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Abstract

Let G be a bridgeless cubic graph. The Berge–Fulkerson Conjecture (1970s) states that
G admits a list of six perfect matchings such that each edge of G belongs to exactly two of
these perfect matchings. If answered in the affirmative, two other recent conjectures would
also be true: the Fan–Raspaud Conjecture (1994), which states that G admits three perfect
matchings such that every edge of G belongs to at most two of them; and a conjecture
by Mazzuoccolo (2013), which states that G admits two perfect matchings whose deletion
yields a bipartite subgraph of G. It can be shown that given an arbitrary perfect matching of
G, it is not always possible to extend it to a list of three or six perfect matchings satisfying
the statements of the Fan–Raspaud and the Berge–Fulkerson conjectures, respectively. In
this paper, we show that given any 1+-factor F (a spanning subgraph of G such that its
vertices have degree at least 1) and an arbitrary edge e of G, there always exists a perfect
matching M of G containing e such that G \ (F ∪ M) is bipartite. Our result implies
Mazzuoccolo’s conjecture, but not only. It also implies that given any collection of disjoint
odd circuits in G, there exists a perfect matching of G containing at least one edge of each
circuit in this collection.

Keywords: factor, perfect matching, circuit, cubic graph, snark, S4-Conjecture, Fan–Raspaud Con-

jecture, Berge–Fulkerson Conjecture

Math. Subj. Class.: 05C15, 05C70

*To our loved ones
The authors were partially supported by VEGA 1/0743/21, VEGA 1/0727/22, and APVV-19-0308. The results
described in this paper were obtained during the workshop Exceptional Structures in Discrete Mathematics 4 in
Modra, Slovakia.

http://arxiv.org/abs/2204.10021v2


2

1 Introduction

The behaviour of perfect matchings in cubic graphs is amongst the most well-studied
themes in graph theory. One of the first classical results was made by Petersen in 1891 [18],
who showed that every bridgeless cubic graph admits a perfect matching. These graphs not
only do admit a perfect matching, but in 2011, one of the most prominent conjectures about
perfect matchings in bridgeless cubic graphs was completely solved by Esperet et al. [1].
The conjecture, proposed by Lovász and Plummer in the 1970s, stated that the number
of perfect matchings in a bridgeless cubic graph grows exponentially with its order (see
[9]). Another conjecture which has baffled mathematicians for more than 50 years is the
following.

Conjecture 1.1 (Fulkerson, 1971 [3]). Every bridgeless cubic graph G admits six per-

fect matchings such that each edge in G is contained in exactly two of these six perfect

matchings.

Such a list of six perfect matchings shall be referred to as a Fulkerson cover. Although
initially stated by Fulkerson, Conjecture 1.1 is also attributed to Berge and has been widely
referred to as the Berge–Fulkerson Conjecture. In hindsight, such a name was more than
appropriate as Fulkerson’s conjecture was actually shown to be equivalent to the following
seemingly weaker conjecture made by Berge (see [13] for more details).

Conjecture 1.2 (Berge, unpublished). Every bridgeless cubic graph G admits five per-

fect matchings such that every edge in G is contained in at least one of these five perfect

matchings.

In the sequel, in order to avoid confusion, the Berge–Fulkerson Conjecture shall refer
exclusively to the statement by Fulkerson, which, despite being quite simple and uncom-
plicated, remains widely open. As the years went by, in an attempt to advance in this
direction, weaker assertions started to be considered. Such an example is a conjecture by
Fan and Raspaud.

Conjecture 1.3 (Fan–Raspaud, 1994 [2]). Every bridgeless cubic graph admits three per-

fect matchings M1,M2,M3 such that M1 ∩M2 ∩M3 = ∅.

Three perfect matchings satisfying this property shall be referred to as an FR-triple.
As one can readily deduce, any three perfect matchings from a Fulkerson cover form an
FR-triple. Although, as stated by the authors in [2], this conjecture is weaker than the
Berge–Fulkerson Conjecture; once again, it remains unresolved. The best result in this di-
rection is a result by the second author and Škoviera [11] who show that the Fan–Raspaud
Conjecture is true for bridgeless cubic graphs having oddness 2. The oddness of a bridge-
less cubic graph G is the least (even) number of odd circuits in a 2-factor amongst all
possible 2-factors of G. Seemingly stronger formulations of the Fan–Raspaud Conjecture
are discussed in [15, 17, 20], and shown to be equivalent to the original formulation.

A Fano colouring of a cubic graph G is a colouring of the edges of G with the points
of the Fano plane such that the colours given to the three edges incident to a vertex of G

E-mail addresses: frantisek.kardos@u-bordeaux.fr (František Kardoš), macajova@dcs.fmph.uniba.sk (Edita
Máčajová), zerafa.jp@gmail.com (Jean Paul Zerafa)
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(0, 0, 1)

(0, 1, 0)(1, 0, 0)

(0, 1, 1)(1, 0, 1)

(1, 1, 0)

(1, 1, 1)

(a) (b)

Figure 1: (a) The Fano plane (the configuration where points are non-zero elements of Z3
2

and lines are triples that sum up to zero); (b) The graph S4.

form a line of the Fano plane, where the latter consists of seven points and seven lines (see
Figure 1(a)). A cubic graph admits a Fano colouring if and only if it is bridgeless (see
[4]). In [10], the second author and Škoviera deal with the question of how many points
and lines of the Fano plane are sufficient to colour all bridgeless cubic graphs. It is shown
that for a Fano colouring of a snark (a non-3-edge-colourable bridgeless cubic graph), all
seven points and at least four lines are needed. In fact, it is proven that six, and conjectured
that four, lines of the Fano plane colour every bridgeless cubic graph. For i ∈ {4, 5}, the
statement that for every bridgeless cubic graph there exists a Fano colouring with at most
i lines is denoted as the Fi-Conjecture. It is shown that the F4-Conjecture is equivalent to
the Fan–Raspaud Conjecture, and that the F5-Conjecture is equivalent to saying that every
bridgeless cubic graph G admits two perfect matchings whose intersection does not contain
any odd edge-cut of G. In 2013, Mazzuoccolo proposed the following conjecture, which
is equivalent to the F5-Conjecture restricted to only those odd edge-cuts that separate odd
circuits.

Conjecture 1.4 (Mazzuoccolo, 2013 [12]). For any bridgeless cubic graph G, there exist

two perfect matchings such that the deletion of their union leaves a bipartite subgraph of

G.

Let H and G be graphs. An H-colouring of G is a map f : E(G) → E(H) such that
for any vertex u ∈ V (G) there exists a vertex v ∈ V (H) with f (∂G(u)) = ∂H(v), where
∂G(u) and ∂H(v) respectively denote the sets of edges in G and H incident to the vertices
u and v. Conjecture 1.4 was later referred to as the S4-Conjecture by Mazzuoccolo and the
last author, since it is equivalent to colouring the edges of G with the edges of the graph
S4 shown in Figure 1(b) (see [14, 15, 20] for more details). Consequently, as in the last
two cited documents, given a bridgeless cubic graph G, a pair of perfect matchings whose
deletion yields a bipartite subgraph of G shall be referred to as an S4-pair.

In 2013, Mkrtchyan [16] showed that if the Petersen Colouring Conjecture by Jaeger
[5] is true, the Petersen graph is the unique connected bridgeless cubic graph which can
colour all bridgeless cubic graphs (colouring is done in the same manner as H-colourings
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defined above). In [14] this was extended and it was shown that if one was to remove all
degree conditions on the graph H by which we are colouring, any bridgeless cubic graph
can be coloured by the Petersen graph, and by a unique other graph: S4 (see [14] for more
details about the uniqueness of S4). Related results can be found in [6, 7].

Clearly, by the result in [11], any bridgeless cubic graph having oddness 2 admits an S4-
pair. The authors of [15, 20] extend this result to bridgeless cubic graphs having oddness
4. The authors also show that if the S4-Conjecture is true, then there exist cubic graphs
admitting a bridge for which an S4-pair exists – this is not possible when considering the
Berge–Fulkerson Conjecture and the weaker conjectures mentioned above, because if a
cubic graph admitting a perfect matching contains a bridge, then, every perfect matching
of this graph must intersect the bridge (itself an odd edge-cut).

Theorem 1.5 ([15, 20]). Let G be a connected cubic graph having k bridges, all of which

lie on a single path, for some positive integer k. If the S4-Conjecture is true, then G admits

an S4-pair.

1.1 Important definitions and notation

Graphs considered in this paper may contain parallel edges, but they cannot contain loops,
unless otherwise stated. We speak about a simple graph if parallel edges are not allowed.

Let G be a graph and (V1, V2) be a partition of its vertex set, that is, V1 ∪ V2 = V (G)
and V1 ∩ V2 = ∅. Then, by E(V1, V2) we denote the set of edges having one endvertex in
V1 and one in V2; we call such a set an edge-cut. An edge which itself is an edge-cut of
size one is a bridge.

An edge-cut X = E(V1, V2) is called cyclic if both graphs G[V1] and G[V2], obtained
from G after deleting X , contain a circuit (a 2-regular connected subgraph). The cyclic

edge-connectivity of a graph G is defined as the smallest size of a cyclic edge-cut in G if
G admits one; it is defined as |E(G)| − |V (G)|+ 1 otherwise. For cubic graphs, the latter
only concerns three graphs: K4, K3,3, and the graph consisting of two vertices joined by
three parallel edges, whose cyclic edge-connectivity is thus 3, 4, and 2, respectively.

Let G be a bridgeless cubic graph. A 1+-factor of G is the edge set of a spanning
subgraph of G such that its vertices have degree 1, 2 or 3. In particular, a perfect matching

and a 2-factor of G are 1+-factors whose vertices have exactly degree 1 and 2, respectively.
A parity subgraph J of a graph G is a subgraph H such that the parity of the degree of
every vertex is the same in H as is in G. For cubic graphs, a parity subgraph is a 1+-factor
with no vertices of degree 2. We remark that in [8], parity subgraphs (also known as joins

in the literature) have been already studied with respect to problems discussed above.

Definition 1.6. A 1+-factor F and a perfect matching M of G form a quelling pair if
G \ (F ∪M) is bipartite.

2 Disjoint odd circuits in bridgeless cubic graphs

In [15, 20], a stronger problem than the S4-Conjecture is proposed.

Problem 2.1 ([15, 20]). Establish whether any perfect matching of a bridgeless cubic graph
can be extended to an S4-pair.
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It is known that not every perfect matching can be extended to an FR-triple and con-
sequently, neither to a Fulkerson cover. In fact, consider the Petersen graph P and expand
each of its vertices into a triangle (see Figure 2). Let the resulting graph on 30 vertices be
denoted by P ′, and let N be the set of edges in P ′ corresponding to E(P ). The set N is a
perfect matching of P ′, and it is not difficult to see that it cannot be extended to an FR-triple
or to a Fulkerson cover. However, as can be seen in Figure 2, N (shown as dashed lines)
can in fact be extended to an S4-pair of P ′ (with the edges of the second perfect matching
shown as dotted lines).

Figure 2: An example of an S4-pair in the graph P ′ obtained from the Petersen graph P by
replacing each vertex by a triangle.

Moreover, saying that Problem 2.1 is true for every bridgeless cubic graph is equivalent
to the following statement: for every bridgeless cubic graph G, given any collection O of
disjoint odd circuits of G, there exists a perfect matching M such that M ∩E(C) 6= ∅, for
every C ∈ O (see [15, 20]). One implication is clearly obvious. Thus, assume that every
perfect matching of any bridgeless cubic graph can be extended to an S4-pair, and consider
a collection of disjoint odd circuits in a bridgeless cubic graph G. Expand every vertex not
covered by the circuits in the collection to a triangle, and let the resulting bridgeless cubic
graph be denoted by G′. The initial odd circuits and all the new expanded triangles give a
2-factor R of G′. Let N ′ = E(G′) \R. By our assumption, there exists a perfect matching
M ′ such that G′ \ (N ′ ∪M ′) is bipartite, implying that M ′ intersects all the odd circuits
in R, including all the new expanded triangles. Let M ′

△
be the set of edges belonging

simultaneously to M ′ and the new expanded triangles. One can immediately see that the
set of the edges of G corresponding to M ′ \M ′

△
is a perfect matching of G intersecting all

the odd circuits in the initial collection of odd circuits in G, proving the equivalence of the
two statements.

2.1 Main result

We now proceed to proving our main result, and consequently solve Problem 2.1 and the
S4-Conjecture.

Theorem 2.2. Let G be a bridgeless cubic graph. Let F be a 1+-factor of G and let

e ∈ E(G). Then, there exists a perfect matching M of G such that e ∈ M , and F and M
are a quelling pair.
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Proof. Let G be a minimum counterexample to the above statement. Let e ∈ E(G) be an
edge of G such that there exists a 1+-factor which cannot be extended to a quelling pair
by a perfect matching containing e. Amongst all such 1+-factors of G, we can choose
an inclusion-wise maximal one, denoted by F . By the choice of F , we may assume that
e ∈ F and that G \ F contains only (disjoint) odd circuits, that is, F is a join. Let the set
of components of G \ F be denoted by O.

If G is 3-edge-colourable, then its edge set decomposes into three perfect matchings.
It suffices to take M to be the one containing e. Then G \ M is a union of even circuits,
and so F and M are a quelling pair by definition. Therefore, G is not 3-edge-colourable,
and hence, it is not bipartite. In particular, G is not the unique bipartite cubic graph on two
vertices.

It is easy to see that we may assume that G is connected.

Claim 1. The graph G does not have any 2-edge-cuts.
Proof of Claim 1. Suppose that G admits a 2-edge-cut E(V ′, V ′′) with E(V ′, V ′′) =
{f1, f2} =: X , where f1 = v′1v

′′
1 and f2 = v′2v

′′
2 for some v′1, v

′
2 ∈ V ′ and v′′1 , v

′′
2 ∈ V ′′.

Since G is bridgeless, v′1 6= v′2 and v′′1 6= v′′2 . See Figure 3 for an illustration.

v′1

v′2

v′′1

v′′2

e′ e′′

G′ G′′

v′1

v′2

v′′1

v′′2

f1

f2

G

Figure 3: The graphs G′ and G′′ when G admits a 2-edge-cut {f1, f2}.

By the choice of F , we have that either X is contained in the edge set of some odd
circuit CX in O, or X ⊂ F . Let G′ and G′′ be the two graphs on the vertex sets V ′ and
V ′′ obtained from G after deleting X and adding the edges e′ = v′1v

′
2 and e′′ = v′′1v

′′
2 ,

respectively. Let

F ′ =

{

F ∩ E(G′) if F ∩X = ∅,

(F ∩ E(G′)) ∪ {e′} otherwise;

and let

F ′′ =

{

F ∩ E(G′′) if F ∩X = ∅,

(F ∩E(G′′)) ∪ {e′′} otherwise.

Clearly, F ′ (F ′′) is a 1+-factor of G′ (G′′, respectively).
Without loss of generality, we may assume that at least one of the endvertices of e

corresponds to a vertex of G′. First, consider the case when e ∈ X . Observe that by our
choice of F , X ⊂ F . By minimality of G, there exists a perfect matching M ′ of G′ (M ′′

of G′′) containing e′ (e′′) such that F ′ and M ′ (F ′′ and M ′′) are a quelling pair of G′ (of
G′′, respectively). Consequently, M = M ′ ∪M ′′ ∪X \ {e′, e′′} is a perfect matching of
G containing e. Moreover, since X ⊂ M , F and M are a quelling pair of G, contradicting
our initial assumption.
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Therefore, e corresponds to an edge in G′ \ e′. For simplicity, we shall refer to the edge
in G′ corresponding to e, with the same name, that is, by e. By minimality of G, there
exists a perfect matching M ′ of G′ containing e such that F ′ and M ′ are a quelling pair of
G′.

If e′ ∈ M ′, then let M ′′ be a perfect matching of G′′ containing e′′ such that F ′′ and
M ′′ are a quelling pair of G′′. Such a perfect matching M ′′ exists by minimality of G.
Once again, M = M ′ ∪M ′′ ∪ X \ {e′, e′′} is a perfect matching of G containing e, and
since X ⊂ M , F and M are a quelling pair of G. Thus, e′ /∈ M ′.

In this case, let e′′′ be an edge adjacent to e′′ in G′′. By minimality of G, there exists
a perfect matching M ′′ of G′′ containing e′′′ such that F ′′ and M ′′ are a quelling pair of
G′′. Since e′′ /∈ M ′′, M = M ′ ∪M ′′ is a perfect matching of G containing e. It remains
to prove that F and M are a quelling pair of G. Every odd circuit C 6= CX in O corre-
sponds to an odd circuit either in G′ \ F ′ or in G′′ \ F ′′. The odd circuit CX (if it exists),
corresponds to two circuits C′

X and C′′

X in G′ \ F ′ and G′′ \ F ′′, respectively, of different
parity. Therefore, at least one of them (the odd one) is hit, that is, intersected, by at least
one edge of M ′ or M ′′ in G′ or G′′, respectively, and thus, CX is hit by at least one edge
of M in G. Indeed, F and M are a quelling pair of G, a contradiction. �

In particular, Claim 1 implies that G does not have any parallel edges, that is, G is
simple.

Claim 2. The graph G does not have any cyclic 3-edge-cuts.
Proof of Claim 2. Suppose that G admits a cyclic 3-edge-cutE(V ′, V ′′) with E(V ′, V ′′) =
{f1, f2, f3} =: X , where each fi = v′iv

′′
i , for some v′1, v

′
2, v

′
3 ∈ V ′ and v′′1 , v

′′
2 , v

′′
3 ∈ V ′′.

Since G has no 2-edge-cuts, the vertices v′1, v
′
2, v

′
3, v

′′
1 , v

′′
2 , v

′′
3 are all distinct.

By the choice of F , the parity of |F ∩X | is odd, that is, either |F ∩X | = 3, meaning
there is no odd circuit in O intersectingX , or |F∩X | = 1, meaning the cut X is intersected
by a unique circuit CX in O. Without loss of generality, we shall assume that when |F ∩
X | = 1, F ∩X = f1.

Let G′ and G′′ be the two graphs obtained from G after deleting X and joining the
vertices v′i to a new vertex v′, and the vertices v′′i to a new vertex v′′. For each i ∈ {1, 2, 3},
let e′i = v′iv

′ and e′′i = v′′i v
′′.

v′1

v′2

v′3

v′ v′′
v′′1

v′′2

v′′3

G′ G′′

v′1

v′2

v′3

v′′1

v′′2

v′′3

f1

f2

f3

G

Figure 4: The graphs G′ and G′′ when G admits a cyclic 3-edge-cut {f1, f2, f3}.

Let
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F ′ =

{

(F ∩ E(G′)) ∪ {e′1} if |F ∩X | = 1,

(F ∩ E(G′)) ∪ {e′1, e
′
2, e

′
3} otherwise.

Similarly, let

F ′′ =

{

(F ∩E(G′′)) ∪ {e′′1} if |F ∩X | = 1,

(F ∩E(G′′)) ∪ {e′′1 , e
′′
2 , e

′′
3} otherwise.

It is not hard to see that F ′ (F ′′) is a 1+-factor of G′ (of G′′, respectively). Every odd
circuit C 6= CX in O corresponds to an odd circuit either in G′ \F ′ or in G′′ \F ′′. The odd
circuit CX (if it exists) corresponds to two circuits C′

X and C′′

X in G′ \ F ′ and G′′ \ F ′′,
respectively, having different parity.

Without loss of generality, we may assume that at least one of the endvertices of e
corresponds to a vertex in V ′. We consider two cases, depending on the size of |F ∩X |.

Case A. First, consider the case when |F ∩ X | = 3. When e ∈ X , say e = f1, then,
by minimality of G, there exists a perfect matching M ′ of G′ (M ′′ of G′′) containing e′1
(e′′1), such that F ′ and M ′ (F ′′ and M ′′) form a quelling pair of G′ (of G′′, respectively).
Consequently, M = M ′ ∪ M ′′ ∪ {f1} \ {e′1, e

′′
1} is a perfect matching of G containing

e = f1, and moreover, F and M are a quelling pair of G.
It remains to consider the case when e /∈ X , and so the endvertices of e both correspond

to vertices in G′. Once again, for simplicity, we shall refer to this edge as e. Let M ′ be a
perfect matching of G′ containing e such that F ′ and M ′ are a quelling pair of G′. Without
loss of generality, assume that e′1 ∈ M ′. Let M ′′ be a perfect matching of G′′ containing
e′′1 such that F ′′ and M ′′ are a quelling pair of G′′. Let M = M ′ ∪M ′′ ∪ {f1} \ {e′1, e

′′
1}.

This is a perfect matching of G containing e, and as before, F and M form a quelling pair
of G, a contradiction.

Case B. Suppose that |F ∩ X | = 1. When e ∈ X , say e = fi, then, by minimality
of G, there exists a perfect matching M ′ of G′ (M ′′ of G′′) containing e′i (e′′i ), such that
F ′ and M ′ (F ′′ and M ′′) form a quelling pair of G′ (of G′′, respectively). Consequently,
M = M ′ ∪M ′′ ∪{fi} \ {e′i, e

′′

i } is a perfect matching of G containing e = fi. To observe
that F and M form a quelling pair of G, it suffices to note that the only odd circuit in O
possibly not intersected by M is CX . However, this can only happen if i = 1, and, if this is
the case, then either C′

X or C′′

X is odd, and so it is hit by an edge of M ′ or M ′′, not incident
to v′ or v′′. However, this means that CX is also hit by the corresponding edge of M in G,
a contradiction.

It remains to consider the case when e /∈ X , and so the endvertices of e both correspond
to vertices in G′. Once again, for simplicity, we shall refer to this edge as e. Let M ′ be a
perfect matching of G′ containing e such that F ′ and M ′ are a quelling pair of G′. We have
e′i ∈ M ′ for some i ∈ {1, 2, 3}. Let M ′′ be a perfect matching of G′′ containing e′′i such
that F ′′ and M ′′ are a quelling pair of G′′. Let M = M ′ ∪M ′′ ∪ {fi} \ {e′i, e

′′

i }. This is a
perfect matching of G containing e. As before, F and M form a quelling pair of G, unless
i = 1 and no edge of G′ or G′′ corresponding to an edge of CX is hit by M ′ or M ′′, which
is impossible since either C′

X or C′′

X is an odd circuit. �
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From this point on we may assume that G has no cyclic 3-edge-cuts. Therefore, it is
cyclically 4-edge-connected, unless G = K4, but for this particular graph it is easy to see
that it is not a counterexample, since for every edge e, the complement of the only perfect
matching containing e is an even circuit.

We now consider the edges at distance 2 from e (distance measured as the distance of
the corresponding vertices in the line graph of G).
Claim 3. Let f be an edge at distance 2 from e. Then, f ∈ F .
Proof of Claim 3. We will use a procedure that transforms a cubic graph G into a cubic
graph G′ smaller than G, such that every perfect matching of G′ containing a certain edge
can be extended into a perfect matching of G containing the corresponding edge. This
operation was already used by Voorhoeve [19] to study perfect matchings in bipartite cubic
graphs and it is a key ingredient for counting perfect matchings in general in [1].

Let f = uv, let the neighbours of u distinct from v be α and γ, and let the neighbours
of v distinct from u be β and δ. In particular, since G is cyclically 4-edge-connected,
these four vertices are all distinct. Without loss of generality, we may assume that α is an
endvertex of e.

e α
u

vβ δ

γ

f

e α

β δ

γ

G′G

Figure 5: The vertices α, β, γ, δ and an (αβ : γδ)uv-reduction.

As shown in Figure 5, we obtain a smaller graph (possibly containing parallel edges)
by deleting the endvertices of f (together with all edges incident to them) and adding the
edges αβ and γδ. Let this resulting graph be G′. We shall say that G′ is obtained after
an (αβ : γδ)uv-reduction. It is well-known that when applying this operation, the cyclic
edge-connectivity of a cubic graph can drop by at most 2. Since G is cyclically 4-edge-
connected, G′ is bridgeless.

Let the edge in G′ corresponding to e, and the vertices in G′ corresponding to α, β, γ, δ
be denoted by the same name. We recall that any perfect matching of G′ which contains
e can be extended to a perfect matching of G containing the edge e (see also Figure 6).
In fact, let M ′ be a perfect matching of G′ containing e. This is extended to a perfect
matching M of G containing e as follows:

M =

{

M ′ ∪ {uγ, vδ} \ {γδ} if γδ ∈ M ′,

M ′ ∪ {f} otherwise.

Suppose that for some edge f at distance 2 from e we have f /∈ F . By the choice of F ,
f is in some odd circuit Cf in O. This means that exactly one of uα and uγ, and exactly
one of vβ and vδ belong to Cf . Without loss of generality, we may assume that uα ∈ F if
and only if vβ ∈ F (otherwise, we rename β and δ). Let G′ be the graph obtained from G
after an (αβ : γδ)uv-reduction. Let F ′ be the 1+-factor of G′ as follows:
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e α
u

vβ δ

γ

f

e α

β δ

γ

GG′

e α
u

vβ δ

γ

f

e α

β δ

γ

GG′

Figure 6: Extending a perfect matching of G′ containing e to a perfect matching of G
containing e. Dotted lines represent edges in M or M ′.

F ′ =

{

F ∪ {αβ} \ {uα, vβ} if {uα, vβ} ⊂ F ,

F ∪ {γδ} \ {uγ, vδ} otherwise.

This is portrayed in Figure 7.
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Figure 7: If f 6∈ F , then we apply induction on G′ – the graph obtained from G after an
(αβ : γδ)uv-reduction. Dashed lines represent edges in F ′ or F .

Observe that every odd circuit C 6= Cf remains the same in G′; and that Cf is trans-
formed into an odd circuit C′

f in G′, shorter than Cf by two edges. Since G′ is bridgeless
and its order is strictly less than G, it is not a counterexample. Let M ′ be a perfect matching
of G′ containing e such that F ′ and M ′ are a quelling pair. We extend this perfect matching
to a perfect matching M of G containing e as described above (see Figure 6), and claim
that F and M are a quelling pair. Every odd circuit C′ 6= C′

f in G′ \ F ′ is hit by an edge
of M ′ in G′, and so the corresponding circuit C is hit by the corresponding edge of M in
G. The odd circuit C′

f is hit by an edge M ′ in G′, and so the corresponding circuit Cf is
hit by the corresponding edge in G, unless the hitting edge is αβ (or γδ), but then Cf is hit
by at least one edge (in fact, two edges) on the path from α to β (or from γ to δ, respec-
tively) which contains u and v. Hence, F and M are a quelling pair of G, a contradiction. �

From this point on we may assume that for every edge f at distance 2 from e we have
f ∈ F . As a consequence, by the maximality of F , we have that all the edges at distance at
most 1 from e are in F , otherwise there would be a component in O which is not a circuit,
a contradiction. Once again, let us consider an edge f = uv at distance 2 from e. Let α,
β, γ and δ be as defined in Claim 3. The edge uγ is at distance 2 from e, and so uγ ∈ F ,
implying that uα ∈ F as well. Furthermore, it can be easily seen that vβ ∈ F if and only
if vδ ∈ F .

Consider first the case when {vβ, vδ} ⊂ F . Then, in the graph G′, obtained by an
(αβ : γδ)uv-reduction, the 1+-factor F ′ = F ∪ {αβ, γδ} \ {uα, vβ, uv, uγ, vδ} can be
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extended to a quelling pair of G′ by a perfect matching M ′ containing e. It is easy to see
that the perfect matching M (of G) containing e obtained as an extension of M ′ forms a
quelling pair with F in G, a contradiction. This implies that vβ and vδ do not belong to F .

When {vβ, vδ} ∩ F = ∅, we cannot use the reduction portrayed in Figure 5 as we do
not have a guarantee that we can obtain a perfect matchingM intersecting the odd circuit in
O containing the edges vβ and vδ. Since G is cyclically 4-edge-connected, this latter odd
circuit is of length at least 5. Let δ, v, β, y, z be consecutive and distinct vertices on this odd
circuit (see Figure 8). Moreover, let w and x be the vertices in G such that {wβ, xy} ⊂ F .
We proceed by applying an (αβ : γδ)uv-reduction followed by an (αx : wz)βy-reduction
as portrayed in Figure 8.
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Figure 8: An (αβ : γδ)uv-reduction followed by an (αx : wz)βy-reduction.

Let the resulting graph after these two reductions be denoted by G′. We remark that G′

may have parallel edges and even loops. Let F ′ = F ∩E(G−{u, v, β, y})∪{αx,wz, γδ}.
Since G′ is obtained by applying twice the reduction at an edge at distance 2 from e, a
perfect matching of G′ containing e can always be extended to a perfect matching of G
containing e (recall that βy cannot be adjacent to e, otherwise βy ∈ F ). Moreover, any
such matching contains either the edge βy or the edge yz, and so it hits the odd circuit in
O containing the edges vβ and vδ. Therefore, as long as G′ is bridgeless, by minimality
of G, there exists a perfect matching M ′ of G′ containing e such that F ′ and M ′ are a
quelling pair of G′. This extends to a perfect matching M of G containing e such that
F and M are a quelling pair of G. This contradicts our initial assumption that G is a
counterexample. Consequently, G′ must admit some bridge g. Let Ω1 = {α, γ, δ, w, x, z}
and let Ω2 = {u, v, β, y}.

In order to prove that G′ is bridgeless, we prove that it is 2-edge-connected (which
is a stronger property). Before considering an edge-cut of size one, we prove that the
graph G′ is connected. For, suppose that G′ is disconnected. Then G′ admits at least
two components. Label the vertices of a first component by A, and the remaining vertices
by B. This shall result in a labelling of the vertices of G′ such that each edge in G′ is
monochromatic (an edge in G′ is said to be monochromatic if its endvertices have the same
label). For the three edges αx, wz, and γδ, either their endpoints receive all the same label,
or two of them receive one label and the remaining four receive the other. We first extend
this labelling of V (G′) to a partial labelling of V (G) by giving to the vertices in V (G)−Ω2

the same label they had in G′. Next, in both cases, we label all the vertices in Ω2 with the
label appearing four or six times in Ω1, thus obtaining a labelling of G such that there are
at most two edges which are not monochromatic. However, this means that G is either
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disconnected or contains a 2-edge-cut, a contradiction.
Therefore, G′ must be connected. We label the vertices of G′ \ {g} with labels A and

B depending in which connected component of G′ \ {g} they belong to. Consequently,
G′ has exactly one edge which is not monochromatic: the bridge g. We consider different
cases depending on the number of vertices in Ω1 labelled A in G′, and show that, in each
case, a bridge in G′ would imply that G is not cyclically 4-edge-connected. Without loss
of generality, we shall assume that the number of vertices in Ω1 labelled A is at least the
number of vertices in Ω1 labelled B. We consider four cases.

(B0) All the vertices in Ω1 are labelled A in G′.

As above, we extend this labelling to a partial labelling of G, and then give label A
to all the vertices in Ω2. However, this means that G has exactly one edge, corre-
sponding to g, which is not monochromatic, a contradiction, since G does not admit
a bridge.

(B1) Exactly 5 vertices in Ω1 are labelled A in G′.

This means that one of the edges in {αx,wz, γδ} is the bridge g. Once again, we
extend this labelling to a partial labelling ofG, and then give labelA to all the vertices
in Ω2. However, this means that G has an edge which has exactly one endvertex in
Ω1 labelled B and exactly one endvertex in Ω2 labelled A, implying that G admits a
bridge, a contradiction once again.

(B2) Exactly 4 vertices in Ω1 are labelled A in G′.

SinceG′ has exactly one edge which is not monochromatic, the edges in {αx,wz, γδ}
are all monochromatic. As in the previous cases, we extend this labelling to a par-
tial labelling of V (G), and then give label A to all the vertices in Ω2. However, this
means that G has exactly two edges each having exactly one endvertex in Ω1 labelled
B and exactly one endvertex in Ω2 labelled A. These two edges together with the
edge in G corresponding to the bridge g form a 3-edge-cut in G. Since G has no
cyclic 3-edge-cuts, this cut must be trivial – it separates a singleton from the rest of
the graph. Therefore, one of the edges αx, wz, or γδ is a loop in G′, and so α = x,
w = z, or γ = δ in G. If w = z or γ = δ, then the vertices w, β, y, or γ, u, v would
induce a triangle in G, which is impossible since G is cyclically 4-edge-connected.
If α = x, then the edges βy and yz (which are not in F ) would be at distance at most
2 from e, a contradiction once again.

(B3) Exactly 3 vertices in Ω1 are labelled A in G′.

Since G′ has exactly one edge which is not monochromatic, there is exactly one edge
in {αx,wz, γδ} which is not monochromatic. As in the preceding cases, we extend
this labelling to a partial labelling of V (G), and then give label A to all the vertices
in Ω2. However, this means that G has exactly three edges each having exactly one
endvertex in Ω1 labelled B and exactly one endvertex in Ω2 labelled A, and so these
three edges separate a singleton from the rest of the graph. In particular, it means that
either α = x, w = z or γ = δ, which is impossible as we have seen in the previous
case.
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Thus, G′ is bridgeless, a contradiction to our assumption.

Here are some consequences of our main result.

Corollary 2.3. Let G be a bridgeless cubic graph. For every parity subgraph J of G there

exists a perfect matching M such that J and M are a quelling pair.

Corollary 2.4. Let G be a bridgeless cubic graph and let O be a collection of disjoint odd

circuits of G. Then, there exists a perfect matching M such that M ∩E(C) 6= ∅, for every

C ∈ O.

Corollary 2.5. Every bridgeless cubic graph admits an S4-pair.
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