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Abstract

An independent dominating set of a graph, also known as a maxi-
mal independent set, is a set S of pairwise non-adjacent vertices such
that every vertex not in S is adjacent to some vertex in S. We prove
that for ∆ = 4 or ∆ ≥ 6, every connected n-vertex graph of maximum
degree at most ∆ has an independent dominating set of size at most
(1− ∆

⌊∆2/4⌋+∆)(n − 1) + 1. In addition, we characterize all connected

graphs having the equality and we show that other connected graphs
have an independent dominating set of size at most (1− ∆

⌊∆2/4⌋+∆
)n.
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1 Introduction

All graphs in this paper are simple, meaning that they have no loops and no
parallel edges. For a graph G, we write V (G) for its vertex set and E(G)
for its edge set. For v ∈ V (G), we use dG(v) to denote the degree of v in G.
For v ∈ V (G), we use NG(v) to denote the set of neighbors of v in G, and
NG[v] = NG(v)∪ {v}. For X ∈ V (G), we use G−X to denote the subgraph
of G induced by V (G) \X . We write ∆(G) to denote the maximum degree
of vertices in a graph G. A vertex of degree 0 is called isolated.

An independent dominating set of a graph is a set S of vertices that are
pairwise non-adjacent, which is called independent, and every vertex not in S
has a neighbor in S, which is called dominating. Independent dominating sets
appear as early as 1962 in Berge [2, Chapter 5] and Ore [7, Chapter 13] under
the names kernels and maximal independent sets, respectively. It is easy to
see that independent dominating sets are precisely maximal independent sets,
which is stated in both Berge [2, Chapter 5] and Ore [7, Chapter 13]. We
write i(G) to denote the size of the minimum independent dominating set in
a graph G. Haynes, Hedetniemi, and Slater discussed the relation between
the domination parameters and maximum degree in their book [6, Subsection
9.3.2].

We are interested in bounding i(G) in terms of the number of vertices in
a graph G of maximum degree at most ∆. It is trivial to see the inequality

i(G) ≤ |V (G)| −∆

because a maximal independent set containing a vertex of maximum degree
has at most |V (G)| − ∆ vertices. Domke, Dunbar, and Markus [5] showed
the above inequality and determined connected bipartite graphs and trees
having the equality. As a refinement of the trivial inequality, Blidia, Chel-
lali, and Maffray [3] showed that i(G) ≤ |V (G)| − ∆′(G), where ∆′(G) =
maxv∈V (G)(dG(v) + ν(G − NG[v])) and ν(G − NG[v]) is the size of a largest
matching in G−NG[v].

Akbari et al. [1] showed that i(G) ≤ 1
2
|V (G)| for graphs G of maxi-

mum degree at most 3 with no isolated vertex and characterized all graphs
achieving the equality. Cho, Choi, and Park [4, Theorem 1.5] proved that
i(G) ≤ 5

9
|V (G)| for graphs G of maximum degree at most 4 with no isolated

vertices.
Our main theorem provides a tight upper bound of i(G) in terms of |V (G)|

for graphs G of maximum degree at most ∆.
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Figure 1: A connected graph G satisfying i(G) = 5
9
|V (G)| for ∆ = 5.

Theorem 1.1. Let ∆ ≥ 4 be an integer and let G be a connected graph of
maximum degree at most ∆.

• If ∆ 6= 5, then G has an independent dominating set of size at most
(

1− ∆
⌊∆2/4⌋+∆

)

(|V (G)| − 1) + 1.

• If ∆ = 5, then G has an independent dominating set of size at most

max
(

5
9
|V (G)|,

(

1− ∆
⌊∆2/4⌋+∆

)

(|V (G)| − 1) + 1
)

.

In addition, we characterize all connected graphs achieving the equality
of Theorem 1.1 when ∆ 6= 5. They will be called ∆-special graphs. For an
integer ∆ ≥ 4, a graph is ∆-special if it is isomorphic to one of the following.

(a) K1.

(b) A graph obtained from K⌈∆/2⌉+1 or K⌊∆/2⌋+1 by attaching degree-1 ver-
tices so that each vertex in the initial clique has degree ∆.

(c) A graph obtained from an odd cycle by attaching two vertices of degree 1
at each vertex when ∆ = 4.

(d) A graph obtained from the union of two ∆-special graphs G1 and G2

with |V (G1) ∩ V (G2)| = 1 where the vertex in the intersection does not
belong to any cycles in G1 or G2.

A precise and equivalent definition will be discussed in Section 3.
Now we present a stronger theorem, implying Theorem 1.1.

Theorem 1.2. Let ∆ ≥ 4 be an integer and let G be a connected graph of
maximum degree at most ∆.

(i) If G is ∆-special, then i(G) =
(

1− ∆
⌊∆2/4⌋+∆

)

|V (G)|+ ∆
⌊∆2/4⌋+∆

.
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(ii) If G is not ∆-special and ∆ 6= 5, then i(G) ≤
(

1− ∆
⌊∆2/4⌋+∆

)

|V (G)|.

(iii) If G is not ∆-special and ∆ = 5, then i(G) ≤ 5
9
|V (G)|.

There is an infinite family of non-special connected graphs achieving the
bound of Theorem 1.2. When ∆ 6= 5, let G be a graph obtained from
any non-trivial ∆-special graph by removing one vertex of degree 1. It is

straightforward to verify that i(G) =
(

1− ∆
⌊∆2/4⌋+∆

)

|V (G)|.

For ∆ = 5, let G be a graph obtained from a path v1v2 . . . v3k on 3k
vertices by adding k edges v3i−2v3i for all i = 1, 2, . . . , k and attaching 2
vertices of degree 1 to each vertex on the path, see Figure 1. Let S be a set
consisting of v3, v6, . . ., v3k and all vertices of degree 1 adjacent to vi for some
i 6≡ 0 (mod 3). Then it is easy to verify that S is a minimum independent
dominating set of G and i(G) = |S| = 5k and therefore i(G) = 5

9
|V (G)|.

Theorem 1.2 proves the following corollary, which was conjectured by
Cho, Choi, and Park [4]. They claimed to have verified the conjecture for
∆ ≤ 8 and presented its proof for ∆ = 4. Let H(p, q) be the graph obtained
by attaching q vertices of degree 1 to every vertex of Kp.

Corollary 1.3. Let ∆ be a positive integer. Every graph G with maximum
degree at most ∆ and no isolated vertices has an independent dominating set
having at most (1 − ∆

⌊(∆+2)2/4⌋
)|V (G)| vertices. Furthermore, when ∆ ≥ 4,

the equality holds if and only if every component is isomorphic to H(⌈∆/2⌉+
1, ⌊∆/2⌋) or H(⌊∆/2⌋+ 1, ⌈∆/2⌉).

Proof of Corollary 1.3 assuming Theorem 1.2. Let n = |V (G)|. It is trivial
if ∆ ≤ 2. We may assume that G is connected. Akbari et al. [1, Theorem
3] showed that i(G) ≤ n/2 if ∆ = 3. So we may assume that ∆ ≥ 4. We
may assume that G is ∆-special by (ii) and (iii) of Theorem 1.2, because
5
9
< 7

12
and ∆

⌊∆2/4⌋+∆
> ∆

⌊(∆+2)2/4⌋
. Since G has no isolated vertex, n ≥

(⌊∆/2⌋ + 1)(∆ − ⌊∆/2⌋ + 1) or n ≥ (⌈∆/2⌉ + 1)(∆ − ⌈∆/2⌉ + 1). In both
inequalities, the right-hand side is equal and we have

n ≥ ⌊(∆ + 2)2/4⌋.

This is equivalent to
(

1− ∆
⌊∆2/4⌋+∆

)

n+ ∆
⌊∆2/4⌋+∆

≤ (1− ∆
⌊(∆+2)2/4⌋

)n, proving

the inequality. Furthermore the equality holds if and only if G is ∆-special
and n = ⌊(∆+2)2/4⌋. Indeed, H(⌈∆/2⌉+1, ⌊∆/2⌋) andH(⌊∆/2⌋+1, ⌈∆/2⌉)
are the only such graphs. This completes the proof.
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Our proof is by induction on |V (G)|+ |E(G)|. Here are two key inequal-
ities on i(G) for our proof.

(1) i(G) ≤ i(G−NG[v]) + 1 for a vertex v of a graph G.

(2) i(G) ≤ i(H) if H is obtained from a graph G by deleting all but one of
the edges incident with a fixed vertex of degree at least 2.

The inequality (1) is commonly used when dealing with the independent
domination, but the authors could not find papers using or mentioning (2).
Perhaps it is because it is difficult to control the change of i(G) after deleting
edges.

The paper is organized as follows. Section 2 presents several useful lem-
mas, including the proof of (2). Section 3 discusses ∆-special graphs. Sec-
tion 4 presents the proof of the main theorem.

2 Several lemmas

We write n0(G) to denote the number of isolated vertices of a graph G. We
start with a few useful lemmas.

Lemma 2.1. Let H be a graph and w be a vertex with degree at least 2. Let
u1, u2, . . . , uk be the list of all neighbors of w. Then H ′ = H − {wui : i ∈
{1, 2, . . . , k − 1}} satisfies i(H) ≤ i(H ′).

Proof. Let S be a minimum independent dominating set of H ′. Then S is
a dominating set of H . If S is an independent set of H , then i(H) ≤ |S| =
i(H ′) and therefore we may assume that S contains both w and uj for some
j ∈ {1, 2, . . . , k − 1}. If S \ {w} has a neighbor of uk, then S \ {w} is an
independent dominating set ofH so that i(H) ≤ i(H ′)−1. Therefore, we may
assume that S\{w} has no neighbor of uk. It follows that (S\{w})∪{uk} is an
independent dominating set of H , implying that i(H) ≤ |(S \{w})∪{uk}| =
i(H ′).

Lemma 2.2. Let G1, G2 be graphs with the unique common vertex v. If Gi

has a minimum independent dominating set Si containing v such that Si\{v}
is a dominating set of Gi − v for some i = 1, 2, then

i(G1 ∪G2) = i(G1) + i(G2)− 1.

5



Proof. Let G = G1 ∪ G2. First let us prove i(G) ≥ i(G1) + i(G2) − 1. Let
S be an independent dominating set of G. If S ∩ V (G1) and S ∩ V (G2) are
independent dominating sets of G1 and G2, respectively, then

|S| ≥ |S ∩ V (G1)|+ |S ∩ V (G2)| − 1 ≥ i(G1) + i(G2)− 1.

Note that we subtracted 1 because v may belong to S. Thus we may assume
that S ∩V (G1) is not an independent dominating set of G1. Then v /∈ S and
v is not dominated by S ∩V (G1). Then (S ∩V (G1))∪{v} is an independent
dominating set of G1 and therefore |S ∩ V (G1)| ≥ i(G1) − 1. In this case,
S∩V (G2) dominates v and therefore |S∩V (G2)| ≥ i(G2). This again implies
that

|S| = |S ∩ V (G1)|+ |S ∩ V (G2)| ≥ i(G1) + i(G2)− 1.

Now let us prove that i(G) ≤ i(G1) + i(G2) − 1. Assume that G2 has a
minimum independent dominating set S2 containing v such that S2 \ {v} is
a dominating set of G2 − v. Let S1 be a minimum independent dominating
set of G1. Then S = S1 ∪ (S2 \ {v}) is an independent dominating set of G
and therefore i(G) ≤ |S1|+ |S2| − 1 = i(G1) + i(G2)− 1.

Lemma 2.3. Let ∆ ≥ 4, d1 < ∆ be integers. Let G be a connected graph of
maximum degree at most ∆. Let X be the set of all vertices of degree 1. If
every vertex of degree at least 2 is adjacent to exactly d1 neighbors of degree 1,
then

i(G) ≤

(

1−
∆− 1

(d1 + 1)(∆− d1)

)

|V (G)|,

unless G−X is a complete graph on ∆ − d1 + 1 vertices or is an odd cycle
when ∆− d1 = 2.

Proof. Let n = |V (G)|. Let m = n/(d1 + 1) be the number of vertices of
G−X . Observe that G−X is connected. Let S be a maximum independent
set of G − X and let α = |S|. Then α ≥ m

χ(G−X)
= 1

(d1+1)χ(G−X)
n. Observe

that S ∪ {v ∈ X : v /∈ NG(S)} is an independent dominating set of G and
therefore

i(G) ≤ α + (m− α)d1 = md1 − α(d1 − 1)

≤ n−
d1 − 1 + χ(G−X)

(d1 + 1)χ(G−X)
n.

6



By Brooks’ theorem, we deduce that χ(G−X) ≤ ∆− d1. Therefore

i(G) ≤ m(d1 + 1)−m
∆− 1

∆− d1
=

(

1−
∆− 1

(d1 + 1)(∆− d1)

)

n.

Lemma 2.4. Let ∆ be an integer. Let G be a connected graph with at least
one vertex of degree at least 2 such that the maximum degree is at most ∆ and
every vertex of degree at least 2 is adjacent to at least one vertex of degree 1.
Let d1 be the maximum number of degree-1 neighbors of a vertex. If some
vertex has less than d1 neighbors of degree 1, then there is a vertex v such
that

n0(G−NG[v]) + 1

dG(v)
≤

⌊∆2/4⌋

∆
.

Proof. Let X be the set of all vertices of degree 1 in G. Since G − X is
connected, there is an edge uv such that u has less than d1 neighbors of
degree 1 and v has exactly d1 neighbors of degree 1. By the assumption,
every isolated vertex of G − NG[v] is adjacent to exactly one neighbor of v
and therefore each isolated vertex of G − NG[v] is a degree-1 neighbor of a
vertex in NG(v). Since u has less than d1 neighbors of degree 1, we have

n0(G−NG[v]) + 1 ≤ d1(dG(v)− d1).

Let f(x, y) = x(y−x)
y

for integers 1 ≤ x < y ≤ ∆. Observe that f(x, y) ≤

f(x, y+ 1) for x < y < ∆ and therefore the maximum of f is achieved when

y = ∆. Since n0(G−NG[v])+1
dG(v)

≤ f(d1, dG(v)) and x(∆ − x) ≤ ⌊∆2/4⌋ for any

integer x, we deduce that n0(G−NG[v])+1
dG(v)

≤ ⌊∆2/4⌋
∆

.

Lemma 2.5. Let x < y be positive integers and y ≥ 5. Then

x(y − x) + 1

y
<

x(y + 1− x)

y + 1
or

x(y − x) + 1

y
<

(x+ 1)(y − x)

y + 1
.

Proof. It is enough to show that

2
x(y − x) + 1

y
<

x(y + 1− x)

y + 1
+

(x+ 1)(y − x)

y + 1
,

which is equivalent to

2xy − 2x2 + 2

y
<

2xy − 2x2 + y

y + 1
.
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As y ≥ 5, we have

(y + 1)(2xy − 2x2 + 2)− y(2xy − 2x2 + y)

= 2y + 2xy − 2x2 + 2− y2

= 2y + 2− x2 − (y − x)2

≤ 2y + 2−
1

2
y2

< 0

by Cauchy-Schwarz inequality.

Lemma 2.6. Let ∆ ≥ 4, d1 > 0 be integers. Let G be a connected graph
with at least one vertex of degree at least 2 such that the maximum degree is
at most ∆ and every vertex of degree at least 2 has exactly d1 neighbors of
degree 1. Let v be a vertex of G of degree at least 2. If d1 /∈ {⌈∆/2⌉, ⌊∆/2⌋}
or dG(v) < ∆, then

n0(G−NG[v]) + 1

dG(v)
≤

⌊∆2/4⌋

∆
,

unless ∆ = 5, dG(v) = 4, and d1 = 2.

Proof. Let v be a vertex of degree at least 2. By the assumption, every
isolated vertex of G − NG[v] is adjacent to exactly one neighbor of v and
therefore each isolated vertex of G−NG[v] is a degree-1 neighbor of a vertex
in NG(v). Therefore,

n0(G−NG[v]) = d1(dG(v)− d1).

If dG(v) = ∆, then d1(∆−d1) ≤ ⌊∆2/4⌋−1 because d1 /∈ {⌈∆/2⌉, ⌊∆/2⌋}.
Therefore (n0(G−NG[v]) + 1)/dG(v) ≤ ⌊∆2/4⌋/∆. So we may assume that
dG(v) < ∆.

If d1 = dG(v) − 1 or d1 = 1, then d1(dG(v)−d1)+1
dG(v)

= 1 ≤ 1
∆
⌊∆2/4⌋. Thus

we may assume that 1 < d1 < dG(v)− 1. So dG(v) ≥ 4. If dG(v) = 4, then

d1 = 2 and d1(dG(v)−d1)+1
dG(v)

= 5
4
. If ∆ ≥ 6, then 1

∆
⌊∆2/4⌋ ≥ 5

4
= d1(dG(v)−d1)+1

dG(v)
.

(If ∆ = 5, then ⌊∆2/4⌋
∆

= 6
5
, d1(dG(v)−d1)+1

dG(v)
= 5

4
.)

Thus we may assume that 5 ≤ dG(v) < ∆. Then by Lemma 2.5,
n0(G−NG[v])+1

dG(v)
≤ (d1+1)(dG(v)−d1)

dG(v)+1
or n0(G−NG[v])+1

dG(v)
≤ d1(dG(v)+1−d1)

dG(v)+1
. By ap-

plying Lemma 2.5 inductively, we deduce that there is a positive integer
x < ∆ such that n0(G−NG[v])+1

dG(v)
≤ x(∆−x)

∆
. We deduce the conclusion because

x(∆− x) ≤ ⌊∆2/4⌋.
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3 Special graphs

For an integer ∆ ≥ 4, we say that a connected graph G is called ∆-special if
it satisfies the following.

(i) Every vertex that belongs to some cycle has degree ∆.

(ii) Every edge has at least one end that belongs to some cycle.

(iii) Each component of the subgraph induced by the set of all vertices that
belong to cycles is isomorphic to one of the following.

(a) K⌈∆/2⌉+1.

(b) K⌊∆/2⌋+1.

(c) An odd cycle when ∆ = 4.

When ∆ is clear from the context, we will say special instead of ∆-special
for brevity. A special graph is called non-trivial if it has at least two vertices
and trivial otherwise.

Proposition 3.1. Let ∆ ≥ 4 be an integer. If G is a ∆-special graph on n
vertices, then

i(G) =

(

1−
∆

⌊∆2/4⌋+∆

)

(n− 1) + 1.

Proof. Let t = ∆
⌊∆2/4⌋+∆

. Let X be the set of all vertices v of G such that

there is a cycle containing v. If X = ∅, then n = i(G) = 1 and therefore we
may assume that X is nonempty.

First, we will treat the case that G[X ] has only one component. Let S
be an independent dominating set of G. If G[X ] has exactly one component,
then G[X ] is isomorphic to K⌈∆/2⌉+1 or K⌊∆/2⌋+1, unless ∆ = 4 and it is
isomorphic to an odd cycle. Let r be an integer such that G[X ] is r-regular.
By the definition, r = ⌈∆/2⌉ or r = ⌊∆/2⌋. Furthermore, by (i) and (ii),
G is isomorphic to a graph obtained from G[X ] by attaching ∆− r vertices
of degree 1 to every vertex in X . Then n = |X|(∆ − r + 1). Suppose that
G[X ] is isomorphic to K⌈∆/2⌉+1 or K⌊∆/2⌋+1. Then |S ∩ X| ≤ 1. Note that
n = ⌊∆/2 + 1⌋⌈∆/2 + 1⌉ = ⌊(∆ + 2)2/4⌋ = ⌊∆2/4⌋ + ∆ + 1. Since S is
dominating,

|S| = |S ∩X|+ |X \ S|(∆− r) ≥ 1 + (|X| − 1) · (∆− r) = ⌊∆2/4⌋+ 1

= (1− t)(n− 1) + 1.

9



In this case, the equality holds if and only if |S ∩ X| = 1 and such a set S

exists. If ∆ = 4 and G[X ] is an odd cycle, then |S ∩X| ≤ |X|−1
2

and since S
is dominating,

|S| = |S∩X|+|X \S|(∆−r) ≥
|X| − 1

2
+
|X|+ 1

2
·2 =

3|X|+ 1

2
=

n− 1

2
+1.

In this case, the equality holds if and only if |S ∩X| = (|X| − 1)/2 and such
a set S exists. Thus i(G) = (1− t)(n− 1) + 1 if G[X ] has one component.

So we may assume that G[X ] has at least two components C1 and C2.
Since G is connected, G has a shortest path from C1 to C2. By (ii) and (iii),
this path has length 2 whose middle vertex v is not in X . By the definition
of X , G − v is disconnected. Among all choices of v and a component F of
G−v, we choose the one such that F is minimal. We claim that G[V (F )∩X ]
is connected. Suppose that G[V (F ) ∩ X ] contains two components D1 and
D2. Then F has a shortest path from D1 to D2. By (ii) and (iii), this path
has length 2 whose middle vertex w is not in X . By the definition of X ,
F − w is disconnected. Since v is not in a cycle, v cannot have neighbors in
distinct components of F − w. Let F ′ be a component of F − w not having
neighbors of v. Then F ′ is a component of G − w, contradicting the choice
of v and F . This proves that G[V (F ) ∩X ] is connected.

Let G1 = G−V (F ) and G2 = G[V (F )∪{v}]. Observe that both G1 and
G2 are special.

Note that G2[V (G2) ∩X ] is isomorphic to one of (a), (b), (c) and v has
degree 1 in G2. Because of our analysis in the first part of the proof, G2

has a minimum independent dominating set S2 containing v and another
vertex w such that NG2

(v) ⊆ NG2
(w). Then S2 \ {v} is a dominating set of

G2 − v. By the induction hypothesis, i(G1) = (1 − t)(|V (G1)| − 1) + 1 and
i(G2) = (1− t)(|V (G2)| − 1)+1. By Lemma 2.2, i(G) = i(G1) + i(G2)− 1 =
(1− t)(|V (G1)| − 1) + (1− t)(|V (G2)| − 1) + 1 = (1− t)(n− 1) + 1.

4 Main theorem

Let n∆(G) be the number of ∆-special components. We now prove our main
theorem, which proves Theorem 1.2.

Theorem 4.1. Let ∆ ≥ 4 be an integer and let G be a graph with maximum

10



degree at most ∆. Let

t =

{

4
9

if ∆ = 5,
∆

⌊∆2/4⌋+∆
otherwise.

Then i(G) ≤ (1− t)|V (G)|+ tn∆(G).

Proof. We proceed by induction on |V (G)| + |E(G)|. By the induction hy-
pothesis, we may assume that G is connected. It is true if G is special by
Proposition 3.1 and therefore we may assume that G is not special. Thus
n∆(G) = 0. Note that if ∆ = 5, then ∆

⌊∆2/4⌋+∆
> 4

9
.

Claim 4.2. If G has a vertex of degree at least 2 with no neighbors of degree 1,
then i(G) ≤ (1− t)|V (G)|.

Proof. Suppose that G has a vertex v of degree at least 2 with no neighbors
of degree 1. Let u1, u2, . . ., uk be the neighbors of v. For j ∈ [k], let
Hj := G − {vui : i ∈ [k], i 6= j}. By Lemma 2.1, i(G) ≤ i(Hj). Since
dG(ui) > 1 for all i ∈ [k], n0(Hj) = 0 for all j ∈ [k]. Thus if Hj has no non-
trivial special component for some j ∈ [k], then i(G) ≤ i(Hj) ≤ (1−t)|V (G)|
by the induction hypothesis. Thus we may assume that Hj has a non-trivial
special component Cj for all j ∈ [k]. Since Cj is not a component of G, Cj

contains a vertex xj incident with a deleted edge in G. Since xj has degree
less than ∆ in Cj , Cj has no cycle containing xj by the definition of a special
graph. By the definition of a special graph, every neighbor of xj in Cj belongs
to some cycle of Cj.

Suppose xj = ui for some j ∈ [k] and i ∈ [k] \ {j}. Let Fj be the set of
edges of G − uiv incident with ui. As ui has degree at least 2 in G, Fj is
nonempty. By Lemma 2.1, i(G) ≤ i(G − Fj). By the induction hypothesis,
we may assume that G − Fj contains a non-trivial special component C ′

j .
Since C ′

j is not a component of G, there is a vertex yj of C
′
j that is incident

with some edge in Fj . Since the degree of yj in G − Fj is less than ∆, yj
does not belong to any cycle of C ′

j and therefore yj = xj . However in this
case, G = Cj ∪C ′

j, ui is the unique vertex in Cj ∩C ′
j, and ui does not belong

to any cycle in Cj or C ′
j. This implies that G is special, contradicting the

assumption.
Thus xj = v and V (Cj) ∩ {u1, . . . , uk} = {uj} for all j ∈ [k]. Then G is

obtained from the disjoint union of C1, . . ., Ck by identifying one vertex from
each component that does not belong to a cycle to become v. This implies
that G is special, contradicting the assumption. �
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Suppose that G−NG[v] has a non-trivial special component C for some
vertex v. Since G is connected, C has a vertex x adjacent to some neighbors
of v and therefore the degree of x in C is less than ∆. By the definition
of a special graph, all neighbors of x in C have degree ∆ and therefore
all neighbors of x in G have degree at least 2 in G, implying that i(G) ≤
(1− t)|V (G)| by Claim 4.2. Therefore, we may assume that G−NG[v] has no
non-trivial special component for every vertex v, that is, n∆(G − NG[v]) =
n0(G−NG[v]).

Let d1 be the maximum number of degree-1 neighbors of a vertex of G.
By Claim 4.2, we may assume that G has a vertex of degree 1 and therefore
d1 > 0. Suppose that there is a vertex of degree at least 2 having less than
d1 neighbors of degree 1. Let v be the vertex chosen by Lemma 2.4. By the
induction hypothesis, we have

i(G) ≤ i(G−NG[v]) + 1

≤ (1− t)(|V (G)| − dG(v)− 1) + tn0(G−NG[v]) + 1

= (1− t)|V (G)| − (1− t)dG(v) + tn0(G−NG[v]) + t

≤ (1− t)|V (G)| − dG(v) + t
⌊∆2/4⌋+∆

∆
dG(v) by Lemma 2.4

≤ (1− t)|V (G)|.

Thus we may assume that every vertex of degree at least 2 has exactly
d1 neighbors of degree 1. Let X be the set of all vertices of degree 1. Since
G is connected, G−X is connected. Note that |V (G−X)| = 1

d1+1
|V (G)|.

If ∆ = 5, d1 = 2, and G has a vertex of degree 2, then by Lemma 2.3,
i(G) ≤ 5

9
|V (G)| = (1 − t)|V (G)|. Hence, we may assume that ∆ 6= 5, or

d1 6= 2, or G has no vertex of degree 2.
Let v be a vertex of degree at least 2. If d1 /∈ {⌈∆/2⌉, ⌊∆/2⌋} or dG(v) <

∆, then by Lemma 2.6, n0(G−NG[v])+1
dG(v)

≤ ⌊∆2/4⌋
∆

, which implies that i(G) ≤

(1 − t)|V (G)| as in the previous computation. Therefore, we may assume
that d1 ∈ {⌈∆/2⌉, ⌊∆/2⌋} and every vertex of degree at least 2 has degree
exactly ∆.

Then G−X is (∆− d1)-regular. Since G is not special, G−X is not a
complete graph.

If G−X is not an odd cycle, then by Lemma 2.3,

i(G) ≤

(

1−
∆− 1

(d1 + 1)(∆− d1)

)

|V (G)|.
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If ∆ ≥ 6, then

1

t
−

(d1 + 1)(∆− d1)

∆− 1
≥

(∆2 − 1)/4 + ∆

∆
−

(∆ + 1)2/4

∆− 1

=
((∆3 + 3∆2 − 5∆ + 1)− (∆3 + 2∆2 +∆))

4∆(∆− 1)

=
(∆2 − 6∆ + 1)

4∆(∆− 1)
> 0

and therefore

i(G) ≤

(

1−
∆− 1

(d1 + 1)(∆− d1)

)

|V (G)| ≤ (1− t)|V (G)|.

If ∆ = 5, then d1 ∈ {2, 3} and so ∆−1
(d1+1)(∆−d1)

≥ 4
9
= t. If ∆ = 4, then d1 = 2

and ∆−1
(d1+1)(∆−d1)

= 1
2
= t.

Now we may assume that G−X is an odd cycle. Since G is not special,
∆ = 5. Since G−X is (∆−d1)-regular, we have d1 = 3. As G−X is an odd

cycle, G−X has an independent set S of size (|V (G−X)|−1)/2 = |V (G)|
2(d1+1)

− 1
2
.

As in the proof of Lemma 2.3, S ∪ NG(V (G) − X − S) is an independent

dominating set and so i(G) ≤ |S| + d1|V (G) − X − S| = |V (G)|
2(d1+1)

− 1
2
+

d1(
|V (G)|
2(d1+1)

+ 1
2
) = |V (G)|/2 + d1−1

2
= |V (G)|/2 + 1. Since G is not special,

the length of G−X is at least 5 and |V (G)| ≥ 5(d1 +1) = 20, and therefore
|V (G)|/2 + 1 ≤ 5

9
|V (G)|.
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