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An improved lower bound of P (G,L)− P (G, k) for

k-assignments L
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Abstract

Let G = (V,E) be a simple graph with n vertices and m edges, P (G, k) be the

chromatic polynomial of G, and P (G,L) be the number of L-colorings of G for any

k-assignment L. In this article, we show that when k ≥ m − 1 ≥ 3, P (G,L) − P (G, k)

is bounded below by
Ä

(k −m+ 1)kn−3 + (k−m+3)c
3 kn−5

ä

∑

uv∈E
|L(u) \ L(v)|, where c ≥

(m−1)(m−3)
8 , and in particular, if G is K3-free, then c ≥

(m−2
2

)

+2
√
m− 3. Consequently,

P (G,L) ≥ P (G, k) whenever k ≥ m− 1.
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1 Introduction

For any graph G, let V (G) and E(G) be the vertex set and edge set of G respectively. Let N

be the set of positive integers, and any k ∈ N, let [k] := {1, . . . , k}. A proper k-coloring of G

is a map f : V (G) → [k] such that f(u) 6= f(v) for each pair of adjacent vertices u and v in

G. Let P (G, k) denote the number of proper k-colorings of G. Introduced by Birkhoff [1] in

1912, P (G, k) is called the chromatic polynomial of G. More details on P (G, k) can be found

in [1, 2, 3, 4, 9, 12, 13].

∗Corresponding Author. Email: fengming.dong@nie.edu.sg and donggraph@163.com.
†Email: nie21.zm@e.ntu.edu.sg and meiqiaozhang95@163.com.
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The notion of list-coloring was introduced independently by Vizing [15] and by Erdős, Rubin

and Taylor [7]. A map L : V (G) → 2N is called an assignment of G. For any k ∈ N, a

k-assignment of G is an assignment L of G with |L(v)| = k for all v ∈ V (G). Given any

assignment L of G, an L-coloring of G is a map f : V (G) → N with the property that

f(v) ∈ L(v) for each v ∈ V (G) and f(u) 6= f(v) for each pair of adjacent vertices u and v in

G. Let P (G,L) denote the number of L-colorings of G. For any k ∈ N, let Pl(G, k) be the

minimum value of P (G,L) among all k-assignments L of G. Introduced by Kostochka and

Sidorenko in 1990s, Pl(G, k) is called the list-color function of G. More details on Pl(G, k) can

be found in [14].

It is known that P (G, k) is a polynomial in k of degree |V (G)| (see Theorem 3). However,

due to Donner [6], Pl(G, k) is in general not a polynomial in k. By the definitions of P (G, k)

and Pl(G, k), Pl(G, k) ≤ P (G, k) holds for every k ∈ N. Clearly, Pl(G, k) = P (G, k) does

not hold for some graphs G and some numbers k ∈ N. For example, P (G, 2) ≥ 2 holds for

each bipartite graph G, but Pl(G, 2) = 0 as long as G contains K2,4 as a subgraph. On the

other hand, it is not difficult to verify that P (G, k) = Pl(G, k) holds for any chordal graph

G and k ∈ N (see [11]). From the big picture, for any simple graph G, Donner [6] showed

that P (G, k) = Pl(G, k) holds when k is sufficiently large, answering a problem proposed

by Kostochka and Sidorenko [11], and Thomassen [14] proved that P (G, k) = Pl(G, k) when

k > |V (G)|10. In 2017, Wang, Qian and Yan [16] significantly improved this result by showing

that P (G, k) = Pl(G, k) holds for any k ∈ N with k ≥ (m−1)

ln(1+
√
2)

≈ 1.135(m − 1), where m is

the number of edges in G.

In this article, we will establish a lower bound of P (G,L) − P (G, k) for an arbitrary k-

assignment L with k ≥ m− 1. Obviously, P (G,L) = P (G, k) holds whenever L(u) = L(v) for

every edge uv in G. This article shows how large the gap between P (G,L) and P (G, k) can

be when L(u) 6= L(v) for some edge uv in G.

Theorem 1. Let G = (V,E) be a simple graph with n vertices and m (≥ 4) edges. Then, for

any k-assignment L of G with k ≥ m− 1,

P (G,L)− P (G, k) ≥
Å

(k −m+ 1)kn−3 +
(k −m+ 3)c

3
kn−5

ã

∑

uv∈E
|L(u) \ L(v)|, (1)

where c ≥ (m−1)(m−3)
8

, and particularly, when G is K3-free, c ≥
(

m−2
2

)

+ 2
√
m− 3.

Note that any graph with less than 4 edges is a chordal graph. Thus, the following conclusion

follows from Theorem 1 directly.

Corollary 2. For any simple graph G with m edges, Pl(G, k) = P (G, k) holds for each k ∈ N

with k ≥ m− 1.
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Let G = (V,E) be a simple graph with n vertices and m edges and η be a fixed bijection

from E to [m]. A broken cycle of G (with respect to η) is a path B = v1v2 . . . vr of G, where

r ≥ 3, such that v1vr ∈ E and η(v1vr) < η(vivi+1) for each i = 1, 2, . . . , r − 1. Let B(G) be

the collection of edge sets E(B) over all broken cycles B of G, and let NB(G) be the set of

subsets A of E that is broken-cycle free with respect to η (i.e., E0 6⊆ A for each E0 ∈ B(G)).

Obviously, for each A ∈ NB(G), the spanning subgraph (V,A) has no cycles, implying that

0 ≤ |A| ≤ n− 1. For each i with 0 ≤ i ≤ n− 1, let NBi(G) be the set of A ∈ NB(G) with

|A| = i.

For any e ∈ E and 1 ≤ i ≤ n− 1, let NBi(G, e) be the set of A ∈ NBi(G) with e ∈ A. Note

that |NBi(G, e)| depends on η although η is not included in the notation. For example, if G

is K3, then |NB2(G, e)| is either 1 or 2. Let Qη(G, e, x) denote the polynomial defined below:

Qη(G, e, x) :=
∑

1≤i≤n−1

i odd

|NBi(G, e)|
i

xn−i −
∑

2≤i≤n−1

i even

|NBi(G, e)|xn−i. (2)

For any e ∈ E, let G/e denote the simple graph obtained from G by contracting e and deleting

all but one of the multiple edges, if they arise. Thus, |E(G/e)| = m − 1 − t, where t is the

number of 3-cycles in G containing e.

In Section 2, we show that if x ≥ m− 1 and n ≥ 4, then

Qη(G, e, x) ≥ (x−m+ 1)xn−2 +
(x−m+ 3)|NB2(G/e)|

3
xn−4.

Then, in Section 3, we find a lower bound of |NB2(G/e)| in terms of m. In Section 4, we

prove that P (G,L)−P (G, k) is bounded below by 1
k

∑

uv∈E
(|L(u)\L(v)|Qη(G, uv, k)) for any k-

assignment L of G with k ≥ m−1. Theorem 1 then follows immediately. Finally, in Section 5,

we propose two conjectures studying the relation between Pl(G, k) and P (G, k).

2 A lower bound of Qη(G, e, x)

In this section, we always assume that G = (V,E) is a simple graph with n vertices and m

edges and η is a fixed bijection from E to [m]. Due to Whitney [17], the coefficients of P (G, x)

can be expressed in terms of the sizes of NBi(G)’s.

Theorem 3 ([17]). P (G, x) can be expressed as P (G, x) =
n−1
∑

i=0

(−1)i|NBi(G)|xn−i.

In this section, we shall find a lower bound of Qη(G, e, x) for any edge e under the condition

3



x ≥ m − 1. By the definition of NBi(G, e), we first have the following relation between

|NBi(G, e)| and |NBi+1(G, e)|.

Lemma 4. For any e ∈ E and i ∈ [n− 2], i|NBi+1(G, e)| ≤ (m− i)|NBi(G, e)|.

Proof. When i ≥ m, the inequality is trivial, as both sides are 0. Now assume that 1 ≤ i ≤
m− 1. Lemma 4 then follows directly from the following facts:

(i). for each A ∈ NBi+1(G, e) and e′ ∈ A \ {e}, A \ {e′} ∈ NBi(G, e); and

(ii). for each A′ ∈ NBi(G, e), there are at most m− i edges e′ in E \A′ such that A′∪{e′} ∈
NBi+1(G, e). ✷

We can now apply Lemma 4 to find a lower bound of Qη(G, e, x).

Theorem 5. Assume that n ≥ 3. For any edge e in G and x ≥ 0,

Qη(G, e, x) ≥
∑

1≤i≤n−1

i odd

|NBi(G, e)|
i

(x−m+ i)xn−i−1. (3)

In particular, if n is even, then,

Qη(G, e, x) ≥
∑

1≤i≤n−3

i odd

|NBi(G, e)|
i

(x−m+ i)xn−i−1 +
|NBn−1(G, e)|

n− 1
x. (4)

Proof. By Lemma 4, for any i ∈ [n− 2], as x ≥ 0,

|NBi(G, e)|
i

xn−i − |NBi+1(G, e)|xn−i−1 ≥ |NBi(G, e)|
i

xn−i − (m− i)|NBi(G, e)|
i

xn−i−1

=
|NBi(G, e)|

i
(x−m+ i)xn−i−1. (5)

By the definition of Qη(G, e, x), the result follows from (5). ✷

For any edge e inG, let η|E(G/e) be the restriction of η to the edge set of G/e, and let NBj(G/e)

be the set of A ⊆ E(G/e) with |A| = j such that A is broken-cycle free with respect to η|E(G/e).

In the following, we will show that |NBi(G, e)| is bounded below by |NBi−1(G/e)|.

Lemma 6. For any e ∈ E and i ∈ [n− 1], |NBi(G, e)| ≥ |NBi−1(G/e)|.

Proof. It suffices to show that A ∪ {e} ∈ NBi(G, e) for each A ∈ NBi−1(G/e).

4



Suppose that A ∪ {e} 6∈ NBi(G, e). Then, there exists B ∈ B(G) with B ⊆ A ∪ {e}. As

A ∈ NBi−1(G/e), B 6⊆ A, which implies that e ∈ B and B \ {e} ⊆ A. However, B ∈ B(G)

implies that B \ {e} ∈ B(G/e), a contradiction to the assumption that A ∈ NBi−1(G/e).

Hence Lemma 6 follows. ✷

Combining Theorem 5 and Lemma 6, we obtain a lower bound of Qη(G, e, x) in terms of

|NB2(G/e)| and x.

Corollary 7. For any e ∈ E and real number x with x ≥ m− 1, if n ≥ 4, then

Qη(G, e, x) ≥ (x−m+ 1)xn−2 +
(x−m+ 3)|NB2(G/e)|

3
xn−4. (6)

3 Lower bounds of |NB2(G/e)|

In this section, we still assume that G = (V,E) is a simple graph with |V | = n and |E| = m,

and we shall find a lower bound of |NB2(G/e)| in terms of m for an arbitrary edge e in G.

Given any simple graph H , by the definition of |NB2(H)| or Corollary 2.3.1 in [4], |NB2(H)|
has the following expression:

|NB2(H)| =
Ç

|E(H)|
2

å

−△(H), (7)

where △(H) is the number of 3-cycles in H .

First consider the special case that G is K3-free. Let c4(G) be the minimum integer r such

that each edge e in G is contained in at most r 4-cycles of G. For any u ∈ V , let NG(u) denote

the set of vertices in G adjacent to u, and let dG(u) = |NG(u)|.

Lemma 8. For any e ∈ E, if G is K3-free and m ≥ 3, then

|NB2(G/e)| ≥
Ç

m− 1

2

å

− c4(G) ≥
Ç

m− 2

2

å

+ 2
√
m− 3. (8)

Proof. As G is K3-free, then G/e has exactly m− 1 edges and at most c4(G) 3-cycles. Thus,

applying (7) implies that |NB2(G/e)| ≥
(

m−1
2

)

− c4(G) for any edge e ∈ E.

Note that
(

m−1
2

)

−
(

m−2
2

)

− 2
√
m + 3 = (

√
m − 1)2. Thus, it remains to show that c4(G) ≤

(
√
m − 1)2. It suffices to show that for each edge e′ in G, the number of 4-cycles in G

containing e′, denoted by c4(e
′), is at most (

√
m−1)2. Let e′ = uv ∈ E, N ′(u) := NG(u)\{v} =

5



{u1, u2, . . . , up} andN ′(v) := NG(v)\{u} = {v1, v2, . . . , vq}. AsG isK3-free, N
′(u)∩N ′(v) = ∅.

If p = 0 or q = 0, then c4(e
′) = 0 < (

√
m− 1)2. Now, assume p ≥ 1 and q ≥ 1. Clearly, c4(e

′)

is equal to the size of the edge set EG(N
′(u), N ′(v)) := {uivj ∈ E : i ∈ [p], j ∈ [q]}. Thus,

c4(e
′) = |EG(N

′(u), N ′(v))| ≤ m− 1− p− q, (9)

implying that p+ q ≤ m− 1− c4(e
′), and therefore

c4(e
′) = |EG(N

′(u), N ′(v))| ≤ pq ≤ 1

4
(p+ q)2 ≤ 1

4
(m− 1− c4(e

′))2. (10)

Solving the inequality c4(e
′) ≤ 1

4
(m − 1 − c4(e

′))2 with the condition c4(e
′) < m gives that

c4(e
′) ≤ (

√
m− 1)2. Hence c4(G) = max

e′∈E
c4(e

′) ≤ (
√
m− 1)2. The result holds. ✷

Now we are going to find a lower bound of |NB2(G/e)| in terms of m for any edge e in G.

We shall apply the following theorem obtained by Fisher in [8].

Theorem 9 ([8]). For any simple graph H, △(H) ≤ 1
6
|E(H)|(

√

8|E(H)|+ 1− 3).

By applying Theorem 9, we can find an upper bound of △(H) in terms of |E(H)| and t, where

t is any number not larger than the maximum degree of H .

Lemma 10. For any simple graph H, if the maximum degree of H is at least t, then

△(H) ≤ |E(H)| − t

6

(

3 +
»

8(|E(H)| − t) + 1
)

. (11)

Proof. Let w be a vertex in H with dH(w) = s ≥ t. Let H0 be the subgraph of H induced by

NH(w), and letH−w be the subgraph ofH induced by V (H)\{w}. Then |E(H0)| ≤ |E(H)|−s

and |E(H − w)| = |E(H)| − s. Then,

△(H) = |E(H0)|+△(H − w)

≤ |E(H)| − s+
1

6
(|E(H)| − s)

(
»

8(|E(H)| − s) + 1− 3
)

=
|E(H)| − s

6

(

3 +
»

8(|E(H)| − s) + 1
)

, (12)

where the penultimate expression follows from Theorem 9. As s ≥ t, the lemma holds. ✷

Lemma 11. If m ≥ 4, then for any e ∈ E, |NB2(G/e)| ≥ (m−1)(m−3)
8

.

Proof. Let e be any edge in G and let t be the number of 3-cycles in G containing e. Then

6



m ≥ 2t+ 1 and |E(G/e)| = m− t− 1. By (7) and Theorem 9, |NB2(G/e)| ≥ g(t,m), where

g(t,m) : =

Ç

m− t− 1

2

å

− (m− t− 1)

6

(
»

8(m− t− 1) + 1− 3
)

=
(m− t− 1)2

2
− (m− t− 1)

6

»

8(m− t− 1) + 1. (13)

Note that f(x) := 1
2
x2 − x

6

√
8x+ 1 is strictly increasing for x ≥ 1, implying that f(m− 1) ≥

f(m− 2). Since g(t,m) = f(m− 1− t), it is routine to verify that when m ≥ 4,

g(0, m) > g(1, m) =
(m− 2)2

2
− m− 2

6

√
8m− 15 >

(m− 1)(m− 3)

8
. (14)

It remains to consider the case t ≥ 2. Note that |E(G/e)| = m− t− 1 and the vertex in G/e

produced after contracting e is of degree at least t. As m ≥ 2t+ 1, by (7) and Lemma 10,

|NB2(G/e)| ≥
Ç

m− t− 1

2

å

− (m− 2t− 1)

6

(

3 +
»

8(m− 2t− 1) + 1
)

=
(m− 1)(m− 3)

8
+

m− 2t− 1

24

(

9m− 6t− 27− 4
»

8(m− 2t− 1) + 1
)

≥ (m− 1)(m− 3)

8
. (15)

Hence Lemma 11 holds. ✷

By Corollary 7 and Lemmas 8 and 11, the following conclusion holds.

Theorem 12. For any e ∈ E and real number x with x ≥ m− 1 ≥ 3, Qη(G, e, x) is bounded

below by (x − m + 1)xn−2 + (x−m+3)c
3

xn−4, where c ≥ (m−1)(m−3)
8

, and in particular, if G is

K3-free, then c ≥
(

m−2
2

)

+ 2
√
m− 3.

4 Proving Theorem 1

In this section, we always assume that G = (V,E) is a simple graph with n vertices and m

edges, η is a fixed bijection from E to [m], and L is a k-assignment of G, where k ≥ 2.

For any integer i with 0 ≤ i ≤ n− 1, let NBFi(G) be the set of spanning forests F = (V,A)

of G with A ∈ NBi(G). Clearly, each F ∈ NBFi(G) has exactly n− i components. We can

represent F by the set {T1, T2, . . . , Tn−i}, where T1, T2, . . . , Tn−i are the components of F .

For any subgraph H of G, define β(H) =
∣

∣

⋂

v∈V (H)

L(v)
∣

∣. By applying the inclusion-exclusion

7



principle, it can be proved that

P (G,L) =
n−1
∑

i=0

(−1)i
∑

{T1,...,Tn−i}∈NBFi(G)

n−i
∏

j=1

β(Tj). (16)

By Theorem 3 and (16), we have

P (G,L)− P (G, k) =
n−1
∑

i=1

(−1)i
∑

{T1,...,Tn−i}∈NBFi(G)

(

n−i
∏

j=1

β(Tj)− kn−i

)

. (17)

For any edge e = uv in G, let α(e) = |L(u) \ L(v)|. For any F = {T1, . . . , Tn−i} ∈ NBFi(G),

a lower bound for
n−i
∏

j=1

β(Tj)− kn−i was obtained in [16], as stated below.

Lemma 13 ([16]). For any i ∈ [n− 1] and F = {T1, . . . , Tn−i} ∈ NBFi(G),

n−i
∏

j=1

β(Tj)− kn−i ≥ −kn−i−1
∑

e∈E(F )

α(e). (18)

We are now going to establish an upper bound for
n−i
∏

j=1

β(Tj) − kn−i. We first introduce the

following result.

Lemma 14. Let d1, d2, . . . , dr be any non-negative real numbers, and q1, q2, . . . , qr be any

positive real numbers, where r ≥ 1. If x ≥ max
1≤i≤r

di, then

(x− d1)(x− d2) · · · (x− dr) ≤ xr − xr−1

q1 + · · ·+ qr

r
∑

i=1

qidi. (19)

Proof. Assume that d1 ≥ d2 ≥ · · · ≥ dr. It is trivial to verify that d1 ≥ 1
q1+···+qr

r
∑

i=1

qidi. As

0 ≤ (x− di) ≤ x for all 2 ≤ i ≤ r, the result follows immediately. ✷

Lemma 15. For i ∈ [n− 1] and F = {T1, . . . , Tn−i} ∈ NBFi(G),

n−i
∏

j=1

β(Tj)− kn−i ≤ −kn−i−1

i

∑

e∈E(F )

α(e). (20)

8



Proof. For each Tj with E(Tj) 6= ∅, we have

β(Tj) ≤ min
uv∈E(Tj)

|L(u) ∩ L(v)| ≤ k − max
e∈E(Tj)

α(e) ≤ k − 1

|E(Tj)|
∑

e∈E(Tj)

α(e). (21)

Assume that E(Tj) 6= ∅ for each j with 1 ≤ j ≤ s while E(Tj) = ∅ for each j with s+1 ≤ j ≤
n− i. As |E(T1)|+ · · ·+ |E(Ts)| = i and k ≥ α(e) for each e ∈ E(G), by (21) and Lemma 14,

s
∏

j=1

β(Tj) ≤
s
∏

j=1

Ñ

k − 1

|E(Tj)|
∑

e∈E(Tj)

α(e)

é

≤ ks − ks−1

|E(T1)|+ · · ·+ |E(Ts)|

s
∑

j=1

∑

e∈E(Tj)

α(e)

= ks − ks−1

i

∑

e∈E(F )

α(e). (22)

As β(Tj) = k for each j with s+ 1 ≤ j ≤ n− i, (20) follows. ✷

Recall that Qη(G, e, k) is the function defined in (2) and NBi(G, e) is the set of A ∈ NBi(G)

with e ∈ A. We are now going to find a lower bound of P (G,L) − P (G, k) in terms of α(e)

and Qη(G, e, k) for all edges e in G.

Lemma 16. P (G,L)− P (G, k) ≥ 1
k

∑

e∈E
(α(e)Qη(G, e, k)) .

Proof. By (17) and applying Lemma 13 for even i’s and Lemma 15 for odd i’s,

P (G,L)− P (G, k)

=

n−1
∑

i=1

(−1)i
∑

{T1,...,Tn−i}∈NBFi(G)

(

n−i
∏

j=1

β(Tj)− kn−i

)

≥
∑

1≤i≤n−1

i odd

kn−i−1

i

∑

F∈NBFi(G)

∑

e∈E(F )

α(e)−
∑

2≤i≤n−1

i even

kn−i−1
∑

F∈NBFi(G)

∑

e∈E(F )

α(e)

=
∑

1≤i≤n−1

i odd

kn−i−1

i

∑

e∈E
α(e)|NBi(G, e)| −

∑

2≤i≤n−1

i even

kn−i−1
∑

e∈E
α(e)|NBi(G, e)|

=
1

k

∑

e∈E
α(e)

Ñ

∑

1≤i≤n−1

i odd

|NBi(G, e)|
i

kn−i −
∑

2≤i≤n−1

i even

|NBi(G, e)|kn−i

é

. (23)

By the definition of Qη(G, e, k), the result follows. ✷

9



We are now going to prove Theorem 1.

Proof of Theorem 1: As m ≥ 4 and k ≥ m− 1, by Theorem 12 and Lemma 16,

P (G,L)− P (G, k) ≥ 1

k

∑

e∈E
(α(e)Qη(G, e, k))

≥
Å

(k −m+ 1)kn−3 +
(k −m+ 3)c

3
kn−5

ã

∑

e∈E
α(e), (24)

where c ≥ (m−1)(m−3)
8

, and if G is K3-free, then c ≥
(

m−2
2

)

+ 2
√
m− 3. ✷

5 Concluding remarks

Given any simple graph G, the list-chromatic number of G, denoted by χl(G), is the minimum

integer r with Pl(G, r) > 0, and the list-color function threshold of G, denoted by τ(G), is

the smallest integer r ≥ χ(G) such that Pl(G, k) = P (G, k) whenever k ≥ r. Obviously,

τ(G) ≥ χl(G) ≥ χ(G). By Corollary 2, τ(G) ≤ |E(G)| − 1 when |E(G)| ≥ 4. The authors of

this article also found some results on the upper bounds of τ(H) for r-uniform hypergraphs

H with m edges, where r ≥ 3. In [5], they showed that τ(H) is bounded above by min{m −
1, 0.6(m− 1)+ 0.5γ(H)}, where γ(H) = maxe∈E(H) |Er−1(e)| and Er−1(e) is the set of edges e

′

inH with |e∩e′| = r−1, and in [18], they further showed that if ρ(H) := mine,e′∈E(H) |e\e′| ≥ 2

and m ≥ ρ(H)3/2 + 1, then τ(H) ≤ 2.4(m−1)
ρ(H) log(m−1)

.

Thomassen [14] asked if there exists a universal constant α such that τ(G)− χl(G) ≤ α holds

for every simple graph G. Recently, Kaul et al [10] gave a negative answer to Thomassen’s

question by showing that τ(K2,s) − χl(K2,s) ≥ C
√
s for a constant C and all s ∈ N with

s ≥ 16.

We end this article with two conjectures.

Conjecture 1. There exists a constant c > 0 such that τ(G) ≤ c|V (G)| or τ(G) ≤ c∆(G) for

every simple graph G, where ∆(G) is the maximum degree of G.

Conjecture 2. For any simple graph G, if L is a k-assignment of G with k ≥ τ(G) and

L(u) 6= L(v) for some edge uv in G, then P (G,L) > P (G, k).

Clearly, Conjecture 2 holds for all chordal graphs. If this conjecture fails, then there exists a

non-chordal graph G such that P (G,L) = P (G, k) for some k-assignment L, where τ(G) ≤
k ≤ |E(G)| − 2 and L(u) 6= L(v) for some edge uv in G.
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