Covering Claim). For every € > 0, there exists a positive constant K := K(¢)
such that w.h.p. the following holds. The induced subgraph G[U'] contains t < K loglogn
vertez-disjoint square-paths Py, ..., Py such that |U’ ~ Uiery V(P)| < e|U’|/1og® n.

By applying the Covering Claim with !9 (as €) we get that there is a constant K = K5 4(c'?)
and that w.h.p. G[U’] contains ¢t < K loglogn vertex-disjoint square-paths Py, ..., P, which

contain all but at most
610|U/| el0p €8|X\
37— S —3— <
log>n  log°n  logn

(27)

vertices from U’. We denote the set of uncovered vertices by @ and the end-pairs of P; by a; and
b;, for every i € [t].

We next show that there exists a matching between ) and X; which saturates ) by verifying
Hall’s condition. Recall, X is («/2,¢,p)-good. Let Q1 € @ be an arbitrary subset of ) and let
us denote Ng(Q1,X1) by Z. If |Q1] < e ?logn/p, then for a vertex v € Qq

2np - e 3logn
4Ch log2 n_ p

|1 Z| = degg(v, X1) = (2/3 + /2)| X1|p = > [Qul, (28)
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where the second to last inequality follows from the bound on p. On the other hand, if
|Q1| = e 3logn/p then by (G1) we have

|Q11(2/3 + @/2)| X1p < ec(Q1, Z) < (1 +)|Q1| max{| Z|,e~* log n/p}p,

which implies |Z| > | X1|/4 (with room to spare) as otherwise we get | X1| < 4¢3 logn/p, which
is not true, again by the bound on p. Since |Z] = | X;|/4 we have by (28) that |Z| > |@1] and
thus by Hall’s theorem (Lemma 2.1) there exists a matching between @ and X; which saturates
Q. Let us denote the edges of the matching by m; for all i e {1,...,|Q|}.

As the last step, we apply the Connecting Lemma (Lemma 5.3) with X5 (as W) and with
the following family of 4-tuples (as Z):

{(bi,ai+1)}icqo,....t—1) VU (brym1) U {(my, mi11) bicg-17 V (Mg, a0),

in order to obtain a square path P which connects by to ag and contains all vertices from
V(G) ~ V(A) and possibly some vertices from X5. Note that we can indeed apply the lemma as

4
En - Cylog™n

Xolz1l-¢)————-22>
[Xel > ( )QClloan p?

and by (27) we have

SIX| L _ 1K)

t+1Q| +1< Kloglogn + < )
logn logn

Finally, let X’ = X be the set of vertices from X contained in P. By the definition of the
(ag, bg, X)-absorber A there exists a path P’ connecting ag to by such that V(P') = V(A) \ X'.
By combining P and P’ we obtain the square of a Hamilton cycle in G, which concludes the
proof of Theorem 1.6.

In the next subsection we provide the missing proof of the Covering Claim.

5.2 Proof of the Covering Claim

The goal of this subsection is to show that G[U’] contains o(| X|/logn) vertex-disjoint square-
paths which contain all but at most o(|X|/logn) vertices from U’. In an earlier paper by some
of the authors [35] we proved that w.h.p. any subgraph of Gy, ;, contains the square of a Hamilton
cycle on (1 — o(1))n vertices, provided that p » (logn/n)'/2. The proof of Claim 5.4 relies on
this result which we thus state precisely.

Theorem 5.5 (Skori¢, Steger, Truji¢ [35]). For every e,a > 0 there exist positive constants
C := C(e,a) and b := b(e, a), such that if p = C(logn/n)"/? then the random graph T ~ Gnp
has the following property with probability at least 1 — e~bn’p/log®n Every spanning subgraph of T’
with minimum degree at least (2/3 + a)np, contains the square of a cycle on at least (1 —e)n
vertices.

As a corollary we get the following statement.

Corollary 5.6. For every e, > 0 there exists a positive constant C := C(e,«), such that if
p = C(log4 n/n)l/2 then the random graph I' ~ Gy, w.h.p. has the following property. Every
subgraph G C T' of size v(G) = en/log® n with minimum degree at least (2/3 + a)v(G)p, contains
the square of a cycle on at least (1 — ¢)v(G) vertices.
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Proof. Let C' = C55(e, ), b = bs5(¢, ), and let C' = max{1000/(eb),C’/+/c}. Note that for all
subgraphs G € T of size s, such that s > en/ log® n, we have

P> C(log;”)l/2 > 0(32222)1/2 > c’(lofs)m.

Thus, for a fixed subgraph G of size s with the required minimum degree we have by Theorem 5.5
that with probability at least 1 — ¢~bsp/log? G contains the square of a cycle on at least (1 —¢)s

vertices. Since
bs’p - benp - beC' - \/n

= 8- = S
log? s log®n log?n

> 1000s log n,

we may additionally do the union bound over all s > en/ log® n and all subsets of size s. O

With Corollary 5.6 at hand we are ready to give the proof of Claim 5.4 by using a bootstrapping
technique developed by Nenadov and the second author [31].

Proof of Claim 5.4. Without loss of generality we assume that ¢ is sufficiently small w.r.t. «.
Recall that U is («/2,¢,p)-good and |U| = (1 — 2¢)|U’|, so for each v € U" we have by (G4)

degi(v,U") = deg(v,U) = (2/3 + a/2)|U|p = (1 —2¢)(2/3 + /2)|U"|p = (2/3 + o/4)|U’|p.

Let ¢ be the largest integer such that |U’[/2971 > [n/log®n] and note that ¢ = O(loglogn).
Consider a uniformly at random chosen partition U’ = V; U --- U V, such that V; = ||U’|/2¢| for
all i€ [¢—1] and

q—1
Val = 10| = (Vi + -+ [Vamr]) = (U] = [U'| 3 270 = U")/20
i=1

Similarly, |V,| < |U’]/277" + ¢. Since p » n~"/?log®n we have

2
no_ log n

Vil = |U]/297 —1 > >
\Vi| = |U"|/ 2o n »

V

(29)

Thus, as V; is a random subset of U’, by a simple application of Chernoff’s inequality for a
hypergeometric distribution we get

Pr[degq (v, Vi) < (2/3 + o/8)|Vi|p] = e 2IVilP) < 1 /52,

where the last inequality follows from (29). Using the union bound over all v € U" and i € [¢] we
have that w.h.p. for each v € U’ and each i € [q]

degg(v, Vi) = (2/3 + a/8)|Vilp.

Since p » n~2log®n we have that w.h.p. Corollary 5.6 holds when applied with /8 (as ¢)
and /16 (as «). Having this in mind, we prove by induction on i € [¢] that G[V; U --- U V}]
contains i square-paths which cover all but at most (e/4)|V;| vertices from V; U --- U V. Since
g = O(loglogn) and

2n 4n

log? <

Vol < |U7|/297 1 + ¢ < 3
g’ n log®n

we have that by setting ¢ = ¢ the induction implies the claim.
By Corollary 5.6 we directly get that there exists a square-path in G[V;] which covers all
but at most (£/8)|V1| vertices from V1, settling the base case. Assume now that the hypothesis
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holds for some 1 < i < g and let Pp,..., P; be the square-paths guaranteed by the hypothesis.
Furthermore, let Q < V7 U --- U V; denote the subset of vertices not contained in any of the P;’s.
Then |Q| < (¢/8)|Vi] < €|Vit1] and for every v € U’ we have

degg(v,Q U Vis1) = degg (v, V1) = (2/3 + a/8)[Vis [p

QI+ [Via] (30)

> (2/3+ a/8) = p > (2/3 4 0/16)|Q U Vi .

where the last inequality follows from the assumption on €. Therefore, by Corollary 5.6 we know
that G[Q v Vj11] contains a square-path P;;1 which covers all but at most (¢/8)|Q U V41| <
(¢/4)|Vis1| vertices. Observe that we can indeed use Corollary 5.6 since |Viy1| = n/(2log®n)
and by (30) we have that 0(G[Q v Viy1]) = (2/3 + a/16)|Q U Vii1|p. As the vertices from
(Vi u---uV;) N\ Q are already contained in V(Py) U --- u V(P;), this shows that the hypothesis
holds for i + 1. O

6 Proof of the Absorbing Lemma

Our strategy for constructing an absorber for a set X consists of two steps. In the first step we
find an (a;, by, {z;})-absorber A; (a single-vertex absorber) for each x; € X, such that they are
pairwise disjoint. In the second step, by using the Connecting Lemma, we find a square-path
from b; to a;11, for every 1 <7 < m — 1, such that they are pairwise disjoint and also disjoint
from A;’s. It is easy to see that this gives an (aj, b,,, X)-absorber: given X’ € X for every
x; € X we choose a square-path in A; depending on whether z; € X’ or x; ¢ X'.

We use the following construction for a single-vertex absorber.

Claim 6.1. Let A, be a graph obtained as the union of following graphs and edges

By u {w; 2, w13} U U {wy, 2} U U Ui,
i€[4] i€[{]

where U; is a square-path connecting wf to wi | for every 1 <1i < {, such that all the square-
paths are pairwise vertex-disjoint and also disjoint from By (except for the pairs of vertices
they connect). Furthermore, vertexr x is not contained in either By or any U;. Then A, is a
(w§, wb, {z})-absorber.

Proof. There are only two cases we need to consider: X’ = & and X’ = {x}. We specify the
desired square-path from w{ to WZ in each case by giving the ordering in which we traverse the
vertices of such a path (see Figure 5):
/ . b b b b b
o X' =0 wi,z,w;,Uy,wy,wy, Uy, wg, w3, U3, wi,...,w,_;,Up_1,wy,wy,
/ . w=a 77, wb w0 77, b woa 77, b wa 77, . wob b
o X' ={z}: wi, w3, Ui, Wi, W3, Us, W5, W4, Us, W3,... W5, Us_1,Wy_y, Wy.
O

Now, we are ready to present the proof of the Absorbing Lemma. For the convenience of the
reader we first restate the lemma.

Lemma 5.1 (Absorbing Lemma). For every a > 0, there exists a positive constant C := C(«)
such that w.h.p. for a random graph I' ~ G, every G € G(I',n,a, p) has the following property.

Let s > C'log*n/p? be an integer. Then there are at least (1 —n=3)(") subsets W < V(G)
of size s satisfying the following. For every subset X < V(G)~W of size | X| < |[W|/(Clog?n)
there erists an (a,b, X)-absorber A in G such that V(A) ~ X € W, where a,b e W? are two
disjoint pairs of vertices.
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W w b b
4 wy ws
(a) The square-path from w$ to wt including . (b) The square-path from w{ to wi without x.

Figure 5: A single-vertex absorber A,. Note that both square-paths use all vertices of A,.

Proof of Lemma 5.1. Let &' = e53(a), e” = ea5(0), € = min{e’,e”,1/100}, C" = C5 3(¢’, ), and
C = 40max{C’,e7%}. Let W = Wy U --- U Wx be such that W;’s are pairwise vertex-disjoint,
all of size |W;| > |s/10], and chosen uniformly at random from G among all sets of prescribed
size. By the union bound, with probability at least 1 — o(n~2) it holds that for all i € [7], W;
is (a/2,¢e,p)-good by Proposition 2.8, and satisfies the conclusion of the Connecting Lemma
(Lemma 5.3). From now on fix such a choice of sets W; (and thus W) and note that it is sufficient
to show the conclusion of the lemma for this particular W.

Let X = {21,...,2m} € V(G) ~ W be a subset of vertices such that m < s/(C'log®n) and
observe that 4|X|log?n < €8|W;|. Furthermore, let S,. be the subgraph of A, (as defined in
Claim 6.1) induced on the vertex set {wy1, w12, w13, w1 4,2;}. We aim to construct a vertex-
disjoint collection {Sz, }ie[m) in G, such that each S;; contains z; and no other vertex from X.
We do this in four steps.

Step 1. First, we show that there exists a matching M; between X and W; saturating X.
Let X’ € X be a subset of X and let us denote Ng (X', W7) by Z. If | X'| < e~3logn/p then for
a vertex z; € X’

|Z] = |Na (i, Wh)| = (2/3 + a/2)[Wilp = (2C/30) log" n/p > | X',

where the second inequality follows from (G4). If we assume |X'| > ¢ 3logn/p (and hence
|Z| = e3logn/p by analysis from above) then by (G1) and (G4) we have

1 X1(2/3 + /2)[Wilp < ec(X', Z) < (1 +¢)|X"||Z]p,

which implies |Z| > |W1|/2 > |X'|. Thus, Hall’s condition is satisfied and the desired matching
M, exists. Let us denote the matched vertex of some x; € X in My by M (x;).

Step 2. In the next step, we want to find a family of m vertex-disjoint triangles 77, such
that each triangle contains exactly one edge from M; and intersects Wy in exactly one vertex.
We achieve this again with the help of Hall’s matching theorem (Lemma 2.1). Let X’ € X and
let us denote

U (Na (i, Wa) 0 No (M (x;), W2))

x,'EX’
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by Z. By applying (G7) to the edges of M incident to the vertices of X’ or its arbitrary subset
of size €/p? in case | X'| > ¢/p? (as P) we have

1Z| = a - min{e/p?, | X'|}|[Wa|p? = o - min{e|Wa|, | X’| - (C/10)log" n} = |X|,

and by Lemma 2.1 we conclude that the desired collection 77 exists. For z; € X let us denote
by w; = (u;,1,u;2) the two vertices sharing the triangle with x; from 77, where u;; € W; and
Ui2 € Wg.

Step 3. In a manner analogous to that seen in the second step, we find a collection T2 of m
vertex-disjoint triangles such that each triangle in 75 contains exactly one vertex from W3 and
vertices z; and w; 2, for every i € [m]. Let us denote by v; 1 the third vertex in the triangle from
7> which contains z; and u; 2.

Step 4. In the last step, we find a collection 73 of m vertex disjoint triangles such that each
triangle in 73 contains exactly one vertex from Wy and vertices z; and v; 1, for every i € [m].
Let us denote by v; 2 the third vertex in the triangle from 73 which contains x; and v;; and
vi = (vi1,0i2).

This completes the first part of the embedding scheme as we have constructed the vertex-
disjoint collection {S, };e[m] containing vertices from X.

The rest of the proof consists of three consecutive applications of the Connecting Lemma
(Lemma 5.3). First, by applying it with b = 2, W5 (as W), and {(@;, Vi) }ic[m] (as {(xs,yi)}i) we
conclude that there exists a

({(Ws, %) bie[m)» 2, 4 1og n)-matching

in W5. We can apply the Connecting Lemma as [Ws| = (C/10)log* n/p? and mlogn < £8|Ws|.
Let £ = logn and let g; be the embedding of the backbone-path B, given by the above matching,
for each i € [m]. Next, consider the family of 4-tuples {(gi(w?),gi(W?H))}ie[m]’je[@_I]. We
apply the Connecting Lemma with b = 1, Wy (as W), and {(gi(w?),gi(W?H))}ie[m]’je[lg_l] (as
{(x;,¥i)}i) to conclude that there exists a

({(g:(W), i (W 1)) Yiepm),jefe—1]> 1 4 1og n)-matching

in Ws. We can do that as |Ws| = (C/10) log* n/p? and 4mlog®n < e8|Ws|. Let us denote pairs
g;(w¢) and g;(w}) by a; and b;, for every i € [m]. By Claim 6.1 we conclude that the set
X Wy U - U Ws contains an (a;, b;, {x;})-absorber A; for each i € [m], such that all A;’s are
pairwise vertex-disjoint.

Lastly, using the vertices in W7 we connect all A;’s into a single absorber for the set X.
Consider the family of 4-tuples {(b;,a;+1)}ic[m—1]- By applying the Connecting Lemma with
b=1, W7 (as W), and {(bs,a;+1) }ic[m—1] (as {(xi,y:)}i), there exists an

({(bi, ai41) i1}, 1, 4 log n)-matching

in W7. We can do that as |[W7| > (C/10)log*n/p? and mlogn < £|W|. If we denote the
square-paths connecting b; to a;+1 (given by the last application of the Connecting Lemma) by
Q1,Q2,...,Qm—1, then Proposition 4.1 implies that

A=J4av | @
i€[m] i€[m—1]

is an (ap, by, X)-absorber: consider some subset X’ € X and for each i € [m] let P; € A; be the
square-path from a; to b; which contains z; if and only if x; ¢ X’ and, moreover, contains all
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other vertices in A;. Such a path exists as A; is an (a;, b;, {z;})-absorber. Then

Py Q1 P, Q2 Qm-1 P,
a; "N by ANAUS ag ANS by AN s AN Ay, AN by,

is a square-path from a; to b, which contains all vertices in A except those in X’. This concludes
the proof of the lemma. O

7 Proof of the Connecting Lemma

In the remainder of the paper we give the proof of the Connecting Lemma. For the convenience
of the reader let us first restate the lemma.

Lemma 5.3 (Connecting Lemma). For every b € {1,2} and every a > 0, there exist positive
constants € := ¢(a) and C := C(«a) such that w.h.p. for a random graph I' ~ G, , every
G e G(I',n,a,p) has the following property.

Let s > C'log* n/p? be an integer. Then there are at least (1 —n~*)(") subsets W < V(G) of
size s satisfying the following. For every family of disjoint 4-tuples {x;,yi}ic[ S (V(G) \ W4,
such that tlogn < e8|W|, there exists an ({xi, ¥i}iepy), b, 4logn)-matching in W.

The proof relies on the following lemma whose proof we defer to the next subsection. The
idea behind it is that even after removal of a not too large subset X from the reservoir W, we can
find a copy of a (b, 4 log n)-connecting path, or in the phrasing of the lemma above—a ‘matching’,
connecting at least one pair x; to the corresponding pair y;.

Lemma 7.1. For every b € {1,2} and every o > 0, there exist positive constants € := ()
and C := C(a) such that w.h.p. for a random graph I' ~ Gy, ,, every G € G(I',n,2a,p) has the
following property.

Let s > C'log* n/p? be an integer. Then there are at least (1 —n=*)(") subsets W < V(T') of
size s satisfying the following. For every family of disjoint 4-tuples {X;,yi}ici S (V(G) N wH4,
such that tlogn < e8|W|, and every subset X € W of size | X| < 8tlogn, there exists an i € [t]
and an ({(xi,yi)},b,4logn)-matching in W \ X.

Proof of Lemma 5.3. For given «, let ¢ = e71(a/2) and C = C71(g,a/2). Set ¢ = 4logn
and T = {(Xi,¥:)}iepry- Let W be one of the (1 —n~*%)(") subsets satisfying the conclusion of
Lemma 7.1.

We define an f-uniform hypergraph H on the vertex set Z U W whose edge set is defined as
follows. For every 4-tuple (x;,y;) and every set Y < W of size £ — 4, we add an edge (x;,y;) vY
if and only if G contains a (b, £)-connecting-path connecting x; to y; and its internal vertices
belong to Y. Clearly, if there is an Z-saturating matching in H, then there is an (Z, b, £)-matching
in W. We use Haxell’s criteria (Theorem 2.2) in order to show this.

Let 7/ < 7 and X € W be arbitrary subsets such that |X| < 2|Z'| - £. Tt is enough to show
that for some (x;,y;) € Z' there is a (b, £)-connecting-path connecting x; to y; whose internal
vertices are completely contained in the set W ~\ X. This in turn implies that H contains an edge
intersecting Z' and not intersecting X and the condition of Theorem 2.2 is satisfied. Applying
Lemma 7.1 with 7' (as {(xXi,y:)}ie[s]) gives us exactly that. Namely, we may apply the lemma
since |Z'|logn < tlogn < 9|W| and |X| < 2|Z'| - £ < 8tlogn. O
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7.1 Proof of Lemma 7.1

Let us set ¢ = min{1/23% 19 e55(2a)}, C = 5¢727, and take m = 4logn — 4. Let G be an
arbitrary member of G(T, n, 2a, p). Let s = C'log* n/p* and 71 := s/(5logn) = =27 log® n/p®. Let
W be a set of size s chosen uniformly at random among all such sets. As by Proposition 2.8 w.h.p.
I is such that for every G € G(I', n, 2a,p) at least (1 —n=")(%) sets of size i are (a, €, p)-good, it
follows by Chernoff’s inequality for hypergeometrically distributed random variables that with
high probability at least (1 —n~*)(3) subsets W’ = W of size @1 are (a,,p)-good. In particular,
w.h.p. T is such that for every G € G(T',n, 2a, p), there are at least (1 —n"*)(") sets W < V(G)
of size s which in turn contain at least (1 — n™*)(2) subsets of size 7 which are (o, ¢, p)-good.
Condition on this event and let W be one of those (1 —n~*)(") sets of size s.

Fix an arbitrary X < W of size | X| < 8tlogn. We now show the existence of disjoint subsets
Wi,..., Wy, of W which for all i € [m] satisfy:

(W1) (Wil =i, for o i= | ghoass | = =g,

(W2) W is (a,e,p)-good, and

(W3) | X n W] < 5.

Consider a uniformly at random chosen collection W7, ..., Wy, of disjoint subsets of W satisfying
(W1). We claim that such a random collection satisfies (W2) and (W3) with positive probability.
First, as each Wj is u.a.r. chosen from W which contains (1—n~%)(Z) subsets which are good, (W2)
follows the union bound over all i € [m]. As for (W3), observe first that | X| < 8tlogn < 85|W].
If | X| <e3 log? n then the claim holds vacuously. Otherwise another application of Chernoff’s

inequality and the union bound implies that with probability at least
1—4logn - e~ 1X|/(Blogn) 5 1 _ 4logn - e logn/(6e) > 1 _ =5

we have B
X AW < (1+ 5)|X|% <(1+¢)- 85 < &%,

for every i € [m]. As max{e~3log?n,e’n} = °n, it holds that | X n W;| < e®7. From now on we
thus assume that we have disjoint subsets W7, ..., W), that satisfy (W1)—(W3). For convenience,
we also set X; := X n W; and W; := W; ~ X;, for every i € [m].

The goal of the remainder of the proof is to show that there exists an embedding g of a
(b, m + 4)-pseudo-path connecting x; to y;, for some i € [¢]. In order to do this, we first introduce
a couple of definitions. Let f: {0,...,m} — Z be a function defined as:

) i—1, if 7 is even,
f@) =9 .
i —b, otherwise.

Note that this function can be used to describe the left neighbour other than u;_1 of a vertex
u;, i = 3, in a (b, £)-pseudo-path. Indeed, the two left neighbours are u f(i—1) and u;—1. Next, we
define a graph that is the union of all (b, £)-pseudo-paths that start in a set of given edges.

Definition 7.2 (Projection graph). Let 7: [m] — [m] be a permutation of the set [m] and
let {(ai,bi)}ier S (V(G) N W)2, denoted by Z, be a set of ¢ disjoint ordered pairs. We define an
(Z,m)-projection graph F on the vertex set

V(F) = Wfl v WO v Ww(l) Uees v Wﬂ(m),
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where W_; = {a1,...,a;} and Wy = {b1,...,b;}. The edge set of F is defined inductively as
follows. Let Ey be the edges between the sets W_1 and W), i.e. all edges in Uie[t]{ai, b;}. Then
for all j € [m] we let

Ej = {{u,v}, {wa U} A I/AVTF(]’) and {u,w} € Ej*l(WTl'(f(j—l))7 Ww(j—l))v {wa U}a {u,v} € E}

Lastly, we set the edge set of F' to Fy U --- U E,, (Figure 6).

W_, W W Wao) Wa) Wi

Figure 6: An example of a projection graph F where m = 4 and b = 2. Dashed edges do not belong to the
projection graph F'.

To understand this definition, observe that F;_; are exactly those edges for which an edge
expansion into Ww(j) ‘extends’ the pseudo-path constructed so far by a vertex from Wﬁ(j).
Crucially, even though the vertex set of F' is defined as the union of the sets W;, the edge set
consists only of edges that run between W;’s.

The next proposition thus follows immediately.

Proposition 7.3. Let b € {1,2}, let w: [m] — [m] be a permutation of the set [m], and let
{(as, bi) ey © (V(G) N W)?, denoted by T, be a family of t disjoint ordered pairs. Furthermore,
let F' be an (Z,w)-projection graph. Then for each j, where 1 < j < m/2, and each edge
{v,w} € Er(Wrj—1), Wr(2j)), there exists an i € [t] and an embedding of a (b,2j + 2)-pseudo-
path in F' connecting (a;,b;) to (v,w) that contains exactly one vertex from each set Wi, i € [m],
and no vertex from the set X. O

The following claim is the main tool in the proof of Lemma 7.1. The proof of the claim is
technical and quite involved and thus it is presented in the next section. In the remainder of this
section, we show how the claim implies Lemma 7.1.

Claim 7.4. Let t' € N be such that t/3 <t' <t. Let w: [m] — [m] be a permutation of the set
[m] and let {(ai,b;)}iep) S (V(G) \ W)?, denoted by I, be a set of t' disjoint edges in G. Then
there exists (a;,b;) € T such that

_ 2
712]) and eF(Wﬂ(m/2+1)7 Wﬂ'(m/2+2)) = §n2p>

W N

eF(WW(m/Q—l)v Wﬂ'(m/?)) =
where F is the ({(a;, b;)}, m)-projection graph.

Having the previous claim at hand, we finish the proof of Lemma 7.1. Let m; be the identity
permutation of the set [m] and let w3 be a permutation of [m] defined as m2(i) = m —i + 1. Let
T, be the largest subset of {x;};c[q such that for every x; € Z, it holds that

er'(Winja—1, Winj2) =
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where F’ is the (Z,,m)-projection graph. If |Z,| < t/2 then by applying Claim 7.4 with
{xi}ic[) ~ Zz (as 7) and m (as 7) we get a contradiction with the maximality of Z,. Thus
[ Z.| > t/2. Similarly, let Z, be the largest subset of {¥,};c[;) such that for every ¥, € Z, it holds
that

2
eF”(sz(m/Q-i-l)?Wﬂ'g(m/2+2)) = §n2p,

where F" is the (Z,, m2)-projection graph. As in the case of Z, it must be that |Z,| > ¢/2. The
fact that both Z, and Z, are larger than ¢/2 implies that there must be a single integer i* € [¢]
such that

2 2
€r, (Wm/2—17 Wm/2) = §n2p and er(sz(m/2+1)aW7rg(m/2+2)) = §n2p> (31)

where F,, and F), are the ({x;«},m1)-projection graph and the ({¥;}, m2)-projection graph, re-
spectively.
Let ¢; = m/2. Note that {ma(m — €1 + 2),ma(m — €1 + 1)} = {¢; — 1,4;}. Hence, from (31)
we have 9 5
er, (ng_l, ng) = gﬁQp and €F, (Wg1_1,Wg1) = gﬁgp.

This implies, by (G1), that there must exist an edge e = {u, v} such that
e e EFI (ng_l, ng) N EFy(ng_l, ng).
By Proposition 7.3 and the definitions of m; and ms we get that there exist two embeddings
g1 and g2 of a (b, #1 + 2)-pseudo-path and a (b, #1 + 4)-pseudo-path such that:
e (g1(u1),g1(u2)) = x; and (g2(u1), g2(u2)) = ¥y,
e gi(u;) € Wiy, for every i € {3,...,01},
o go(u;) € Wi_iss, for every i € {3,...,0; + 2},
L4 gl(u£1+1) = u, gl(u£1+2) =", and
(v,u), ifb=1,
o (92(ug 43), 92(up, 44)) = .
(u,v), ifb=2.
Using Proposition 4.1 and Propositions 4.2 we conclude that there exists an ({(x;,y:)}, b, m + 4)-

matching in W \ X, as desired. This concludes the proof of Lemma 7.1. It remains to prove
Claim 7.4.

7.2 Proof of Claim 7.4

In this subsection we give the proof of Claim 7.4. As the choice of the permutation 7 does
not play a role in the proof, we assume 7 is the identity permutation and we completely omit
it from the definition of the projection graph. Thus, throughout the section when we write
Z-projection graph we mean (Z, 7)-projection graph, where 7 is the identity permutation. For a
projection graph F', we refer to a pair of bipartite graphs F[Wy ), Wi] and F[Wy(;i1), Wit1] as
the i-th step of F. Next, we introduce some terminology and define when a step is expanding or
non-expanding.

Definition 7.5. Let F be a projection graph. Let C' > 1 be a real number and let ¢ > 1. We
say that the i-th step of F' is C-expanding if

er(Wrgis1), Wir1) = C - ep(Wyy, Wi).

Otherwise, it is C-non-expanding.
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Due to the asymmetry in the definition of pseudo-paths (for b = 2), it is easier to not consider
every step, but to group steps into blocks of two.

Definition 7.6. Let F' be a projection graph. Let C' = 1 be a real number and let ¢ > 1. We
say that the i-th block is C-ezpanding in F, if at least one of the 2i-th and the (2i + 1)-st step of
F' are C-expanding. Otherwise, it is C-non-expanding.

To understand how the two definitions relate, it is helpful to observe that for the edges
between blocks, i.e. the red edges in Figure 7, we have (Way;_1, Wo;) = (Wf(2i); Wai), by the
definition of f.

W, Woii

) \ﬁﬁ

][
i \%/
- —
__J ] ] __J

i-th block

Figure 7: If i-th block is expanding, then the right set of red edges is larger than the left set of red edges.
(Note: this expansion does not follow from the definition, but requires some proofs.)

The intuition behind expanding blocks is that the number of edges in F' ‘after’ an expanding
block should be larger than the number of edges in F' ‘before’ it (see Figure 7). The following
claim makes this precise.

Claim 7.7. Let F' be a projection graph and 1 <i < m/2 —2.
(i) Suppose ep(Woi_1, Wa;) = e 2 i log® n. If the i-th block is (1/¢)-expanding, then

er(Wais1, Waiya) = (1/v/€) - ep(Wai—1, W),

and otherwise

a2

. . Z 7~2 .
er(Wait1, Waita) 55" P

(ii) Suppose ep(Woi_1, Wo;) = 2en®p. If the i-th block is (1 + 4+/€)-expanding, then
er(Wair1, Waira) = (1 + 2v/e) - ep(Wai—1, Way),

and otherwise
er(Waiss, Waiya) = (2/3 + a/2)i%p.

The proof of the claim is quite technical and relies mostly on properties given by Lemma 2.9
about expansion of edges and triangles; we defer it to the next section. With this claim at hand
we are ready to give the proof of Claim 7.4.

Proof of Claim 7.4. As mentioned earlier, we assume w.l.o.g. that 7 is the identity permutation
as the actual choice of m does not play a role in the proof. The proof comprises of four natural
steps:
(1) starting from the edges in Z show that ez (Wa;_1, Wa;) = e~ 2 log® n, for all m/80 < i <
m/2;
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(2) starting from the edges obtained in the previous step show that ep(Wa;_1, Wo;) = 2e?p,
for all m/40 < i < m/2;

(3) knowing that starting from all edges in Z we can reach 2en?p edges in some number of
steps, show that there is at least one edge e € T such that ep(Wao;_1, Wo;) = 2en?p, for all
m/10 < i < m/2, where F’ is the e-projection graph;

(4) starting from the edges obtained in the previous step show that ep (Wa;_1, Wa;) = (2/3)7%p,
for all m/5 <i < m/2.

Step (1). Let us first deal with the trivial case in which p > 2. For j > 0 and a vertex
v e Wj with degp(v, Wy(;)) = 1, by (G5) and as | Xj;1| < €7 (recall, (W3)), it holds that

degp(v, Wji1) = anp® — |Xj11| = ag*i — % = %4,
and thus also ep(Wo;_1, Wo;) = 7% » nlog?n, for all i >
In the remainder of the proof we assume p < °. We first show by induction that the following
invariant is true for every j € {0,1,...,m}: there exists B; © Ep(Wy(;), W;) such that
(i) |E; 0 Wj| = min{e®n, |Z|(1/e)7} and |E; 0 Wy(j)| = (1 — je + f(j)e) min{e?n, IZ|(1/e)f )3,
where Ej n W; and E; n Wy ;) denote the set of vertices from W; and Wy(;) incident to
the edges in Ej, respectively,
(ir) for each v e Wy(;) U W; we have degp, (v) < &/p.
The base of the induction j = 0 holds trivially as, by assumption, the starting set of edges is
a matching of size |Z|. Thus, let j > 1 and let us assume the hypothesis holds for all values
smaller than j. Let Ej_ 1 S Ep(Wj;_1), W;-1) be as given by the induction hypothesis for
j — 1. Consider first the case f(j) = j — 2. Note that then f(j — 1) = j — 2 as well and thus
|Ej_1 nWy(_1)l = (1 —e) min{e*n, |Z|(1/)’~?}. We apply Lemma 2.9 (1) with W;_y, Wj_o, W;
(as Wy, W, W3) and Ej_; (as F12) to conclude that there exists a subset U’ € E;_1 n Wj_g of
size
|U'| = (1 — &) min{|Fj_1 n W,_2], e/p*} = (1 — 2¢) min{e?n, |Z|(1/e)'72,¢/p*}

and an (anp?/2)-star-matching M saturating U’. We may indeed apply the lemma by (i) and
since
|X;| < |X]| < 4tlogn < 12|Z|logn.

As anp?/2 > 1/e*, E; := M satisfies all the required properties. In case f(j) = j — 1 we
apply Lemma 2.9 (1) with W;_o, W;_1, W; (as Wi, Wa, W3). Observing that |E;_1 n Wj_q| >
min{e?7, |Z|(1/¢)7~1}, and doing the same analysis as in the previous case shows that the invariant
holds also in this case.

With these preparations at hand we can now finish the proof. For j > 38 > 1(2)%51 , (i) implies

|Ej 0 W;| = (1 — 2¢) min{e?n, |Z|(1/e)°8™/200) > 37

as ¢ is chosen in order for log(1/¢) > 200 to hold. Next, for every {55 < i < 5, we apply
Lemma 2.9 (1) with Wf(?i—1)7 ng_l, WQZ' (as Wl, WQ, Wg) and EQZ'_I (as F12) to conclude that
for every subset U € FEo;_1 N Wa;_1 of size |U| = min{e/p?, |Ea;i_1 N Wa;_1|} there exists a subset
U' € U of size (1 —¢)|U| and an (anp?/2)-star-matching M saturating U’ (note that degree

assumption needed for Lemma 2.9 (1) holds by (éi)). This further implies

erp(Wai—1,Woi) = (1 —€)|Egi—1 n Wai—1| = (1 — 5)5 n - (a/2)np > e*n?p? = e 'ilog? n.
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Step (2). Fix i = m/80. From Step (1 ) we know that ep(Way_1, Wo;) = e~ log? n. From
Claim 7.7 (i), and the fact that (o?/256)72p > e~2'log® n, we further have that forall j >i+1

' o2
ep(Waj—1, W) = mm{e_(J_Z)/ F(Wai—1, W), 256" p}

Recall that m > logn and that we have chosen e sufficiently small so that e~=9/2 > n? for all
§ =i+ m/80. The assertion in Step (2) then follows as a?/256 > 2¢
Step (3) Fix i = m/40. From Step (2) we know that ep(Wa;_1, Wa;) = 2en?p. Let

Z =11V UZyys) be an arbitrary partition of Z such that |Z;| < [Z]/[7 1/3] and let Fj be the
Ij—projectlon graph, for every j € {1,...,[n'/3]}. Since

[71/9]

Z er;(Wai—1, Wai) = ep(Wai—1, W),

j=1

there must be a j* € {1,...,[2"/3]} such that

—21 7.2
> e “"nlog”n,

er; (Wai—1, Wa;) = T

where the second inequality holds as 7%3p > e 2'log?n. By the same argument as in the
Step (2), this time for Fj» and 4, we get that for k =i + g

er (Wag—1, Wag) = (o®/256)%p,

implying that we can repeat the argument from above and partition Z;« into [21/3] parts. The
claim follows by applying this argument successively at most two more times.

Step (4). Fixi = m/10 and let e € Z be the edge obtained in Step (3) and F’ the e-projection
graph. From Step (3) we know that ep (Wa;—1, Wa;) = (a?/256)72p. Let us choose a constant
L := L(a,¢) such that (1 + 2+/)¥72(a?/256) > 2. Observe that not all blocks i,...,i + L — 2,
can be (1 + 44/¢)-expanding as then Claim 7.7 (i7) would imply

o2
e (Wair—2)-1, Wagisp—2)) = (1 +2¢/)"" 275671 *p > 20,
which is a contradiction with (G1). Let * € [i,7 + L — 2] be the smallest index such that the i*-th
block is (1 + 4+4/2)-non-expanding. Then ez (Wa 13, Wair14) = (2/3 + a/2)7p, by Claim 7.7 (ii).
If the (¢* + 2)-nd block is (1 + 44/¢)-expanding then

e (Wair 15, Wairy6) = (1 + 2vE) - e (Wage 4.3, Wain44) = (2/3 + a/2)ii%p.
If, on the other hand, the (i*+2)-nd block is (1+44/¢)-non-expanding, then e g (Woix 1.7, Woix 18) =
(2/3 + a/2)7?p, by Claim 7.7 (7). In addition, by applying Lemma 2.9 (9) to Wa 13, Wos 14,
Woix 15 (as Wi, Wo, W3) and Ep(Waix 13, Wa14) (as Fi2) we obtain by symmetry that

er'(Wairg3, Waiy5), epr(Wair 4, Wois15) = (1 — v/e)ep (Wairg3, Wair44).

Applying Lemma 2.9 (9) again, this time to Wy(gixi5), Wairis, Wair 6 (as Wi, W, W3) and
EF’(Wf(Qi*+5), Waix15) (as Fl2), we obtain

e (Waisy5, Waiss6) = (1 — V) e (Wapn i, Wapnia) = (2/3)R%p,

by our choice of ¢.

Repeating this argument, that is starting from Ep/(Wo 5, Woix16) or Epr(Wair 17, Woi 48)
depending on whether the (i* + 2)-nd block was (1 + 44/¢)-expanding or not, shows that
err(Waj_1,Waj) = (2/3)ip for all j € [i* + 2,m/2], and the claim follows since i* < m/5 — 2
(recall that we had set m = 4logn — 4 and thus m/2 is even).

This completes the proof of Claim 7.4. O
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7.3 Proof of Claim 7.7

In this section we provide the proof of the assertions in Claim 7.7. We start with some general
remarks. Recall that the i-th block consists of steps 2i and 2¢ + 1. Recall also that step 2i
extends edges between sets Wo;_1 and Wy; into set Wo; 11 \ Xo;41 via triangles. Similarly, step
21 + 1 extends edges between sets Wi@is1) and Wo;41 into set Wo;10 N\ Xo;42. These extensions
exactly mimic the setting covered by Lemma 2.9. However, the actual set Wy (2;,1) depends on
the value of b of the b-pseudo-path that we want to construct. In order to hide this difference
we often use variables t1,...,t4 as follows: t4 = 20+ 2, t3 = 2i + 1, to = f(2i + 1), and ¢ is
the unique element from {2i,2i — 1} \ {¢t2}. One easily checks that this implies that we can
always apply Lemma 2.9 with W;,, Wy,, Wy, to address the 2i-th step and to Wy,, Wi, Wy, (as
Wi, Wa, W3) to address the (2i + 1)-st step.

Proof of (i) in Claim 7.7: i-th block is (1/¢)-expanding. If both steps 2i and 2i + 1 are (1/¢)-

expanding then the claim follows directly from the definition of an expanding step together with

the observation that f(j) = j — 1 whenever j is even. Thus, let us assume that one of the two
steps is (1/e)-non-expanding. We aim to prove the following for every j > 1:

o1~ o

If GF(Wf(j),Wj) =€ 21nlog2n then GF(Wf(j+1),Wj+1) = T6€F

Note that this implies the claim regardless of whether the non-expanding step is the first or the

Wiy, Wy)- (32)

second step within the block, as then

1 « 1
er(Waiv1, Wait2) = o TGQF(W%—L Wa;) = N er(Wai—1, W),
which is what we wanted to prove.

We now prove (32). So assume ep(Wy(;y, Wj) = e~ 7 1og? n, for some j > 1. Observe that
the definition of the function f implies that (32) involves exactly three sets ;. Indeed, by the
definition of f we have f(j + 1) € {j, f(j)}. Let to = f(j + 1) and t; be the unique element
from {7, f(7)} ~ {t2}. Let S € W,, be the set of vertices with the degree at most e~*logn/p in
Ep(Wy, ,Wy,) and set M := W, . S. Furthermore, let us denote Er(Wy,,S) and Ep(Wy,, M)
by Is and Iy, respectively. If |Is| = ep(Wy,,Wy,)/2 then by applying Lemma 2.9 (2) with
Wiy, Wiy, Wi (as Wi, Wa, W3), S (as U), and Ig (as Fia) we get

1 1 1 a

eF(S, Wj+1) = gjep(th,S) = ?1’[5’ = gep(Wf(j),Wj) = EeF(Wf(j)’Wj)'

On the other hand, if |Ip/| = ep(Wy,, Wy,)/2, by applying Lemma 2.9 (3) with Wy, Wy,, W
(as Wy, Wo, W3), M (as U), and I; (as Fi2) we get

« o «
er(M,Wji1) = =Y gdegIM(%th) = §|IM| > EBF(Wf(j)awj)a

4 veM

where the second inequality follows from (G2). O
Proof of (i) in Claim 7.7: i-th block is (1/¢)-non-expanding. Set t4 = 2i + 2, t3 = 2i + 1, ty =
f(2i + 1), and let ¢; be the unique element from {2i,2i — 1} ~\ {t2}.

By assumption, the steps 2i and 2i 4+ 1 are both (1/¢)-non-expanding. Thus, in particular
er (Wi, Wi,) < (1/€)er(Wiy, We,). Additionally, since ep(Wy,, Ws,) = e *'alog®n, we can

apply Lemma 2.9 (7) with Wy, , W,,, Wi, (as Wi, Wa, W3), and Ep(Wy,, Wy,) (as Fi2) to get a
set Lo € W, such that for every v € Ly we have degp(v, Wy, ) = e *logn/p and

er(Wy,, La) = (1 —e)ep (Wi, Wy,). (33)
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The previous inequality implies ep(Wy,, L2) = ¢~?%filog n and thus by applying Lemma 2.9 (3)
with Wy, , W, Wy, (as Wi, Wa, W3), Lo (as U), and Ep(W;,, La) (as Fi2) we conclude

anp G2) o (33) «

(
€F(L2=Wt3)>T|L2\ > geF(thaLQ) > EeF(Wthtz) (34)

Since the i-th block is non-expanding we have ep(Wi,, Wy,) < (1/e2)erp(Wy,, Wy,) and thus
1 (34) 110 1
eF(Wt37Wt4) < ?eF(th’WtQ) < QEGF(LQ,WtS) < geF(LQ’WtS)‘

Hence, we can apply Lemma 2.9 (7) with Wy,, Wy, Wh, (as Wi, Wa, W3), and Ep(Wy,, Wy,) (as
Fi3) to get a set Ly € Wy, such that for every v € Ly we have degp (v, Wy,) = ¢ *logn/p and

eF<Wt27 L3) = (1 - 5)6F(Wt27 Wt3) = (1 - €)€F(L2, Wta)' (35)

Note that w.l.o.g. we may assume that L3 contains all vertices v € Wy, with degp (v, W3,) >
e *logn/p. As (34) and (35) imply ep(Wh,, L3) = e PR logn, we can apply Lemma 2.9 (3) with
L3 (as U) to obtain )

anp
4

If |L3| = («/32)n then we are done. In the remainder of the proof we show that such an

eF(Wt3aWt4) = eF(L3’Wt4) > |L3|'

assumption is actually true. Towards a contradiction assume that |Lz| < (o/32)n. Observe that

(recall, (W1) for Wy, in order to apply (G2))

Lo| (C“;) 6F(Wt1,~L2> (323) (1- 5)eF(Wf1,Wt2) S (1—e)e 2 1og?n . g~19 logzn‘
(1+¢e)np (1+¢e)np (1+¢)p D

(36)

Let now S € Y < Wy, be sets defined as
Y := {ve W, :degp(v, La) > ¢|La|p} and S:=Y \ Ls.

If |Y| = (o/16)7, then |S| = (o/32)n, as we assumed |L3| < («/32)7n, and thus
(36)
er(Wa,S) = ep(La,S) = |S|-¢|Lalp = Z—Zﬁ e %0g?n = e nlog? n.
Recall that all vertices in Wy, \ L3 have degree in F at most e *logn/p into W;,. Therefore,
Lemma 2.9 (2) applied with Wy,, Wy, Wy, (as Wi, W, W3), S (as U), and Ep(Wa, S) (as Fi2)
shows

36) .«

(
er(S,Wi,) = e tep(Wi,, S) = e73|S||Lalp > € 16(1 —26)er (Wi, Wiy) > e 2ep (Wi, Wh,),

which is a contradiction with our assumption that the i-th block is (1/¢)-non-expanding. Therefore,
Y| < (a/16)7. However, as by (G1) and (36) we know that there are at most ¢~3logn/p vertices
v € Wy, with degq (v, La) = 2|La|p, we then get

-3 ~
e ”logn . o - anp
er (Lo, Wiy) < V] - 2|Lalp + "5 21+ - el Lolp < (G + ¢ + ) | Laliip < 1L,

8 4

which is a contradiction with the first inequality in (34). We conclude |L3| > («/32)n and the
claim follows. ]

Proof of (ii) in Claim 7.7: i-th block is (1 + 44/¢)-expanding. Note that if both steps 2i and 2+
1 are (1+44/¢)-expanding, then the statement follows directly from the definition of an expanding
step. Thus, let us assume one of the two steps is (1 + 44/¢)-non-expanding and let us denote
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that step with ¢ € {2i,2¢ + 1}. Furthermore, let to = f(¢t + 1) and let ¢; be the unique
element from {f(¢),t} \ {t2}. By applying Lemma 2.9 (9) with Wy, Wi,, Wii1 (as Wi, Wa, W)
and Ep(Wi,, W,) (as Fi2) we get ep(Wyi1), Wit1) = (1 — v/€)er(Wyy, We). From here we
conclude

er(Wair1, Waira) = (1 +44/e)(1 — Ve)ep(Wai—1, Wa;) = (1 + 2ve)ep (Wai—1, Wa;),
which is what we wanted to prove. O

Proof of (ii) in Claim 7.7: i-th block is (1 + 44/€)-non-expanding. Set t4 = 2i + 2, t3 = 2i + 1,
to = f(2i + 1), and let ¢; be the unique element from {2i,2i — 1} \ {t2}. Let us define Ly and L3
as

Lo = {ve W, : degp(v, Wy, ) > np/3} and L3 = {ve W, :degp(v, Wy,) > np/3}.

Our first goal is to show |L3| = (2/3 + o/4)n. As the i-th block is (1 + 44/¢)-non-expanding,
we know that ep(Wy,, Wi,) < (1 + 4y/€)erp (Wi, Wi,) and thus by Lemma 2.9 (8) applied with
Wiy, Wiy, Wh, (as Wi, Wo, W3), Ep(Wy,, Wy,) (as Fi2), and 324/c/a (as ) we conclude

(th ) L2) (1 - 32\[/05)6F(Wt17 Wtz) ( 51/3>6F(Wt1’ Wt2)' (37)

Next, by Lemma 2.9 (5) with Wy, Wh,, Wy, (as Wi, Wa, W3), Lo (as U), and Ep(Wy,, La) (as
Fi9) we get
9 (G3)
er(La, Wi,) = (1 —e)eq(La, Wi,) = (1 —3e)eq(Wy,, Lo) = (1 — 3e)erp(Wy,, Lo). (38)
This together with (37) implies
eF(Wtza Wts) = eF(LQa Wts) > (1 - 35)€F(Wt17L2) = (1 - 251/3)6F(Wt1a WtQ)' (39)
Once again using the fact that the i-th block is (1 + 44/¢)-non-expanding, we get

(1 + 4\/5)2€F(Wt17wt2) < (1 + 4\/g)2(1 - 251/3)716F(L2’ Wt3)

GF(Wt3, Wt4) <
< (1 + 451/3)6F(L2, Wt3).

(40)

Next, we apply Lemma 2.9 (8) with W,,, Wi, Wy, (as Wi, Wa, Ws), Ep(La, Wy,) (as F12) and
32¢3 /ov (as ). We can do that since by (39) and (40) we know that ep(Ly, Wy,) = enp and
er(Wiy, W) < (1 + pa/8)er (Lo, Wey). Therefore, Lemma 2.9 (8) and (38) imply

, (38)
er(La, L) = (1 — %)W(Lz, Wi,) = (1 —eep(La, Wy,) = (1 —2eYYeq(Ly, Wy,). (41)
Furthermore, (41) and (G4) show
er(La, L3) = (1 — 26V eq (Lo, Wy,) = (1 — 2eY4) - |Ly|(2/3 + a)fp = (2/3 + a/2)| La|fip.

From (G1), the fact that |Ls| = (¢/2)7n (follows from (37) and (G2)), and ep (L2, L3) = (2/3 +
a/2)|La|np, we obtain |Ls| = (2/3 + a/4)n.
Next, we define

= {’U € W21'+1 : degF(v, W2i+2) > TNLp/?)} and ﬁl = {’U € W2i+2 : degF(v, W21'+1) > ’ﬁp/3}.

We aim to show that |L|,|£'| = (2/3)n. Since |L3| = (2/3 + «/4)n, we can apply Lemma 2.9 (6)
with W(9i41), Waitr1, Waira (as Wi, Wa, W3), and L3 (as U) to conclude that |[L'| = (1 — )7, as
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desired. Similarly, applying Lemma 2.9 (5) with W41y, Wais1, Waite (as Wi, Wa, W3), L3 (as
U), and Er(Wy,, L3) (as Fi2) we get that there exists a L S Lg of size |L}| = (1 — 3¢%)|Ls| such
that for all v € L; we have degp (v, Wait2) = (2/3 + o/2)np. Clearly Ly < £ and |L§| = (2/3)n.

Set 15 = 20 + 3, r4 = f(2i + 3), and let r3 be the unique element from {2i + 2,2i + 1} ~ {r4}.
Moreover, let L4 and Ls be defined as

Ly={veW,, :degp(v,Wy,) > np/3} and Ls = {veW,, :degp(v,W,,) > np/3}.

Note that, depending on f(2i + 3), the set L4 lies either in W11 or Wa;1o. Thus, since
|L],|L] = (2/3)n and L4 € {£, L'}, we have |Ly4| = (2/3)7n as well.

Having this at hand we can finally show ep(Wa; i3, Waira) = (2/3 + a/2)7%p. By applying
Lemma 2.9 (6) with W,,, W,.,,W,.. (as W1, Wa, W3), and Ly (as U) we get that |Ls| = (1 —
g)n. Finally, we apply Lemma 2.9 (5) with W,.,, W,.., Wa; 4 (as W1, Wa, W3), Ly (as U), and
Er(W,,, Ls) (as Fi2) to obtain

(G3) 3 3
eF(W2i+3, W2i+4) = (1 — 82)eg(L5, W2i+4) = (1 — 82) . |L5|(2/3 + a)np = (2/3 + a/2)n2p.

This concludes the proof of Claim 7.7. O

8 Concluding remarks

In this paper we introduce the notion of H-resilience which measures the fraction of H-copies
touching a given vertex that an adversary may delete without destroying a certain given property.
We demonstrate the usefulness of the definition by showing that the Kjz-resilience of G, , w.r.t.
the containment of the square of a Hamilton cycle is w.h.p. 5/9 £+ o(1). In other words, the
adversary needs to delete more than a (5/9)-fraction of the triangles lying on a vertex in order to
destroy all copies of C2 in Ghp,p. Our result is optimal with respect to the constant 5/9 and the
density p up to logarithmic factors.

Having the notion of H-resilience at hand, one can ask for similar statements for other
(spanning) graph properties. Of particular interest is the question of the Kjs-resilience of Gy,
with respect to the containment of a triangle factor. Theorem 3.1 shows that also here the
resilience is at most 5/9 + o(1). Moreover, as C2 contains a triangle factor, provided 3 | n, it
follows that this is the correct one whenever p » n~%/2 log® n. However, the threshold for the
appearance of a triangle factor is significantly lower than the threshold for the appearance of a
C?2, cf. the seminal result of Johansson, Kahn, and Vu [20]. In light of this, we conjecture that
the resilience variant of this result holds when p is close to the threshold for having a Kjs-factor.

An analogous construction as in Theorem 3.1 shows that the K,-resilience for a K,.-factor is
at most 1 — (1 —1/7)"~1. It is thus tempting to conjecture that this value is also the K ,-resilience
of Gy, w.r.t. containment of a K,-factor, provided that p » n=2"(logn)YeU5r) | as well as C7 1,

provided that p » n=Y/"

. The conjecture is true in the case when p = 1, as every graph with
(1—=1/r)""1(,",) copies of K, at each vertex must have a minimum degree of at least (r — 1)n/r

and the statement thus follows from the theorem of Hajnal and Szemerédi [16] and Theorem 1.1.
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