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Abstract

This paper proves the following result: If G is a planar graph and L is a 4-
list assignment of G such that |L(x) n L(y)| < 2 for every edge xy, then G is
L-colourable. This answers a question asked by Kratochvil, Tuza and Voigt in
[Journal of Graph Theory, 27(1):43-49, 1998].
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1 Introduction

A list assignment of a graph G is a mapping L which assigns to each vertex v of GG a set
L(v) of permissible colours. An L-colouring of G is a proper colouring f of G such that
for each vertex v of G, f(v) € L(v). We say G is L-colourable if G has an L-colouring.
A k-list assignment of G is a list assignment L with |L(v)| > k for each vertex v. We
say GG is k-choosable if G is L-colourable for any k-list assignment L of G. The choice
number ch(G) of G is the minimum integer k such that G is k-choosable.

It is known that there are planar graphs G and 4-list assignments L of G such that
G is not L-colourable [15]. A natural direction of research is to put restrictions on
the list assignments so that for any planar graph G' and any 4-list assignment L of G
satisfying the restrictions, G is L-colourable. Indeed, the Four Colour Theorem can be
formulated as such a result: For any planar graph G, if L is a 4-list assignment of GG
with L(x) = L(y) for any edge zy of GG, then G is L-colourable.

Are there other natural restrictions for which the corresponding “list 4-colouring the-
orem” is true?

By changing the equality to inequality in the above formulation of the Four Colour
Theorem, one may ask the following question:

Is it true that for any planar graph G, any 4-list assignment L of G such that L(x) #
L(y) (or equivalently, |L(x) n L(y)| < 3), G is L-colourable?
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The answer is NO. Mirzakhani [I3] constructed a planar graph G and a 4-list assign-
ment L of G such that |L(z) n L(y)| <3, and G is not L-colourable.

On the other hand, Kratochvil, Tuza and Voigt [10] proved that for any planar graph
G, for any 4-list assignment L of G such that for any edge xy, |L(z) n L(y)| <1, G is
L-colourable. Then they asked the following question:

Question 1 [10] Is it true that for any planar graph G and any 4-list assignment L of
G such that |L(z) n L(y)| <2 for every edge xy, G is L-colourable?

This question received a lot of attention [Il 2, @, 5l [6, [7, O] [1T] 16, 17, 18]. Most of
the works deal with variations of this problem. There was not much progress on the
question itself. In this paper, we answer this question in affirmative.

Definition 1 Assume G is a graph and k,s are positive integers. A (x,s)-list assign-
ment of G is a list assignment L of G such that |L(z) n L(y)| < s for each edge xy. A
(k, s)-list assignment of G is a (*, s)-list assignment of G with |L(v)| > k for each vertex
v. A graph G is called (k, s)-choosable if G is L-colourable for any (k,s)-list assignment
L of G.

The following is the main result of this paper.

Theorem 1 Every planar graph is (4,2)-choosable.

2 The proof

It suffices to prove Theorem [ for 2-connected near-triangulations of the plane: for
each non-triangular face, we can add a new vertex adjacent to all vertices of the face,
and assign new colours to the added vertex so that the resulting list assignment is still
a (4,2)-list assignment. For a 2-connected plane graph G, we denote by B(G) the
boundary cycle of G.

Definition 2 A rooted plane graph is a pair (G,vivy), where G is a 2-connected near-
triangulation of the plane, and vivy is a boundary edge.

The vertices vy, vy are called the root vertices and v,vs is called the root edge.

Definition 3 Assume (G,v1v9) is a rooted plane graph. Assume v is a non-root bound-
ary vertex, and Ng(v) n B(G) = {uy,ug,...,ux} (k>2), and (v,uy,us,...,ug) occur in
B(G) is this cyclic order. The vertices uy, ..., uy are called the boundary neighbours of
v. If the rooted edge is contained in the boundary path from u; to u;.1, then u; and wu;
are called the primary boundary neighbours of v.

Note that each non-root boundary vertex of a rooted plane graph has exactly two
primary boundary neighbours.



Definition 4 A list assignment of a rooted plane graph (G,vivs) is a mapping L which
assigns to each verter v # vi,v9 a set L(v) of colours, and assigns to the ordered pair
(v1,v2) a set L(vy,vy) of ordered pairs of distinct colours. An L-colouring of (G,vivy) is
a proper colouring f of G such that for each v # vy,ve, f(v) € L(v), and (f(v1), f(ve)) €
L(vy,v9).

Assume L is a list assignment of (G, v1v;). The list assignment L of G associated
to L is the list assignment of G defined as L(v) = L(v) for v # vy, v, and L(v;) = {¢:
3d, (¢,d) € L(vy,v5)} and L(vy) = {d : 3¢, (¢,d) € L(vy,v5)}. We say L is a (x,2)-list
assignment of (G, vyv5) if L is a (,2)-list assignment of G.

Definition 5 Assume L is a (*,2)-list assignment of (G,v1v2), and v € B(G) is a non-
root vertex, and u is a primary boundary neighbour of v. We say u is a good neighbour
of v, if one of the following holds:

e |[L(u)nL(v)| <1, or
o |L(u)|=4.

Definition 6 A (x,2)-list assignment of a rooted plane graph (G, v1vy) is valid if |L(v)| =
4 for each interior vertex v, and one of the following holds:

(A) |L(v1,v2)| 21 and |L(v)| > 3 for each non-root boundary vertex v.

(B) |L(vi,v2)| 2 2, and there exists a unique non-root boundary vertex v* such that
|L(v)| >3 forve B(G) - {vi,ve,v*}, |L(v*)| =2 and v* has a good neighbour.

Assume L is a valid list assignment of (G, vyv3), v* is a non-root boundary vertex with
|L(v*)| =2 and u is a good neighbour of v*. If |L(u)| = 4, then we may delete one colour
from L(u)nL(v*) so that [L(u)nL(v*)| < 1. Soif L is a valid list assignment of (G, v;vs),
and u is a good neighbour of v*, then we assume that |L(u) n L(v)| < 1. However to
prove that u is a good neighbour of v*, it suffices to prove that either |L(u)| = 4 or
|L(u) n L(v)| < 1.

Theorem 2 [If L is a valid list assignment of a rooted plane graph (G,v1vs), then there
exists an L-colouring of (G,v1v9).

Proof. The proof is by induction on |V (G)].

Assume first that G is a triangle (v, vo,v3).

If (A) holds, then |L(v3)|=3. Assume L(vi,v5) = {(c1,¢2)}. Let c3 € L(vs) —{c1, o}
Then f(v;) =¢; for i=1,2,3 is an L-colouring of (G, v1vs).

Assume (B) holds. Then |L(v3)| =2 and L(vy,v2) = {(c1,¢2), (¢}, c5)}. We may assume
that vy is a good neighbour of vs. If ¢; = ¢}, then ¢y # ¢}. Let ¢3 € L(vs) — {¢1}. One of
c9, ¢ is distincet from vg. Without loss of generality, we may assume that c; # c3. Then
f(v;) =¢; for i=1,2,3 is an L-colouring of (G,v1v2). The case ¢y = ¢, is symmetric.
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Assume ¢ # ¢}, co # . As vy is a good neighbour of vs, |L(vs) N {c2, )} < 1. Assume
co ¢ L(vs). Let c3 € L(vs) —{c1}. Then f(v;) = ¢; for i = 1,2,3 is an L-colouring of
(G,U1U2).

Assume |V(G)|=n >4 and the theorem is true for any smaller rooted plane graphs.

For a cycle C of G, Int[C] is the graph of all vertices and edges inside or on C,
Ext[C'] is the graph of all vertices and edges outside or on C. If G has a separating
triangle C' = (uy,us,u3), then let G; = Ext[C]. Then (Gy,v1v9) has an L-colouring
f. Let Gy = Int[C] — {us}. Let L’ be the list assignment of (G, ujus) defined as
L’(ul,u2) = {(f(ul),f(UQ))}, and for v € V(Gg) - {ul,u2},

() - {L(v) - {f(ug)}, if v e No(uz),

L(v), otherwise.

Then L’ is a valid list assignment of (G2, ujusz). By induction hypothesis, there is an
L'-colouring g of (Ga,uiuz). The union of f and g is an L-colouring of (G, v1vz).
In the following, we assume that GG has no separating triangle.

Case 1 B(G) has a chord zy.

Let G1,G9 be the two subgraphs of G separated by zy, (i.e., G1,Gy are connected
induced subgraphs of G with V(G1)nV(Gs) = {x,y} and V(G1)uV(Gy) =V (G)), and
assume (1 contains the root edge vy vs.

Case 1(i) There is a chord xy such that |L(v)| =3 for all v e B(Gy) - {z,y}.

Let L; be the restriction of L to (Gi,v1v2). Then Lp is a valid list assignment of
(G1,v1v9). By induction hypothesis, there exists an Li-colouring f of (G1,viv).

Let Lo be the list assignment of (Ga,zy) defined as Lo(x,y) = {(f(z), f(y))} and
Ly(v) = L(v) for v e V(Gy) — {z,y}. Then Ly is a valid list assignment of (Gs,xy). By
induction hypothesis, there exists an Lo-colouring ¢ of (G, zy). The union of f and g
is an L-colouring of (G,vivz).

Case 1(ii) There is a vertex v* € B(G) — {v1,ve} with |L(v*)| = 2, and every chord zy
separates v* and the root edge, i.e., vivy € E(Gy) and v* € V(Gq) — {z,y}.

We choose the chord zy so that G; is minimum. Then B(G;) has no chord.

As there is a vertex v* € B(G) — {vy, v} with |L(v*)| = 2, we know that (G,viv)
satisfies (B). We may assume that |L;(vq,vs)| = 2.

Similarly, L; is a valid list assignment of (G1,v1v2) and hence there is an Li-colouring

f Of (Gl,Ul’UQ).
Claim 1 There is another L-colouring f' of (G1,vive) for which (f'(x), f'(v)) = (f(z), f(v)).

Assume Claim [Mlis true. Let Ly be the list assignment of (G, 2y) defined as Lo(x,y) =
(@), F). (F/(2), £/()} and Ly(v) = L(v) for v e V(Gy)—{,y}. Note that Ly(v) ¢
L(v) for v € {x,y}, and the primary neighbours of v* in (Gg,zy) are the same as its
primary neighbours in (G, v1v;). So v* has a good neighbour in (G, zy). Thus Ly is a
valid list assignment of (Go,zy).



By induction hypothesis, there exists an Ls-colouring g of (Gs,zy). Depending on

(9(x),9(y)) = (f(z), f(y)) or (f'(x),['(y)), the union of g and f or the union of g and
f"is an L-colouring of (G, v1v7). To finish the proof of Case 1, it remains to prove Claim

@

Proof of Claim [

Without loss of generality, we assume that y ¢ {vi,ve}. Let L] = Ly, except that
Li(y) = L(y) - {f(y)}. If L is a valid list assignment of (Gy,v,v2), then by induction
hypothesis, there is an L-colouring f’ of (G1,viv2), and we are done.

Thus we may assume that L/ is not a valid list assignment of (G, v1v2). This happens
only if |L](y)| = 2 and y has no good neighbour in (G1,v1v2). Assume Li(y) = {c1,c2}.

As B(G4) has no chord, y has exactly two boundary neighbours, and one of them is
x. Let 3" be the other boundary neighbour of y, i.e., Ng(y) n B(G1) = {x,y'}. Then

{c1,e2} € Li(z) n Ly (y).

If 2 is a root vertex, say « = vy, then Ly (z) = {¢1,¢2} (as L (y) € Ly (z) and L (z)] < 2).

Assume L(vy,v2) = {(c1,¢}), (¢2,¢4)} for some colours ¢}, ¢, (possibly ¢} = ¢4). Assume
c1 ¥ f(.ﬁlf)

Let LY = Ly, except that LY (vy,v2) = (c1,¢;). As LY (v)| >3 for all v e B(G1)—{vy,v2},
LY is a valid list assignment of (G, v;v9). Hence there is an LY-colouring f’ of (G1,v,v2).
As f'(z) # f(z), Claim [l is proved.

Thus we may assume that z is not a root vertex.

Let L} = Ly except that LY (z) = Li(z) — {f(x)}. If L} is a valid list assignment of
(G1,v1v9), then again we obtain an L-colouring f’ of (Gy,v1v9) with (f'(z), f'(y)) +
(f(x), f(y)) and we are done.

Thus assume that L} is not a valid list assignment. This means that |L”(z)| = 2 and
x has no good neighbour. Let 2’ be the other boundary neighbour of x. Then we have

LY (z) ={c1,ca} (so f(x) # c1,¢a), and
{er.co} = L(z) n L(y) n Lo(a") n La(y).

As (G is a near-triangulation of the plane and G has no separating triangle, x and y
have a unique common neighbour z in Gy, which is an interior vertex of Gj.
Since B(G1) has no chord, it is easy see that at least one of the following holds:

e Ng, (') nNe,(y) - {z} = 2.
i NGl(y,) ﬂNGl(ZL') - {Z} =@.

By symmetry, we may assume that Ng, (2') n Ng, (y) - {z} = @.
As |L(z) n L(y)| < 2, there exists i € {1,2}, that |L(z) n{f(y),c;}| < 1. Without loss
of generality, we assume

[L(z) n{f(y),er}] <1,



Let
Gll = Gl - {I,y}

Let L} be the list assignment of (G, v;v;) defined as follows:

L(U) - {017 f(y)}v if v= <,
L(w)-{f(y)},  ifveNg(y)-{z},

Li(v) =
i) L(v) - {c1}, if v € Ng, () - {2},
L(v), otherwise.
and
L(vy,v9), if 2’ is not a root vertex, or ¢1 ¢ L(z'),

Lilvea) {L(vl,vg) —{(c1,¢})}, it a’=wv; and (¢, ¢)) € L(vy,v9).

Note that |Li(z)| > 3, and Lj(y') = L(y") (as f(y) ¢ L(y")). If L} is a valid list
assignment of (Gf,v1v2), then there is an Lj-colouring f’ of (G',vive). By letting
(f'(@), f"(y)) = (c1, f(y)), we obtain an L-colouring of (G1,viv2) with (f'(x), f'(y)) #
(f(z), f(y)), and we are done.

Thus we assume that L] is not a valid list assignment of (G, v1v2).

This means that

e 1’ is not a root vertex, z’ is the only boundary vertex of G} with |Lj(z")| =2, and
2’ has no good neighbour.

Assume L(z') = {c1,¢2,¢3} (and hence Lj(z') = {c2,c3}).

Let 2’ be the unique common neighbour of x and 2/, which is an interior vertex of G.

Let z” be the other neighbour of x' in B(G;). Then 2 is a primary boundary
neighbour of 2’ in G}. Since Ng,(2') n Ng,(y) — {z} = @ and G has no separating
triangle, 2’ is the other primary boundary neighbour of z’.

Since 2’ is not a good neighbour of 2/, we conclude that

o 2 =7z

e ¢ ¢ L(2),c,c3,f(y) € L(2) and c3 # f(y).

Now 2’ = z implies that Ng,(y') n Ng,(x) - {2} = @. So we can repeat the same
argument as above, but interchange the roles of z,z" and y,y’. Then we conclude that
the following hold:

e y' is not a root vertex,

e 2 is adjacent to y’,

o L(y') ={c 2, 5},



i C2acé>f(x) € L(Z)
As {ca,¢3,¢5, f(x), f(y)} € L(21), we have ¢3 = ¢ (as |L(2)| =4 and the other colours
are pairwise distinct). Le.,

L(Z) = {02>C3af(x)>f(y)}'

As Li(2') = {cg, 3} € L(2"), we know that ¢, ¢ L(z").
Let
=G {2y}

Let Li* be the list assignment of (GY,v1v2) defined as follows:

L(U)_{Clvc27f(y)}7 if’UZZ7
L(U)_{f(y)}u ifUENGl(y)u
Li*(v) =4 L(v) = {c2}, if v e Ng, (),
L(v) - {e1}, if v e Ng, (2'),
L(v), otherwise.
and
L(vy,v9), if 2" is not a root vertex, or c; ¢ E(m”),

L*)(‘ , —
(v ee) {L(vl,w)—{(cl,c’l)}, if 2 = o1 and (c1,¢) € Ly, v9).

If Li* is a valid list assignment of (GY,viv2), then there is an Lj*-colouring f’ of
(GY,v1v2), which extends to an L-colouring of (G1,v1v2) by letting f/(2') = ¢1, f'(z) = o
and f'(y) = f(y), and we are done.

Thus we may assume that L}* is not a valid list assignment of (GY,v1v2). It is easy
to check that z is the only vertex of B(GY) — {vi,ve} with |L**(2)| < 3. Note that

L (2) = L(z) = {c2, f(y)} = {es, f(2)}.

The only reason that Lj* is not a valid list assignment of (GY,viv9) is that z has no
good neighbour. Let wy,wy be the two primary boundary neighbours of z in (G, v1v2).
We have

{es, f()} € L(wy), L(ws).
This implies that y’ is not a primary boundary neighbour of z in (GY,v1v2) (although
y’ is a boundary neighbour of z in GY).
We repeat the above argument, but interchange the roles of x, 2" and y, 3’. We conclude
that for the two primary boundary neighbours wj, w) of z in (G — {x,y,y'}, v1v2),

{es, f(9)} € Lwp), Lws).



This means that 2’ is not a primary neighbour of z in (G; - {x,y,y'},v1v2). But then
the primary neighbours of z in (Gy - {x,y,y'},viv2) and (Gy — {2/, xz,y},viv9) are the
same. Le., w| =w; and w) = wy. But then for i =1, 2,

{3, f(x), f(y)} € L(w;) 0 L(z),

contrary to the assumption that L is (*,2)-list assignment of (G, v1v9). This completes
the proof of Claim [II and hence the proof of Case 1.

Case 2 B(G) has no chord.

Case 2(i) (A) holds, and L(vq,v2) = {(c1,¢2)}-

Let u be the other boundary neighbour of vy in GG. Similarly, as G has no separating
triangle and B(G) has no chord, v; and vy has a unique common neighbour w, and
u and vy have a unique common neighbour z, and w, z are interior vertices of G (and
possibly w = z).

Let G' = G — vy and let L’ be the list assignment of (G’,v;w) defined as

L'(v) = L(v) = {2}, ifve Ng(vy)-{v1,w},
L(v), if ve V(G) - Ng(vs),

and
L'(v1,w) ={(c1,¢3),(c1,¢4)}, where c3,¢4 € L(w) —{c1,¢a}.

In the definition above, if |L(w) - {c1,c2}| > 3, then c3, ¢4 are arbitrarily chosen from
L(w) = {cy, ¢}, with one exception:

If o ¢ L(w), w =2z and L(w)n L(u) # @, then let ¢ € L(w) n L(u), and we choose
3,64 € L(w) —{cy, '}

We shall show that L’ is valid list assignment of (G',v;w).

If ¢o ¢ L(u), then |L'(u)| = |L(u)| = 3, and (A) holds for L’ and (G’,v,w). So L' is a
valid list assignment of (G', v w).

Assume ¢y € L(u) and hence |L'(u)| = 2. If z # w, then either ¢y € L(z) and hence
|L'(z) n L'(u)| <1 or |L'(2)| =4. So z is a good neighbour of u in (G’,v1w), and L' is a
valid list assignment of (G’,vyw) ((B) holds for L’ and (G',v,w)).

If 2z = w, then by our choice of cs, ¢y, we know that |L/(w) n L/(u)| < 1, and hence w
is a good neighbour of u, and L’ is a valid list assignment of (G’,v;w) ((B) holds for L’
and (G',v,w)).

By induction hypothesis, (G’,v;w) has an L’-colouring f. By letting f(vy) = o, we
obtain an L-colouring of (G, v,v).

Case 2(i) (B) holds, and v* € B(G), |L(v*)| =2, and u is a good neighbour of v*.

It may happen that v* has two good neighbours. In this case, the good neighbour u
is usually arbitrarily chosen, unless v* is adjacent to a root vertex v; for some 7 € {1,2}
and |L(v;)| = 1. In this case, we let u = v;.



Let w be the other boundary neighbour of v*, and let z be the common neighbours of
v* and w. Similarly, we know that the vertex z is unique and is an interior vertex of G.
By our choice of u, we know that either w # vy, ve, or w = v; for some i € {1,2} and
|L(v;)| = 2 (for otherwise, we would have chosen w as the good neighbour of v*).
Let
G'=G-{v*}, ce L(v*) - L(u).

If w is not a root vertex, then let L’ be the list assignment of (G',vjvy) defined as
L'(v1,v9) = L(vy,v7), and for v e V(G") = {v1,vs},

L'(v) = L(v) -{c}, ifveNg(v*),
L(v), if ve V(G) - Ng(v*).
If |[L'(w)| > 3, then |L'(v)| > 3 for every v € B(G") — {v1,v2} and hence L' is a valid
list assignment of (G’,vjvy). Otherwise, w is the unique boundary vertex of G’ with
|L'(w)| = 2. Observe that either ¢ € L(z) and hence |L'(z) n L'(w)| < 1, or [L'(z)| =
|L(21)| = 4. In any case, z is a good neighbour of w, and hence L’ is a valid list assignment
of (G,v1v7). By induction hypothesis, there is an L’-colouring f of (G’,v1v;). By letting
f(v*) = ¢, we obtain an L-colouring of (G, vivs).

Assume w is a root vertex, say w = vy. If ¢ ¢ L(vy), then the argument still works.
Assume c € ﬂ(vl). Without loss of generality, we may assume that |L(vi,v9)| = 2, say
L(vi,v2) = {(c,d), (¢, d")}. As observed above, |L(v1)| =2, i.e., ¢ # ¢ (and it is possible
that d = d'). Let L’ be the list assignment of (G’,v1vy) defined as L'(vq,v9) = {(¢/,d")}

and
L’(U): L(U)_{C}7 ifUENg(’U*),
L(v), if ve V(G) - Ng(v¥).

Then for all v € B(G’") - {v1,v2}, |[L'(v)| > 3. Hence L’ is a valid list assignment of
(G’,v1v7). By induction hypothesis, there is an L/-colouring f of (G’,v1v,). By letting
f(v*) = ¢, we obtain an L-colouring of (G, vivs).

This completes the proof of Theorem 2. W

It is obvious that Theorem [II follows from Theorem

3 Some Remarks and Questions

For list colouring of planar graphs with list of separation, the following conjecture was
propose in [16] and remains open:

Conjecture 3 FEvery planar graph is (3,1)-choosable.

There are some other restrictions on list assignments are studied in the literature
[B, 12 M19]. We say a list assignment L is symmetric if colours in the lists are integers



and for each v, for each integer i, i € L(v) implies that —i € L(v). A graph G is called
weakly k-choosable if G is L-colourable for any symmetric k-list assignment L of G. The
following conjecture, which is a strengthening of the Four Colour Theorem, was proposed
by Kiindgen and Ramamurthi [I2] and remains open.

Conjecture 4 Fvery planar graph is weakly 4-choosable.

A t-common k-list assignment of a graph G is a k-list assignment L of GG such that
|Nvev(ey L(v)| > t. It was asked by Choi and Kwon [3] whether every planar graph G
is L-colourable for any 2-common 4-list assignment L. A positive answer would be a
strengthening of the Four Colour Theorem. But Kemnitz and Voigt [8] proved that the
answer to this question is negative.
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