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Abstract

A quadrangular embedding of a graph in a surface Σ, also known as a quadrangulation of

Σ, is a cellular embedding in which every face is bounded by a 4-cycle. A quadrangulation of

Σ is minimal if there is no quadrangular embedding of a (simple) graph of smaller order in

Σ. In this paper we determine n(Σ), the order of a minimal quadrangulation of a surface Σ,

for all surfaces, both orientable and nonorientable. Letting S0 denote the sphere and N2 the

Klein bottle, we prove that n(S0) = 4, n(N2) = 6, and n(Σ) = ⌈(5 +
√

25− 16χ(Σ))/2⌉ for all

other surfaces Σ, where χ(Σ) is the Euler characteristic. Our proofs use a ‘diagonal technique’,

introduced by Hartsfield in 1994. We explain the general features of this method.

Keywords: surface, quadrangular embedding, minimal quadrangulation

1 Introduction

All graphs considered in this paper are simple. Let G be a graph with vertex set V (G) and edge

set E(G). For convenience, we use Ek to denote a subset of E(G) with exactly k edges. A surface

is a connected compact 2-manifold without boundary. The orientable surface of genus g is denoted

Sg, and the nonorientable surface of genus q is denoted Nq. The Euler characteristic of a surface

Σ is denoted χ(Σ), which is 2 − 2g for Sg, and 2 − q for Nq. The Euler genus of Σ is defined as

γ(Σ) = 2− χ(Σ).

An embedding of a graph in a surface Σ is cellular if every face of the embedding is homeomorphic

to an open disc. All embeddings considered in the paper are cellular. An embedding is quadrangular,

or a quadrangulation of Σ, if every face is bounded by a 4-cycle. A face bounded by a 4-cycle is

a quadrangle, or to use a shorter word, a square. A quadrangulation of Σ is minimal if there is

no quadrangular embedding of a graph of smaller order in Σ. Similarly, a triangulation of Σ is an

embedding of a graph in Σ such that every face is bounded by a 3-cycle. A triangulation of Σ is

minimal if there is no triangular embedding of a graph with a smaller order in Σ.
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Thomassen [26, 27] showed that given a graph G and an integer k, it is NP-complete to determine

whether G has an embedding in a surface of orientable (or nonorientable) genus at most k. In

other words, determining the minimum genus of an embedding of G is difficult. A minimum genus

embedding of a graph maximizes the number of faces over all its embeddings, and hence often has

many small faces. Triangular embeddings of a given G are always minimum genus embeddings.

However, we can also consider triangular embeddings from the perspective of surfaces. Peschl (see

[9]) asked how many vertices a triangulation of a given surface Σ must have.

A triangular embedding of a complete graph Kn in a given surface Σ is both a minimum genus

embedding of Kn, and a minimum order triangulation of Σ. Such embeddings played a key role in

the proof of the Map Color Theorem (see [25]). These embeddings were generalized in two ways.

For some values of n, there is no triangular embedding of Kn, so to determine the minimum genus

of Kn, embeddings were used where most, but not all, of the faces are triangular (again see [25]).

For most surfaces Σ, there is no complete graph with a triangular embedding in Σ, so to find

minimal triangulations of Σ we must use graphs close to complete graphs. Ringel [22] did this for

nonorientable surfaces, and Jungerman and Ringel [9] for orientable surfaces.

Quadrangular embeddings are also of interest. For bipartite graphs, quadrangular embeddings

have minimum genus. For non-bipartite graphs, quadrangular embeddings have minimum genus over

all embeddings with face degrees 4 or more, or with even face degrees. Ringel [23, 24] determined

the minimum genus of complete bipartite graphs, which used quadrangular embeddings in many

cases; Bouchet [1] provided a simpler proof. Quadrangular embeddings of nearly complete bipartite

graphs and graphs obtained from some graph operations were studied in [2, 19, 20, 21, 28, 29].

Hartsfield and Ringel [6, 7] found quadrangular embeddings of the complete graph Kn in orientable

surfaces for n ≡ 5 (mod 8), and in nonorientable surfaces for n ≡ 1 (mod 4) and n 6= 1, 5. They

also found both orientable and nonorientable quadrangular embeddings of the general octahedral

graph O2n, obtained by removing a perfect matching from K2n. Using the ‘diagonal technique’,

which we discuss in more detail below, Hartsfield [4] outlined a proof that a complete multipartite

graph Kn1,n2,...,nt
with an even number of edges, other than K5 and K1,m,n, has a quadrangular

embedding in a nonorientable surface. This includes nonorientable quadrangular embeddings of Kn

when n ≡ 0 (mod 4). Korzhik and Voss [10, 11] constructed exponentially many nonisomorphic

quadrangular embeddings of the complete graph K8s+5.

Recently, the authors and others [15] determined the minimum genus of an embedding of Kn

with even face degrees. (Lawrencenko, Chen and Yang, a subset of the authors of [15], also have

alternative current graph proofs [13] of some of these results, although some modification of the

index 2 current graphs is required.) This completed the proof of the Even Map Color Theorem, a

strengthening of the Map Color Theorem for embeddings with even face degrees, and included a

complete characterization of when Kn has a quadrangular embedding.

Theorem 1.1 ([6, 7, 15]). The complete graph Kn has a quadrangular embedding in an orientable

surface if and only if n ≡ 0 or 5 (mod 8), and in a nonorientable surface if and only if n ≡ 0 or

1(mod 4) and n 6= 1, 5.

The quadrangular embeddings of the complete graphs Kn and the general octahedral graphs

O2n given in [6, 7, 15] are all minimal quadrangulations of surfaces. Other prior results on minimal
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quadrangulations, for which we provide details later in this section, appear in [6, 12, 15]. The

purpose of this paper is to construct, and hence determine the order of, minimal quadrangulations

for all surfaces. Our main results are as follows; Theorem 1.2 provides the embeddings needed to

prove Theorems 1.3 and 1.4.

Theorem 1.2. Let (n, t) be a pair of integers with n ≥ 4 and 0 ≤ t ≤ n− 4.

If t ≡ 1

2
n(n−5) (mod 4) then there is an orientable quadrangular embedding of an n-vertex graph

with
(
n

2

)
− t edges. There is also a quadrangulation of S0 for (n, t) = (4, 2).

If t ≡ 1

2
n(n − 5) (mod 2) then there is a nonorientable quadrangular embedding of an n-vertex

graph with
(
n
2

)
− t edges, unless (n, t) = (5, 0), in which case no such embedding exists. There is also

a quadrangulation of N2 for (n, t) = (6, 3).

Theorem 1.3. Let Σ be a surface with Euler characteristic χ(Σ) and Euler genus γ(Σ). Let n(Σ)

be the number of vertices of a minimal quadrangulation of Σ. If Σ 6= S0 and N2, then

n(Σ) =

⌈
5 +

√
25− 16χ(Σ)

2

⌉
=

⌈
5 +

√
16γ(Σ)− 7

2

⌉
.

Moreover, n(S0) = 4 and n(N2) = 6.

An embedding is face-simple if its dual is simple, i.e., two face boundaries share at most one

edge. We can strengthen Theorem 1.3 slightly in the orientable case.

Theorem 1.4. Let n′(Σ) be the minimum number of vertices of a face-simple quadrangular embed-

ding of a simple graph in Σ. Then n′(S0) = 8 and n′(Sg) = n(Sg) for all g ≥ 1.

We show in Section 2 that all quadrangulations given in Theorem 1.2 are minimal, and that

this proves Theorems 1.3 and 1.4. The main tool used to prove Theorem 1.2 is an approach due to

Hartsfield, which we call the ‘diagonal technique’ and describe in Section 3. As we explain there,

Hartsfield wrote two papers (one published, one not) using this idea, but her papers did not contain

complete proofs. One of the contributions of this paper is to provide an explicit overview of how the

diagonal technique works, and to demonstrate the rigorous use of this method. The actual proof of

Theorem 1.2 is in Section 4, divided into orientable and nonorientable cases. Section 5 gives some

final remarks regarding Theorem 1.4.

Prior results on minimal quadrangulations proved some special cases of Theorem 1.2, constructing

quadrangulations with n vertices and
(
n

2

)
− t edges for suitable t. Theorem 1.1 deals with the case

t = 0, and Hartsfield and Ringel’s results on octahedral graphs [6, 7] deal with the case where n

is even and t = n/2. They also proved the orientable case when n is even and t = n/2 + 4 [6,

Section 6]. Lawrencenko [12] used a result originally due to White [29], which can also be proved

using Craft’s graphical surface technique [2], to prove the orientable cases where n is even and

n/2 ≤ t ≤ n − 4. Liu et al. [15, Corollary 7.2] extended this idea to prove the nonorientable cases

where n is even, n/2 ≤ t ≤ n− 4, and t ≡ 1

2
n(n− 5) (mod 4) (but not t ≡ 2 + 1

2
n(n− 5) (mod 4)).

Moreover, [15, Corollary 7.3] handles all cases (orientable and nonorientable) where 8 |n and 16 | t,
and [15, Corollary 7.4] handles all nonorientable cases where t = n−4 and all orientable cases where

n− 6 ≤ t ≤ n− 4.
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Note that Magajna, Mohar and Pisanski [18] solved a problem related to minimal quadrangu-

lations, by showing that for every surface Σ the minimum number of vertices of a bipartite graph

with a quadrangular embedding in Σ is ⌈4 +
√
16− 8χ(Σ)⌉.

2 Relationship between the main theorems

In this section we show that the quadrangulations described in Theorem 1.2 are minimal, and that

Theorem 1.2 implies Theorems 1.3 and 1.4. Suppose we have a quadrangular embedding in a surface

Σ with n vertices, m =
(
n

2

)
− t edges, and r faces. Counting sides of edges gives 2m = 4r or r = 1

2
m,

and so from Euler’s formula χ(Σ) = n−m+ r = n− 1

2
m. Hence

−2χ(Σ) = m− 2n =

(
n

2

)
− t− 2n = 1

2
n(n− 5)− t. (1)

We have a sufficient condition for such an embedding to be minimal.

Lemma 2.1 ([15, Lemma 7.1]). Suppose that n ≥ 5, 0 ≤ t ≤ n− 4, and L is a graph with n vertices

and m =
(
n
2

)
− t edges. Then any quadrangular embedding of L is minimal.

We now consider properties of the right-hand side of (1).

Lemma 2.2. Let f(x) = 1

2
x(x − 5), defined on [3,∞).

(a) If n ≥ 3 is an integer, then f(n) is an integer.

(b) For every real number y > f(3) = −3 there exists a unique pair (n, t) where n ≥ 4 is an integer,

0 ≤ t < n− 3, and y = f(n)− t. Moreover, n = ⌈f−1(y)⌉ =
⌈
5 +

√
25 + 8y

2

⌉
.

(c) Therefore, if k ≥ −2 is an integer there exists a unique pair of integers (n, t) where n ≥ 4,

0 ≤ t ≤ n− 4, and k = f(n)− t (or 1

2
n(n− 5) = t+ k). Moreover, n =

⌈
5 +

√
25 + 8k

2

⌉
.

Proof. For (a), if n is an integer then 2f(n) = n(n− 5) is even, so f(n) is an integer. For (b), since

f ′(x) = x − 5

2
> 0 on [3,∞), f is strictly increasing, and clearly f(x) → ∞ as x → ∞. Therefore,

every y > f(3) lies in a unique interval (f(n − 1), f(n)] = (f(n) − (n − 3), f(n)] for some integer

n ≥ 4, so that y = f(n)−t where 0 ≤ t < n−3. Moreover, n−1 < f−1(y) ≤ n so that n = ⌈f−1(y)⌉,
and f−1(y) is found by the quadratic formula. Now (c) follows from (a) and (b).

Proof that Theorem 1.2 implies Theorem 1.3. A quadrangulation has n ≥ 4 vertices, so the special

case (n, t) = (4, 2) and regular case (n, t) = (4, 0) of Theorem 1.2 verify Theorem 1.3 for Σ = S0 and

N1, respectively. By equation (1) a quadrangulation of N2 must have 1

2
n(n− 5) = −2χ(N2) + t =

t ≥ 0, so n ≥ 5, and if n = 5 then t = 0. By Theorem 1.2 there is no quadrangulation of N2 for

(n, t) = (5, 0), so the one for (n, t) = (6, 3) is minimal, verifying Theorem 1.3 for Σ = N2.

So assume Σ 6= N2 is a surface with χ = χ(Σ) ≤ 0. Applying Lemma 2.2(c) with k = −2χ ≥ 0,

there are integers n and t that satisfy equation (1) (or 1

2
n(n − 5) = t − 2χ) and 0 ≤ t ≤ n − 4.

Moreover, n =

⌈
5 +

√
25− 16χ

2

⌉
≥ 5. If Σ is orientable then χ is even, so 1

2
n(n − 5) = t− 2χ ≡ t

(mod 4). Thus, the first part of Theorem 1.2 gives an orientable quadrangulation with n vertices

and
(
n

2

)
− t edges. This is embedded in Σ by (1), minimal by Lemma 2.1, and has order n satisfying

Theorem 1.3. We use the second part of Theorem 1.2 in a similar way when Σ is nonorientable.
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We also verify Theorem 1.4, using the following.

Observation 2.3 ([15, Observation 3.4]). Suppose Φ is a quadrangular embedding of a simple

connected graph with minimum degree at least 3. If Φ is not face-simple then it contains two squares

of the form uvwx and uvxw. Thus, if Φ is orientable or bipartite then it is face-simple.

Proof of Theorem 1.4. Suppose Φ is a face-simple quadrangulation of S0 with n vertices, m edges

and r faces. By Euler’s formula m = 2n− 4 and r = 1

2
m = n− 2. Let H be the underlying graph of

the dual Φ∗. Then r = |V (H)| ≥ 6, because H is a 4-regular simple graph that is planar and hence

not K5. Hence n = r + 2 ≥ 8, and the usual quadrangular embedding of the cube (whose dual is

the octahedron, which is simple) has n = 8. Thus, n′(S0) = 8.

For g ≥ 1, we know from above that there is a minimal quadrangulation Φ of Sg as in Lemma

2.1. Since the underlying graph is obtained from a complete graph by deleting at most n− 4 edges,

the edge-connectivity, and hence also the minimum degree, is at least (n− 1)− (n− 4) = 3, and so

Φ is face-simple by Observation 2.3. Thus, n′(Sg) = n(Sg).

3 Hartsfield’s diagonal technique

In this section, we describe the operations that form part of a method introduced by Hartsfield

[4, 5], which we will call the diagonal technique. This technique applies specifically to constructing

embeddings that are quadrangular, or where most faces are squares (quadrangles).

This technique was used by Hartsfield in two papers, one published [4] and one not [5]. In

[4] Hartsfield claimed to construct nonorientable quadrangular embeddings of almost all complete

multipartite graphs with an even number of edges, except for K5 and complete tripartite graphs

K1,m,n. This included complete graphs Kn with n ≡ 0 (mod 4) (for n ≡ 1 (mod 4) Hartsfield

used embeddings from [7]). In [5] Hartsfield claimed to construct both orientable and nonorientable

minimum genus embeddings with all faces of degree 4 or more for Kn, n ≥ 4. Unfortunately

Hartsfield did not provide rigorous proofs in either of these papers. She illustrated the proof ideas

with small examples, and seemed to assume that it was clear how to generalize these. But she did

not provide an explicit overview of how the constructions are supposed to work and so from her

papers it is hard to see how to extend the small examples. Sadly, Hartsfield died in 2011, so she

cannot provide further elucidation. But we have distilled the main ideas from what she wrote, and

we provide an outline at the end of this section, after defining necessary concepts and operations.

We hope that rigorous versions of Hartsfield’s proofs will appear eventually. Lawrencenko et

al. [14] are preparing a paper that gives alternative proofs for the main result of [15], which deter-

mined the minimum genus for orientable and nonorientable embeddings with all faces of even degree,

and with all faces of degree at least 4, for complete graphs. This includes Theorem 1.1 as a special

case. These alternative proofs are based both on current graphs as in [13], and on Hartsfield’s proof

outlines from [5] which use the diagonal technique.

As a byproduct, our results in this paper also provide a proof of Theorem 1.1 using Hartsfield’s

diagonal technique. However, since our goal is the construction of minimal quadrangulations, rather

than embeddings of complete graphs with minimum genus subject to all faces having degree at least
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4, our proof differs significantly from those in [4, 5, 14]. We add two vertices at a time, rather than

eight, and we use additional operations (handle additions of Type III and crosscap additions; see

below).

We now introduce some definitions that we will need to implement the diagonal technique. Let Φ

be a quadrangulation of a surface Σ. Every face of Φ is a square, bounded by a 4-cycle. We describe

squares by listing their vertices in order around the boundary. For an orientable embedding, we

always list the vertices in clockwise order.

Two nonadjacent vertices vi and vj of a square form a diagonal, denoted by di(vivj). The

square is called the underlying square of di(vivj). Clearly, each diagonal depends on an underlying

square and this underlying square may be not unique. For example, in Figure 1, di(v1v3) has

three different underlying squares. When it will not cause confusion, we pinpoint a diagonal but do

not explicitly mention its underlying square. If we do wish to indicate the underlying square, we

write di(vivj , vivkvjvℓ). A diagonal set is a set of diagonals that have different underlying squares.

A diagonal set is full if it contains at least one diagonal incident with every vertex, perfect if it

contains exactly one diagonal incident with every vertex, and vi-nearly-perfect if it contains no

diagonal incident with vi and exactly one diagonal incident with every vertex not equal to vi.

v1 v2

v3v4

vi

vj

Figure 1: Disc addition

Operation 1: Disc addition

Let f = v1v2v3v4 be a square of the quadrangulation Φ of a surface Σ. Add two new vertices vi

and vj into the interior of the square f , and then join vi and vj to the diagonal di(v1v3) of f by four

new edges v1vi, v1vj , v3vi and v3vj . The square f is divided into three new squares f1 = v1v2v3vi,

f2 = v1viv3vj and f3 = v1vjv3v4. All the new squares fi with i ∈ {1, 2, 3} have di(v1v3) as one of

their diagonals. This operation is called a disc addition (Hartsfield called this a planar addition).

Applying a disc addition to a square of Φ generates a new quadrangulation of the same surface Σ,

with the same genus. See Figure 1 for an illustration. Disc additions preserve di(v1v3) as a diagonal,

although the underlying square may change. Usually we add di(vivj) to the current diagonal set.

Operation 2: Handle addition

Let f1 = v1v2v3v4 and f2 = u1u2u3u4 be two squares of Φ. First, cut the open discs bounded

by f1 and f2 along their boundaries and remove them from the surface Σ. Second, add a handle

(cylinder) by identifying its two boundaries with the boundaries of f1 and f2 respectively. Finally,

add four new edges on the handle, each joining a vertex of f1 to a vertex of f2, so that all resulting

faces are squares. This operation is called a handle addition. The resulting embedding is also a
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quadrangular embedding. After applying a handle addition, the genus of the new quadrangular

embedding increases by one if Σ is orientable, and by two if Σ is nonorientable.

We represent handle additions by the planar diagrams shown in Figure 2. One of the two original

squares is called the outer square (f1 = v1v2v3v4 in Figure 2) and the other is called the inner square

(f2 = u1u2u3u4 in Figure 2). The handle is the annular region between the outer and inner squares.

If the initial embedding is nonorientable, we may use the vertices of the inner and outer squares in

either order, as convenient, and the resulting embedding is always nonorientable.

If the initial embedding is orientable we must take more care. Usually we want the resulting

embedding to also be orientable. When we add a handle to an orientable surface Σ to create a new

orientable surface, a given direction around the handle corresponds to the clockwise direction in Σ

at one end of the handle and the counterclockwise direction in Σ at the other end. In particular,

consider the clockwise direction around a handle as represented in the figure. We assume this

corresponds to the clockwise direction in Σ for the outer square; then it must correspond to the

counterclockwise direction in Σ for the inner square. So if v1v2v3v4 and u1u2u3u4 are in clockwise

order in Σ, the figure has v1v2v3v4 and u1u4u3u2 in clockwise order. For the new squares created

by a handle addition, the clockwise order of their vertices in the new surface is the clockwise order

in the figure. If we did use clockwise order u1u2u3u4 for the inner square in the figure, we would

add a twisted handle, and the new embedding would be nonorientable.

v1 v2

v3v4

u1

u2 u3

u4

v1 v2

v3v4

u1

u2 u3

u4

v1 v2

v3v4

u1

u2 u3

u4

v1 v2

v3v4

u1

u2 u3

u4

Type I Type II Type IVType III

(a) (b) (d)(c)

Figure 2: The four types of handle additions

For two given squares, there are four different types of handle additions between them based

on the new edge connections, which are listed in Figure 2. If we wish to be specific, we use the

labels in the figure and refer to a handle addition of Type I, II, III or IV, as appropriate. (Our

Types I, II and IV correspond to Hartsfield’s Types 1, 2 and 3, respectively. Hartsfield did not use

handle additions of Type III.) Handle additions of Types I and III preserve di(v1v3) and di(u2u4)

as diagonals, although the underlying squares may change. Handle additions of Type II preserve

di(v1v3) and di(u1u3). Handle additions of Type IV are not guaranteed to preserve diagonals of f1

or f2.

Operation 3: Crosscap addition

Let f = v1v2v3v4 be a square of Φ. Cut a disc from the interior of the square f1, which leaves

the surface Σ with a hole. Then identify antipodal points of the boundary of the hole, which

generates a crosscap inside of f . Finally, add two new edges v1v3 and v2v4 passing through the

7



new crosscap. This operation is called a crosscap addition. See Figure 3. The resulting embedding

is a nonorientable quadrangular embedding, and the Euler characteristic decreases by one (so the

genus increases by one if the original embedding was also nonorientable). Neither diagonal of f is a

diagonal of either of the new squares. (Hartsfield did not use crosscap additions.)

v2v1

v3v4

Figure 3: Crosscap addition

Outline of the diagonal technique

We now provide a brief overview of the diagonal technique, using the concepts and operations

defined above. The idea is to replace squares in a known embedding by new squares while adding

edges and sometimes also vertices. In this paper the known embedding will be a quadrangulation,

but in general it may have some faces that are not squares. All or most of the vertices of the known

embedding are partitioned into a diagonal set of vertex pairs, so that the vertices in each pair occur

as diagonally opposite vertices in an existing square. New vertices are first added in pairs using

disc additions, adding pairs to the diagonal set. Then most edges incident with the new vertices are

added using handle additions of Type I. Each such addition usually takes two pairs of vertices in the

current diagonal set, uses an underlying square of one pair as the outer square and an underlying

square of the other pair as the inner square, and adds four edges between the two pairs.

A small number of edges may be added using handle additions of Types II, III and IV and (in

the nonorientable case) crosscap additions. Often the exact details (in particular, which underlying

square is used for each diagonal pair) of the handle additions of Type I do not matter, so they can be

done in a fairly arbitrary way, except that the necessary faces must be constructed for any additions

of handles of Types II, III and IV and crosscaps.

Hartsfield’s diagonal technique is particularly suited for constructing minimal quadrangulations,

because it adds four (or sometimes two) edges at a time, which is precisely what we need to get the

embeddings described in Theorem 1.2. The ‘graphical surface’ construction due to Craft [2], which

was used in [12, 15] to construct some minimal quadrangulations, can be regarded as a special case

of the diagonal technique. It is just the case where we start with an embedding of C4 in the sphere

and use only disc additions and handle additions of Type I that preserve the current diagonal set.

Hartsfield’s diagonal technique belongs to a more general class of methods that construct em-

beddings, particularly orientable embeddings, by adding handles, sometimes called tubes, that carry

specific edges. We mention a few examples of such methods. White [28] and Pisanski [20] (see

also [3, Subsection 3.5.4]) used tubes to construct orientable quadrangular embeddings of cartesian

products of bipartite graphs; their operations are similar to our handle addition of Type IV. Lv and

Chen [16] used handle insertions where each handle carries four or five edges to construct minimum
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orientable genus embeddings of Kn,n,1 when n is odd. Ma and Ren [17] used tubes, typically added

between triangular faces and carrying five edges, to construct orientable minimum genus embeddings

of Cm +Kn for n ≥ 5 and m ≥ 6n− 13.

4 Proof of Theorem 1.2

In this section, we focus on the proof of Theorem 1.2, which is divided into two major cases –

orientable surfaces and nonorientable surfaces. Apart from a few small cases, our proof is self-

contained and does not rely on earlier constructions of minimal quadrangulations.

Denote the vertex set of a graph (or an embedding) of order n by {v1, v2, . . . , vn}. We know that

in a disc addition or a handle addition of Type I, if a diagonal of a diagonal set D is used, then

at least two new squares with the same diagonal are obtained. So this diagonal still occurs in the

resulting embedding. We then replace the underlying square of the diagonal in D by an arbitrary

choice of one of the two new squares unless otherwise stated. For convenience, the resulting diagonal

set is still denoted by D. Such situations occur frequently in the proof of Theorem 1.2.

Except in some small cases, Theorem 1.2 does not mention the surface in which an embedding

occurs. The surface can always be determined from equation (1), taking orientability into account.

Orientable surfaces

Let Q(n, t) denote an orientable quadrangular embedding of a simple graph with n vertices and
(
n

2

)
−t

edges, for any integers n ≥ 1 and t with 0 ≤ t ≤
(
n
2

)
. Let Tn = {t | 0 ≤ t ≤ n − 4, t ≡ 1

2
n(n − 5)

(mod 4)} for each integer n ≥ 4. The elements of Tn form an arithmetic progression with difference

4. The condition t ≡ 1

2
n(n − 5) (mod 4) is equivalent to 8 |n(n− 5) − 2t and so we must consider

the value of n mod 8 to determine Tn. We must show that there exist a Q(4, 2) in S0 and Q(n, t)

for each n ≥ 4 and t ∈ Tn. We divide the proof into the cases where n is even and odd.

Recall that when working with orientable surfaces we must pay close attention to the clockwise

order of vertices around each square.

Lemma 4.1. There exist a Q(4, 2) and Q(n, t) for each even n ≥ 4 and t ∈ Tn.

Proof. Clearly, a 4-cycle is a quadrangulation Q(4, 2) of the sphere S0. We have T4 = {t | 0 ≤ t ≤
0, t ≡ 2 (mod 4)} = ∅ and T6 = {t | 0 ≤ t ≤ 2, t ≡ 3 (mod 4)} = ∅, so there is nothing else to prove

for n ≤ 6. For n ≥ 8 we proceed inductively.

Basis. There exist Q(8, t) for all t ∈ T8. In particular, there exists a Q(8, 0) with a perfect diagonal

set.

We have T8 = {0, 4}. Hartsfield and Ringel [6] gave a quadrangular embedding Φ8 of K8 in S4,

shown in Figure 4. This is the required Q(8, 0), with a perfect diagonal set using the squares shaded

in the figure, namely

D8 = {di(v1v2, v1v6v2v5), di(v3v4, v3v7v4v8), di(v5v6, v5v8v6v4), di(v7v8, v7v1v8v2)}.
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v8 v6 v7

v5

v4 v3

v6

v1

v2

v4

v6

v8 v7

v6v3

v1

v6v2

v5

v7v8

v5

v2

v3v4

v1

v3

v2v4v5

Figure 4

Also in [6], Hartsfield and Ringel constructed a quadrangular embedding of the octahedral graph

O8, which is the required Q(8, 4).

Induction step. Given a Q(n, 0) with a perfect diagonal set, where n = 8k, k ≥ 1, there exist

Q(p, t) for all p ∈ {n + 2, n + 4, n + 6, n + 8} and t ∈ Tp. In particular, there exists a Q(n + 8, 0)

with a perfect diagonal set.

Suppose that n = 8k, k ≥ 1, and a Q(n, 0), denoted by Φn, with a perfect diagonal set Dn exists.

Without loss of generality, we assume that

Dn = {di(v1v2), di(v3v4), . . . , di(vn−1vn)}.

We construct the necessary embeddings in four stages. The first two handle additions of Type I in

Stages 1 and 2, and the last two handle additions of Type I in Stages 3 and 4, are setting up squares

needed for a Type IV handle addition in Stage 4.

(4.1) Stage 1. Suppose p = n+ 2.

Since p = n + 2 ≡ 2 (mod 8) we have p(p − 5) ≡ 2 (mod 8) and hence 1

2
p(p − 5) ≡ 1 (mod 4).

Thus, Tn+2 = Tp = {t | 0 ≤ t ≤ p − 4, t ≡ 1 (mod 4)} = {t | 0 ≤ t ≤ (n + 2) − 4, t ≡ 1 (mod

4)} = {1, 5, . . . , n− 3}.

We start with Φn. First employing a disc addition, we add the two vertices vn+1 and vn+2

into the square with di(v1v2) from Dn and obtain the square vn+1v2vn+2v1 with a new diagonal

di(vn+1vn+2). Then, we apply n
2
− 1 successive handle additions of Type I. During the process, the

squares with di(vn+1vn+2) resulting from previous additions are used as the outer squares and the

squares with the diagonals from Dn as the inner squares. Moreover, the diagonals of Dn are used in

the order di(v3v4), di(v5v6), . . . , di(vn−1vn). See Figure 5.

In our figures we often do not label vertices whose identity does not matter, except that we

use x1, x2, . . . to label vertices which help to identify a square in later parts of the construction.

Handle additions of Type I connect two diagonals using an underlying square for each diagonal,

unless otherwise specified. We shade squares that are reserved for later use; these should not be

10



used as the inner or outer square in a handle addition until that is explicitly specified. For example,

the first two handle additions create reserved squares vn+1v4x1v3 and vn+2v5x2v6, for use in Stage

2 below.

v1 v2

vn+1

vn+2

vn+1

v2 vn+2v1

v4

v3

· · ·
vn+1

vn+2

v6

v5
x2

x1

vn+1

vn+2

vn

vn−1

Figure 5

After the intial disc addition we have
(
n

2

)
+4 =

(
n+2

2

)
− (2n−3) edges. So this process constructs

embeddings Q(n+ 2, t) for t = 2n− 3, 2n− 7, 2n− 11, . . . , n− 3, . . . , 5, 1, which includes all values

t ∈ Tn+2. Since the disc and handle additions join vn+1 and vn+2 to all of v1, v2, . . . , vn, but

do not provide an edge vn+1vn+2, the final result Φn+2 is an embedding of Kn+2 − E1 where

E1 = {vn+1vn+2}. It has a perfect diagonal set

Dn+2 = {di(v1v2), di(v3v4, vn+1v4x1v3), di(v5v6, vn+2v5x2v6), di(v7v8), di(v9v10), . . . , di(vn+1vn+2)}.

(4.1) Stage 2. Suppose p = n + 4. Since n + 4 ≡ 4 (mod 8) we have Tn+4 = {t | 0 ≤ t ≤
(n+ 4)− 4, t ≡ 2 (mod 4)} = {2, 6, . . . , n− 2}.

Similarly to Stage 1, starting from Φn+2 with Dn+2 we can employ a disc addition to add vertices

vn+3 and vn+4 and obtain a diagonal di(vn+3vn+4), then employ n
2
handle additions of Type I. The

first two handle additions use the reserved squares from Stage 1 as inner squares. They create new

reserved squares with new diagonals, for use in Stage 3 below. See Figure 6. After the initial disc

addition we have
(
n+2

2

)
+3 =

(
n+4

2

)
− (2n+2) edges. So this process creates embeddings Q(n+4, t)

for t = 2n+ 2, 2n− 2, 2n− 6, . . . , n− 2, . . . , 6, 2, which includes all t ∈ Tn+4.

v1 v2

vn+3

vn+4

vn+3

v2 vn+4v1

v3

v4

· · ·
vn+1

vn+4

v5

v6

x2

x1

vn+3

vn+2

vn+1

vn+2

vn+3

vn+4

Figure 6

The final result Φn+4 is a quadrangular embedding of Kn+4 − E2 where E2 = {vn+1vn+2,

vn+3vn+4}. It has a perfect diagonal set

Dn+4 = {di(v1v2), di(v3v4), di(v5v6), . . . , di(vn−1vn),

di(vn+1vn+3, vn+1v4vn+3v3), di(vn+2vn+4, vn+2v5vn+4v6)}

where vn+1v4vn+3v3 and vn+2v5vn+4v6 are the two reserved squares.
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(4.1) Stage 3. Suppose p = n + 6. Since n + 6 ≡ 6 (mod 8) we have Tn+6 = {t | 0 ≤ t ≤
(n+ 6)− 4, t ≡ 3 (mod 4)} = {3, 7, . . . , n− 1}.

Similarly to Stages 1 and 2, from Φn+4 with Dn+4 we can employ a disc addition to add vertices

vn+5 and vn+6, and then n
2
+ 1 handle additions of Type I. The last two handle additions create

reserved squares for use in Stage 4 below. See Figure 7. After the initial disc addition we have(
n+4

2

)
+ 2 =

(
n+6

2

)
− (2n + 7) edges. So this process creates embeddings Q(n + 6, t) for t = 2n +

7, 2n+ 3, 2n− 1, . . . , n− 1, . . . , 7, 3, which includes all t ∈ Tn+6.

v1

v3

v4

v2

vn+1

vn+3

vn+2

vn+4
v6

v4

vn+5

vn+6

· · ·
v1

v2

vn+5

vn+6

vn+5

vn+6

v3

vn+5

vn+6

v5

Figure 7

The final result Φn+6 is a quadrangular embedding of Kn+6 − E3 where E3 = {vn+1vn+2,

vn+3vn+4, vn+5vn+6}. It has a perfect diagonal set

Dn+6 = {di(v1v2), di(v3v4), . . . , di(vn−1vn),

di(vn+1vn+3, vn+1v4vn+3vn+5), di(vn+2vn+4, vn+2vn+6vn+4v6), di(vn+5vn+6)}

where vn+1v4vn+3vn+5 and vn+2vn+6vn+4v6 are the two reserved squares.

(4.1) Stage 4. Suppose p = n + 8. Since n + 8 ≡ 0 (mod 8) we have Tn+8 = {t | 0 ≤ t ≤
(n+ 8)− 4, t ≡ 0 (mod 4)} = {0, 4, . . . , n+ 4}.

Similarly to the previous stages, from Φn+6 with Dn+6 we can employ a disc addition to add

vertices vn+7 and vn+8, and then n
2
+ 2 handle additions of Type I. The last two handle additions

of Type I create reserved squares vn+1vn+7vn+3vn+5 and vn+2vn+6vn+4vn+8, which we then use

for a Type IV handle addition. See Figure 8. After the initial disc addition we have
(
n+6

2

)
+ 1 =(

n+8

2

)
− (2n+12) edges. So this process creates embeddings Q(n+6, t) for t = 2n+12, 2n+8, 2n+

4, . . . , n+ 4, . . . , 4, 0, which includes all t ∈ Tn+8.

v1

v3

v4

v2

vn+3

vn+1

vn+4

vn+2
vn+6

vn+5

vn+7

vn+8

· · ·

v1

v2

vn+7

vn+8

vn+7

vn+8

v4

vn+7

vn+8

v6

vn+6

vn+4

vn+1

vn+8

vn+2

vn+3

vn+5
vn+7

Figure 8
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The final result Φn+8 is a quadrangular embedding of Kn+8. It is a Q(n + 8, 0) with perfect

diagonal set

Dn+8 = {di(v1v2), di(v3v4), . . . , di(vn−1vn),

di(vn+1vn+3), di(vn+2vn+4), di(vn+5vn+6), di(vn+7vn+8)}.

This completes the proof of the induction step. Now the small cases (n = 4 and 6), the basis,

and the induction step together imply Lemma 4.1.

Lemma 4.2. There exists a Q(n, t) for each odd n ≥ 5 and t ∈ Tn.

Proof. We proceed inductively.

Basis. There exist Q(5, t) for all t ∈ T5. In particular, there exists a Q(5, 0) with a full diagonal set

D5, which contains v1-nearly-perfect and v2-nearly-perfect subsets.

We have T5 = {0} so we only need to find the specified embedding Q(5, 0). We use the embedding

Φ5 of K5 in S1 with five squares, shown in Figure 9. It has a full diagonal set

D5 = {di(v1v5, v1v4v5v2), di(v3v4, v3v5v4v2), di(v4v5, v4v1v5v3), di(v2v3, v2v4v3v1)}

where the first two elements form a v2-nearly-perfect subset and the last two elements form a v1-

nearly-perfect subset.

v5 v2

v1v4

v3 v3

v3v3

Figure 9

Induction step. Suppose n = 8k + 5, k ≥ 0, and we are given a Q(n, 0) with a full diagonal

set having v1-nearly-perfect and v2-nearly-perfect subsets. Then there exist Q(p, t) for all p ∈
{n+ 2, n+ 4, n+ 6, n+ 8} and t ∈ Tp. In particular, there exists a Q(n+ 8, 0) with a full diagonal

set having v1-nearly-perfect and v2-nearly-perfect subsets.

Suppose that n = 8k + 5, k ≥ 0, and there is a Q(n, 0), denoted by Φn, with a full diagonal set

Dn, as described. Write the v2-nearly-perfect and v1-nearly-perfect subsets as

D′

n = {di(y1y2), di(y3y4), . . . , di(yn−4yn−3), di(yn−2v1)} and

D′′

n = {di(z1z2), di(z3z4), . . . , di(zn−4zn−3), di(zn−2v2)},
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respectively. Thus, {y1, y2, . . . , yn−2} = {z1, z2, . . . , zn−2} = {v3, v4, . . . , vn}. We construct the

necessary embeddings in four stages. Note that the last few handle additions in each stage help to

set up squares needed for the handle additions of Type II and III in later stages.

(4.2) Stage 1. Suppose p = n + 2. Since n + 2 ≡ 7 (mod 8) we have Tn+2 = {t | 0 ≤ t ≤
(n+ 2)− 4, t ≡ 3 (mod 4)} = {3, 7, . . . , n− 2}.

We start with Φn. First, by employing a disc addition, we add two vertices vn+1 and vn+2 into

the square with di(y1y2) from Dn and obtain the square vn+1y2vn+2y1 with di(vn+1vn+2). Then, we

apply n−3

2
successive handle additions of Type I. During the process, the squares with di(vn+1vn+2)

resulting from previous additions are used as the outer squares and the squares with the diagonals

from D′

n, in the order di(y3y4), di(y5y6), . . . , di(yn−2v1), as the inner squares. The final handle

addition creates a square vn+1x1vn+2v1 that is reserved for Stage 2 below. See Figure 10.

y1

y2

vn+1

y1

y4

y3

y6

y5

yn−3

x1

vn+2

vn+1

vn+2

vn+1

vn+2

vn+1

vn+2

vn+1

vn+2

· · ·

y2

yn−4 yn−2

v1

Figure 10

After the intial disc addition we have
(
n

2

)
+4 =

(
n+2

2

)
− (2n−3) edges. So this process constructs

embeddings Q(n+2, t) for t = 2n−3, 2n−7, 2n−11, . . . , n−2, . . . , 7, 3, which includes all values t ∈
Tn+2. Since the disc and handle additions join vn+1 and vn+2 to all of v3, v4, v5, . . . , vn and to v1, but

not to v2, and do not provide an edge vn+1vn+2, the final result Φn+2 is an embedding of Kn+2−E3

where E3 = {v2vn+1, v2vn+2, vn+1vn+2}. It has a full diagonal set Dn+2 = Dn ∪ {di(vn+1vn+2)}
with v2-nearly-perfect and v1-nearly perfect subsets

D′

n+2 = D′

n ∪ {di(vn+1vn+2)} and D′′

n+2 = D′′

n ∪ {di(vn+1vn+2)},

respectively.

(4.2) Stage 2. Suppose p = n + 4. Since n + 4 ≡ 1 (mod 8) we have Tn+4 = {t | 0 ≤ t ≤
(n+ 4)− 4, t ≡ 2 (mod 4)} = {2, 6, . . . , n− 3}.

Starting from Φn+2 with D′′

n+2 we can employ a disc addition to add vertices vn+3 and vn+4,

then n−1

2
handle additions of Type I. The second last of these creates a reserved square, which is

used in a final handle addition of Type II, along with the reserved square from Stage 1. This creates

two reserved squares which provide new diagonals with specific underlying squares, for use in Stage

3 below. See Figure 11. After the initial disc addition we have
(
n+2

2

)
+ 1 =

(
n+4

2

)
− (2n+ 4) edges.

So this process creates embeddings Q(n + 4, t) for t = 2n+ 4, 2n, 2n− 4, . . . , n − 3, . . . , 6, 2, which

includes all t ∈ Tn+4.
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z2

vn+3

z2

z1

z4

z3

x2

v1

x2

zn−2vn+4

vn+3

vn+4

· · ·

vn+3

vn+4

vn+3

vn+4

vn+4

vn+3

vn+2

vn+1

v2

v2 x1
vn+2

vn+1

Figure 11

The final result Φn+4 is a quadrangular embedding of Kn+4 − E2 where E2 = {vn+1vn+2,

vn+3vn+4}. If we define a diagonal set using the last two reserved squares, i.e.,

D+
n+4 = {di(vn+1vn+3, vn+1v2vn+3v1), di(vn+2vn+4, vn+2v1vn+4v2)}

then Φn+4 has a full diagonal set Dn+4 = Dn ∪ D+
n+4 with v2-nearly-perfect and v1-nearly-perfect

subsets D′

n+4 = D′

n ∪ D+

n+4 and D′′

n+4 = D′′

n ∪ D+

n+4, respectively.

(4.2) Stage 3. Suppose p = n + 6. Since n + 6 ≡ 3 (mod 8) we have Tn+6 = {t | 0 ≤ t ≤
(n+ 6)− 4, t ≡ 1 (mod 4)} = {1, 5, . . . , n}.

Starting from Φn+4 with D′′

n+4, we can employ a disc addition to add vertices vn+5 and vn+6,

then n+1

2
handle additions of Type I, then a handle addition of Type III. See Figure 12. The last

four handle additions create and use up a number of reserved squares; the net effect is that the two

reserved squares from the Type II addition in Stage 2 are used up, and two new reserved squares

vn+1vn+5vn+3v1 and vn+2vn+6vn+4v2 are created for use in Stage 4 below. After the initial disc

addition we have
(
n+4

2

)
+2 =

(
n+6

2

)
− (2n+7) edges. So this process creates embeddings Q(n+6, t)

for t = 2n+ 7, 2n+ 3, . . . , n, . . . , 5, 1, which includes all t ∈ Tn+6.

zn−2

v1

v2

x3

x3

vn+3

vn+4

vn+2vn+5

z2z1

z2

vn+5

z1

vn+2

vn+4

z4

z3

· · ·

vn+1

v2

v1

vn+6

vn+5

vn+6

vn+5

vn+6

vn+5

vn+6

vn+5

vn+6v2

vn+5

vn+6

x3

v2

v1

v2

v1

v2

vn+3

vn+1

Figure 12

The final result Φn+6 is a quadrangular embedding of Kn+6−E1 where E1 = {vn+1vn+2}. If we
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define a diagonal set containing the two unused reserved squares,

D+

n+6 = {di(vn+1vn+3, vn+1vn+5vn+3v1), di(vn+2vn+4, vn+2vn+6vn+4v2), di(vn+5vn+6)}

then Φn+6 has a full diagonal set Dn+6 = Dn ∪ D+
n+6 with v2-nearly-perfect and v1-nearly-perfect

subsets D′

n+6 = D′

n ∪ D+

n+6 and D′′

n+6 = D′′

n ∪ D+

n+6, respectively.

(4.2) Stage 4. Suppose p = n + 8. Since n + 8 ≡ 5 (mod 8) we have Tn+8 = {t | 0 ≤ t ≤
(n+ 8)− 4, t ≡ 0 (mod 4)} = {0, 4, . . . , n+ 3}.

Starting from Φn+6 with D′′

n+6, we can employ a disc addition to add vertices vn+7 and vn+8.

Then we use n+3

2
handle additions of Type I using diagonals in the order di(z1z2), di(z3z4), . . . ,

di(zn−2v2), di(vn+5vn+6) and lastly, using the two reserved squares from Stage 3, di(vn+1vn+3)

and di(vn+2vn+4). We finish with a handle addition of Type III. See Figure 13. The last three

handle additions create and use up three additional reserved squares. After the initial disc addition

we have
(
n+6

2

)
+ 3 =

(
n+8

2

)
− (2n + 10) edges. So this process creates embeddings Q(n + 8, t) for

t = 2n+ 10, 2n+ 6, . . . , n+ 3, . . . , 4, 0, which includes all t ∈ Tn+8.

vn+1
vn+5

vn+6

v2vn+4

x4 x4

vn+2

vn+1

vn+3vn+7

vn+7

z2

z2

z1

z1

z4

z3

vn+3

· · ·
v1

vn+8

vn+7

vn+8

vn+7

vn+8

vn+7

vn+8

vn+7

vn+8

v1
vn+3 vn+2

x4

Figure 13

The final result Φn+8 is a quadrangular embedding of Kn+8. If we define a diagonal set

D+
n+8 = {di(vn+1vn+3), di(vn+2vn+4), di(vn+5vn+6), di(vn+7vn+8)}

then Φn+8 is a Q(n+ 8, 0) with a full diagonal set Dn+8 = Dn ∪D+

n+8 having v2-nearly-perfect and

v1-nearly-perfect subsets D′

n ∪ D+

n+8 and D′′

n ∪D+

n+8, respectively.

This completes the proof of the induction step. Now the basis and the induction step together

imply Lemma 4.2.

Nonorientable surfaces

Let Q̃(n, t) denote a nonorientable quadrangular embedding of a simple graph with n vertices and(
n
2

)
−t edges, for any integers n ≥ 1 and t with 0 ≤ t ≤

(
n
2

)
. Let T̃n = {t | 0 ≤ t ≤ n−4, t ≡ 1

2
n(n−5)

(mod 2)} for each integer n ≥ 4. The elements of T̃n form an arithmetic progression with difference

2. The condition t ≡ 1

2
n(n − 5) (mod 2) is equivalent to 4 |n(n− 5) − 2t and so we must consider

the value of n mod 4 to determine T̃n. We must show that there exist Q̃(n, t) for each n ≥ 4 and

t ∈ T̃n except when (n, t) = (5, 0), and that there exists a Q̃(6, 3) in N2. We divide the proof into

the cases where n ≤ 6, where n ≥ 8 is even, and where n ≥ 7 is odd.

When working with nonorientable surfaces we may use a square vivjvkvℓ in its reverse order

vivℓvkvj whenever convenient.
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Lemma 4.3. Suppose that 4 ≤ n ≤ 6. Then there exist Q̃(n, t) for each t ∈ T̃n, except when

(n, t) = (5, 0). There also exists a Q̃(6, 3) in N2.

Proof. We have T̃4 = {0}. The complete graph K4 admits a quadrangular embedding with three

squares (every 4-cycle in K4 bounds a face) in the projective plane N1, which is a Q̃(4, 0).

We have T̃5 = {0}. If (n, t) = (5, 0) then the graph is K5, but by Theorem 1.1 there is no

nonorientable quadrangular embedding of K5, so no embedding exists for this case.

v3

v2

v5

v1

v4v6

v4

v3

v6

v2
v1

v5

(b)(a)

Figure 14

We have T̃6 = {1}. Figure 14(a) shows that K6 − E1 has a quadrangular embedding in N3

with E1 = {v5v6}, which is a Q̃(6, 1). Also, Figure 14(b) shows that K6 − E3 has a quadrangular

embedding Φ−

6 in N2 with E3 = {v1v3, v2v6, v3v4}, which is a Q̃(6, 3) in N2.

Lemma 4.4. There exists a Q̃(n, t) for each even n ≥ 8 and t ∈ T̃n.

Proof. We proceed inductively.

Basis. There exist Q̃(8, t) for all t ∈ T̃8. In particular, there exists a Q̃(8, 2) that embeds a graph

K8 − {u1u2, u3u4} and has a perfect diagonal set D8 in which u1, u2, u3 and u4 belong to four

distinct diagonals.

v1 v3

v7v5

v8 v2

v4 v6

v1 v4

v8 v5

v6 v3

v2v7

v8 v2

v6v4

v1 v3

v5 v7

Figure 15

We have T̃8 = {0, 2, 4}. At left in Figure 15 is a Q̃(8, 8) obtained by four crosscap additions from

the usual spherical (planar) embedding of a cube, to which we apply a handle addition of Type IV
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followed by two crosscap additions. The result is a quadrangular embedding of K8 in N8, and along

the way we construct embeddings Q̃(8, t) with t = 8, 4, 2, 0, which includes all t ∈ T̃8.

We examine the Q̃(8, 2) obtained by performing the handle addition and the first crosscap addi-

tion, but not the second crosscap addition. This is a quadrangular embedding Φ−

8 ofK8−{v1v7, v3v5}
in N7. There is a perfect diagonal set

D8 = {di(v8v1, v8v4v1v5), di(v2v3, v2v8v3v1), di(v4v5, v4v6v5v7), di(v6v7, v6v2v7v3)}.

Taking u1 = v1, u2 = v7, u3 = v3 and u4 = v5, we see that the conditions for the particular Q̃(8, 2)

are satisfied.

Induction step. Suppose n = 4k, k ≥ 2, and we are given a Q̃(n, 2) that embeds a graph Kn −
{u1u2, u3u4} and has a perfect diagonal set Dn in which u1, u2, u3 and u4 belong to four distinct

diagonals. Then there exist Q̃(p, t) for all p ∈ {n+2, n+4} and t ∈ T̃p. In particular, there exists a

Q̃(n+4, 2) that embeds a graph Kn+4 −{u′

1u
′

2, u
′

3u
′

4} and has a perfect diagonal set Dn+4 in which

u′

1, u
′

2, u
′

3 and u′

4 belong to four distinct diagonals.

Suppose that n = 4k, k ≥ 2, and there is a Q̃(n, 2), denoted by Φ−

n , as described above. We may

assume without loss of generality that

Dn = {di(v1v2), di(v3v4), di(v5v6), di(v7v8), . . . , di(vn−1vn)}

and that u1 = v1, u2 = v3, u3 = v5 and u4 = v7. Thus, Φ−

n is an embedding of Kn − E2 with

E2 = {v1v3, v5v7}. We construct the necessary embeddings in two stages.

(4.4) Stage 1. Suppose p = n + 2. Since n + 2 ≡ 2 (mod 4) we have T̃n+2 = {t | 0 ≤ t ≤
(n+ 2)− 4, t ≡ 1 (mod 2)} = {1, 3, 5 . . . , n− 3}.

We start with Φ−

n . First, by applying a disc addition, we add two vertices vn+1 and vn+2 into the

square with diagonal di(v1v2) from Dn. Then we emply a handle addition of Type I with di(v3v4),

creating two reserved squares, one of which, v3vn+2v4x1 is for use in Stage 2 below. The other

reserved square, vn+1v3vn+2v1, we use immediately for a crosscap addition. We then perform n
2
− 2

handle additions of Type I using diagonals di(v5v6), di(v7v8), . . . , di(vn−1vn) in that order. The

first of these creates another reserved square v5vn+1v6x2 for use in Stage 2. See Figure 16.

After the initial disc addition we have
(
n
2

)
+ 2 =

(
n+2

2

)
− (2n− 1) edges. Since handle additions

add four edges and crosscap additions add two edges, our process creates embeddings Q̃(n + 2, t)

for t = 2n− 1, 2n− 5, 2n− 7, 2n− 11, 2n− 15, . . . , 5, 1. However, we do not use the squares created

by the crosscap addition in any later handle addition, so we can just omit the crosscap addition.

This creates embeddings Q̃(n + 2, t) for t = 2n − 1, 2n − 5, 2n − 9, . . . , 7, 3. Combining these, we

have Q̃(n + 2, t) for t = 2n − 1, 2n − 5, 2n − 7, 2n − 9, . . . , n − 3, . . . , 3, 1, i.e., for all odd t with

1 ≤ t ≤ 2n− 1 except t = 2n− 3. Since n ≥ 8, this includes all t ∈ T̃n+2.

The final result Φn+2 is an embedding of Kn+2 − E1 where E1 = {v5v7}. Using the reserved

squares containing x1 and x2, we see that Φn+2 has a perfect diagonal set

Dn+2 = {di(v1v2), di(v3v4, v3vn+2v4x1), di(v5v6, v5vn+1v6x2),

di(v7v8), di(v9v10), . . . , di(vn+1vn+2)}.
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(4.4) Stage 2. Suppose p = n + 4. Since n + 4 ≡ 0 (mod 4) we have T̃n+4 = {t | 0 ≤ t ≤
(n+ 4)− 4, t ≡ 0 (mod 2)} = {0, 2, 4, . . . , n}.

Starting from Φn+2 with Dn+2 we can employ a disc addition to add vertices vn+3 and vn+4,

using the reserved underlying square for di(v5v6) as the outer square. This creates a reserved square

vn+1v6vn+3v5 which we will use to create a new diagonal later. Then we perform a handle addition

of Type I using di(v7v8), creating a reserved square vn+3v7vn+4v5, which we use immediately for

a crosscap addition. Next we employ a handle addition of Type I, using the reserved underlying

square for di(v3v4) as the inner square. This creates a new reserved square vn+2v4vn+4v3, which we

will also use to create a new diagonal later. Finally we perform n
2
− 2 handle additions of Type I

using all remaining diagonals from Dn+2. See Figure 17.
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After the initial disc addition we have
(
n+2

2

)
+3 =

(
n+4

2

)
− (2n+2) edges. Since handle additions

add four edges and crosscap additions add two edges, our process creates embeddings Q̃(n + 4, t)

for t = 2n+ 2, 2n− 2, 2n− 4, 2n− 8, 2n− 12, . . . , 4, 0. However, we do not use the square created
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by the crosscap addition in any later handle addition, so we can just omit the crosscap addition.

This produces Q̃(n + 4, t) for t = 2n + 2, 2n − 2, 2n − 6, 2n − 10, . . . , 6, 2. Combining these, we

have Q̃(n+ 4, t) for t = 2n+ 2, 2n− 2, 2n− 4, 2n− 6, 2n− 8, . . . , n, . . . , 2, 0, i.e., for all even t with

0 ≤ t ≤ 2n+ 2 except t = 2n. Since n ≥ 8, this includes all t ∈ T̃n+4.

If we perform all handle additions but omit the crosscap addition we obtain an embedding Φ−

n+4

of Kn+4 − E2 where E2 = {v5v7, vn+3vn+4}. This is a Q̃(n + 4, 2). Using two reserved squares to

create new diagonals, we see that Φ−

n+4 has a perfect diagonal set

Dn+4 = {di(v1v2), di(v3v4), di(v5v6), di(v7v8), . . . , di(vn−1vn),

di(vn+1vn+3, vn+1v6vn+3v5), di(vn+2vn+4, vn+2v4vn+4v3)}.

Taking u′

1 = v5, u
′

2 = v7, u
′

3 = vn+3, u
′

4 = vn+4, we see that the required properties for a particular

Q̃(n+ 4, 2) hold.

This completes the proof of the induction step. Now the basis and the induction step together

imply Lemma 4.4.

Lemma 4.5. There exists a Q̃(n, t) for each odd n ≥ 7 and t ∈ T̃n.

Proof. We proceed inductively. Our argument requires a slightly technical induction hypothesis, so

we make the following definition.

Definition. A Q̃(n, 3), where n ≡ 3 (mod 4), is said to have Property P if the following conditions

(a), (b) and (c) hold.

(a) The graph is Kn − E3 where E3 = {v1vn−1, v1vn, vn−3vn−2}.
(b) There is a full diagonal set

Dn = {di(v1v3), di(v2v3), di(y1y2), di(y3y4), . . . , di(yn−8yn−7), di(vn−3vn−1), di(vn−2vn)}

where {y1, y2, . . . , yn−7} = {v4, v5, . . . , vn−4}.
(c) There is a square v2vn−1x1vn (the exact identity of x1 does not matter) that is not an

underlying square for Dn. (We reserve this square for later use.)

Basis. There exist Q̃(7, t) for all t ∈ T̃7. In particular, there exists a Q̃(7, 3) with Property P.

We have T̃7 = {1, 3}. Figure 18 shows a quadrangular embedding Φ7 of K7 − E1 in N5 with

E1 = {v1v6}. This is the required Q̃(7, 1). If we delete the two edges v1v7 and v4v5 of Φ7, we

create a face, bounded by a 4-cycle and containing a crosscap, which we can remove and replace

by a disc (this is the inverse of a crosscap addition). We obtain a quadrangular embedding Φ−

7 of

K7 − E3 in N4, which is a Q̃(7, 3). We verify that Φ−

7 also has Property P. (a) The missing edges

form E3 = {v1v6, v1v7, v4v5}, as required. (b) There is a full diagonal set

D7 = {di(v1v3, v1v2v3v5), di(v2v3, v2v1v3v5), di(v4v6, v4v2v6v3), di(v5v7, v5v2v7v6)}

of the required form. (c) There is a square v2v6v5v7 that is not an underlying square for D7, as

required. Thus, Φ−

7 has Property P.
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Induction step. Given a Q̃(n, 3) with Property P, where n = 4k+ 3, k ≥ 1, there exist Q̃(p, t) for

all p ∈ {n+ 2, n+ 4} and t ∈ T̃p. In particular, there exists a Q̃(n+ 4, 3) with Property P.

Suppose that n = 4k + 3, k ≥ 1, and there is a Q̃(n, 3), denoted by Φ−

n , satisfying Property P.

We construct the necessary embeddings in two stages.

(4.5) Stage 1. Suppose p = n + 2. Since n + 2 ≡ 1 (mod 4) we have T̃n+2 = {t | 0 ≤ t ≤
(n+ 2)− 4, t ≡ 0 (mod 2)} = {0, 2, 4, . . . , n− 3}.

We start with Φ−

n . First, by applying a disc addition, we add two vertices vn+1 and vn+2 into the

square with di(vn−3vn−1) from Dn, creating a reserved square vn−3vn+1vn−1x2 for use in Stage 2

below. Then we employ a handle addition of Type I with di(vn−2vn), creating two reserved squares,

one of which, vn−2vn+2vnx3, is for use in Stage 2. The other reserved square, vn+1vn−3vn+2vn−2,

we use immediately for a crosscap addition. We then perform n−5

2
handle additions of Type I

using diagonals di(y1y2), di(y3y4), . . . , di(yn−8yn−7), di(v1v3), in that order. The last handle

addition creates a reserved square vn+1v1vn+2x4, which we then use, along with the reserved square

v2vn−1x1vn from Property P(c), in a handle addition of Type II, which creates a further reserved

square vn+1v2vn+2x4 for use in Stage 2. See Figure 19.
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After the initial disc addition we have
(
n

2

)
+ 1 =

(
n+2

2

)
− 2n edges. Since handle additions

add four edges and crosscap additions add two edges, our process creates embeddings Q̃(n + 2, t)

for t = 2n, 2n − 4, 2n − 6, 2n − 10, 2n − 14, . . . , 4, 0. However, we do not use the squares created

by the crosscap addition in any later handle addition, so we can just omit the crosscap addition.

This creates embeddings Q̃(n + 2, t) for t = 2n, 2n− 4, 2n − 8, . . . , 6, 2. Combining these, we have

Q̃(n + 2, t) for t = 2n, 2n− 4, 2n− 6, 2n− 8, . . . , n− 3, . . . , 2, 0, i.e., for all even t with 0 ≤ t ≤ 2n

except t = 2n− 2. Since n ≥ 7, this includes all t ∈ T̃n+2.

If we perform all handle additions but omit the crosscap addition, we obtain an embedding Φ−

n+2

of Kn+2−E2 where E2 = {vn−2vn−3, vn+1vn+2} (the edges of the omitted crosscap addition). Using

the reserved squares containing x2, x3 and x4, we see that Φ−

n+2 has a full diagonal set

Dn+2 = {di(v1v3), di(v2v3), di(y1y2), di(y3y4), . . . , di(yn−8yn−7), di(vn−3vn−1, vn−3vn+1vn−1x2),

di(vn−2vn, vn−2vn+2vnx3), di(vn+1vn+2, vn+1v2vn+2x4)}.

(4.5) Stage 2. Suppose p = n + 4. Since n + 4 ≡ 3 (mod 4) we have T̃n+4 = {t | 0 ≤ t ≤
(n+ 4)− 4, t ≡ 1 (mod 2)} = {1, 3, 5, . . . , n}.

Starting from Φ−

n+2 with Dn+2, we can employ a disc addition to add vertices vn+3 and vn+4,

using the reserved underlying square for di(vn−3vn−1) as the outer square. This creates a reserved

square vn+1vn−1vn+3vn−3 which we will use to satisfy Property P(b). Then we perform a handle

addition of Type I, using the reserved underlying square for di(vn−2vn) as the inner square. This

creates two reserved squares, one of which, vn+2vnvn+4vn−2, we will use to satisfy Property P(b).

The other, vn+3vn−2vn+4vn−3, we use immediately for a crosscap addition. Next we employ a handle

addition of Type I, using the reserved underlying square for di(vn+1vn+2) as the inner square. This

creates a reserved square vn+2v2vn+1vn+4, which we use immediately for a crosscap addition. We

then perform n−5

2
handle additions of Type I using diagonals di(y1y2), di(y3y4), . . . , di(yn−8yn−7),

di(v1v3), in that order. The last handle addition creates a reserved square v1vn+4x5vn+3, which we

will use to satisfy Property P(c). See Figure 20.
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After the initial disc addition we have
(
n+2

2

)
+2 =

(
n+4

2

)
− (2n+3) edges. Since handle additions
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add four edges and crosscap additions add two edges, our process creates embeddings Q̃(n + 4, t)

for t = 2n + 3, 2n − 1, 2n − 3, 2n − 7, 2n − 9, 2n − 13, 2n − 17, . . . , 5, 1. However, we do not use

the squares created by either crosscap addition in any later handle addition, so we can omit one or

both crosscap additions. If we omit the first crosscap addition, we obtain embeddings Q̃(n + 4, t)

for t = 2n+3, 2n− 1, 2n− 5, 2n− 7, 2n− 11, 2n− 15, . . . , 7, 3. Combining these, we have Q̃(n+4, t)

for t = 2n + 3, 2n− 1, 2n− 3, 2n − 5, . . . , n, . . . , 3, 1, i.e., for all odd t with 1 ≤ t ≤ 2n + 3 except

t = 2n+ 1. Since n ≥ 7, this includes all t ∈ T̃n+4.

If we perform all operations we obtain an embedding Φn+4 of Kn+4 −E1 where E1 = {v2vn+3}.
If we perform all handle additions and the first crosscap addition but omit the second crosscap

addition, we obtain an embedding Φ−

n+4 of Kn+4 − E3, i.e., a Q̃(n + 4, 3). Observe the following.

(a′) E3 = {v2vn+3, v2vn+4, vn+1vn+2} (E1 and the edges of the omitted crosscap addition). (b′) We

see that Φ−

n+4 has a full diagonal set

Dn+4 = {di(v1v3), di(v2v3), di(y1y2), di(y3y4), . . . , di(yn−8yn−7), di(vn−3vn−1), di(vn−2vn),

di(vn+1vn+3, vn+1vn−1vn+3vn−3), di(vn+2vn+4, vn+2vnvn+4vn−2)}.

(c′) There is a reserved square v1vn+4x5vn+3, or equivalently v1vn+3x5vn+4, that is not an underlying

square for Dn+4. Conditions (a
′), (b′), (c′) are almost what we need to say that Φ−

n+4 has Property

P. Condition (b′) is correct but (a′) has v2 where it should have v1, and (c′) has v1 where it should

have v2. However, renaming v1 as v2 and v2 as v1 does not affect (b′), and puts (a′) and (c′) into

the correct form for Property P. Thus, after this renaming we have a Q̃(n+ 4, 3) with Property P.

This completes the proof of the induction step. Now the basis and the induction step together

imply Lemma 4.5.

Theorem 1.2 now follows from Lemmas 4.1, 4.2, 4.3, 4.4 and 4.5.

5 Conclusion

Face-simple quadrangulations are of interest because they are somewhere in between closed 2-cell

embeddings and polyhedral embeddings. An embedding is closed 2-cell if every face is bounded

by a cycle, so that a face does not ‘self-touch’ (equivalently, a 2-representative embedding of a 2-

connected graph), and polyhedral if it is also true that two distinct faces touch at most once, meaning

that the intersection of their boundaries is empty, a single vertex, or a single edge (equivalently, a

3-representative embedding of a 3-connected graph). Every quadrangulation is closed 2-cell by

definition, but the following lemma shows that minimal quadrangulations cannot be polyhedral.

Lemma 5.1. If Φ is a quadrangular embedding of an n-vertex m-edge graph with m > 1

2

(
n

2

)
then Φ

is not polyhedral.

Proof. Let E be the edge set of the underlying (simple) graph of Φ, where each edge is considered

as a vertex pair, and let D be the multiset of diagonals of squares of Φ, i.e., all vertex pairs {u, v}
that occur as diagonals, counted by the number of squares in which each diagonal occurs. Then

|E| = |D| = m and since |E|+ |D| >
(
n

2

)
there is some pair that either occurs twice in D, or occurs

once in E and once in D. This means that there are two faces that touch more than once.
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Therefore, it is natural to consider a weakening of polyhedral to closed 2-cell and face-simple,

where two faces can touch more than once, but not along two edges. In the orientable case, minimal

quadrangulations of Sg, g ≥ 1, are automatically face-simple by Observation 2.3, giving Theorem

1.4. However, in general our nonorientable minimal quadrangulations are not face-simple, since we

often use crosscap additions, which create two faces that touch along two edges.

Question 5.2. Does Nq have a minimal quadrangulation that is also face-simple, so that n′(Nq) =

n(Nq), for all but a few small values of q?

We think that the answer is probably ‘yes.’ It should be possible to prove this by adapting

the techniques in this paper. However, even if we avoid crosscap additions, some care is needed.

A handle addition of Type I (or a disc addition followed by a suitable handle addition of Type I)

preserves face-simplicity, but for nonorientable embeddings handle additions of Types II, III and IV

may create squares that touch along two edges.
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