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Abstract

Recently, Kostochka and Yancey [6] proved that a conjecture of Ore is asymptotically true by showing

that every k-critical graph satisfies |E(G)| ≥
⌈(

k

2
− 1

k−1

)

|V (G)| − k(k−3)
2(k−1)

⌉

. They also characterized

[7] the class of graphs that attain this bound and showed that it is equivalent to the set of k-Ore
graphs. We show that for any k ≥ 33 there exists an ε > 0 so that if G is a k-critical graph, then

|E(G)| ≥
(

k

2
− 1

k−1
+ εk

)

|V (G)| − k(k−3)
2(k−1)

− (k − 1)εT (G), where T (G) is a measure of the number of

disjoint Kk−1 and Kk−2 subgraphs in G. This also proves for k ≥ 33 the following conjecture of Postle
[11] regarding the asymptotic density: For every k ≥ 4 there exists an εk > 0 such that if G is a k-critical

Kk−2-free graph, then |E(G)| ≥
(

k

2
− 1

k−1
+ εk

)

|V (G)| − k(k−3)
2(k−1)

. As a corollary, our result shows that

the number of disjoint Kk−2 subgraphs in a k-Ore graph scales linearly with the number of vertices and,
further, that the same is true for graphs whose number of edges is close to Kostochka and Yancey’s
bound.

1 Introduction

Given a graph G the chromatic number of G, denoted χ(G), is the smallest integer k such that there exists a
mapping φ : V (G) → {1, . . . , k} where φ(u) 6= φ(v) whenever uv ∈ E(G). Such a mapping is called a proper
k-coloring of G. We say that G is k-colorable if G has a proper k-coloring. There is an obvious connection
between the number of edges in a graph and the graph’s chromatic number. Each edge is a restriction on the
vertex labeling, and thus removing edges can lower the chromatic number of a graph. Indeed, the chromatic
number of G− e is either χ(G) or χ(G)− 1. It is natural to study the class of graphs which are as sparse as
possible for a given chromatic number.

A graph G is k-critical if χ(G) = k and every proper subgraph is (k − 1)-colorable. Viewing k-critical
graphs as minimal graphs with chromatic number k leads to the question of how small such graphs can be.
Let fk(n) denote the minimum number of edges in a k-critical graph, Ore conjectured [9] the following.

Conjecture 1.1 (Ore 1967 [9]). If k ≥ 4, then

fk(n+ k − 1) = fk(n) + (k − 1)

(

k

2
−

1

k − 1

)

.

As δ(G) ≥ k − 1 for any k-critical graph, it is clear that fk(n) ≥ k−1
2 n. Since Dirac’s 1957 paper [2],

there have been many improvements over the years to the bounds for fk(n) ([3], [5], [8]) Recently, Kostochka
and Yancey [6] made an important breakthrough.
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Theorem 1.2 (Kostochka and Yancey 2014 [6], Theorem 3). If k ≥ 4 and G is k-critical, then

|E(G)| ≥

⌈(

k

2
−

1

k − 1

)

|V (G)| −
k(k − 3)

2(k − 1)

⌉

.

They also showed in [7] that the class of graphs which attain this bound are k-Ore graphs, which are
defined below. First, we begin with a definition used to construct k-Ore graphs.

Definition 1. An Ore composition of two graphs G1 and G2 is a graph obtained by the following procedure:
(1) delete an edge xy from G1, (2) split some vertex z of G2 into two vertices z1 and z2 of positive degree,
and (3) identify x with z1 and y with z2.

Note that the Ore composition of two graphs is not unique, depending on which edge is deleted from G1,
which vertex z of G2 is split, and how the neighbors of z are partitioned. Indeed, even the order in which
we list the graphs is important; when we say that G is an Ore composition of H and F we mean that G is
one of the graphs obtained by an Ore composition where H plays the role of G1 (called the edge-side of the
composition) and F plays the role of G2 (called the split-side of the composition). The identified vertices
xz1 and yz2 are called the overlap vertices of the composition. Further, we call the edge xy from step (1)
the replaced edge of H and call the vertex z from step (2) the split vertex of F .

Definition 2. A graph G is a k-Ore graph if it is in the smallest class of graphs containing Kk which is
closed under the Ore composition operation.

Equivalently, this is the class of graphs obtainable by successive Ore compositions of either Kk or other
k-Ore graphs.

To prove Theorem 1.2, which shows that Ore’s Conjecture is asymptotically true, Kostochka and Yancey
established the following result on the density of a k-critical graph using a potential function,

ρKY (G) := (k − 2)(k + 1)|V (G)| − 2(k − 1)|E(G)|.

Theorem 1.3 (Kostochka and Yancey 2014 [6], Theorem 5). If k ≥ 4 and G is k-critical, then ρKY (G) ≤
k(k − 3).

In a later paper, they also showed the following.

Theorem 1.4 (Kostochka and Yancey 2016+ [7], Theorem 6). If k ≥ 4 and G is k-critical, then ρKY (G) =
k(k − 3) if and only if G is a k-Ore graph.

The k-Ore graphs are the graphs which attain the bound of Theorem 1.3, and hence it is natural to ask
if an increase in edge density is possible when forbidding subgraphs which arise through Ore constructions.
In [12], Postle shows an increase in asymptotic density for 4-critical graphs when forbidding both K3 and
C4 subgraphs. By a construction of Thomas and Walls [13], it is not sufficient to forbid only K3.

Theorem 1.5 (manuscript, [12]). There exists ε > 0 such that if G is a 4-critical graph of girth at least
five, then

|E(G)| ≥

(

5

3
+ ε

)

|V (G)| −
2

3
.

For larger values of k, it is also not sufficient to forbid only Kk−1. This leads to the following conjecture.

Conjecture 1.6 ([11]). For every k ≥ 4, there exists εk > 0 such that if G is a k-critical Kk−2-free graph,
then

|E(G)| ≥

(

k

2
−

1

k − 1
+ εk

)

|V (G)| −
k(k − 3)

2(k − 1)
.
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The conjecture has been proven for k = 5 [11] and k = 6 [10]. In this paper, we prove the conjecture
for k ≥ 33. The method of proof also gives information about the structure of k-Ore graphs; in particular,
we also prove that there are linearly many vertex-disjoint Kk−2 subgraphs in k-Ore graphs. In order to
track vertex-disjoint Kk−2 subgraphs (including those inside Kk−1 subgraphs), we define the following graph
parameter.

Definition 3. When a graph H is a disjoint union of r copies of Kk−1 and s copies of Kk−2 subgraphs,
define T (H) := 2r + s. Let G be an arbitrary graph. If G is Kk−2-free, then T (G) = 0. Otherwise, define

T (G) := max
H⊆G

{T (H) | H is a disjoint union of Kk−1 and Kk−2 components}.

In a k-Ore graph, T (G) can be shown to be lower-bounded by some constant times the number of
vertices (Lemma 3.3). Using the subgraph-measuring parameter T (G) we define the following modified
potential function.

Definition 4. Let ε = 4
k3−2k2+3k and δ = (k − 1)ε. Given a graph G define the ε-potential to be

ρ(G) := ((k − 2)(k + 1) + ε)|V (G)| − 2(k − 1)|E(G)| − δT (G).

For a vertex subset R ⊆ V (G), we define

ρG(R) := ((k − 2)(k + 1) + ε)|R| − 2(k − 1)|E(G[R])| − δT (G[R]),

where G[R] is the induced subgraph of G on R.

One can check that the construction of ε guarantees that ε ≤ 1 for all k ≥ 2 (in particular, it is true for
all values of k covered in this paper). With this modified potential function in hand, we are now able to
state the main result of this paper.

Theorem 1.7. If G is a k-critical graph that is not a k-Ore graph and k ≥ 33, then ρ(G) ≤ k(k−3)−2(k−1).

We prove this using the potential method of Kostochka and Yancey; however, a limitation in the dis-
charging method used restricts this result to the range where k ≥ 33. Because reductions used in our proof
could possibly create k-Ore graphs as auxiliary graphs, it is important that we also establish bounds for the
ε-potential of k-Ore graphs. In Section 3, we prove the following.

Theorem 1.8. If G is a k-critical graph that is a k-Ore graph and k ≥ 4, then

1. ρ(G) = k(k − 3) + kε− 2δ if G = Kk, and

2. ρ(G) ≤ k(k − 3) + |V (G)|ε−
(

2 + |V (G)|−1
k−1

)

δ if G 6= Kk.

Note that Theorem 1.8 is proven using similar methods for k = 5 in [11]. Removing the notation of
ε-potential, Theorem 1.7 and 1.8 give the following corollaries.

Corollary 1.9. If k ≥ 33 and G is k-critical, then

|E(G)| ≥

⌈

[(k − 2)(k + 1) + ε] |V (G)| − k(k − 3) + 2δ − kε− δT (G)

2(k − 1)

⌉

,

where ε = 4
k3−2k2+3k , δ = (k − 1)ε, and T (G) is the subgraph-measuring parameter from Definition 3.

Corollary 1.10. If k ≥ 33, then there exists some εk > 0 such that if G is k-critical and Kk−2-free, then

|E(G)| ≥

(

k

2
−

1

k − 1
+ εk

)

|V (G)| −
k(k − 3)

2(k − 1)
.

Corollary 1.10 confirms Conjecture 1.6 for k ≥ 33. We note that the class of Ks-free k-critical graphs
was also studied by Krivelevich [8].
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1.1 Outline of Paper and Notation

The paper is organized as follows. In Section 2, we establish some values for ε-potential. We also prove some
results about list colorings which are used in Section 7. In Section 3, we prove Theorem 1.8 and also prove
results about subgraphs in k-Ore graphs. These results are needed for our approach to Theorem 1.7. Sections
4–7 address Theorem 1.7. In Section 4, we define an auxiliary graph constructed from a partial (k − 1)-
coloring of a graph, and prove lemmas about the ε-potential of said graph. In Section 5, we work towards
an important lemma (Lemma 5.7) which says that subgraphs in a minimal counterexample to Theorem 1.7
must be many edges away from being k-critical. In Section 6, we prepare for discharging by proving results
on the structure near vertices of low degree in a minimal counterexample to Theorem 1.7. In Section 7, we
complete the proof of Theorem 1.7 using a discharging argument.

Throughout the paper, we make use of the following concepts and notation. Given a graph G, let x, y be
vertices of G and R be a proper vertex subset of G. We use G/xy to refer to the graph obtained from G by
identifying x and y; that is G/xy is obtained by deleting x, y and adding a new vertex xy which is adjacent to
each vertex in NG(x)∪NG(y). The boundary vertices of R (in G) is the set ∂GR := {u ∈ R | NG(u)−R 6= ∅}.
The closed neighborhood of x is the set NG[x] := NG(x) ∪ {x}.

The maximum independent cover number of G, denoted mic(G), is the maximum of
∑

x∈I degG(x) over
all independent sets I ⊆ V (G). For terms not defined here see [14].

2 Preliminaries

When proving bounds on ρ(G), it is important to know the ε-potential of complete graphs.

Observation 2.1.

1. ρ(Kk) = k2 − 3k + kε− 2δ.

2. ρ(K1) = k2 − k − 2 + ε.

3. ρ(Kk−1) = 2k2 − 6k + 4 + (k − 1)ε− 2δ.

4. For 1 < ℓ < k − 1, the ε-potential of Kℓ is bounded by ρ(Kℓ) ≥ 2k2 − 4k − 2 + 2ε.

We now establish some edge bounds which will be needed for the final stage of discharging in Section 7.
Given a graph G and vertex subsets A,B, we define e(A,B) to be the number of edges from a vertex in A to
a vertex in B. That is, let e(A,B) :=

∑

a∈A |NG[A∪B](a)∩B|. We use the following lemma due to Kierstead
and Rabern.

Lemma 2.2 (Kierstead and Rabern 2015 [4], Main Lemma). Let G be a nonempty graph and f : V → N

with f(v) ≤ degG(v) + 1 for all v ∈ V (G). If there is an independent set A ⊆ V (G) such that

e(A, V (G)) ≥
∑

v∈V (G)

[degG(v) + 1− f(v)] , (1)

then G has a nonempty induced subgraph H that is fH-choosable where fH(v) := f(v) + degH(v)− degG(v).

Lemma 2.3. Let G be a k-critical graph with vertex subsets A,B0, B1 such that A is independent, degG(a) =
k − 1 for each a ∈ A, and degG(b) = k + i for each b ∈ Bi where i ∈ {0, 1}. Then e(A,B0 ∪ B1) <
|A|+ 2|B0|+ 3|B1|.

Proof. Suppose that G is a k-critical graph with vertex subsets A,B0, B1 such that A is independent,
degG(a) = k − 1 for each a ∈ A, and degG(b) = k + i for each b ∈ Bi where i ∈ {0, 1}. Let B = B0 ∪ B1.
Suppose to the contrary that e(A,B0 ∪B1) ≥ |A|+ 2|B0|+ 3|B1| holds true.

4



Let f : A ∪B → N where f(v) = degG[A∪B](v) if v ∈ A and f(v) = degG[A∪B](v)− 1− i if v ∈ Bi. Then
the right side of Equation 1 becomes

∑

v∈A

1 +
∑

v∈B0

2 +
∑

v∈B1

3 = |A|+ 2|B0|+ 3|B1|.

It follows from Lemma 2.2 that G[A ∪ B], and thus G, has a nonempty induced subgraph H that is fH-
choosable where fH(v) := f(v) + degH(v)− degG[A∪B](v).

Since G is k-critical, there exists a (k−1)-coloring φ of G−H . For each vertex v ∈ V (H)∩A, there are at
least degH(v) colors available and we see that fH(v) = degH(v). Similarly, for each v ∈ V (H)∩B, there are
at least degH(v)− 1− i colors available and fH(v) = degH(v)− 1− i. Therefore, we can use fH -choosability
to extend φ to all of G, which is a contradiction. �

3 k-Ore graphs

Here, we build up results regarding k-Ore graphs, which will be needed in order to bound the ε-potential for
the reductions of general k-critical graphs that we will be using in subsequent sections.

Proposition 3.1. Given a k-Ore graph G, there is a sequence of k-Ore graphs G1, G2, . . . , Gs where G1 =
Kk, Gs = G, and for each 2 ≤ i ≤ s, the graph Gi is an Ore composition of Gi−1 and a k-Ore graph.

Proof. Let G be a k-Ore graph. We will prove this by induction on |V (G)|. If G is Kk the result is trivial, so
we may assume that G is an Ore composition of two k-Ore graphs G1 and G2 with overlap vertices {x, y}.
By induction, there is a sequence H = H1, H2, ..., Hr where H1 = Kk and Hr = G1 and each Hi is an Ore
composition of Hi−1 and a k-Ore graph. Then the desired sequence for G is H, G. �

Using this proposition, one can picture each k-Ore graph as a copy of Kk where some number of edges
are replaced by split k-Ore graphs. In fact, any k-Ore graph can be obtained by simultaneously replacing
some edges of a Kk with suitable split k-Ore graphs. Before examining ε-potential, we establish bounds on
the subgraph-measuring parameter T (G).

Lemma 3.2. If G is an Ore composition of G1 and G2, then T (G) ≥ T (G1) + T (G2) − 2. Moreover, if
G1 = Kk or G2 = Kk, then T (G) ≥ T (G1)+T (G2)− 1. Further, if both G1 and G2 are Kk, then T (G) = 4.

Proof. Suppose that G is an Ore composition ofG1 andG2. Let e be the replaced edge ofG1 and z be the split
vertex of G2. From the definition of an Ore composition, it follows that T (G) ≥ T (G1 − e) + T (G2 − {z}),
and hence T (G) ≥ T (G1) + T (G2) − 2. If G1 = Kk, then T (Kk − e) = 2 = T (Kk) so we get T (G) ≥
T (G1) + T (G2) − 1. We obtain a similar result if G2 = Kk as T (Kk − z) = 2. Further, if both G1 and G2

are Kk, then T (G) = 4. �

Note that the conclusion of Lemma 3.2 is symmetric.

Lemma 3.3. If G is a k-Ore graph and G 6= Kk, then T (G) ≥ 2 + |V (G)|−1
k−1 .

Proof. We proceed by induction on |V (G)|. Let G be an Ore composition of two k-Ore graphs G1 and G2.
If both G1 and G2 are Kk, then |V (G)| = 2k − 1; in this case, T (G) = 4 as desired. Suppose instead that
exactly one of G1, G2 is Kk. Because the conclusion of Lemma 3.2 is symmetric and any Ore composition
of a graph with Kk adds k − 1 vertices, we may assume without loss of generality that G1 = Kk. It follows
that

T (G) ≥ T (G2) + 1 ≥

(

2 +
|V (G2)| − 1

k − 1

)

+ 1 = 2 +
|V (G)| − 1

k − 1
,

as desired. Finally, suppose that neither G1 nor G2 is Kk. Then as |V (G)| = |V (G1)| + |V (G2)| − 1, it
follows from Lemma 3.2 and induction that

T (G) ≥

(

2 +
|V (G1)| − 1

k − 1

)

+

(

2 +
|V (G2)| − 1

k − 1

)

− 2 = 2 +
|V (G)| − 1

k − 1
.

�
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Using Lemma 3.3, we now prove Theorem 1.8.

Proof of Theorem 1.8. By the definition of ε-potential, it follows that ρ(Kk) = k(k − 3) + kε − 2δ. Now

suppose that G is a k-Ore graph which is not Kk. Then G has k + ℓ(k − 1) vertices and (ℓ+1)k(k−1)
2 − ℓ

edges for some ℓ ≥ 1. Using Lemma 3.3, it is again a straightforward calculation to show that ρ(G) ≤

k(k − 3) + |V (G)|ε−
(

2 + |V (G)|−1
k−1

)

δ. �

It is essential for the proof of Theorem 1.7 to understand the behavior of certain subgraphs of k-Ore
graphs. Two useful subgraphs are defined below.

Definition 5. A subgraph D ⊆ G is a diamond of G if D = Kk − uv and degG(x) = k − 1 for each
x ∈ V (D) − {u, v}. The vertices u and v are the endpoints of the diamond. A subgraph D′ ⊆ G is an
emerald of G if D′ = Kk−1 and degG(x) = k − 1 for each x ∈ V (D′).

Lemma 3.4. If G is a k-Ore graph and v ∈ V (G), then there exists a diamond or emerald of G in G− v.

Proof. We prove this by induction on |V (G)|. Suppose that G is a k-Ore graph and let v ∈ V (G) be an
arbitrary vertex. If G = Kk, then G− v is an emerald of G, as desired. Therefore we may assume that G is
an Ore composition of two k-Ore graphs G1 and G2 with overlap vertices {a, b}. We choose this composition
to minimize |V (G1)|, the order of the edge-side. By induction, there is an emerald or diamond D of G2 not
containing ab. Hence, if v ∈ V (G1), then D is as desired. So we may assume that v ∈ V (G2)− {ab}.

Now if G1 = Kk, then G1 − ab is a diamond of G not containing v as desired. Therefore, we may assume
that G1 is a composition of two k-Ore graphs H1 and H2 with overlap vertices {x, y}. By our choice of G1 it
follows that ab ∈ E(H1). Thus there is an emerald or diamond subgraph D of H2 not containing xy. Note
that D is also an emerald or diamond of G and v /∈ V (D), as desired. �

Lemma 3.5. If G is a k-Ore graph and D = Kk−1 is a subgraph of G, then either G = Kk or there exists
a diamond or emerald of G disjoint from D.

Proof. We prove this by induction on |V (G)|. Suppose that G is a k-Ore graph and let D = Kk−1 be a
subgraph of G. When G = Kk, the lemma is trivial. So we may assume that G is an Ore composition of two
k-Ore graphs G1 and G2 with overlap vertices {a, b}. Choose this composition to minimize the order of the
edge-side, |V (G1)|. As {a, b} is an independent cutset in G, it follows that either D ⊆ G1 − ab or D ⊆ G2.
If D ⊆ G1 − ab, then by Lemma 3.4 there exists a diamond or emerald D′ of G2 − ab and D′ is disjoint from
D as desired.

Thus we may assume that V (D) ⊆ V (G2) ∪ {a, b}. We examine two cases based on whether V (D)
contains any of the overlap vertices {a, b} or not.

Since a is not adjacent to b in G2, they cannot both be in D. So first, suppose that |V (D)∩{a, b}| = 1 and
without loss of generality, we assume that a ∈ V (D). If G2 6= Kk, then by induction, there is a diamond or
an emerald of G2 disjoint from D and this is also a diamond or an emerald of G, as desired. Therefore we may
assume that G2 = Kk and thus b has one neighbor on the split-side of G. It follows that degG1

(b) = degG(b).
By Lemma 3.4 there is a diamond or emerald D′ of G1 in G1 − a. If D′ is a diamond, then D′ is also a
diamond of G. If D′ is an emerald, then because degG1

(b) = degG(b), it follows that D
′ is an emerald of G.

In either case, D′ ∩D = ∅ as desired.
Second, suppose that V (D) contains neither a nor b. If G1 = Kk, then G1 − ab is a diamond that is

disjoint from D. Otherwise, G1 is a composition of two k-Ore graphs H1 and H2 with overlap vertices {x, y}.
By our choice of G1 it follows that ab ∈ E(H1). By Lemma 3.4 there is a diamond or emerald D′ of H2−xy,
which then contains no vertices of D. Thus, D′ is also a diamond or emerald of G, as desired. �

4 Critical Extensions

We now turn towards proving the main result, Theorem 1.7. We do this by discharging on a minimal
counterexample; therefore we need to precisely define what makes a graph minimal.
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Definition 6. A graph H is smaller than a graph G if |V (G)| > |V (H)| or, if |V (G)| = |V (H)|, then H
is smaller if either |E(G)| > |E(H)| or if |E(G)| = |E(H)| and G has fewer pairs of vertices with the same
closed neighborhood.

Given a k-critical graph G, we have a particular method of examining what subgraphs exist in G. Note
that if R is a proper vertex subset of G, then we can properly (k − 1)-color G[R]. Such a coloring is used to
create the following auxiliary graph.

Definition 7. Given a k-critical graph G and a proper (k − 1)-coloring φ on a vertex subset R, we define
the graph GR,φ to be the graph obtained from G by identifying all vertices in φ−1(i) to a single vertex xi
for 1 ≤ i ≤ k − 1, adding the edge xixj for each 1 ≤ i < j ≤ k − 1, and then deleting any parallel edges so
that the new vertices form a complete subgraph with no parallel edges.

Note that if uv ∈ E(G) for u ∈ R and v ∈ V (G) − R, then vxφ(u) ∈ E(GR,φ). Further, we will always
color R with as few colors as possible, so then it follows that GR,φ is a smaller graph than G, or possibly
GR,φ = G if R is a clique. One can observe that GR,φ is not (k− 1)-colorable; a proof of this is in [6] (Claim
14). Therefore, there is a k-critical subgraph W ⊆ GR,φ. Because G is k-critical, W must contain at least
one vertex in {x1, . . . , xk−1}. The fact that W is smaller than G when R is not a clique is used frequently
in subsequent ε-potential calculations.

Definition 8. Given a graph GR,φ obtained via Definition 7 and a k-critical subgraph W , we define R′ :=
(R ∪ V (W ))−X to be a W -critical extension of R where X := V (W ) ∩ {x1, . . . , xk−1} is called the core of
the W -critical extension. If R′ = V (G), then we say that R′ is a spanning W -critical extension. Lastly, the
W -critical extension R′ is complete if

|E(G[R′])| = |E(G[R])|+ |E(W )| − |E(K|X|)|. (2)

For a general W -critical extension R′, it is possible that the left side of Equation 2 is larger. If we have
|E(G[R′])| = |E(G[R])|+ |E(W )| − |E(K|X|)|+ i, then we say that the W -critical extension is i-incomplete.

Thus a W -critical extension is complete if the edges from R to V (W ) in G[R′] correspond to the edges
from X to V (W )−X in W , and incompleteness comes from three sources. First, edges from R to V (W ) in
G[R′] that are not needed in W get counted on the left but never on the right. Second, if NR(w) ∩ (color ℓ)
is larger than 1 for some w ∈ V (W ) − R and color ℓ, then |E(G[R′])| counts all of these edges but |E(W )|
counts at most one. Third, if an edge xixj is not used in W , then it is not counted by |E(W )| but is
subtracted by |E(K|X|)|.

Lemma 4.1. Suppose that G is a k-critical graph. If R′ is a W -critical extension of R ( V (G) with core
X, then

ρG(R
′) ≤ ρG(R) + ρ(W )−

(

ρ(K|X|) + δT (K|X|)− δ|X |
)

. (3)

Proof. Suppose that G is a k-critical graph with proper vertex subset R and that G[R] is properly (k − 1)-
colored by φ. Let R′ be anyW -critical extension. The three elements of a graph that contribute to ε-potential
are the vertices, the edges, and T . We note that each side of the inequality in Equation 3 counts the same
number of vertices. For the edges, each side of Equation 3 counts some edges that the other side does not.
Note that only ρG(R

′) includes edges in G from R to V (W )−X , only the right side includes edges in GR,φ

from X to V (W )−X , and all other edges are accounted for by both sides. However, each edge from X to
V (W ) −X corresponds to at least one distinct edge from R to V (W ) −X , so the negative contribution of
edges to the ε-potential is always greater on the left side. In fact, if the W -critical extension is i-incomplete,
then the left side counts exactly i edges more than the left.

Therefore, if Equation 3 is not satisfied, it can only be because of the contribution of the subgraph-
measuring parameter T . We observe that T (G[R′]) ≥ T (G[R])+T (W−X) and that T (W−X) ≥ T (W )−|X |
because each xi ∈ X could be in at most one subgraph counted by T (W ). Therefore, the desired inequality
holds. �
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Corollary 4.2. Suppose G is a minimal counterexample to Theorem 1.7. If R′ is a W -critical extension of
R ( V (G) and R is not a clique, then ρG(R

′) ≤ ρG(R)− 2(k − 1)− δ.

Proof. Let G be a minimal counterexample to Theorem 1.7. We aim to maximize the right side of Equation
3. Because R is not a clique we may assume that W is smaller than G. Therefore ρ(W ) follows Theorems
1.7 and 1.8, depending on whether W is a k-Ore graph or not. It follows that the right side is maximized
when W is a k-Ore graph and |X | = 1, so we make those two assumptions as well. If W = Kk, then because
T (W ) = T (W − x) for x ∈ X we can ignore the contribution of δ|X | in Equation 3. It follows in this case
that

ρG(R
′) ≤ ρG(R) + (k2 − 3k + kε− 2δ)− (k2 − k − 2 + ε)

= ρG(R)− 2(k − 1) + (k − 1)ε− 2δ.

But recall that δ = (k − 1)ε, so the corollary holds when W = Kk.
If W is not Kk, then it follows from Theorem 1.8 that

ρG(R
′) ≤ ρG(R)− 2(k − 1)− ε+ δ + |V (G)|ε−

(

2 +
|V (G)| − 1

k − 1

)

δ.

Again, because δ = (k − 1)ε the corollary is proven. �

5 Edge-Additions

The goal of this section is to establish Lemma 5.7 which says that a subgraph of a minimal counterexample
to Theorem 1.7 cannot be within k−4

2 edges of being a smaller k-critical graph. This will be used to establish
structural results in Section 6.

Definition 9. A proper vertex subset R ( V (G) is i-collapsible in G if for all proper (k − 1)-colorings φ of
G[R] using color set C

min
c∈C

∣

∣

{

uv ∈ E(G) | u ∈ φ−1(C − c) ∩R and v ∈ V (G)−R
}∣

∣ ≤ i. (4)

That is, a proper vertex subset R is i-collapsible if there is a “majority” color class in φ(∂GR) which
covers all but at most i edges from R into V (G)−R. Note that the boundary vertices ∂GR of a 0-collapsible
set receive the same color in every proper (k − 1)-coloring of R.

Definition 10. Let G be a k-critical graph. An (i+1)-edge-addition in G is a set S of at most (i+1) edges
such that there exists a k-critical graph H with S ⊆ E(H), H − S ⊆ G, and V (H) ( V (G).

Thus, a 1-edge-addition is a single edge that, when added to G, forms a k-critical subgraph on fewer
vertices than |V (G)|. For i-edge-additions with i > 1, the size of S is more flexible; this is important for
making the subsequent arguments efficiently. In the proof of Lemma 5.7 we do specify the number of edges
in S, but this will be controlled inductively rather than semantically.

Lemma 5.1. A minimal counterexample to Theorem 1.7 does not contain a 2-vertex cutset.

Proof. Let G be a minimal counterexample to Theorem 1.7 and suppose that there exists a 2-vertex cutset
{x, y}. Because G is k-critical, by Dirac [1], deleting {x, y} leaves behind two components H1 and H2 such
that G̃1 = G − H2 is (k − 1)-colorable by φ where φ(x) = φ(y) and G̃2 = G − H1 is (k − 1)-colorable by
ψ where ψ(x) 6= ψ(y). Moreover, because G is k-critical there does not exist a proper (k − 1)-coloring of
G̃1 where x and y receive different colors. This fact prevents x and y from having a common neighbor z in
G̃2, as a proper (k − 1)-coloring of G − xz would be a contradiction. Therefore x and y have no common
neighbors in G̃2, which implies that G is an Ore composition of G̃1 + xy and G̃2/xy, which we rename G1

and G2 respectively.

8



Because G is not a k-Ore graph, at most one of G1 and G2 is a k-Ore graph. From the definition of an Ore
composition, it follows that ρ(G) = ρ(G1) + ρ(G2)− k2 − 3k − ε+ δ (T (G1) + T (G2)− T (G)). Because the
following argument does not rely on the distinction between edge-side or split-side, we may assume without
loss of generality that G1 is not a k-Ore graph. Using Lemma 3.2 and the fact that G1 is smaller than G,
we have

ρ(G) ≤ ρ(G2)− 2(k − 1)− ε+ 2δ.

Thus G2 has higher ε-potential than G. As G is a minimal counterexample to Theorem 1.7 and G2 is smaller
than G, it follows that G2 must be a k-Ore graph.

If G2 6= Kk, then, it follows from Theorem 1.8 that ρ(G) ≤ k(k − 3) − 2(k − 1) + (n − 1)
(

ε− δ
k−1

)

where n = |V (G2)|. If G2 = Kk, then Lemma 3.2 gives T (G1) + T (G2) − T (G) ≤ 1, so it follows that
ρ(G) ≤ k(k − 3) + kε − 2δ − 2(k − 1) − ε + δ. Because δ = (k − 1)ε both of these inequalities show that
ρ(G) ≤ k(k − 3)− 2(k − 1), contradicting that G is a minimal counterexample to Theorem 1.7. �

Proposition 5.2. Let G be a k-critical graph. If R ( V (G) is a proper vertex subset where all W -critical
extensions of R are spanning, have core size 1, and are at most i-incomplete, then R is i-collapsible in G.

Proof. Let G be a k-critical graph and suppose that we have a proper vertex subset R such that allW -critical
extensions of R are spanning, have core size 1, and are at most i-incomplete. Then let φ be an arbitrary
proper coloring of R using color set [k − 1] and let R′ be a W -critical extension using φ. By hypothesis,
R′ = V (G). If we permute the colors of φ so that the vertex in X corresponds to color class 1, then each edge
from φ−1({2, 3, . . . , k − 1}) ∩R to V (G)− R contributes to the incompleteness of the W -critical extension.
There are at most i such edges so, by definition, R is i-collapsible. �

Lemma 5.3. If G is a minimal counterexample to Theorem 1.7 with an i-collapsible subset R ( V (G) for
i ≤ (k − 3)/2, then there is an (i + 1)-edge-addition in G.

Proof. Let G be a minimal counterexample to Theorem 1.7 and let R ( V (G) be an i-collapsible subset for
i ≤ (k − 3)/2. Suppose, for the sake of contradiction, that there is no (i + 1)-edge-addition in G. For each
u ∈ ∂GR let w(u) = |{uv ∈ E(G) | v ∈ V (G) − R}|. Because G is a k-critical graph, G is (k − 1)-edge-
connected and thus

∑

u∈∂GR w(u) ≥ k − 1. Let ∂GR = {u1, . . . , us} and, without loss of generality, assume
that w(u1) ≥ w(u2) ≥ · · · ≥ w(us) ≥ 1.

Case 1. Suppose w(u2) + · · ·+ w(us) ≥ i + 2.
This case is the same as Case 2 of Lemma 16 in [6], which shows that, for all proper (k − 1)-colorings φ

of G[R] using color set C and for any color class ℓ ∈ C

∑

u∈∂GR−φ−1(ℓ)

w(u) ≥ i+ 1.

However, R is i-collapsible so this is a contradiction.

Case 2. Suppose w(u2) + · · ·+ w(us) ≤ i + 1.
For i = 0, this implies that {u1, u2} is a 2-vertex cutset in G so, by Lemma 5.1, we may assume that

i ≥ 1. Let S = {u1uj | 2 ≤ j ≤ s}. Because we have assumed that there is no (i + 1)-edge-addition and
because S is a set of at most i+1 edges, there is a proper coloring φ of G[R] +S using color set [k− 1], and
u1 is the unique vertex of ∂GR in its color class. Without loss of generality, let φ(u1) = 1. Because i ≤ k−3

2
it follows that w(u1) ≥ i + 1. Therefore Equation 4 in the definition of i-collapsible can only be witnessed
by color 1. Because R is i-collapsible by hypothesis it follows that w(u2) + · · ·+ w(us) ≤ i.

Let ψ be a proper (k − 1)-coloring of G[(V (G) − R) ∪ {u1}] which uses the same colors as φ such that
ψ(u1) = 1 and choose ψ so that the number of edges from ∂GR to V (G) − R which have endpoints colored
the same by ψ := ψ|V (G)−R∪φ|R is minimized. Since ψ is not a proper (k−1)-coloring of G, we may assume
that φ(up) = 2 and one of its neighbors x in V (G)−R also receives color 2.
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We will reach a contradiction by relabeling the colors of ψ to interchange 2 with another color ℓ in such
a way that ψ now gives upx differently colored endpoints, and so that no edge from ∂GR to V (G)−R which
previously had differently colored endpoints now has endpoints colored the same. By showing that such an
ℓ exists, we contradict our initial choice of ψ.

Initially, we consider k − 2 color candidates for ℓ, obviously needing to remove color 2 as an option. We
also remove color 1 from consideration, so that ψ(u1) = φ(u1) does not change. Finally, for each of the at
most i edges ujv from ∂GR−{u1} to V (G)−R we remove φ(uj) if φ(uj) 6= 2 and remove ψ(v) if φ(uj) = 2.
This leaves at least (k − 2)− 1− i ≥ k−3

2 ≥ i choices. Recall that i ≥ 1, so there does exist a color ℓ which
contradicts our initial choice of ψ, and completes the proof. �

Proposition 5.4. Let G be a minimal counterexample to Theorem 1.7. If R ( V (G) is a proper vertex
subset that is not a clique and ρG(R) < ρ(G) + k2 − 3k + 4 − ε, then every W -critical extension of R has
core size 1.

Proof. Let G be a minimal counterexample to Theorem 1.7 and let R ( V (G) be a proper vertex subset
that is not a clique such that ρG(R) < ρ(G) + k2 − 3k + 4 − ε. Suppose that R′ is a W -critical extension
with core X where |X | > 1. The computation in Corollary 4.2 maximized the right side of Equation 3 by
assuming that |X | = 1. But if |X | > 1, then that computation is maximized by assuming |X | = k− 1 which
yields

ρG(R
′) ≤ ρG(R) + ρ(W )− (2k2 − 6k + 4 + (k − 1)ε− 2δ).

Because ρ(G) ≤ ρG(R
′) and using the hypothesis, we get

ρ(G) < ρ(G) + k2 − 3k + 4− ε+ ρ(W )− (2k2 − 6k + 4 + (k − 1)ε− 2δ).

This simplifies to ρ(W ) > k2 − 3k + kε − 2δ. By Theorem 1.8, this ε-potential is too high for W to be a
k-Ore graph. And because W is smaller than G, we reach a contradiction with the minimality of G. �

Lemma 5.5. Let G be a minimal counterexample to Theorem 1.7. There is no 1-edge-addition in G.

Proof. Let G be a minimal counterexample to Theorem 1.7 and suppose that there is a 1-edge-addition in
G. Among all 1-edge-additions S, pick one that minimizes the order of the k-critical graph H ⊆ G + S.
Let R = V (H) and let R′ be a W -critical extension of R. Now ρG(R) ≤ ρ(H) + 2(k − 1) + δ and, because
R is not a clique, Corollary 4.2 implies that ρG(R

′) ≤ ρ(H) It follows that H must be a k-Ore graph, as
otherwise H is smaller than G and ρG(R

′) < ρ(G) which is not possible.
The k-Ore graph with largest ε-potential is Kk so we have

ρG(R) ≤ [k(k − 3) + kε− 2δ] + 2(k − 1) + δ < ρ(G) + 2(k − 1) + kε− δ + 2(k − 1).

By Proposition 5.4, and because 4(k − 1) + kε − δ < k2 − 3k + 4 − ε for all k ≥ 6, the core of R′ has
size 1. Corollary 4.2 implies that ρG(R

′) < ρ(G) + 2(k − 1) + kε − 2δ. Note that R′ must be complete
because otherwise the right side of this inequality would be at least 2(k− 1) lower, and we would again have
ρG(R

′) < ρ(G). Further, R′ must be spanning because otherwise there exists a vertex subset R′′ such that
ρG(R

′′) < ρ(G). Therefore, R is 0-collapsible in G by Proposition 5.2.
By definition, in every proper (k− 1)-coloring of G[R], each vertex in ∂GR receives the same color. If H

is Kk, then R = {u1, u2, . . . , uk} and we can assume that {u1uk} = S. We properly (k − 1)-color G[R] with
φ so that φ(uj) = j for 1 ≤ j ≤ k − 1 and φ(uk) = 1. Because each vertex in ∂GR receives the same color,
this means that {u1, uk} is a 2-vertex cutset in G which contradicts Lemma 5.1.

Therefore H is an Ore composition of two k-Ore graphs H1 and H2 with overlap vertices {a, b}. Note
that S must be on the edge-side of the composition—that is S ⊆ E(H1)—because otherwise {ab} is a 1-
edge-addition that contradicts our choice of S. By Lemma 5.1 the set {a, b} cannot be a cutset in G so there
must be u, v ∈ ∂GR − {a, b} such that u ∈ V (H1) and v ∈ V (H2) ∩ G. If any proper (k − 1)-coloring φ of
G[R] has φ(u) /∈ {φ(a), φ(b)}, then we can relabel the colors on H1 so that φ(u) 6= φ(v). This contradicts
the fact that R is 0-collapsible. So without loss of generality, we may assume that φ(u) = φ(a). Let

10



P = (V (H2) ∩ G) ∪ {a, b}. Now either ψ(v) = ψ(a) in every proper (k − 1)-coloring ψ of G[P ] or we can
produce a proper (k − 1)-coloring of R where u and v receive different colors. Thus av is a 1-edge-addition
that yields a k-critical subgraph of order at most |V (H2)|+ 1 which contradicts our choice of S. �

Corollary 5.6. Let G be a minimal counterexample to Theorem 1.7. For any subgraph H ⊆ G, there is no
diamond of H. Further, if there is an emerald D of H, then there exists a vertex z ∈ V (G) − V (D) such
that xz ∈ E(G) for each x ∈ V (D) with degG(x) = k − 1. Therefore, there is no emerald of G.

Proof. Let G be a minimal counterexample to Theorem 1.7, and let H be a subgraph of G. If D is a diamond
of H with endpoints {u, v}, then {uv} is a 1-edge-addition in G which contradicts Lemma 5.5. So we may
assume that D is an emerald of H .

Note that degD(x) = k − 2 for each x ∈ V (D) so each such x is adjacent in G to at least one vertex
V (G) − V (D). If there is at most one x ∈ V (D) with degG(x) = k − 1, then the corollary is trivially true.
Suppose then, for the sake of contradiction, that x, y are vertices in D with degG(x) = degG(y) = k− 1 and
a, b are vertices in V (G)− V (D) such that {ax, by} ⊆ E(G) and a 6= b. For any proper (k − 1)-coloring φ of
G − {x} it must be the case that the neighbors of x all receive distinct colors. If we could recolor y using
φ(a), then φ would extend to all of G which is a contradiction. Therefore, φ(b) must be the same color as
φ(a). But now {ab} is a 1-edge-addition in G which contradicts Lemma 5.5.

Lastly, if D is an emerald of G, then the vertex z guaranteed by the above argument makes a Kk subgraph
in G which is not possible in a minimal counterexample to Theorem 1.7. �

Lemma 5.7. In a minimal counterexample G to Theorem 1.7, there is no proper vertex subset R where
R is not a clique and ρG(R) < ρ(G) + 2(i + 1)(k − 1) + δ for 1 ≤ i ≤ k−4

2 . Further, G does not have an

i-edge-addition for 1 ≤ i ≤ k−4
2 .

Proof. Let G be a minimal counterexample to Theorem 1.7. We will show first that a subset of the given
ε-potential implies that there is an i-edge-addition in G, and then prove inductively that there are no k−4

2 -
edge-additions in G. First note that, by Corollary 4.2, there is no proper subset that is not a clique and has
ε-potential less than ρ(G) + 2(k − 1) + δ.

Claim 5.7.1. For each i with 1 ≤ i ≤ k−4
2 if G has no proper vertex subset that is not a clique with

ε-potential less than ρ(G) + 2i(k − 1) + δ, R is a proper vertex subset that is not a clique, and ρG(R) <
ρ(G) + 2(i+ 1)(k − 1) + δ, then every W -critical extension of R is spanning, has core size 1, and is at most
(i− 1)-incomplete. Further, there is an i-edge-addition in G.

Proof of Claim. Given i, where 1 ≤ i ≤ k−4
2 , suppose that G has no proper vertex subset that is not a clique

with ε-potential less than ρ(G) + 2i(k − 1) + δ and let R be a proper vertex subset that is not a clique and
ρG(R) < ρ(G) + 2(i+ 1)(k− 1) + δ. For i ≤ k−4

2 , this implies that ρG(R) < ρ(G) + k2 − 3k+ 2+ δ so every
W -critical extension R′ has core size 1 by Proposition 5.4.

By Corollary 4.2 we also have ε-potential ρG(R
′) ≤ ρG(R) − 2(k − 1) − δ < ρ(G) + 2i(k − 1). By the

hypothesis of the claim, R′ must be all of V (G). Also, R′ can be at most (i − 1)-incomplete as otherwise
the right side of the inequality would be at least 2i(k − 1) lower and we would have ρG(R

′) < ρ(G), which
is not possible. By Proposition 5.2 and Lemma 5.3, R is (i − 1)-collapsible in G and hence there is an
i-edge-addition in G.

Suppose now that there is an i-edge-addition in G. We will prove inductively that any i with 1 ≤ i ≤ k−4
2

gives a contradiction. Lemma 5.5 shows that i 6= 1. We may assume that there is no (i − 1)-edge-addition,
so by Claim 5.7.1 there is no proper vertex subset R with ρG(R) < ρ(G) + 2i(k − 1) + δ. Note that this
inductive hypothesis guarantees that |S| = i. Because each edge of S might contribute to T (H), we have
ρG(R) ≤ ρ(H) + 2i(k − 1) + iδ. Among all i-edge-additions S, we will choose one that minimizes the order
of the k-critical graph H ⊆ G+ S.
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Case 1. H is not a k-Ore graph.
Because H is smaller than the minimal counterexample G, we have ρ(H) < ρ(G). Thus, we bound the

ε-potential of R by ρG(R) < ρ(G) + 2i(k − 1) + iδ < ρ(G) + 2(i + 1)(k − 1) + δ. By Claim 5.7.1, every
W -critical extension of R is spanning, has core size 1, and is at most (i− 1)-incomplete. Further, there must
be some W -critical extension R′ that is exactly (i − 1)-incomplete. Otherwise, Proposition 5.2 implies that
R is (i− 2)-collapsible and there is an (i− 1)-edge-addition in G by Lemma 5.3.

Choose such a (i−1)-incompleteW -critical extension R′. Using Lemma 4.1 and the (i−1)-incompleteness
of R′ we bound the ε-potential as follows:

ρG(R
′) < [ρ(G) + 2i(k − 1) + iδ] + ρ(W )− 2(i− 1)(k − 1)− (k2 − k − 2 + ε− δ)

But R′ = V (G), so this implies that ρ(W ) > k2 − 3k − (i + 1)δ + ε. Because W is smaller than G,
this contradicts the minimality of G unless W is a k-Ore graph. By Lemma 3.4, there is a subgraph
D ⊆ W − X ⊆ G which is an emerald of W . Corollary 5.6 gives a vertex z ∈ V (G) − V (D) such that
xz ∈ E(G) for each x ∈ V (D) with degG(x) = k − 1. Because R′ is spanning, the only edges in G that
can cause degG(x) > k − 1 for x ∈ V (D) are edges from x to R which do not correspond to an edge used
in W . These edges contribute to the incompleteness of a W -critical extension, so z has at most (i − 1)
non-neighbors in D. Adding these edges yields a Kk, which contradicts the inductive hypothesis.

Case 2. H is a k-Ore graph but is not Kk

If H is a k-Ore graph that is not Kk, then ρ(H) ≤ k(k−3)+ε−2δ, and because k(k−3) < ρ(G)+2(k−1)
we also have ρ(R) < ρ(G) + 2(i + 1)(k − 1) + (i − 2)δ + ε. For i ≤ k−4

2 , this upper bound satisfies the
hypothesis of Proposition 5.4 so every W -critical extension R′ has core size 1. Corollary 4.2 implies that
ρG(R

′) < ρ(G) + 2i(k − 1) + (i − 3)δ + ε. For i = 2, the W -critical extension R′ is at most 1-incomplete
because otherwise the right side is lowered by at least 4(k − 1) and we get ρG(R

′) < ρ(G) − δ + ε. This
implies that ρG(R

′) < ρ(G) which is not possible. Note that for i > 3 it is possible that R′ is i-incomplete
according to this bound, but cannot be j-incomplete for j ≥ i+ 1.

First, suppose that H is an Ore composition of two k-Ore graphs H1 and H2 with overlap vertices {a, b}.
Note that all edges of S must be on the edge-side of the composition H1 as otherwise adding ab to S∩E(H1)
is an i-edge-addition that contradicts our choice of S. Thus H2−ab ⊆ G. By Lemma 3.4, there is a subgraph
D ⊆ H2 − ab ⊆ G which is an emerald of H2. Corollary 5.6 gives a vertex z ∈ V (G) − V (D) such that
xz ∈ E(G) for each x ∈ V (D) with degG(x) = k−1. For each x ∈ V (D), we have degH2

(x) = degH(x) = k−1,
so z ∈ V (H) and either x ∈ NG(z) or x ∈ ∂GR. But adding the edges {yz | y ∈ V (D) ∩ ∂GR} creates a Kk

subgraph so by the inductive hypothesis and our choice of S it follows that |V (D) ∩ ∂GR| ≥ i+ 1.
By Lemma 5.1, {a, b} is not a cutset so there is some u ∈ ∂GR− {a, b} such that u ∈ V (H1). Let φ be a

proper (k− 1)-coloring of G[R], with the colors permuted so that the vertex in the core X of the W -critical
extension corresponds to color class 1. Thus each edge from φ−1({2, 3, . . . , k−1})∩R to V (G)−R contributes
to the incompleteness of the W -critical extension. In the case where i = 2, R′ is at most 1-incomplete so
|V (D)∩∂GR| ≤ 2. This contradicts our earlier bound on this set. Therefore we may assume i > 3 for the rest
of this case. Because R′ is at most i-incomplete |V (D)∩∂GR| ≤ i+1. This implies that |V (D)∩∂GR| = i+1,
R′ is exactly i-incomplete, and that φ(u) = 1.

If φ(u) /∈ {φ(a), φ(b)}, then we can relabel the colors on H1 only so that φ(u) is not given to any vertex
in V (D) ∩ ∂GR. Because all W -critical extensions of R have a core of size 1, this new coloring would give a
W -critical extension that is i + 1 incomplete which is a contradiction. Therefore it must be the case that,
for every proper (k− 1)-coloring of G[R], φ(u) ∈ {φ(a), φ(b)}. This means that {ua, ub} is a 2-edge-addition
which contradicts the fact that i > 3.

Case 3. H is Kk.
For this case, we further refine our bound ρG(R) ≤ ρ(H) + 2i(k − 1) + tδ. We do not know how many

edges of S contribute to T (H), but t ≤ 2. The ε-potential of H is ρ(H) = k(k − 3) + kε − 2δ and so
ρ(R) < ρ(G) + 2(i + 1)(k − 1) + (t − 2)δ + kε. For i ≤ k−4

2 , this upper bound satisfies the hypothesis
of Proposition 5.4 so every W -critical extension R′ has core size 1. Corollary 4.2 implies that ρG(R

′) <
ρ(G) + 2i(k − 1) + (t− 3)δ + kε. Note that R′ is at most i-incomplete, as otherwise ρG(R

′) < ρ(G).
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We label R = V (H) = {u1, . . . , uk} so that u1uk ∈ S and properly (k − 1)-color G[R] with φ so that
φ(uj) = j for 1 ≤ j ≤ k − 1 and φ(uk) = 1. Because degG(uj) ≥ k − 1 each vertex uj ∈ R has at least as
many edges in G from uj to V (G) − R as the number of edges of S incident with uj . Any color class that
not incident to an edge in S will miss at least i+1 endpoints of S. So for R′ to be at most i-incomplete, the
vertex in the core X corresponds to color class 1 and every edge in S must incident to at least one of u1 or
uk. If u1u2 and uku3 are both in S, then switching the colors on u2 and uk give a proper (k− 1)-coloring of
G[R] where every color class is not incident to at least one edge in S, which is a contradiction. Thus we may
assume that, without loss of generality, either |S| = 3 and S forms a triangle subgraph or S forms a star
subgraph with u1 as the center. In either case, t ≤ 1 because G[R] has a Kk−2 subgraph. Thus the bound
given by Corollary 4.2 is ρG(R

′) < ρ(G) + 2i(k − 1)− 2δ + kε. With this bound, R′ cannot be i-incomplete
because 2δ > kε.

If S is a triangle, let S = {u1uk, u1u2, uku2}. Because R′ is at most 2-incomplete, by changing which
two vertices of {u1, u2, uk} have the same color in a proper (k − 1)-coloring of G[R], it follows that ∂GR =
{u1, u2, uk} and each of these vertices has exactly two edges to V (G)−R. Thus there are 6 edges from R to
V (G)− R. However, i ≤ k−4

2 and i = 3 imply that k ≥ 10, which is a contradiction as k-critical graphs are
(k − 1)-edge-connected.

Suppose instead that S is a star with u1 as the center. Because R′ is at most (i − 1)-incomplete, every
leaf uj of the star has exactly one neighbor in V (G)−R, say yj . Consider the graph F = G− {u2, . . . , uk}.
No proper (k − 1)-coloring ψ of F can be extended to all of G, so it follows that ψ(u1) = ψ(yj) for each j
where uj is a leaf of S. Thus u1yj is a 1-edge-addition in G, which contradicts Lemma 5.5. �

6 Cloning

Cloning is a reduction operation that will help us understand the structures that exist near vertices of degree
k − 1 in a minimal counterexample to Theorem 1.7.

Definition 11. Let G be a k-critical graph with xy ∈ E(G) such that degG(x) = k − 1. We define
cloning x with y to mean constructing a new graph Gy→x such that V (Gy→x) = V (G) ∪ {x̃} − {y} and
E(Gy→x) = E(G− y) ∪ {x̃v | v ∈ NG(x)} ∪ {x̃x}.

Thus the vertex y is replaced with the new vertex x̃, which is a copy of x. Below we define the notion of
a cluster, which was introduced in [6].

Definition 12. A cluster is a maximal set R ⊆ V (G) such that degG(x) = k − 1 for every x ∈ R and
NG[x] = NG[y] for every pair x, y ∈ R.

Note that if x ∈ V (G) is in a cluster Cx and xy ∈ E(G), then in Gy→x the new vertex x̃ is added to
the cluster Cx. Further, if x′ is a second vertex in Cx, then Gy→x′ = Gy→x. If y is already in Cx, then
Gy→x = G. If y is not in Cx, then Gy→x is smaller than G except in the case where deg(y) = k − 1 and
Gy→x is k-critical. In this case, we further need y to be in a cluster of size at most |Cx| for Gy→x to be
smaller than G.

Lemma 6.1. If G is a k-critical graph where xy ∈ E(G), x is in a cluster of size s, and degG(y) ≤ k−2+s,
then Gy→x is not (k − 1)-colorable.

Proof. Let G be a k-critical graph and let xy ∈ E(G) such that x is in a cluster Cx of size s and degG(y) ≤
k − 2 + s. Suppose, for the sake of contradiction, that φ is a proper (k − 1)-coloring of Gy→x. Let ψ be the
partial proper coloring of G obtained by copying φ(u) for every u ∈ V (G)−{y}. Because y has at most k−2
neighbors outside of Cx we can choose ψ(y) to be a color distinct from these neighbors. But now ψ(y) = ψ(z)
for some vertex z ∈ Cx because G is k-critical. Without loss of generality, we can assume that z = x. We
recolor x so that ψ(x) := φ(x̃) and now ψ is a proper (k − 1)-coloring of G, which is a contradiction. �

Lemma 6.2. Suppose that G is a minimal counterexample to Theorem 1.7 and xy ∈ E(G) such that (1)
x is in a cluster Cx of size s, (2) degG(y) ≤ k − 2 + s, and (3) if y is in a cluster Cy, then Cy 6= Cx
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and |Cy| = t ≤ s. Then for any k-critical subgraph H ⊆ Gy→x either H is a k-Ore graph or H = Gy→x.
Moreover, H = Gy→x is only possible if degG(y) = k − 1.

Proof. Let G be a minimal counterexample to Theorem 1.7 and let xy ∈ E(G) such that (1) x is in a cluster
Cx of size s, (2) degG(y) ≤ k−2+s, and (3) if y is in a cluster Cy, then Cy 6= Cx and |Cy | = t ≤ s. Let Gy→x

be the graph obtained by cloning x with y. By Lemma 6.1 Gy→x is not (k − 1)-colorable, so there exists a
k-critical subgraph H ⊆ Gy→x. Note that condition (3) ensures that H is smaller than G. Suppose that H
is not a k-Ore graph; we will see that this either leads to contradiction, or implies that degG(y) = k− 1 and
H = Gy→x.

We let R = V (H) − {x̃} and note that R is not a clique because H is not a k-Ore graph. One can
compute that ρG(R) ≤ ρ(H) + k2 − 3k + 4 − ε + δ. Let R′ be a W -critical extension of R with core X .
Because ρ(G) ≤ ρG(R

′) and because H is smaller than G but is not a k-Ore graph, Lemma 4.1 yields the
inequality

[ρ(K|X|) + δT (K|X|)− δ|X |]− k2 + 3k − 4 + ε− δ < ρ(W ). (5)

For 1 < |X | < k − 1, this gives W an ε-potential that is too high for W to be a k-Ore graph by Theorem
1.8. Because W is smaller than G, this contradicts the minimality of G.

Suppose now that |X | = k − 1. Then Observation 2.1 implies that k2 − 3k + kε − kδ < ρ(W ), which
is a contradiction unless W is a k-Ore graph. When W is a k-Ore graph, Equation 5 is almost tight; more
specifically, the difference between the two sides is less than 2(k − 1). Therefore, it follows that R′ is a
spanning and complete W -critical extension, because otherwise the right side is lowered by at least 2(k− 1).

If W is not Kk, Lemma 3.5 implies that D ⊆W is a diamond or emerald of W disjoint from X . Because
W −X ⊆ G, Corollary 5.6 implies that D is an emerald of W . But R′ is a spanning and complete extension,
so degG(x) = k−1 for each x ∈ V (D). ThusD is an emerald of G, which contradicts Corollary 5.6. Therefore
we may assume that W is Kk, and it follows that V (G) = R ∪ {y}. Thus T (H) and T (G) can differ by at
most 1, and it must be that |E(H)| = |E(G)|. This implies that degG(y) = k − 1 and H = Gy→x.

Suppose instead that |X | = 1. We claim that R′ must be a spanning W -critical extension that is at most
k−4
2 -incomplete. For an i-incomplete W -critical extension, we have

ρ(G) ≤ ρG(R
′) ≤ ρ(H) + ρ(W )− 2k + 6− 2i(k − 1)− 2ε+ 2δ, (6)

which because H is smaller than G yields

2k − 6 + 2i(k − 1) + 2ε− 2δ < ρ(W ). (7)

Lemma 5.7 implies that any proper vertex subset that is not a clique must have ε-potential at least ρ(G) +
k2 − 3k + 2 + δ. If R′ is not spanning, the left side of Equation 6, and subsequently Equation 7, can be
increased by k2 − 3k+2+ δ. Thus k2 − k− 4+ 2ε− δ > ρ(W ), which contradicts either Theorem 1.8 or the
minimality of G. So we may assume that R′ is spanning. If i ≥ k−3

2 , then we get k2−2k−3+2ε−2δ < ρ(W )
which also contradicts either Theorem 1.8 or the minimality of G. Therefore R′ is spanning and is at most
k−4
2 -incomplete. In fact, there must be a particular W -critical extension R′ that is k−4

2 -incomplete or k−5
2 -

incomplete, as otherwise R is k−6
2 -collapsible and then there exists a k−4

2 -edge-addition in G by Proposition
5.2 and Lemma 5.3, which contradicts Lemma 5.7.

We choose such an i-incomplete W -critical extension R′ for i ∈
{

k−4
2 , k−5

2

}

. Now Equation 7 becomes
k2 − 4k − 1 + 2ε− 2δ < ρ(W ). This ε-potential does not match the conclusion of Theorem 1.7 so W must
be a k-Ore graph by the minimality of G. As W is a k-Ore graph, Lemma 3.4 implies that D ⊆ W is a
diamond or emerald of W disjoint from X . Corollary implies that 5.6 D is an emerald of W and there must
exist a vertex z in V (G) − V (D) such that xz ∈ E(G) for each x ∈ V (D) with degG(x) = k − 1. However,
R′ is at most k−4

2 -incomplete, so there are at most k−4
2 vertices of D that are not adjacent to z. The set of

edges from these vertices to z is a k−4
2 -edge-addition, which contradicts Lemma 5.7. �

To talk about the different outcomes of a cloning operation, we introduce the following terminology.
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Definition 13. A gadget, H◦, is a graph obtained from a k-Ore graph H by deleting a vertex x of degree
k−1 in a cluster of size at least 2. Note that the requirement of cluster size prevents x from being an overlap
vertex of an Ore composition. A gadget of G is a subgraph of G that is a gadget.

Definition 14. A key vertex of a k-Ore graph H is a vertex x such that, whenever H is an Ore composition
of two graphs H1 and H2 with overlap vertices {a, b}, x ∈ V (H1) − {a, b}. That is, x is on the edge-side of
the composition and is not an overlap vertex. A key vertex of a gadget is a vertex which is a key vertex of
the corresponding k-Ore graph.

Corollary 6.3. Suppose that G is a minimal counterexample to Theorem 1.7 and xy ∈ E(G) such that (1)
x is in a cluster Cx of size s, (2) degG(y) ≤ k − 2 + s, and (3) if y is in a cluster Cy, then Cy 6= Cx and
|Cy| = t ≤ s. Then x is a key vertex of a gadget of G, or x is in a Kk−3 subgraph of G. Moreover, the latter
is only possible if degG(y) = k − 1 and y is not in the Kk−3 subgraph.

Proof. By Lemma 6.2 there is a k-critical graph H ⊆ Gy→x. If H is a k-Ore graph, then H − x̃ is a gadget
of G. Suppose that H is an Ore composition of two k-Ore graphs H1 and H2 with overlap vertices {a, b}. If
x ∈ V (H2) or if x ∈ {a, b}, then ab is a 1-edge-addition in G, which contradicts Lemma 5.5. Because every
vertex of Kk is trivially a key vertex, it follows that x is a key vertex of H − x̃.

If H is not a k-Ore graph, then degG(y) = k− 1 by Lemma 6.2 and thus H and G have the same number
of edges. However, H is smaller than G because s ≥ t. Thus ρ(H) < ρ(G) which is only possible if adding x̃
creates either a Kk−2 or Kk−1 subgraph of H that doesn’t exist in G. In either case, x is in a Kk−3 subgraph
of G that does not contain y. �

To aid with discharging, it is useful to classify the vertices of degree k − 1 in a minimal counterexample
to Theorem 1.7 into three distinct groups.

Definition 15. Let G be a minimal counterexample to Theorem 1.7 and suppose that x ∈ V (G) is a vertex
of degree k−1. Let Cx be the cluster containing x; note that every vertex withing a given cluster is classified
into the same group.

• If x is a key vertex of a gadget or is in a Kk−3 subgraph, then we call x a structure-vertex.

• If x is not a structure-vertex and is adjacent to a vertex y which belongs to a distinct cluster Cy, then
we call x a near-vertex. Note that Corollary 6.3 implies that y is necessarily a structure-vertex and
that |Cx| < |Cy |.

• If x is not a structure-vertex and every neighbor of x with degree k − 1 is in Cx, then we call x a
lone-vertex. Note that |Cx| ≤ k − 4, or x would be a structure-vertex.

Lemma 6.4. Suppose that G is a minimal counterexample to Theorem 1.7 and that x is a structure-vertex
in G. Then x cannot be adjacent to two near-vertices y and z with Cy 6= Cz.

Proof. Let G be minimal counterexample to Theorem 1.7 and suppose that x is a structure-vertex with two
near-vertex neighbors y and z such that Cy 6= Cz . If yz ∈ E(G), then Corollary 6.3 implies that either y or
z is a structure-vertex, which is a contradiction. Therefore we conclude that yz /∈ E(G) and consider Gx→z.
By Lemma 6.1 there is a k-critical subgraph H ⊆ Gx→z , and H cannot include the vertex y. Therefore
|V (H)| < |V (Gx→z)| = |V (G)| and we know that H is smaller than G. This replaces the need for condition
(3) of Lemma 6.2 and Corollary 6.3 and so it follows that z is a structure-vertex, which contradicts the fact
that it is a near-vertex. �

Lemma 6.5. In a minimal counterexample G to Theorem 1.7, let x and y be adjacent vertices such that
degG(x) = k − 1 and NG[x] is not a subset of NG[y]. Then degG(y) ≥ |NG(x) ∩NG(y)|+ 1 + k−3

2 .

Proof. Let G be a minimal counterexample to Theorem 1.7 and let x and y be adjacent vertices such that
degG(x) = k − 1 and w ∈ NG[x] −NG[y]. In any proper (k − 1)-coloring φ of G − x, the vertices of NG(x)
all receive distinct colors. Therefore, some vertex of NG[y]−NG[x] must be in the same color class as w and
adding the edge set S = {wui | ui ∈ NG[y]−NG[x]} to G − x creates a k-critical subgraph. Using Lemma
5.7 we get |S| ≥ k−3

2 , and this gives the desired bound on degG(y). �

15



Lemma 6.6. Let G be a minimal counterexample to Theorem 1.7 and suppose that x is a key vertex in a

gadget of G such that degG(x) = k − 1. Then x has at least k−3
2 neighbors of degree at least 3(k−3)

2 .

Proof. Let G be a minimal counterexample to Theorem 1.7 and let x be a vertex of degree k − 1 which
is a key vertex of a gadget H◦ of G. Let H be the k-Ore graph where H◦ = H − w. If H is an Ore
composition of two graphs H1 and H2 with overlap vertices {a, b}, then w /∈ {a, b} and degH(w) = k − 1 by
the definition of gadget. Further, we must have w ∈ V (H1) because otherwise {ab} is a 1-edge-addition in G
which contradicts Lemma 5.5. Therefore if H ′

2 is the split-side of the composition after separating the split
vertex into a and b, then H ′

2 ⊆ G.
Proposition 3.1 gives a sequence of k-Ore graphs such that H can be viewed as a Kk graph with some

edges replaced by suitable split k-Ore graphs. The same sequence of Ore compositions lets us view H◦ as a
Kk−1 graph H ′ with some edges replaced by the same split k-Ore graphs. Because each step in the sequence
is the edge-side of the subsequent Ore composition, V (H ′) ⊆ V (G). The key vertex x is not an overlap
vertex for any Ore composition, so xu ∈ E(G) for each u ∈ V (H ′) − {x}. Therefore x has one neighbor
z ∈ V (G) − V (H◦). We partition the vertices of H ′ into two sets A := {u ∈ V (H ′) | uz ∈ E(G)} and
B := V (H ′)−A. Note that in any proper (k − 1)-coloring of H◦, each vertex of H ′ gets a distinct color.

First, we show that V (G) = V (H◦)∪{z} is not possible. Suppose, for sake of contradiction that V (G) =
V (H◦)∪{z}. If H = Kk, then this implies that G is also Kk, which is a contradiction. Therefore H is an Ore
composition of two k-Ore graphs H1 and H2 with overlap vertices {a, b}. Because ρ(G) > k(k− 3)− 2(k− 1)
by hypothesis and ρ(H) ≤ k(k − 3)− 2δ + ε by Theorem 1.8, it follows that |E(G)| = |E(H)| and therefore
degG(z) = k − 1. By Lemma 5.1, {a, b} is not a cutset, so there exists some zv with v ∈ V (H2).

Let φ be a proper (k − 1)-coloring of H◦. If φ(v) /∈ {φ(a), φ(b)}, then it is possible to relabel the colors
on split-side vertices only so that φ(v) = φ(x). But this updated coloring would then extend to z, as two
of z’s neighbors share a color. Therefore, where H is an Ore composition of two k-Ore graphs H1 and H2

with overlap vertices {a, b}, any neighbor v of z with v ∈ V (H2) is colored the same as either a or b by any
proper (k − 1)-coloring of H◦. This implies that {za, zb, ab} is a 3-edge-addition which contradicts Lemma
5.7 because k ≥ 10.

Therefore V (H◦) ∪ {z} is a proper subset of V (G). But if follows from this that {zb | b ∈ B} is a |B|-
edge-addition in G. By Lemma 5.7, we have |B| ≥ k−3

2 . By Lemma 6.5, degG(b) ≥ |NG(x)∩NG(b)|+1+ k−3
2

for each b ∈ B. If b is adjacent to each vertex in V (H ′), then |NG(x) ∩NG(b)| = k− 3 and we get one more
than the desired bound. For any u ∈ V (H ′) that is not in NG(b), H is an Ore composition of two k-Ore
graphs H1 and H2 with overlap vertices {u, b}. Let H ′

2 be the split side of the composition after separating
the split vertex into u and b; note that H ′

2 ⊆ G. In any proper (k − 1)-coloring of H ′
2, different colors are

given to u and b and thus {uv | v ∈ NH′

2
(b)} is a |NH′

2
(b)|-edge-addition in G. By Lemma 5.7, it follows

that |NH′

2
(b)| ≥ k−3

2 . However, the vertices in |NH′

2
(b)| may also include the k−3

2 vertices in NG(b)−NG(x)

counted by Lemma 6.5. Therefore, we conclude that degG(b) ≥
3(k−3)

2 . �

Lemma 6.7. If x is in a Kk−3 subgraph D ⊆ G, where G is a minimal counterexample to Theorem 1.7 and

degG(x) = k − 1, then x has at least k−9
6 neighbors of degree at least 3(k−3)

2 − 1. Furthermore, if x has a

neighbor y ∈ V (G)−V (D) which is in a different cluster, then x has at least k−7
2 neighbors of degree at least

3(k−3)
2 − 1.

Proof. Let G be a minimal counterexample to Theorem 1.7 such that x is a vertex of degree k− 1 in a Kk−3

subgraph D. Let z1, z2, z3 be the three neighbors of x in V (G)− V (D). We partition the vertices of D into
two sets A := {u ∈ V (D) | uzi ∈ E(G) for each i ∈ {1, 2, 3}}, and B := V (D) − A. By Lemma 6.5, each

b ∈ B has degree at least (k − 5) + 1 + k−3
2 = 3(k−3)

2 − 1. It remains to show that B is a large enough set.
The edges {z1z2, z1z3, z2z3} and bzi for each pair b ∈ B, i ∈ {1, 2, 3} form a (3 + 3|B|)-edge-addition in

G, so it follows from Lemma 5.7 that |B| ≥ k−9
6 . Now suppose without loss of generality that z1 = y is a

vertex of degree k− 1 that is in a different cluster than x. Because there is at least one vertex in B, Lemma
6.5 implies that degG(z1) ≥ (|A| − 1) + 1 + k−3

2 . But degG(z1) = k − 1, so it follows that |A| ≤ k+1
2 . As

A ∪B = V (D), this implies that |B| ≥ k−7
2 . �
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7 Discharging

We start by analyzing the local structure of a minimal counterexample to Theorem 1.7. Then we complete
the discharging argument in two stages; in the first stage we send charge along edges according to established
rules, and in the second stage we average charge across the graph. We define a charge function w : V (G) → R

so that for all v ∈ V (G)
w(v) := (k − 2)(k + 1) + ε− degG(v)(k − 1).

Note that the total initial charge across G is ρ(G) + δT (G), and that the charge of a vertex x with degree d
is w(x) = (k − d)(k − 1)− 2 + ε.

We now define the four sets we need to address in the second stage of discharging.

L := {v ∈ V (G) | v is a lone-vertex in a cluster of size 1},

M := {v ∈ V (G) | v is a lone-vertex in a cluster of size 2},

P := {v ∈ V (G) | degG(v) = k},

Q := {v ∈ V (G) | degG(v) = k + 1}.

Let R be the set V (G)− (L ∪M ∪ P ∪Q) which contains the remaining vertices of G.
Discharging Rule #1 (R1) Every vertex of degree at least k + 2 reserves charge of −2 + ε and sends

the remaining charge equally to all neighbors.
Discharging Rule #2 (R2): Every structure-vertex sends total charge −(k− 1) spread equally among

all neighbors that are near-vertices.
For each vertex v, define w′(v) to be the charge after applying (R1) and (R2) to G. Note that a vertex

of degree d which follows (R1) sends out charge (k
d
− 1)(k − 1) to each of its neighbors. Also note that if a

structure-vertex x sends charge to a near-vertex y, then |Cx| > |Cy |.

Lemma 7.1. Apply (R1) and (R2) to a minimal counterexample to Theorem 1.7 G with charge function w
as above. For every vertex v ∈ V (G) − (L ∪M ∪ P ∪Q), the new charge w′(v) is at most −2 + ε.

Proof. Let G be a minimal counterexample to Theorem 1.7 with charge function w : V (G) → R as above,
and apply (R1) and (R2). If v is a vertex with degG(v) ≥ k+2, then by (R1) it follows that w′(v) ≤ −2+ ε.
The cases that we need to check are when v has degree k − 1 and is either a structure-vertex, near-vertex,
or lone-vertex in a cluster of size at least 3.

Case 1a. Suppose that v is a structure-vertex that is a key vertex of a gadget of G.

By Lemma 6.6, the vertex v has at least k−3
2 neighbors of degree at least 3(k−3)

2 ; we will call these high-
degree neighbors. For k ≥ 27, high-degree neighbors have degree at least 4

3k. Therefore v receives charge of
−1
4 (k − 1) or less from each high-degree neighbor by (R1). The vertex v possibly sends charge −(k − 1) by
(R2) as well. Therefore it follows that

w′(v) ≤ k − 3 + ε−

(

k − 1

4

)(

k − 3

2

)

+ (k − 1) =
−1

8
(k − 1)(k − 19)− 2 + ε.

Because k ≥ 19, we have w′(v) ≤ −2 + ε as desired.

Case 1b. Suppose that v is a structure-vertex that is in a Kk−3 subgraph of G.

By Lemma 6.7, the vertex v has at least k−9
6 neighbors of degree at least 3(k−3)

2 − 1; we will call these
high-degree neighbors. For k ≥ 33, high-degree neighbors have degree at least 4

3k. As long as v is not affected
by (R2) we have

w′(v) ≤ k − 3 + ε−

(

k − 1

4

)(

k − 9

6

)

=
−1

24
(k2 − 34k + 33)− 2 + ε3

Because k ≥ 33, we have w′(v) ≤ −2 + ε as desired.
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If v is affected by (R2), then v has a neighbor outside of the Kk−3 which is in a different cluster, and by
Lemma 6.7 there are at least k−7

2 high-degree neighbors. In this case we have

w′(v) ≤ k − 3 + ε−

(

k − 1

4

)(

k − 7

2

)

+ (k − 1) =
−1

8
(k2 − 24k + 23)− 2 + ε.

Because k ≥ 23, we have w′(v) ≤ −2 + ε as desired.

Case 2. Suppose that v is a near-vertex.
Let v be in a cluster Cv of size t and let u be an adjacent structure-vertex in a cluster Cu of size s. By

(R2) each vertex of Cv, including v, receives a charge of −(k−1)
r

from each vertex of Cu. Because s > r, the
final charge on v is

w′(v) ≤ k − 3 + ε−
s(k − 1)

r
< −2 + ε.

Case 3. Suppose that v is a lone-vertex in a cluster Cv of size r, where r ≥ 3.
By definition of lone-vertex, v does not have any neighbors y in a cluster Cy with Cy 6= Cv. Let

y1, y2, . . . yk−r be the neighbors of v in V (G)−Cv . By Corollary 6.3 no yi has degree less than k−1+r, as this

would imply that v is a structure-vertex. Therefore, by (R1), each yi sends charge at most
(

k
k−1+r

− 1
)

(k−1)

to v. It follows that the upper bound on w′(v) is

ŵ′(v) ≤ k − 3 + ε+

(

1− r

k − 1 + r

)

(k − 1)(k − r).

The second derivative of ŵ′(v) with respect to r is positive for all k > 1, so we only need to check that
ŵ′(v) := −2 + ε for r = 3 and r = k − 4. For r = 3 we have

ŵ′(v) = k − 3 + ε+
−2(k − 1)(k − 3)

k + 2
= −2 + ε+

(k − 1)(8− k)

k + 2

and for r = k − 4 we have

ŵ′(v) = k − 3 + ε+
(5− k)(k − 1)4

2k − 5
= −2 + ε+

(k − 1)(15− 2k)

2k − 5
.

Because k ≥ 8, we get w′(v) ≤ −2 + ε as desired. �

Lemma 7.1, specifically Case 1b, restricts our main result to k ≥ 33. Although there is approximation in
the proof of this case, using a computer algebra system one can check that the result only holds for k ≥ 33;
we paid no penalty in strength of argument by using simplified calculations. Now that we have verified the
charge for vertices in R, we need to examine the charge on L,M,P,Q to calculate the total charge. This
gives us a lower bound on the combined size of L and P .

Lemma 7.2. In a minimal counterexample G to Theorem 1.7, let L be the set of lone-vertices in clusters
of size 1 and let P be the set of vertices of degree k. Then |L|+ |P | > |V (G)|

(

1− ε
2

)

.

Proof. For each x ∈ L ∪M , every vertex in NG(x) ∩R has degree at least k + 2, so a charge of − 2(k−1)
k+2 or

less is sent along each edge from R to L ∪M . Let e(L ∪M,R) denote the number of such edges. The total
charge on G is bounded by

∑

v∈V (G)

w(v) =
∑

v∈V (G)

w′(v) ≤ ε|V (G)| − 2|R|+ (k − 3)(|L|+ |M |)− 2|P |

− (k + 1)|Q| −
2(k − 1)

k + 2
e(L ∪M,R). (8)
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Note that no vertex in M is adjacent to any vertex in P by Corollary 6.3. Thus it follows that

e(L ∪M,R) = (k − 1)|L| − e(L, P ∪Q) + (k − 2)|M | − e(M,Q). (9)

It is clear that e(L, P ∪ Q) ≤ (k − 1)|L|, and Lemma 2.2 shows that e(L, P ∪ Q) ≤ 2|L| + 2|P | + 3|Q|
(calculations are simpler when we increase the contribution of the independent set L). Then it follows that

e(L, P ∪Q) ≤
k − 4

2(k − 1)
(k − 1)|L|+

(

1−
k − 4

2(k − 1)

)

(2|L|+ 2|P |+ 3|Q|) . (10)

Using Lemma 2.2 we can also bound e(M,Q) ≤ |M |+3|Q| . With this, Equation 9, and Equation 10 we
can rewrite Equation 8 as

∑

v∈V (G)

w(v) ≤ ε|V (G)| − 2|R|+ (k − 3)(|L|+ |M |)− 2|P | − (k + 1)|Q|

− (k − 3)|L|+ 2|P | −
2(k2 − 4k + 3)

k + 2
|M |+

9k

k + 2
|Q|

= ε|V (G)| − 2|R| −
k2 − 7k + 12

k + 2
|M | −

k2 − 6k − 2

k + 2
|Q|. (11)

As the coefficients of |M | and |Q| are both at most -2 for k > 8, we have

ε|V (G)| − 2(|V (G)| − |L| − |P |) ≥
∑

v∈V (G)

w(v) = ρ(G) + δT (G) > 0.

From this, it follows that |L|+ |P | > |V (G)|
(

1− ε
2

)

. �

We are now prepared to prove Theorem 1.7.

Proof of Theorem 1.7. We first get a bound on the set L. It is clear that 2|E(G)| ≥ k|P |+ (k − 1)|L|, so by
Lemma 7.2 it follows that

2|E(G)| > k|V (G)|
(

1−
ε

2

)

− |L|. (12)

By assumption ρ(G) > 0, so 2|E(G)| <
(

k + ε−2
k−1

)

|V (G)| by the definition of ε-potential. Combining

this with Equation 12, we have

|L| >
|V (G)|

k − 1

(

2− ε−
ε(k2 − k)

2

)

.

Recall that mic(G) is the maximum of
∑

v∈I degG(v) over all independent vertex subsets I, so mic(G) ≥
(k−1)|L|. Kierstead and Rabern (Theorem 2.4 in [4]) show that 2|E(G)| > (k−2)|V (G)|+mic(G). Therefore
we can improve Equation 12 to

2|E(G)| > |V (G)|

(

(k − 2) + 2− ε−
ε(k2 − k)

2

)

.

Again, because ρ(G) > 0 the definition of ε-potential shows that

(

k +
ε− 2

k − 1

)

|V (G)| > |V (G)|

(

(k − 2) + 2− ε−
ε(k2 − k)

2

)

and hence
ε− 2

k − 1
> −ε−

ε(k2 − k)

2
.

This is equivalent to
4

k3 − 2k2 + 3k
< ε,

which is a contradiction to our choice of ε. �
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