
ar
X

iv
:2

20
5.

12
82

4v
1 

 [
m

at
h.

C
O

] 
 2

5 
M

ay
 2

02
2

A note on classes of subgraphs of locally

finite graphs

Florian Lehner

May 26, 2022

We investigate the question how ‘small’ a graph can be, if it contains all
members of a given class of locally finite graphs as subgraphs or induced
subgraphs. More precisely, we give necessary and sufficient conditions for
the existence of a connected, locally finite graph H containing all elements of
a graph class G. These conditions imply that such a graph H exists for the
class Gd consisting of all graphs with maximum degree < d which raises the
question whether in this case H can be chosen to have bounded maximum
degree. We show that this is not the case, thereby answering a question
recently posed by Huynh et al.

1 Introduction

Given a graph class G, we call a graph G ∈ G (strongly) universal for G, if it contains
every graph in G as an (induced) subgraph. This concept was probably first studied
by Rado who showed in [10] that the set of all countable graphs contains a strongly
universal element.

Numerous other results about the existence or non-existence of universal elements in
various graph classes can be found in the literature. Graph classes defined by excluded
subgraphs are particularly well studied, especially when the excluded subgraphs are trees
or cycles, see for instance [1, 2, 3, 5, 7, 8, 9].

In this short note we are interested in the question whether there is a locally finite
(that is, all vertices have finite degree) graph containing all members of a given graph
class as (induced) subgraphs. Let us say that a graph H contains a graph class G, if
H contains every G ∈ G as a subgraph, and that H strongly contains G, if H contains
every G ∈ G as an induced subgraph.

Our first main result states that the existence of a locally finite graph H which
(strongly) contains G can be determined by looking at the set of balls of finite radius
appearing in members of G.

To state the theorem, we need to set up some notation. Given a graph class G, let

B = {BG(v, r) | G ∈ G, v ∈ V (G), r ∈ N0}
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where BG(v, r) and BG′(v′, r) are considered the same if there is an isomorphism between
them which maps v to v′. Define a tree structure T (G) on B by connecting BG(v, r − 1)
and BG(v, r) by an edge for every G ∈ G, v ∈ V (G), and r ∈ N.

Let us call G closed, if for every G /∈ G there is some v ∈ V (G) and r ∈ N such that
BG(v, r) /∈ B. We note that many interesting graph classes are closed. For instance it
is easy to see that any graph class defined by forbidden (induced) subgraphs of finite
diameter is closed, and the same is true for graph classes defined by finite forbidden
minors or topological minors.

With the above notation, and denoting by T∞ the tree in which every vertex has
countably infinite degree, we have the following characterisation of closed graph classes
which admit a locally finite graph containing them.

Theorem 1.1. Let G be a closed class of connected, locally finite graphs. The following
three statements are equivalent.

1. There is a connected, locally finite graph which strongly contains G.

2. There is a connected, locally finite graph which contains G.

3. T (G) does not contain a subdivision of T∞.

Closedness of graph classes has a topological interpretation which adds another inter-
esting facet to the above theorem: the three equivalent conditions are met if and only if
the set G• = {(G, v) | G ∈ G, v ∈ V (G)}, is σ-compact with respect to a natural topology
on the set of rooted graphs.

We also note that a similar result holds, if we drop the requirement that G is closed (see
Theorem 3.1), but the third statement has to be replaced by a more technical condition.

The second main result of this paper concerns graphs not containing some fixed star.
Denote by Gd the class of all connected graphs which do not contain a star with d leaves
as a subgraph. Equivalently, Gd is the class of all graphs in which all vertex degrees are
strictly less than d. We also allow d = ∞ and let G∞ denote the class of connected,
locally finite graphs.

The class G∞ does not contain a universal element by an argument attributed to de
Bruijn in [10] (or by Theorem 1.1), and the same is true for Gd, d ≥ 4 as shown in [9].
However, it follows from Theorem 1.1 that there is a graphH ∈ G∞ (strongly) containing
Gd for d < ∞. We show that this is best possible, thereby answering a question recently
posed by Huynh et al. in [6, Section 7].

Theorem 1.2. If a countable graph H contains G4, then it necessarily has unbounded
vertex degrees.

Besides the result itself, the proof method may be of interest. Many results about non-
existence of certain countable universal graphs are based on the fact that partitioning
an uncountable set into countably many parts yields at least one uncountable part. The
key idea in our proof can be seen as a quantitative version of this infinite pigeonhole
principle: if the uncountable set is endowed with a non-null measure and the parts are
measurable, then at least one of the parts must have positive measure.
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2 Preliminaries

Throughout this short note, all graphs are assumed to be connected and simple unless
explicitly stated otherwise. Moreover we assume all graphs to be countable in order to
avoid set-theoretical subtleties which could arise due to the fact that the class of all
graphs is not a set. As usual, denote by V (G) and E(G) the vertex and edge set of a
graph G respectively.

An embedding of a graph G into a graph H is a map ι : V (G) → V (H) which preserves
adjacency, that is, uv ∈ E(G) =⇒ ι(u)ι(v) ∈ E(H). A strong embedding is an
embedding ι which additionally preserves non-adjacency, that is, uv ∈ E(G) ⇐⇒
ι(u)ι(v) ∈ E(H). Note that G is a subgraph of H if and only if there is an embedding of
G into H, and G is an induced subgraph of H if and only if there is a strong embedding
of G into H.

A graph class G is a set of graphs such that G ∈ G whenever G is isomorphic to some
G′ ∈ G. We say that a graph H (strongly) contains a graph class G, if every G ∈ G
has a (strong) embedding into H. A graph G ∈ G which (strongly) contains G is called
(strongly) universal for G.

A rooted graph is a pair (G, v) where G is a graph and v ∈ V (G). All of the above
definitions carry over to rooted graphs, the only difference is that an embedding of a
rooted graph (G, v) into a rooted graph (H,w) must always map the root v of G to the
root w of H. For a graph class G, we define the associated rooted graph class by

G• = {(G, v) | G ∈ G, v ∈ V (G)},

in other words, G• is the class of all rooted graphs whose underlying graph lies in G.
Any class of rooted graphs can be endowed with a metric by letting

d((G, v), (G′ , v′)) = exp(−max{r | BG(v, r) is isomorphic to BG′(v′, r)}),

where BG(v, r) as usual denotes the ball in G with radius r and centre v.
A class G of locally finite graphs is closed if G• is a closed subset of the class G•

∞ of
all locally finite, rooted graphs with respect to the topology induced by the metric given
above. We remark that this definition of closedness is equivalent to the one given in the
introduction.

We slightly abuse notation, and extend the definition of the tree T (G) given in the
introduction to rooted graph classes as follows. The vertex set of T (G) is B(G) :=
{BG(v, r) | (G, v) ∈ G, r ∈ N0} where BG(v, r) and BG′(v′, r) are considered the same if
there is an isomorphism between them which maps v to v′. Note that isomorphic balls
with different radii are considered different, for instance given a finite rooted graph (G, v)
the balls BG(v, r) are distinct elements of B(G) although they are isomorphic for all but
finitely many r. Connect BG(v, r − 1) and BG(v, r) by an edge for every (G, v) ∈ G and
r ∈ N. For a class G of (unrooted) graphs, the definition of T (G) from the introduction
coincides with the tree T (G•) corresponding to the associated rooted graph class.

We treat T (G) as a rooted tree with root B0 = BG(v, 0); note that the definition of
B0 does not depend on the specific choice of (G, v) ∈ G because BG(v, 0) is the trivial
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one vertex graph for every choice of (G, v). We call B ∈ B(G) an ancestor of B′ ∈ B(G)
and B′ a descendant of B, if B lies on the B0–B

′-path in T (G). Note that in this case
there is (G, v) ∈ G and i ≤ j such that B is isomorphic to BG(v, i) and B′ is isomorphic
to BG(v, j).

The tree T (G) is closely linked to the topology of G induced by the metric defined
above. Note that any element (G, v) of a rooted graph class G corresponds to a one-way
infinite path (B0, B1, B2, B3, . . . ) in T (G) where each Bi is isomorphic to BG(v, i); if we
didn’t treat isomorphic balls of different radii as different objects, paths corresponding
to graphs of finite diameter would be finite. Mapping each graph to the corresponding
path gives a homeomorphism between G and a subset of the end space (see [4] for an
introduction) of T (G) and the results given in the remainder of this section can be seen
as straightforward consequences of this homeomorphism. We provide proofs of these
results for the convenience of the reader.

The first result concerns the closure of a graph class G. Note that from an infinite path
p = (B0, B1, B2, B3, . . . ) starting at the root of T (G) we can construct a rooted graph
(Gp, vp) as follows: Find (Gi, vi) ∈ G with Bi = BGi

(vi, i), take a disjoint union of all
BGi

(vi, i) and identify BGi−1(vi−1, i− 1) and BGi
(vi, i− 1) via an automorphism—such

an automorphism must exist, otherwise there would not be an edge connecting Bi−1 to
Bi. Let vp be the vertex obtained from identifying all centres vi.

Lemma 2.1. Let G be a class of countable rooted graphs. A rooted graph (G, v) is in the
closure G of G if and only if it is of the form (Gp, vp) for some infinite path p in T (G)
as above.

Proof. If p is an infinite path as above, then (Gp, vp) satisfies BGp(vp, i) = Bi. Since there
is a graph (Gi, vi) ∈ G such that Bi = BGi

(vi, i) and hence d((Gp, vp), (Gi, vi)) ≤ exp(−i)
for every i we conclude that (Gp, vp) ∈ G.

Conversely, if (G, v) is contained in the closure, then for any i ∈ N there must be a
graph (Gi, vi) ∈ G such that d((G, v), (Gi , vi)) ≤ exp(−i), and the sequence of BGi

(vi, i)
gives the desired infinite path in T (G).

The second result provides a characterisation of compact and σ-compact graph classes;
recall that a topological space is called σ-compact if it can be covered by countably many
compact subsets, and let T∞ denote the tree in which every vertex has countably infinite
degree.

Lemma 2.2. Let G ⊆ G∞ be a closed class of rooted graphs.

1. G is compact if and only if T (G) is locally finite

2. G is σ-compact if and only if T (G) does not contain a subdivision of T∞.

Proof. For the first statement, note that if T (G) is not locally finite, then there is some
i ∈ N such that there are infinitely many non-isomorphic BG(v, i) with (G, v) ∈ G. Hence
there is an infinite cover of G whose elements are pairwise disjoint open balls of radius
exp(−i+ 1). This cover clearly has no finite sub-cover, hence G is not compact.
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For the converse implication, recall that a metric space is compact if and only if it
is sequentially compact. Let (Gi, vi)i∈N be a sequence of graphs in G. Since T (G) is
locally finite there are only finitely many non-isomorphic k-balls in B(G) for every k.
Hence, we can inductively find subsequences (Gi, vi)i∈Ik with N ⊇ I1 ⊇ I2 ⊇ . . . such
that BGi

(vi, k) and BGj
(vj , k) are isomorphic for any pair i, j ∈ Ik. Pick an increasing

function f(k) : N → N such that f(k) ∈ Ik for every k. The sequence BGf(k)
(vf(k), k)

forms an infinite path p in T (G). Since G is closed, the rooted graph (Gp, vp) defined
by this path lies in G by Lemma 2.1. Moreover d((Gf(k), vf(k)), (Gp, vp)) ≤ exp(−k), so
(Gf(k), vf(k))k∈N is a convergent subsequence of (Gi, vi)i∈N.

Now let us turn to the second statement of the lemma. Let G be σ-compact and pick
a cover G =

⋃

i∈NHi where each Hi is compact. Note that T (Hi) is the subtree of T (G)
induced by B(Hi), and that that this subtree is locally finite because Hi is compact.

Assume for a contradiction that T (G) contains a subdivision of T∞. Call a vertex B a
branch point, if it corresponds to a vertex of the subdivision of T∞. Note that from every
branch point B we can find infinitely many edge disjoint paths to other branch points,
and that all but one of these branch points are descendants of B. Since T (Hi) is locally
finite, the first edge of at least one of these paths does not lie in T (Hi). Connectedness
of T (Hi) implies that the other endpoint of this path is a descendant of B which does
not lie in B(Hi).

Let B1 be an arbitrary branch point, and for every i ∈ N let Bi+1 be a branch point
which is a descendant of Bi and does not lie in B(Hi). Let p be an infinite path starting
at B0 and passing through every Bi. The graph (Gp, vp) is contained in G by Lemma 2.1,
but it is not contained in any Hi since there is some ri such that BGp(vp, ri) is isomorphic
to Bi /∈ B(Hi).

Now assume that T (G) does not contain a subdivision of T∞. We construct a decom-
position of G into countably many compact sets by transfinite induction.

In step α of the construction, assume that we have defined compact sets Hβ ⊆ G for
every β < α (for α = 0 this is vacuously true) and let Tα = T (G \

⋃

β<α Hβ). If Tα has
no vertex B such that the subtree induced by all descendants of B is locally finite, then
Tα and thus also T (G) contains a subdivision of T∞. Hence we can pick such a vertex
Bα and let Hα be the set consisting of all (G, v) ∈ G which correspond to an infinite
path in Tα which passes through Bα. The tree T (Hα) is the union of all these infinite
paths in Tα, it is locally finite because of our choice of Bα, and hence Gα is compact.

Note that no graph in (G \
⋃

β<αHβ)\Hα = G \
⋃

β<α+1 Hβ contains a ball isomorphic
to Bα, hence Bα is not a vertex of any Tγ for any γ > α. The class G only contains
locally finite graphs, so all graphs in B(G) are finite and thus T (G) has only countably
many vertices. Hence the above procedure will terminate after some countable number
of steps thereby yielding the desired composition of G.

3 Graph classes with locally finite universal graphs

In this section we investigate conditions for the existence of a locally finite graph con-
taining a given graph class and prove Theorem 1.1. We start by giving a more technical
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condition which is true even if the graph class in question is not closed.
Recall that G∞ denotes the class of connected, locally finite graphs, and consequently

G•
∞ denotes the class of rooted connected, locally finite graphs.

Theorem 3.1. Let G ⊆ G∞. The following are equivalent.

1. There is H ∈ G∞ which strongly contains G.

2. There is H ∈ G∞ which contains G.

3. We can decompose G• as a countable union
⋃

i∈NHi such that T (Hi) is locally
finite for every i ∈ N.

Note that the classes Hi in statement 3 are classes of rooted graphs. Indeed, the
theorem becomes false if we decompose G instead of G•: even a class G consisting of a
single locally finite graph can contain infinitely many non-isomorphic balls of radius 1.

Proof. Condition 1 trivially implies condition 2.
For the implication 2 =⇒ 3 let H ∈ G∞ be a graph which contains G and let (vi)i∈N

be an enumeration of the vertices of H. For each vertex vi let H
′
i be the class of all rooted

graphs (G, vi) where G is a subgraph of H that contains vi. Since H is locally finite
there are only finitely many subgraphs of diameter at most r containing any fixed vi, and
thus T (H′

i) is locally finite for every i. Since H contains G we know that G• ⊆
⋃

i∈NH′
i.

Letting Hi = G• ∩H′
i gives the desired decomposition; T (Hi) is locally finite because it

is a subtree of T (H′
i).

For the final implication 3 =⇒ 1, we first note that it suffices to find for each i a
rooted graph (Hi, vi) ∈ G•

∞ which strongly contains Hi. From the disjoint union of these
graphs, we can construct a connected, locally finite graph H by connecting vi to vi+1

every i ∈ N. This graph H strongly contains G because any strong embedding of a graph
(G, v) ∈ Hi into (Hi, vi) induces a strong embedding of H into G.

For the construction of the graphs (Hi, vi) we denote by Bi the set {BG(v, r) | (G, v) ∈
Hi, r ∈ N}. As before, two balls BG(v, r) and BG′(v′, r) are considered the same if there
is an isomorphism between them which maps v to v′. For B = BG(v, r) ∈ B we call
BG(v, r − 1) the interior B◦ of B; note that this does not depend on the specific choice
of (G, v) ∈ Hi. For each B ∈ B we fix a strong embedding ιB : B◦ → B which maps the
centre of B◦ to the centre of B. Clearly such an embedding always exists; for instance
we can pick some (G, v) such that B = BG(v, r) and take the restriction of the identity
map to BG(v, r − 1).

Now define a graph Hi as follows. Start with a disjoint union of all B ∈ Bi, and for
each B ∈ Bi identify every v ∈ V (B◦) with ιB(v). Clearly, the central vertices of all
balls in Bi are identified to a single vertex of Hi, this vertex vi is the designated root of
(Hi, vi).

The rooted graph (Hi, vi) is connected because each B = BG(v, r) is connected and all
copies of root vertices of balls are identified. It follows from the definition of the maps
ιB that any pair of vertices which is identified has the same distance from the centres of
the respective balls. Consequently the vertex set of BHi

(v, r) consists of the vertices of
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all BG(v, r) for (G, v) ∈ Hi. Each such BG(v, r) is finite because G ⊆ G∞, and there are
only finitely many non-isomorphic balls of radius r since otherwise T (Hi) would not be
locally finite. Thus Hi is locally finite.

It only remains to show that any (G, v) ∈ Hi has a strong embedding into (Hi, vi).
For this purpose, first note that if a vertex u ∈ B is identified with a vertex u′ ∈ B′ a
vertex v ∈ B is identified with a vertex v′ ∈ B′, then uv ∈ E(B) ⇐⇒ u′v′ ∈ E(B′).
In particular, since BG(v, r) is isomorphic to some B ∈ Bi, there is a strong embedding
ιr : BG(v, r) → (Hi, vi) for every r.

We can construct the desired strong embedding ι : (G, v) → (Hi, vi) from these strong
embeddings ιr by a standard compactness argument. Since BHi

(v, r) is finite for every r,
there are only finitely many ways to embed BG(v, r) into Hi. Hence there is an infinite
subset I1 ⊆ N such that the restrictions of ιi and ιj to BG(v, 1) coincide for any pair
i, j ∈ I1. Inductive application of this argument gives a set Ir ⊆ Ir−1 for every r ≥ 2
such that the restrictions of ιi and ιj to BG(v, r) coincide for any pair i, j ∈ Ir.

For x ∈ V (G) whose distance from v is at most r, we pick any i ∈ Ir define ι(x) = ιi(x).
We note that this does not depend on the specific choice of r or i because ιi(x) = ιj(x)
for any x ∈ BG(v, r) and any pair i, j ∈ Ir =

⋃

s≥r Is. Since all ιi are strong embeddings,
so is ι.

Corollary 3.2. For every d ∈ N there is a graph H ∈ G∞ strongly contains Gd.

Proof. There are only finitely many non-isomorphic graphs of diameter at most r in
which every vertex has degree less than d. Hence the tree T (Gd) = T (G•

d) is locally finite
and Theorem 3.1 concludes the proof.

Corollary 3.3. There is a graph H ∈ G∞ which strongly contains G =
⋃

d∈N Gd.

Proof. Decompose G• =
⋃

d∈N G•
d , note that T (G•

d) is locally finite, and apply Theo-
rem 3.1.

Theorem 3.1 can also be used to show that graph classes whose members have bounded
growth admit a locally finite graph containing them. For example, recall that a graph G
is said to have polynomial growth if there is some polynomial P and a vertex v ∈ v(G)
such that BG(v, r) contains at most P (r) vertices for every r ∈ N.

Corollary 3.4. There is a graph H ∈ G∞ which strongly contains the class G of all
graphs of polynomial growth.

Proof. Denote by G(a, b) the class of all rooted graphs (G, v) such that BG(v, r) contains
at most a · rb vertices for every r. It is not hard to see that G• =

⋃

a,b∈N G(a, b). There

are only finitely many non-isomorphic connected graphs on at most a · rb vertices, hence
T (G(a, b)) is locally finite and we can apply Theorem 3.1.

Polynomial growth in the above corollary can of course be replaced by any growth
bound, as long as there is a countable set (fi)i∈N of functions such that for every allowed
growth function g there is an i such that g(x) ≤ fi(x) for every x ∈ N.
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While the above corollaries demonstrate that Theorem 3.1 is useful for showing that
there is a graph H ∈ G∞ containing a certain graph class, the theorem is not quite
as useful for showing the non-existence of such a H. For closed graphs the following
theorem (which implies Theorem 1.1) gives a condition which is easier to falsify.

Theorem 3.5. Let G ⊆ G∞ be a closed graph class. The following are equivalent.

1. There is H ∈ G∞ which contains G.

2. G• is σ-compact.

3. T (G) contains no subdivision of T∞.

Proof. Statements 2 and 3 are equivalent by Lemma 2.2, hence it suffices to show the
equivalence of 1 and 2.

For the implication 1 =⇒ 2 we first note that by Theorem 3.1 (3) we can decompose
G• into countably many sets Hi such that T (Hi) is locally finite. Since G• is closed,
this implies that G• =

⋃

i∈NHi, where Hi denotes the closure of Hi in H•
∞. Lemma 2.2

implies that G• is σ-compact as claimed.
For the converse implication 2 =⇒ 1 let G• =

⋃

i∈NHi where every Hi is compact. By
Lemma 2.2, T (Hi) is locally finite for every i and Theorem 3.1 (3) finishes the proof.

As a corollary to the above theorem we obtain a result due to de Brujin mentioned in
the introduction.

Corollary 3.6. G∞ contains no universal element.

Proof. Note that G∞ is closed. Every ball of radius n in a locally finite graph can be
extended in infinitely many ways to a ball of radius n+1 in a locally finite graph. Hence
T (G∞) = T∞ and by Theorem 3.5 there is no H ∈ G∞ containing G∞.

Similar arguments can be made for many other graph classes. For instance, the exact
same proof also shows the following result.

Corollary 3.7. There is no graph H ∈ G∞ containing the class of all locally finite,
connected, planar graphs.

4 Graphs with bounded degrees

By Corollary 3.2, there is a graph H ∈ G∞ containing Gd. On the other hand, it is
known (see for instance [9]) that there is no H ∈ Gd containing Gd. This raises the
natural question whether there is any D < ∞ such that there is a graph H ∈ GD

containing Gd. Theorem 1.2 from the introduction states that such a D does not even
exist for G4; the remainder of this section is dedicated to the proof of this theorem.
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Proof of Theorem 1.2. Assume that there is a countable graph H with maximum degree
∆ containing G4.

We define a subfamily of G4 as follows. Let [n] = {1, 2, . . . , n} and [m,n] = {m,m +
1, . . . , n}. Let S be the set of all bijective functions s : N → N such that s([2i]) = [2i] for
all i ∈ N. For each s ∈ S let Gs be the graph with vertex set Z and edges connecting n
to n + 1 for every n ∈ Z as well as edges connecting 2n to −2s(n) for every n ∈ N; the
reason we only connect even vertices is to get rid of unwanted automorphisms. Denote
by Gs(i) the subgraph of Gs induced by [−2i+1, 2i+1]. For every vertex v ∈ V (H), let
S(v, i) be the set of all s ∈ S such that there is an embedding of Gs(i) into H mapping
0 to v.

Let n(v, i) the number of non-isomorphic Gs(i) with s ∈ S(v, i). Note that for any
embedding of Gs(i) which maps 0 to v there are at most ∆2i+1

possibilities to embed
the path induced by [0, 2i+1], and similarly for the path induced by [−2i+1, 0]. Once
the paths are embedded, the image of 2n has fewer than ∆ possible neighbours in the
embedding of the path induced by [−2i+1, 0]. Hence any embedding of the two paths
extends to at most ∆2i embeddings of graphs Gs(i) (some of which may be isomorphic).
In total, this shows that

n(v, i) ≤ ∆5·2i

for any v ∈ V (H) and every i ∈ N.
Define the set S(v) :=

⋂

i∈N S(v, i). We will show that at least one of the sets S(v)
must be large enough to derive a contradiction to the above bound. Clearly, if there is
an embedding of Gs into H, then s is contained in S(v) where v is the image of 0 under
this embedding. Since by assumption every Gs is a subgraph of H, this implies that
S =

⋃

v∈V (H) S(v). It immediately follows that one of the S(v) must be uncountable.
Unfortunately, this is not sufficient for our purpose as we need some control over the
sets S(v, i); this is achieved by endowing S with a probability measure.

Note that any s ∈ S bijectively maps [2i−1 + 1, 2i] to itself. If we let si be the
permutation that s induces on [2i−1 + 1, 2i], then the map s 7→ (si)i∈N is a bijection
between S and

∏

i∈N S2i where Sn denotes the symmetric group on n elements. For
σ ∈ S2i , we let Sσ = {s ∈ S | si = σ}. It is well known (for instance by the Kolmogorov
extension theorem) that there is a probability measure on

∏

i∈N S2i whose projection on
every factor is the uniform probability measure. By the above bijection, this defines a
probability measure P on S such that P(Sσ) =

1
(2i)!

for every σ ∈ S2i . The sets S(v, i) can

be written as finite unions of intersections of finitely many Sσ, hence they are measurable
with respect to P, and thus the same is true for the sets S(v). By subadditivity of the
probability measure we have

∑

v∈V (H)

P(S(v)) ≥ P





⋃

v∈V (H)

S(v)



 = P(S) = 1 > 0,

and thus there is at least one v ∈ V (H) such that P(S(v)) > 0. From now on fix such a
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vertex v and let ǫ = P(S(v)) > 0. Since S(v) ⊆ S(v, i) we have

ǫ ≤ P(S(v, i)) = P





⊎

σ∈S
2i

S(v, i) ∩ Sσ



 =
∑

σ∈S
2i

P(S(v, i) ∩ Sσ)

for every i ∈ N. Each summand on the right hand side is bounded above by P(Sσ) =
1

(2i)!
,

hence at least ǫ(2i)! of the summands must be non-zero.
We claim that n(v, i) is at least half as large as the number of non-zero summands in

the above sum. To this end, it suffices to show that Gs(i) and Gt(i) are isomorphic if
and only if the restrictions of s and t to [2i] either coincide or are inverses of one another.
Note that the path −2i+1,−2i+1 + 1, . . . 2i+1 is the unique spanning path of Gs(i) with
no two consecutive vertices of degree 3. Any isomorphism from Gs(i) to Gt(i) must map
this path to its counterpart in Gt(i), and there are precisely two ways of doing this.

We have thus shown that

ǫ

2
· (2i)! ≤ n(v, i) ≤ ∆5·2i

for arbitrary i. For large enough i this yields a contradiction since the left hand side
asymptotically grows faster than the right hand side.
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