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Abstract

A graph G contains H as an immersion if there is an injective mapping φ : V (H)→ V (G)
such that for each edge uv ∈ E(H), there is a path Puv in G joining vertices φ(u) and φ(v),
and all the paths Puv, uv ∈ E(H), are pairwise edge-disjoint. An analogue of Hadwiger’s
conjecture for the clique immersions by Lescure and Meyniel, and independently by Abu-
Khzam and Langston, states that every graph G contains Kχ(G) as an immersion. We prove
that for any constant ε > 0 and integers s, t ≥ 2, there exists d0 = d0(ε, s, t) such that
every Ks,t-free graph G with d(G) ≥ d0 contains a clique immersion of order (1 − ε)d(G).
This implies that the above-mentioned conjecture is asymptotically true for graphs without
a fixed complete bipartite graph.

1 Introduction

A graph H is a minor of another graph G if H can be obtained from G via vertex deletions,
edge deletions and edge contractions. A conjecture of Hadwiger [8] states that every graph G
with χ(G) ≥ t contains Kt as a minor. This conjecture is widely open for χ(G) ≥ 7; the case
χ(G) = 5 is equivalent to the celebrated Four-Color Theorem and the case χ(G) = 6 was solved
by Robertson, Seymour and Thomas [22]. A graph H is a topological minor of another graph
G if there is an injective mapping φ : V (H) → V (G) such that for each edge uv ∈ E(H),
there is a path Puv in G joining vertices φ(u) and φ(v), and all the paths Puv, uv ∈ E(H), are
pairwise internally vertex-disjoint. A stronger conjecture proposed by Hajós in 1940’s [9] states
that every graph G contains Kχ(G) as a topological minor. However, this conjecture is known
to be false in general: Catlin [2] disproved this conjecture for all χ(G) ≥ 7. It is also natural to
consider graphs with given average degree. In this direction, Kostochka [13] and independently,
Thomason [23] proved that average degree d(G) = Ω(t

√
log t) in a graph G forces Kt as a minor,

and this bound is optimal. This remained the best order of magnitude for Hadwiger’s conjecture
until very recent breakthroughs by Norin, Postle and Song [19] and Postle [20].

In this paper, we consider immersions, first introduced by Nash-Williams [18]. Given two
graphs G and H, we say G contains an H-immersion if there exists an injective mapping
φ : V (H)→ V (G) such that for each edge uv ∈ E(H), there is a path Puv in G connecting φ(u)
and φ(v); and all the paths Puv, uv ∈ E(H), are pairwise edge-disjoint. We call the vertices
{φ(v) | v ∈ V (H)} the branch vertices of the immersion. As a weakening of topological minor,
the immersion relation requires paths to be pairwise edge-disjoint rather than vertex-disjoint.
Although graph minors and graph immersions are incomparable, Robertson and Seymour [21]
showed that graphs are well-quasi-ordered by immersion, analogous to their celebrated graph
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minors project. An immersion variant of Hadwiger’s conjecture was proposed by Lescure and
Meyniel [16] 1 in 1989, and independently, by Abu-Khzam and Langston [1] in 2003.

Conjecture 1.1. [1, 16] Every graph G with χ(G) ≥ t contains Kt as an immersion.

Conjecture 1.1 has seen more success than the Hadwiger’s Conjecture: the cases t ≤ 4 are
trivial, while the cases 5 ≤ t ≤ 7 are proved by DeVos, Kawarabayashi, Mohar and Okamura
[5]. Here for any t ∈ N, we use f(t) to denote the least integer such that every graph G with
δ(G) ≥ f(t) contains Kt as an immersion. In [5], they showed that f(t) = t − 1 holds for any
t ∈ {5, 6, 7}, It is easy to see that f(t) ≥ t−1. For t ≥ 8, there are infinitely many constructions
[3, 4] showing that f(t) ≥ t. A linear upper bound on f(t) is due to DeVos, Dvořák, Fox,
McDonald, Mohar and Scheide [4], showing that f(t) ≤ 200t, and it was then improved to
11t + 7 by Dvořák and Yepremyan [6], who asked whether for all t ≥ 8, f(t) = t. Building on
the work of [6], Gauthier, Le and Wollan [7] showed that f(t) ≤ 7t+ 7.

Our work is motivated by a result of Kühn and Osthus [15]. They proved that for any fixed
bipartite graph H, Hadwiger’s conjecture holds strongly for any H-free graph G by constructing
a clique minor of order polynomially larger than d(G). Note that here and throughout the paper,
by H-free we mean that there is no subgraph in G that is isomorphic to H. Improved bounds
on the order of clique minor in H-free graphs for more general bipartite graphs H were later
obtained by Krivelevich and Sudakov [14] and Norin, Postle and Song [19].

Our main result reads as follows. It in particular implies that Conjecture 1.1 is asymptotically
true if we forbid any fixed complete bipartite graph.

Theorem 1.2. Given any positive constant ε and integers s, t ≥ 2, there exists d0 = d0(ε, s, t)
such that every Ks,t-free graph G with d(G) ≥ d0 contains a clique immersion of order (1 −
ε)d(G).

The bound above is asymptotically optimal as G could be d-regular. It would be interesting
to improve on the additive error term.

Our approach differs from previous works on immersions in [4, 6, 7] which generally reduce
the problem on embedding clique immersions to a dense eulerian graph via suppressing vertices
and use some list coloring arguments. Our proof adopts a more direct embedding approach,
making use of certain expander and builds on the techniques developed in the work of Liu and
Montgomery [17] on embedding clique subdivisions. In [17], to embed large clique subdivisions
in dense expander, a key idea is to build many unit structures by finding vertices with large
boundaries. Then the arguments often reduce to greedily connecting the units with vertex-
disjoint paths. We are attempting this approach to immersions which boils down to embedding
edge-disjoint paths. Unlike in [17] where the problem is harder for dense expanders, the bulk of
the work in our paper is to handle sparse expanders. In sparse expanders, one can still adapt
the approach in [17] to obtain a clique immersion of order linear in d. As the expansion is
sublinear, if a small constant portion of neighbors of a vertex is used, then the vertex can still
expand well. To embed K(1−o(1))d-immersion in sparse expanders, we essentially need vertices
that can expand past a relatively large set of vertices even after deleting ninety-nine percent
of its incident edges. However the sublinear expansion is not strong enough to guarantee the
expansion of any such vertex. To overcome this issue, we instead use an idea from the work of
Haslegrave, Kim and Liu [10] to find many vertex-disjoint subexpanders and grow a vertex in
each subexpander robustly until it reaches large enough size to enjoy further expansion in the
main expander (see Section 2.2 for a more elaborate sketch of the proof).

The rest of the paper will be organized as follows. In Section 2, we introduce some necessary
notions and tools whilst outline the proof of our main result. We divide the main proof into two

1They in fact conjectured a stronger statement that the Kt-immersion can be embedded so that every path
Puv, uv ∈ E(Kt) is internally vertex disjoint from the set of branch vertices.
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cases depending on the density of our expander. Sections 3 and 4 are devoted to embedding
large clique immersions in dense and sparse expanders, respectively.

2 Preliminaries and notation

For a set of vertices X ⊆ V (G), denote its external neighbourhood by NG(X) := {u ∈ V (G) \
X : uv ∈ E(G) for some v ∈ X}. Furthermore, denote by ∂G(X) the edge boundary of X,
i.e. EG[X,V (G) \ X]. Define G − X to be the induced subgraph of G on V (G) \ X and for
a subgraph F , use G \ F to denote the spanning subgraph with E(F ) removed. Throughout
the paper, the length of a path always denotes the number of edges in the path. For two sets
A,B ⊆ V (G), an (A,B)-path is path P with two endpoints separately lying in A and B such
that P does not have any interior vertices in A or B. Moreover, the distance between A and B
is the minimum length of an (A,B)-path and if A ∩ B 6= ∅, then the distance is zero. For each
r ∈ N, the r-th sphere around X, denoted by N r

G(X), is the set of vertices with distance exactly
r from X. So N0

G(X) = X and N1
G(X) = NG(X). Denote by Br

G(X) the ball of radius r around
X, i.e. Br

G(X) = ∪0≤i≤rN i
G(X). Throughout the proof, all logarithms are in the natural basis.

Let G be a Ks,t-free graph on n vertices for some 2 ≤ s ≤ t and d(G) = d. Then a classical
result of Kővári, Sós and Turán [11] on the Turán number of complete bipartite graphs tells
that e(G) = O(n2−1/s) and thus we have

n/d = Ω(d
1

s−1 ). (1)

We will also make use of the following bipartite version.

Lemma 2.1. [11] For integers s, t with 2 ≤ s ≤ t, there exists a constant c such that the
following holds. Let G = (V1, V2, E) be a Ks,t-free bipartite graph with |V1| = n1, |V2| = n2.
Then

e(G) ≤ cn1−1/s1 n2.

2.1 Robust sublinear expander

For ε1 > 0 and k > 0, let ρ(x) be the function

ρ(x) = ρ(x, ε1, k) :=

{
0 if x < k/5
ε1/ log2(15x/k) if x ≥ k/5,

(2)

where, when it is clear from context we will not write the dependency on ε1 and k of ρ(x). Note
that ρ(x) · x is increasing for x ≥ k/2. In [12], Komlós and Szemerédi introduced a notion of
(ε1, k)-expander G in which for any subset X ⊆ V (G) with k/2 ≤ |X| ≤ |V (G)|/2, we have
|NG(X)| ≥ ρ(|X|) · |X|. In this paper, we shall utilize the following robust version recently
developed by Haslegrave, Kim and Liu [10].

Definition 2.2. [10] A graph G is an (ε1, k)-robust-expander if for all subsets X ⊆ V (G) of size
k/2 ≤ |X| ≤ |V (G)|/2 and any subgraph F ⊆ G with e(F ) ≤ d(G) · ρ(|X|)|X|, we have that

|NG\F (X)| ≥ ρ(|X|) · |X|. (3)

We will use the following version of expander lemma in [10], which states that every graph
contains a robust expander with almost the same average degree.

Lemma 2.3. [10] Let C > 30, 0 < ε1 ≤ 1
10C , 0 < ε2 < 1/2, d > 0, η = Cε1/ log 3 and

ρ(x) = ρ(x, ε1, ε2d) be as in (2). Then every graph G with d(G) = d has a subgraph G′ that is
an (ε1, ε2d)-robust-expander with d(G′) ≥ (1− η)d and δ(G′) ≥ d(G′)/2.

3



The following small diameter property is the key property of the expanders that we will
repeatedly make use of. It roughly says that we can find a relatively short path between any
two large sets, avoiding a small set of vertices or edges.

Lemma 2.4 (Robust small diameter, Lemma 2.3 in [10]). Let 0 < ε1, ε2 < 1 and G be an
n-vertex (ε1, ε2d)-robust-expander. Given two sets X1, X2 ⊆ V (G) of size x ≥ ε2d/2, let Y be
a vertex set of size at most ρ(x)x/4 and F be a subgraph with at most d(G)ρ(x)x edges. Then
there is an (X1, X2)-path of length at most 2

ε1
log3(15n/ε2d) in (G \ F )− Y .

The following is our main lemma, which finds in a robust expander a clique immersion of
asymptotically optimal size.

Lemma 2.5. Let 0 < ε1 ≤ 1/400, 0 < ε2 < 1/2, η ≥ max{40ε1log 3 , 5ε2} and 2 ≤ s ≤ t. Then there
exists d0 satisfying the following. Let G be a Ks,t-free (ε1, ε2d)-robust-expander of order n and
d(G) = d ≥ d0. Then G contains a clique immersion of order at least (1− 9η)d.

Theorem 1.2 immediately follows from Lemmas 2.3 and 2.5.

Proof of Theorem 1.2. Given any constant ε > 0, we choose C = 40, ε1 = ε log 3/500, ε2 <
min{ε/50, 1/2} and η = ε/10. Then η ≥ η′ := 40ε1/ log 3 and Lemma 2.3 applied to G with
ε1, ε2, C = 40, η′, gives a subgraph G′ that is an (ε1, ε2d)-robust-expander with d(G′) ≥ (1 −
η′)d(G) ≥ (1− η)d(G). By applying Lemma 2.5 to G′ with ε1, ε2, η = ε/10, we obtain a clique
immersion of order at least (1 − 9η)d(G′) ≥ (1 − ε)d(G) in G′, which is also an immersion in
G.

2.2 Outline of the proof

Here we sketch an overview of the proof of Lemma 2.5. We divide the proof into two cases
according to the density d of our expander. For the dense case d ≥ log200s n in Section 3, we
adapt the approach of Liu and Montgomery [17] on embedding clique subdivisions in dense
expanders, in which we construct a specific unit structure (see Definition 3.1) for embedding a
Kd−o(d)-immersion. The main work is then to (1) find in a dense expander d − o(d) mutually
edge-disjoint units with distinct centers (see Lemma 3.2); (2) and connect these units with
pairwise edge-disjoint paths so as to obtain a desired clique immersion.

For the proof of the sparse case, we divide the proof into two cases in Section 4.3 depending
on the number of vertices of sufficiently large degree. Before that, we first deal with a special
case when the maximum degree is bounded, which is covered by Lemma 4.1. Then we denote
Z1 as the set of high degree vertices (to be defined later in Section 4.3). The case |Z1| ≥ d is
easy to handle and the strategy here is to greedily connect those vertices in Z1 (see Claim 4.5
in Section 4.3.1). Towards the case when G has less than d such vertices, we instead focus our
attention to the subgraph G′ := G− Z1. Using the assumption of Ks,t-freeness, we obtain that
G′ has almost the same average degree with G (see Claim 4.6).

Note that the subgraph G′ might not have the expansion property for small sets of vertices
as in G, whereas we essentially need vertices that locally expand well for embedding a Kd−o(d)-
immersion. To handle this, we then show in Section 4.3.2 that there exist in G′ many dense
(ε1, ε2d)-robust-expanders F1, F2, · · · , Fd which are relatively small and pairwise far apart from
each other (Claim 4.7). Here we iteratively make use of Lemma 2.3 and Lemma 2.1 to guarantee
the existence of a dense expander one by one.

Anchoring at these small dense subexpanders, we first grow a vertex vi in each subexpander
Fi robustly into a small ball Ki which has size relatively larger than |Z1| even after deleting
ninety-nine percent of incident edges of vi (See Claim 4.8 in Section 4.3.3). Then by further
expanding (subsets of) each Ki into two large balls in G′, we follow the strategy in the proof of
Lemma 4.1 to finish the embedding of a desired clique immersion.
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3 Embedding immersions in dense expanders

In this section, we prove Lemma 2.5 assuming in addition that d ≥ log200s n. Throughout the
rest of this paper, we write

` = (1− 5η)d, `′ = (1− 4η)d, m :=
2

ε1
log3

(
15n

ε2d

)
. (4)

Note that by (1), when d is sufficiently large, then n/d and also m are sufficiently large, and

n/d ≥ m200 and d ≥ m50s. (5)

Also, for sufficiently large d, since ρ(x) is decreasing in the interval [ε2d/2, n], we have that for
every ε2d/2 ≤ x ≤ n,

ρ(x) ≥ ρ(n) ≥ 1

m
. (6)

Definition 3.1. Given integers h1, h2, h3 > 0, an (h1, h2, h3)-unit F is a graph consisting of a
center v, h1 vertex-disjoint stars S(ui) centered at ui, each of size h2, and edge-disjoint (v, ui)-
paths, i = 1, . . . , h1, each of length at most h3. Moreover, the set of interior vertices in all
(v, ui)-paths is disjoint from all leaves in

⋃h1
i=1 S(ui). By the exterior of the unit, denoted by

Ext(F ), we mean the set of all leaves in
⋃h1
i=1 S(ui). We call each (v, ui)-path a branch of F and

each edge in the star S(ui) a pendant edge.

u1

u2
v

uh1

ui

Figure 1: (h1, h2, h3)-unit: h1 vertex-disjoint stars S(ui) each of size h2; h1 edge-disjoint (v, ui)-
paths each of length at most h3. Here ui may appear in a (v, uj)-path for some j 6= i.

The following lemma guarantees a large collection of edge-disjoint units with distinct centers.

Lemma 3.2. For each 0 < ε1, ε2 < 1, η ≥ max{40ε1log 3 , 5ε2} and 2 ≤ s ≤ t, there exists C > 0

such that the following holds for all n and d with d ≥ log200s n and n/d ≥ C. If G is an
n-vertex Ks,t-free (ε1, ε2d)-robust-expander with d(G) = d, then G contains `′ pairwise edge-
disjoint (`′,m5, 2m)-units F1, . . . , F`′ with distinct centers v1, . . . , v`′, where `

′ = (1 − 4η)d and

m = 2
ε1

log3
(
15n
ε2d

)
.

We first see how to construct a K`-immersion, ` = (1− 5η)d, using Lemma 3.2.

Proof of Lemma 2.5 when d ≥ log200s n. Given constants ε1, ε2 and integers t ≥ s ≥ 2, we
choose d0 to be sufficiently large with foresight. Then by (1) and (4), we obtain that m is
also sufficiently large. Let F1, . . . , F`′ be the (`′,m5, 2m)-units guaranteed by Lemma 3.2, with
distinct centers v1, . . . , v`′ , where `′ = (1 − 4η)d. Now we pick instead, for `′′ = (1 − 4.5η)d, a
subfamily {F1, . . . , F`′′} of the (`′,m5, 2m)-units and then connect pairs of these `′′ centers in
the following way.
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A1 Greedily connect as many pairs (vi, vj) of centers as possible through an (Ext(Fi),Ext(Fj))-
path Pi,j of length at most m.

A2 In each Fi, a star is occupied if a leaf of it was previously used as an endpoint in an
(Ext(Fi),Ext(Fk))-path for some k 6= i.

A3 Let Ext(Fi) and Ext(Fj) be the current pair to connect. Then an (Ext(Fi),Ext(Fj))-path
shall avoid using

• any leaf of the occupied stars in Fi or Fj as an endpoint;

• edges that are used in previous connections;

• all centers vp, p ∈ [`′′] and ;

• edges that are in branches of units.

In the process, a star in a unit is over-used if at least half of its pendant edges were used
in previous connections. Discard a unit if it has at least ηd/4 over-used stars. Note that
an (Ext(Fi),Ext(Fj))-path together with the corresponding branches within Fi and Fj form a
(vi, vj)-path of length at most 6m. Thus the total number of edges used in all connections is at
most (

`′′

2

)
· 6m ≤ 3d2m, (7)

while the total number of edges in branches of all units is at most

`′′`′2m ≤ 2d2m. (8)

Thus, in each connection, we avoid using a set of at most 5d2m edges and a set of at most `′′

centers vi, i ∈ [`′′] in A3.
We claim that there are at least ` = (1 − 5η)d units survived (were not discarded), say

F1, . . . , F`. Indeed, all units are edge-disjoint and each unit discarded has at least ηd/4 ·m5/2 of
its edges used in all connections. Hence by (7), the total number of units discarded is at most

3d2m

ηd ·m5/8
< ηd/2 ≤ `′′ − `,

where the first inequality follows as m is sufficiently large.
We now claim that we can connect all pairs of the units F1, . . . , F` in A1. Indeed, let P be

a maximal collection of paths Pi,j in A1 between different units Fi with i ∈ [`]. Assume for

contradiction that there exists {i, j} ∈
(
[`]
2

)
such that there is no (Ext(Fi),Ext(Fj))-path in P.

Note that each unit is connected with less than `′′ other units in A1. Thus each Fi (or Fj) has
at least `′− `′′ = ηd/2 stars not occupied in A2, among which there are at least ηd/4 stars that
are not over-used. Thus, vi and vj can still reach a subset of at least

ηd/4 ·m5/2 ≥ dm4 =: x

vertices in Ext(Fi) and Ext(Fj), denoted by Li, Lj respectively. Recall that in A3, by (7) and
(8), we need to avoid a set P of at most 5d2m ≤ d(G) · ρ(x) · x edges and at most d ≤ ρ(x) · x/4
centers in each connection. Hence, Lemma 2.4 applied to G with

X1 = Li, X2 = Lj , Y = {v1, v2, . . . , v`′′}, F = P

gives a desired (Li, Lj)-path of length at most m, a contradiction to the maximality in A1.
Finally, notice that extending these paths in P from the exterior to the corresponding centers
of the units yields edge-disjoint (vi, vj)-paths, for all {i, j} ∈

(
[`]
2

)
, which yields a desired K`-

immersion.
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3.1 Proof of Lemma 3.2: finding units

Using the Ks,t-free condition, we first show that after deleting a small set of arbitrary vertices,
the remaining subgraph still has large average degree.

Proposition 3.3. For integers n, s, t and constants η with 0 < η < 1, t ≥ s ≥ 2, there exists
m0 ∈ N such that the following holds for every m ≥ m0. If G is an n-vertex Ks,t-free graph with
d(G) = d ≥ m50s, then for any subset Z ⊆ V (G) with |Z| ≤ dm50, we have d(G− Z) ≥ d− ηd.

Proof. We may assume that |Z| ≥ ηd as otherwise it is trivial that d(G−Z) ≥ d− ηd. Consider
the bipartite subgraph G1 := G[Z, V (G) \ Z]. Since G1 is Ks,t-free, by Lemma 2.1, e(G1) ≤
c|Z|1−1/s(n− |Z|) ≤ c(dm50)1−1/sn ≤ cdn

m50/s , for some constant c > 0, where the last inequality

follows as d ≥ m50s. Also, e(G[Z]) ≤ γ|Z|2−1/s ≤ γ(dm50)2−1/s ≤ γdn
(dm50)1/s

, for some γ > 0,

where the last inequality follows from (1) and the assumption that d ≥ m50s. Thus

d(G− Z) =
nd− 2e(G1)− 2e(G[Z])

n− |Z|
≥ d− 2cd

m50/s
− γd

d1/sm50/s
≥ d− ηd,

where the last inequality follows as long as m is sufficiently large (with respect to η).

Now we are ready to prove Lemma 3.2.

Proof of Lemma 3.2. Let F = {F1, F2, . . . , Fk} be a maximal collection of pairwise edge-disjoint
(`′,m5, 2m)-units as desired . Let Z be the centers of all units in F and B be their edge set.
Suppose for contrary that |k| < `′. Let G′ := (G − Z) \ B, i.e. the subgraph on vertex set
V (G) \Z with edges in B removed. Next we shall find in G′ one more (`′,m5, 2m)-unit to reach
a contradiction.

By (5), we have |B| ≤ `′ · 2dm5 ≤ d2m6 ≤ 1
2ηd(n− |Z|). Together with Proposition 3.3, we

have
d(G′) ≥ d(G− Z)− 2|B|/(n− |Z|) ≥ d− 2ηd.

Then we claim that we can find in G′ vertex-disjoint stars, say S(vi) centered at some vi,
i = 1, . . . ,m10, each of size d− 3ηd and S(uj) centered at uj , j = 1, . . . , dm15, each of size m10.
Indeed, let U be the vertex set of a maximal collection S of vertex-disjoint of stars constructed
as above. If S is not as desired, then |U | ≤ dm30 ≤ d(G′)m50 and Proposition 3.3 applied to G′

with Z = U guarantees that d(G′ − U) ≥ (1 − η)d(G′) ≥ d − 3ηd. This allows us to find one
more star as desired, contradicting with the maximality of S.

We use L(vi) to denote the set of all leaves in each star S(vi), i ∈ {1, . . . ,m10}. Let
V = {v1, . . . , vm10}. Now we shall use these vertex-disjoint stars to construct a new (`′,m5, 2m)-
unit in G′ as follows.

B1 Connect as many pairs (vi, uj) as possible through an (L(vi), uj)-path of length at most
m, such that there is at most one path between any pair.

B2 For each vi, a leaf v ∈ L(vi) is occupied if it is previously used as an endpoint of a path in
B1.

B3 Let (vi, uj) be the current pair to connect. Then an (L(vi), uj)-path shall avoid using

• any leaf occupied in L(vi) as an endpoint;

• edges in
⋃m10

p=1 S(vp),
⋃dm15

q=1 S(uq) and B;

• all vertices in Z ∪ V .

Claim 3.4. There is a vertex vi connected to at least s = (`′ + ηd/2) distinct centers uj .

7



Proof. Suppose to the contrary that each vi is connected to less than s centers uj . Then the
number of vertices used in all paths is at most d · m10 · m = dm11. Thus, there are at least
dm15/2 uj-stars that are completely vertex-disjoint from all those paths, and there are at least
dm15/2 > dm9 =: x available centers from uj-stars, say U ′. Inside each vi-star, there are at least
d(G) − 3ηd − s = ηd/2 leaves not occupied. Thus, there is a set V ′ of at least ηd/2 ·m10 > x
leaves not occupied from all vi-stars.

Recall that there are at most d2m6 edges in B, at most dm11 edges used in all paths, at most
dm10 edges in vi-stars and at most dm25 edges in uj-stars. Thus, in total, we avoid at most
d2m7 ≤ d(G) · ρ(x) · x edges and at most |Z|+ |V | ≤ d + m10 ≤ ρ(x) · x/4 vertices. Therefore,
by Lemma 2.4 with X1 = U ′, X2 = V ′, Y = Z ∪ V, F = B, we can find a path of length at most
m between U ′ and V ′ in G′, resulting in one more pair of vi, uj connected, a contradiction.

Let vi, u1, u2, · · · , us be the centers guaranteed by Claim 3.4 with all (vi, uj)-paths pairwise
edge disjoint. If the set of interior vertices in all (vi, uj)-paths is disjoint from

⋃s
j=1 S(uj), then

they form a desired unit in G′. Otherwise, we discard a star S(uj) if at least half of its leaves
are used in (vi, uj)-paths. We claim that there are at least `′ uj-stars left, say S(u1), . . . , S(u`′).
Indeed, recall that all uj-stars are vertex-disjoint and the number of vertices in all all (vi, uj)-
paths is at most sm. Thus the number of stars discarded is at most

sm

m10/2
≤ ηd/2 ≤ s− `′.

Therefore, each uj-stars left has at least m10/2 ≥ m5 leaves that are not used in a (vi, uj′)-path
for any j′ ∈ [s]. These stars, together with the corresponding paths to vi, form a desired unit in
G′.

4 Embedding immersions in sparse expanders

For the proof of the sparse case, we first deal with a special case when the maximum degree is
somewhat bounded. Formally it is stated as follows.

Lemma 4.1. Let 0 < ε1 ≤ 1/400, 0 < ε2 < 1/2, η ≥ max{40ε1log 3 , 5ε2} and 2 ≤ s ≤ t. Then
there exists d0 such that the following holds for any d ≥ d0. Let G be an n-vertex Ks,t-free
(ε1, ε2d)-robust-expander with d(G) = d < log200s n and ∆(G) ≤ d log120 n. Then G contains a
clique immersion of order at least `′ = (1− 4η)d.

For the proof of this case, we need two technical lemmas which ensure that a small ball can
expand robustly even after deleting a small set of vertices or edges.

4.1 Technical lemmas: robust expansion of a ball

We first need the following lemma in [10], which ensures that a large set of vertices expands well
even after deleting a small set of vertices.

Lemma 4.2 (Proposition 3.5 in [10]). Let 0 < ε1 ≤ 1/400, 0 < ε2 < 1/2, and G be an n-vertex
(ε1, ε2d)-robust-expander with d(G) = d. If X,Y ⊆ V (G) are sets such that |X| = x ≥ ε2d, |Y | ≤
ρ(x)x/4, then for every i ≤ log n,

|Bi
G−Y (X)| ≥ exp(

4
√
i).

To state the second technical lemma, we need the following notion of consecutive shortest
paths.
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Definition 4.3. For a set X ⊆W of vertices, the paths P1, · · · , Pq are edge-disjoint consecutive
shortest paths from X within W in G if the following holds. For each i ∈ [q], Pi is a shortest
path from X to a vertex in W in the graph G[W ] \

⋃
j∈[i−1]E(Pj).

Lemma 4.4. Let 0 < ε1 ≤ 1/400, 0 < ε2 < 1/2, η ≥ max{40ε1log 3 , 5ε2}. Then there exists
d0 := d0(ε1, ε2) such that the following holds for all d ≥ d0. Suppose G is an n-vertex (ε1, ε2d)-
expander with d(G) = d and K,Z are disjoint sets of vertices with

|K| < n/2, |Z| ≤ |K|ρ(|K|)/4, |NG−Z(K)| ≥ `′ + ε2d,

where `′ = (1−4η)d. Let P1, P2, · · · , Pq be edge-disjoint consecutive shortest paths from K within
G− Z such that q < `′ and denote E =

⋃
j∈[q]E(Pj). Then for any positive integers t ∈ N and

D with D ≤ n/2, we have

|Bt
(G−Z)\E(K)| ≥ min

{
D, |K| ·

(
1 +

ε1

2 log2(15D/ε2d)

)t−1}
.

Proof. Let G′ = G− Z. For each 0 ≤ p ≤ t− 1, let Xp := Bp
G′\E(K) and denote by Ep the set

of edges in E that go from the set Xp to NG′(Xp). Then we have

NG′\E(Xp) = NG′\Ep
(Xp). (9)

Note that only the first p + 2 vertices of each Pi can intersect NG′(Xp) for otherwise a shorter
path can be found, contradicting the choices P1, . . . , Pq. Therefore |Ep ∩E(Pi)| ≤ p+ 1 for each
i ∈ [q] and it follows that for each 0 ≤ p ≤ t− 1,

|Ep| ≤ q(p+ 1) < `′(p+ 1). (10)

We first observe that for all p ∈ [t− 1], |Xp| ≥ |X1| ≥ |NG′(K)| − |E0| ≥ ε2d, where we use (10)
and the hypothesis of the lemma for the last inequality. Next we claim that for all p ∈ [t − 1],
it holds that

|Xp| · ρ(|Xp|) > p+ 1, (11)

and we shall prove this later. Indeed, if this holds, then we have that |Ep| < `′(p + 1) <
d(G) · |Xp| · ρ(|Xp|) and it follows from the expansion property as in (3) that

|NG\Ep
(Xp)| ≥ |Xp| · ρ(|Xp|). (12)

Since |Xp| ≥ |K| and xρ(x) is increasing in x, we obtain from the assumption on |Z| that

|Z| ≤ |K|ρ(|K|)/4 < |Xp| · ρ(|Xp|)/2,

and it follows from (9) and (12) that

|NG′\E(Xp)| = |NG′\Ep
(Xp)| ≥ |NG\Ep

(Xp)| − |Z| ≥ |Xp| · ρ(|Xp|)/2. (13)

We may assume |Xp| ≤ D for all 1 ≤ p ≤ t− 1, otherwise we are done. Now we have

|NG′\E(Xp)| ≥ |Xp| · ρ(|Xp|)/2 = |Xp| ·
ε1

2 log2(
15|Xp|
ε2d

)

≥ |Xp| ·
ε1

2 log2 (15D/ε2d)
,

9



where the equality follows as ε2d ≤ |Xp| ≤ D. Thus by definition, it follows that |Xp+1| =

|B1
G′\E(Xp)| = |Xp|+ |NG′\E(Xp)| ≥ |Xp|

(
1 + ε1

2 log2(15D/ε2d)

)
for each p ∈ [t− 1], and thus

|Xt| ≥ |K| ·
(

1 +
ε1

2 log2(15D/ε2d)

)t−1
.

Now it remains to prove (11), which we will show by induction on p. Let p0 be the least
integer such that for each p ≥ p0, we have p2/4 · ρ(p2/4) ≥ p+ 1. Then p0 = O(

√
d). The base

cases 1 ≤ p ≤ p0 easily follow since |Xp| · ρ(|Xp|) ≥ |X1| · ρ(|Xp|) > ε2d · ρ(ε2d) > p0 + 1 ≥ p+ 1
holds whenever d is sufficiently large. Suppose p > p0, and assume that (11) holds for all p′

with 1 ≤ p′ ≤ p − 1. Then |Ep′ | < `′(p′ + 1) < d(G) · |Xp′ | · ρ(|Xp′ |), which together with the
expansion property from (13) implies that

|Xp′+1| ≥ |Xp′ |+ |Xp′ | · ρ(|Xp′ |)/2
≥ |Xp′ |+ (p′ + 1)/2.

Therefore, |Xp| ≥ |X1|+ 2+3+···+p
2 ≥ p2/4 and

|Xp| · ρ(|Xp|) ≥ p2/4 · ρ(p2/4) ≥ p+ 1,

where the last inequality follows since p > p0. This completes the proof of (11).

4.2 Almost regular sparse expander: proof of Lemma 4.1

Now we are ready to prove Lemma 4.1. The proof idea is to choose vertices, say v1, v2, · · · , v`′ ,
that are pairwise far apart to be the branch vertices of our clique immersion. To achieve this,
we grow two nested balls around each vi, one inner ball Br(vi) and one outer ball Bκ+r(vi) for
integers r � κ. Then we try to connect all pairs vi, vj using a shortest path between the outer
balls around them while avoiding (1) all edges in the inner balls of other branch vertices, that
is,
⋃
p6=i,j E(Br(vp)); (2) all edges used in previous connections. Using the robust expansion

guaranteed by the Lemma 4.2 and Lemma 4.4, we are able to regrow new inner and outer balls
around each vi to be large enough to enable us to connect vi to more branch vertices.

Proof of Lemma 4.1. Let κ = dlog n/(800s log log n)e, r = d(log log n)5e and d0 be a sufficiently
large integer. First, we claim that there are at least d vertices of degree at least d(G) − 2ηd
which are pairwise a distance at least 3κ + 1 far apart. Indeed, letting L be the set of vertices
with degree at least d(G)− 2ηd, as ∆(G) ≤ d log120 n, we see that

d(G)n < (d(G)− 2ηd)(n− |L|) + d log120 n · |L|,

implying that |L| > n/ log121 n. Let Y be a maximal set of vertices in L which are pairwise
a distance at least 3κ + 1 apart. Suppose to the contrary |Y | < d. Since d < log200s n and
∆(G) ≤ d log120 n, we have that

|B3κ(Y )| < 2d∆(G)3κ < log700sκ n < n7/8 < n/ log121 n,

where the last inequality follows as d0, also n, is sufficiently large. Thus there exists v ∈
L \B3κ(Y ), contradicting the maximality of Y .

Let then v1, v2, · · · , v`′ be such vertices in Y , which will serve as the branch vertices of the
clique immersion. By choice, all the balls Bκ

G(vi), i ∈ [`′], are pairwise vertex disjoint. Let

I ⊆
(
[`′]
2

)
be a maximal subset for which we can find paths Pe, e ∈ I, so that the following hold.

C1 For each {i, j} ∈ I, Pij is a (vi, vj)-path with length at most 2 log4 n.
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C2 For distinct e, e′ ∈ I, the paths Pe and Pe′ are edge disjoint.

C3 For each e ∈ I and i /∈ e, E(Br
G(vi)) and E(Pe) are disjoint.

C4 For each i ∈ [`′], the subcollection Pe, e ∈ I with i ∈ e, form edge-disjoint consecutive
shortest paths from vi within Br

G(vi).

If I =
(
[`′]
2

)
, then by C2, we have a K`′-immersion with branch vertices v1, v2, · · · , v`′ . Suppose

there exists some {i, j} ∈
(
[`′]
2

)
\ I. Let W =

⋃
e∈I E(Pe). Then by C1 and C2, we have

|W | <
(
`′

2

)
· 2 log4 n ≤ d2 log4 n.

By C4, we can apply Lemma 4.4 on G with t = r, D = d2 log7 n, K = {vi}, Z = ∅ and
E =

⋃
i∈e∈I

E(Pe) to get that each inner ball robustly maintains size

|Br
G\W (vi)| ≥ min

{
D, |K| ·

(
1 +

ε1

2 log2(15D/ε2d)

)r−1}
≥ d2 log7 n.

Furthermore, by Lemma 4.2 with X = Br
G\W (vi) and Y =

⋃
e∈I V (Pe), we have

|Bκ+r
G\W (vi)| ≥ |Bκ

G−Y (X)| ≥ exp( 4
√
κ) ≥ exp( 5

√
log n) =: x.

Similarly |Bκ+r
G\W (vj)| ≥ x. Let Wi,j = W ∪ (

⋃
p 6=i,j E(Br

G(vp))), that is, the set of all edges that
are either used in some connection or are in some inner ball of other branch vertices vp. As we
chose the vertices vi to be pairwise at least a distance 3κ+ 1 > 2κ+ 2r apart, all the outer balls
Bκ+r
G\W (vi) are pairwise vertex-disjoint. Note that

|Wi,j | ≤ |W |+ ∆(G) · 2(1− 4η)d ·∆(G)r < d(G) · ρ(x)x.

Therefore, Lemma 2.4 applied to G with X1 = Bκ+r
G\W (vi), X2 = Bκ+r

G\W (vj) and F = Wi,j , gives a

(Bκ+r
G\W (vi), B

κ+r
G\W (vj))-path in G \Wi,j with length at most m ≤ log4 n, which can be extended,

within the balls Bκ+r
G\W (vi) and Bκ+r

G\W (vj), into a (vi, vj)-path. Thus, if we let Pij be a shortest

vi, vj-path in G \Wi,j , then Pij has length at most log4 n + 2(κ + r) ≤ 2 log4 n. The path Pij ,
together with all Pe, e ∈ I, satisfies the conditions C1–C4 above, contradicting the maximality
of I.

4.3 Finishing the proof of Lemma 2.5

This subsection is devoted to finishing the proof of Lemma 2.5 when d < log200s n. As sketched in
Section 2.2, we divide the proof into two cases depending on the number of vertices of relatively
large degree. In particular, let Z1 = {v ∈ V (G) | d(v) ≥ dm3} be the set of high degree vertices.
We first deal with the case that |Z1| ≥ d (see Claim 4.5). If |Z1| < d, then we show in Claim
4.6 that the subgraph G′ := G − Z1 still has large average degree and we focus our attention
to G′ which additionally has small maximum degree. We then find in G′ a collection of small
(ε1, ε2d)-robust-expanders F1, F2, · · · , Fd which are pairwise far apart in G′ (see Claim 4.7). In
Section 4.3.3, we first grow, inside each subexpander Fi, a vertex vi robustly into a small ball Ki,
called kernel (See Claim 4.8). In this case, each Ki, locally maintains certain robust expansion
property inside Fi. Moreover, each kernel has large enough size so as to enjoy further expansion
in the original expander G. Then Section 4.3.4 is devoted to building a desired clique immersion
by further expanding (subsets of) each kernel into two large balls in G′, and here we follow the
strategy in the proof of Lemma 4.1.
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4.3.1 Bounding the size of Z1

The following claim builds a large clique immersion with many vertices of relatively large degree.
Recall that Z1 = {v ∈ V (G) | d(v) ≥ dm3}.

Claim 4.5. If |Z1| ≥ d, then G contains a Kd-immersion.

Proof. Let v1, v2, · · · , vd be distinct vertices in Z1. We shall construct a Kd-immersion with all
vi as branch vertices in the following way, where we let Ni = NG(vi) for i ∈ [d] and I = {{i, j} ∈(
[d]
2

)
| vivj /∈ E(G)}.

D1 Greedily connect as many pairs vi, vj with {i, j} ∈ I as possible through an (Ni, Nj)-path
of length at most m;

D2 Let (Ni, Nj) be the current pair to connect. Then avoid using edges that are used in
previous connections and all other vertices vp, p 6= i, j.

Note that an (Ni, Nj)-path together with the corresponding incident edges forms a (vi, vj)-path,
say Pi,j , of length at most m+ 2 < 2m. Thus the total number of edges used in all connections

is at most
(
d
2

)
· 2m ≤ d2m. It remains to show that there exist, for all pairs {i, j} ∈ I, pairwise

edge-disjoint paths Pi,j as above. Indeed, throughout the process, each vi always has at least
dm3 − d ≥ dm3/2 incident edges which are not used in all previous paths. Thus, each vi can
still reach a set of at least dm3/2 neighbors in Ni, denoted by N ′i . Let x := dm3/2. Then there
are at most d2m ≤ d(G) · ρ(x) · x edges and exactly d ≤ ρ(x) · x/4 vertices we need to avoid in
each connection. Thus any {i, j} ∈ I, by Lemma 2.4 applied with X1 = N ′i , X2 = N ′j , Y = Z1

and F being the set of edges used in all previous paths, there exists an (Ni, Nj)-path of length
at most m as desired.

Thus, it remains to consider the case |Z1| < d. The following claim guarantees that the
subgraph G− Z1 still has large average degree, which allows us to restrict our attention to the
subgraph G− Z1.

Claim 4.6. d(G− Z1) ≥ d(G)− ηd.

Proof. We may assume that |Z1| ≥ ηd
2 , otherwise we are done. It suffices to show that e(G[Z1])+

e(Z1, V (G) − Z1) ≤ ηdn/2. Indeed, it is easy to see that e(G[Z1]) ≤ |Z1|2 = o(dn) because
d < log200s n. Also, by Ks,t-freeness, Lemma 2.1 implies that e(Z1, V (G) \ Z1) = O(d1−1/sn) =
o(dn).

4.3.2 Finding small dense expanders in G− Z1

Let G′ = G− Z1. Then Claim 4.6 tells that d(G′) ≥ d(G)− ηd. We now proceed to find small
expanders of large average degree that are pairwise far apart from each other in G′. Recall
that κ = dlog n/(800s log log n)e. Let F be a maximal family of subgraphs in G′ satisfying the
following.

E1 Each F ∈ F is an (ε1, ε2d)-robust-expander with d(F ) ≥ (1− 3η)d.

E2 For distinct F, F ′ ∈ F , Bκ
G′(V (F )) ∩Bκ

G′(V (F ′)) = ∅.

For each F ∈ F , let nF = |F |, mF = 2
ε1

log3
(
15nF
ε2d

)
. If d(F ) ≥ log200s nF or ∆(F ) ≤ d log120 nF ,

then by the proof of the dense case in Section 3, or by Lemma 4.1, we have a clique immersion
of order at least (1 − 5η)d(F ) ≥ (1 − 9η)d, finishing the proof. Thus we may assume that for
each F ∈ F ,

d(F ) < log200s nF , ∆(G′) ≥ ∆(F ) ≥ d log120 nF .

Recall that ∆(G′) ≤ dm3 ≤ d log12 n, therefore

exp( 200s
√
d/2) ≤ nF ≤ exp( 10

√
log n). (14)
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Claim 4.7. It holds that |F| ≥ d.

Proof. Otherwise, let U =
⋃
F∈F B

2κ
G′ (V (F )). Then

|U | ≤ |F| · 2 max
F∈F

nF ·∆(G′)2κ ≤ d exp( 10
√

log n)(dm3)2κ < n/m4

and it follows that d(G′−U) ≥ d(G′)−2|U | ·dm3/n ≥ (1−2η)d. Lemma 2.3 implies that G′−U
contains an (ε1, ε2d)-robust-expander F ′ with d(F ′) ≥ (1 − 3η)d, which, by choice, is far from
all expanders in F at a distance of at least 2κ+ 1, contradicting the maximality of F .

4.3.3 Kernels in subexpanders

As shown in Claim 4.7, F contains at least d expanders, say F1, F2, · · · , Fd. Since each Fi
satisfies d(Fi) ≥ (1 − 3η)d, we can choose distinct vertices v1, v2, · · · , vd as the branch vertices
such that vi ∈ V (Fi) and dFi(vi) ≥ (1− 3η)d, i ∈ [d]. Note that for sufficiently large d, by (14),
each small expander Fi has at least exp( 200s

√
d/2) ≥ d2 vertices. For each vi, we shall show that,

it expands robustly in Fi as follows.

Claim 4.8. Let P1, P2, · · · , Pq be edge-disjoint consecutive shortest paths from vi in Fi for any
q < (1− 4η)d and denote E =

⋃
j∈[q]E(Pj). Then it holds that |Bs

Fi\E(vi)| ≥ d2 for any integer

s ≥ log4 d.

Proof. To see this, as dFi(vi) ≥ (1 − 3η)d ≥ `′ + ε2d, by applying Lemma 4.4 with G = Fi,
t = log4 d, D = d2,K = {vi} and Z = ∅, we have for large d that

|Bt
Fi\E(vi)| ≥ min

{
D,

(
1 +

ε1

2 log2(15D/ε2d)

)t−1}
≥ d2.

For each i ∈ [d] and s = log4 d, we call Ki = Bs
Fi

(vi) the kernel for vi. In Claim 4.8, we
see that the vertex vi locally expand robustly in Fi. Recall that r = d(log log n)5e. By E2, we
observe that all balls Br

G′(Ki) are pairwise disjoint.

Claim 4.9. Let K ′ ⊆ Ki be a subset of size at least d2 and P1, P2, · · · , Pq be edge-disjoint
consecutive shortest paths from K ′ within Br

G′(K
′) in G′ such that q < `′ and denote E =⋃

j∈[q]E(Pj). Then |Br
G′\E(K ′)| ≥ d2 log7 n.

Indeed, such K ′ satisfies |K ′| · ρ(|K ′|)/4 ≥ d > |Z1| and then NG′(K
′) ≥ d ≥ `′ + ε2d.

Therefore, Claim 4.9 follows from Lemma 4.4 applied to G with t = r,D = d2 log7 n,K = K ′

and Z = Z1.

4.3.4 Building a clique immersion

We are now ready to build a clique immersion by iteratively finding edge disjoint paths connect-
ing all pairs of branch vertices v1, v2, · · · , v`′ . To do this, we will further expand each kernel Ki

in two stages (to Br
G′(Ki) and then Bκ+r

G′ (Ki) as depicted in Figure 2).

By property E2, all the balls Bκ
G′(Ki) are pairwise disjoint, i ∈ [`′]. Let I ⊂

(
[`′]
2

)
be a

maximal subset for which we can find pairwise edge-disjoint paths Pe, e ∈ I, so that

F1 for each e = {i, j} ∈ I, Pe is a (vi, vj)-path with length at most 2 log4 n;

F2 for each e ∈ I, Pe is disjoint from the ball Br
G′(Ki) for any i /∈ e;
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Figure 2: Each vi is surrounded by three layers: the kernel Ki = Bs
Fi

(vi) for s = log4 d, the

inner ball Br
G′(Ki) (the orange one) and the outer ball Bκ+r

G′ (Ki).

F3 for each i ∈ [`′], the subcollection Pe, e ∈ I with i ∈ e, form edge-disjoint consecutive
shortest paths from vi withinKi, and Pe−Ki, e ∈ I with i ∈ e, are edge-disjoint consecutive
shortest paths from Ki within Br

G′(Ki).

We may assume there is {i, j} ∈
(
[`′]
2

)
\ I for otherwise all paths Pe, e ∈ I, would form a

desired clique immersion with v1, v2, · · · , v`′ as branch vertices. We will reach a contradiction
by finding a (vi, vj)-path that is short and additionally avoids all the edges used in previous
connections and all vertices in the inner balls of other branch vertices vp, p 6= i, j as in F2.

Let W =
⋃
e∈I E(Pe) and U =

⋃
e∈I V (Pe), i.e. the sets of edges and vertices used in all

previous connections, respectively. Then |W |, |U | ≤ d2 log4 n. By F1, F2 and F3, Claim 4.8
implies that for i ∈ [`′], |Bs

Fi\W (vi)| ≥ d2. Let K ′i = Bs
Fi\W (vi), i ∈ [`′]. Then it follows from F2,

F3 and Claim 4.9 that |Br
G′\W (K ′i)| ≥ d2 log7 n.

Next, by Lemma 4.2 with X = Br
G′\W (K ′i), Y = (U \ {vi}) ∪ Z1, we have

|Bκ+r
G′\W (K ′i)| ≥ |Bκ

G−Y (X)| ≥ exp( 4
√
κ) ≥ exp( 5

√
log n) =: x.

Let U∗ =
⋃
p 6=i,j B

r
G′(Kp). As we choose the kernels Ki to be pairwise at least a distance

2κ+ 1 > κ+ 2r apart, both Bκ+r
G′\W (K ′i) and Bκ+r

G′\W (K ′j) are disjoint from U∗. Recall from (14)

that |Ki| ≤ |Fi| ≤ exp( 10
√

log n), for each i ∈ [`′] and ∆(G′) ≤ dm3. Thus the total number of
vertices we avoid in F2 is

|U∗| ≤ (1− 4η)d · 2 exp( 10
√

log n)(dm3)r ≤ ρ(x)x/4.

Moreover, the number of edges we avoid in F2 is |W | ≤ d2 log4 n ≤ d(G)ρ(x)x. Since |Bκ+r
G′\W (K ′i)|,

|Bκ+r
G′\W (K ′j)| ≥ x, by Lemma 2.4 with

X1 = Bκ+r
G′\W (K ′i), X2 = Bκ+r

G′\W (K ′j), Y = U∗ and F = W,

there exists a (Bκ+r
G′\W (K ′i), B

κ+r
G′\W (K ′j))-path, say Qij , of length at most m in (G− U∗) \W . It

is easy to observe that Qij can be extended, first within the ball Bκ+r
G′\W (K ′i) (or Bκ+r

G′\W (K ′i))

and then within K ′i = Bs
Fi\W (vi) (or K ′j), into a (vi, vj)-path, in which we denote by Pij such a

shortest (vi, vj)-path in (G−U∗) \W . Then Pij always has length at most m+ 2κ+ 2r+ 2s ≤
2 log4 n, which together with the paths Pe, e ∈ I satisfy F1, F2 and F3, contradicting the
maximality of I.

This completes the proof.
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