
ar
X

iv
:2

20
3.

16
31

4v
3 

 [
m

at
h.

C
O

] 
 2

4 
M

ay
 2

02
2 List 4-colouring of planar graphs

Xuding Zhu∗

May 25, 2022

Abstract

This paper proves the following result: If G is a planar graph and L is a 4-
list assignment of G such that ∣L(x) ∩ L(y)∣ ≤ 2 for every edge xy, then G is
L-colourable. This answers a question asked by Kratochv́ıl, Tuza and Voigt in
[Journal of Graph Theory, 27(1):43–49, 1998].
Keywords: planar graph; lists with separation; list colouring.

1 Introduction

A list assignment of a graph G is a mapping L which assigns to each vertex v of G a set
L(v) of permissible colours. An L-colouring of G is a proper colouring f of G such that
for each vertex v of G, f(v) ∈ L(v). We say G is L-colourable if G has an L-colouring.
A k-list assignment of G is a list assignment L with ∣L(v)∣ ≥ k for each vertex v. We
say G is k-choosable if G is L-colourable for any k-list assignment L of G. The choice
number ch(G) of G is the minimum integer k such that G is k-choosable.
It is known that there are planar graphs G and 4-list assignments L of G such that

G is not L-colourable [15]. A natural direction of research is to put restrictions on
the list assignments so that for any planar graph G and any 4-list assignment L of G
satisfying the restrictions, G is L-colourable. Indeed, the Four Colour Theorem can be
formulated as such a result: For any planar graph G, if L is a 4-list assignment of G
with L(x) = L(y) for any edge xy of G, then G is L-colourable.
Are there other natural restrictions for which the corresponding “list 4-colouring the-

orem” is true?
By changing the equality to inequality in the above formulation of the Four Colour

Theorem, one may ask the following question:

Is it true that for any planar graph G, any 4-list assignment L of G such that L(x) ≠
L(y) (or equivalently, ∣L(x) ∩L(y)∣ ≤ 3), G is L-colourable?
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The answer is NO. Mirzakhani [13] constructed a planar graph G and a 4-list assign-
ment L of G such that ∣L(x) ∩L(y)∣ ≤ 3, and G is not L-colourable.
On the other hand, Kratochv́ıl, Tuza and Voigt [10] proved that for any planar graph

G, for any 4-list assignment L of G such that for any edge xy, ∣L(x) ∩ L(y)∣ ≤ 1, G is
L-colourable. Then they asked the following question:

Question 1 [10] Is it true that for any planar graph G and any 4-list assignment L of
G such that ∣L(x) ∩L(y)∣ ≤ 2 for every edge xy, G is L-colourable?

This question received a lot of attention [1, 2, 4, 5, 6, 7, 9, 11, 16, 17, 18]. Most of
the works deal with variations of this problem. There was not much progress on the
question itself. In this paper, we answer this question in affirmative.

Definition 1 Assume G is a graph and k, s are positive integers. A (⋆, s)-list assign-
ment of G is a list assignment L of G such that ∣L(x) ∩L(y)∣ ≤ s for each edge xy. A
(k, s)-list assignment of G is a (⋆, s)-list assignment of G with ∣L(v)∣ ≥ k for each vertex
v. A graph G is called (k, s)-choosable if G is L-colourable for any (k, s)-list assignment
L of G.

The following is the main result of this paper.

Theorem 1 Every planar graph is (4,2)-choosable.

2 The proof

It suffices to prove Theorem 1 for 2-connected near-triangulations of the plane: for
each non-triangular face, we can add a new vertex adjacent to all vertices of the face,
and assign new colours to the added vertex so that the resulting list assignment is still
a (4,2)-list assignment. For a 2-connected plane graph G, we denote by B(G) the
boundary cycle of G.

Definition 2 A rooted plane graph is a pair (G,v1v2), where G is a 2-connected near-
triangulation of the plane, and v1v2 is a boundary edge.

The vertices v1, v2 are called the root vertices and v1v2 is called the root edge.

Definition 3 Assume (G,v1v2) is a rooted plane graph. Assume v is a non-root bound-
ary vertex, and NG(v) ∩B(G) = {u1, u2, . . . , uk} (k ≥ 2), and (v, u1, u2, . . . , uk) occur in
B(G) is this cyclic order. The vertices u1, . . . , uk are called the boundary neighbours of
v. If the rooted edge is contained in the boundary path from ui to ui+1, then ui and ui+1

are called the primary boundary neighbours of v.

Note that each non-root boundary vertex of a rooted plane graph has exactly two
primary boundary neighbours.
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Definition 4 A list assignment of a rooted plane graph (G,v1v2) is a mapping L which
assigns to each vertex v ≠ v1, v2 a set L(v) of colours, and assigns to the ordered pair
(v1, v2) a set L(v1, v2) of ordered pairs of distinct colours. An L-colouring of (G,v1v2) is
a proper colouring f of G such that for each v ≠ v1, v2, f(v) ∈ L(v), and (f(v1), f(v2)) ∈
L(v1, v2).

Assume L is a list assignment of (G,v1v2). The list assignment L̃ of G associated
to L is the list assignment of G defined as L̃(v) = L(v) for v ≠ v1, v2 and L̃(v1) = {c ∶
∃d, (c, d) ∈ L(v1, v2)} and L̃(v2) = {d ∶ ∃c, (c, d) ∈ L(v1, v2)}. We say L is a (⋆,2)-list
assignment of (G,v1v2) if L̃ is a (⋆,2)-list assignment of G.

Definition 5 Assume L is a (⋆,2)-list assignment of (G,v1v2), and v ∈ B(G) is a non-
root vertex, and u is a primary boundary neighbour of v. We say u is a good neighbour
of v, if one of the following holds:

• ∣L̃(u) ∩ L̃(v)∣ ≤ 1, or

• ∣L̃(u)∣ = 4.

Definition 6 A (⋆,2)-list assignment of a rooted plane graph (G,v1v2) is valid if ∣L(v)∣ =
4 for each interior vertex v, and one of the following holds:

(A) ∣L(v1, v2)∣ ≥ 1 and ∣L(v)∣ ≥ 3 for each non-root boundary vertex v.

(B) ∣L(v1, v2)∣ ≥ 2, and there exists a unique non-root boundary vertex v∗ such that
∣L(v)∣ ≥ 3 for v ∈ B(G) − {v1, v2, v∗}, ∣L(v∗)∣ = 2 and v∗ has a good neighbour.

Assume L is a valid list assignment of (G,v1v2), v∗ is a non-root boundary vertex with
∣L(v∗)∣ = 2 and u is a good neighbour of v∗. If ∣L(u)∣ = 4, then we may delete one colour
from L(u)∩L(v∗) so that ∣L(u)∩L(v∗)∣ ≤ 1. So if L is a valid list assignment of (G,v1v2),
and u is a good neighbour of v∗, then we assume that ∣L̃(u) ∩ L(v)∣ ≤ 1. However to
prove that u is a good neighbour of v∗, it suffices to prove that either ∣L(u)∣ = 4 or
∣L̃(u) ∩L(v)∣ ≤ 1.

Theorem 2 If L is a valid list assignment of a rooted plane graph (G,v1v2), then there
exists an L-colouring of (G,v1v2).

Proof. The proof is by induction on ∣V (G)∣.
Assume first that G is a triangle (v1, v2, v3).
If (A) holds, then ∣L(v3)∣ = 3. Assume L(v1, v2) = {(c1, c2)}. Let c3 ∈ L(v3) − {c1, c2}.

Then f(vi) = ci for i = 1,2,3 is an L-colouring of (G,v1v2).
Assume (B) holds. Then ∣L(v3)∣ = 2 and L(v1, v2) = {(c1, c2), (c′1, c

′
2
)}. We may assume

that v2 is a good neighbour of v3. If c1 = c′1, then c2 ≠ c′2. Let c3 ∈ L(v3) − {c1}. One of
c2, c

′
2
is distinct from v3. Without loss of generality, we may assume that c2 ≠ c3. Then

f(vi) = ci for i = 1,2,3 is an L-colouring of (G,v1v2). The case c2 = c′2 is symmetric.

3



Assume c1 ≠ c′1, c2 ≠ c
′
2
. As v2 is a good neighbour of v3, ∣L(v3) ∩ {c2, c′2}∣ ≤ 1. Assume

c2 ∉ L(v3). Let c3 ∈ L(v3) − {c1}. Then f(vi) = ci for i = 1,2,3 is an L-colouring of
(G,v1v2).
Assume ∣V (G)∣ = n ≥ 4 and the theorem is true for any smaller rooted plane graphs.
For a cycle C of G, Int[C] is the graph of all vertices and edges inside or on C,

Ext[C] is the graph of all vertices and edges outside or on C. If G has a separating
triangle C = (u1, u2, u3), then let G1 = Ext[C]. Then (G1, v1v2) has an L-colouring
f . Let G2 = Int[C] − {u3}. Let L′ be the list assignment of (G2, u1u2) defined as
L′(u1, u2) = {(f(u1), f(u2))}, and for v ∈ V (G2) − {u1, u2},

L′(v) =
⎧⎪⎪
⎨
⎪⎪⎩

L(v) − {f(u3)}, if v ∈ NG(u2),

L(v), otherwise.

Then L′ is a valid list assignment of (G2, u1u2). By induction hypothesis, there is an
L′-colouring g of (G2, u1u2). The union of f and g is an L-colouring of (G,v1v2).
In the following, we assume that G has no separating triangle.

Case 1 B(G) has a chord xy.
Let G1,G2 be the two subgraphs of G separated by xy, (i.e., G1,G2 are connected

induced subgraphs of G with V (G1)∩V (G2) = {x, y} and V (G1)∪V (G2) = V (G)), and
assume G1 contains the root edge v1v2.

Case 1(i) There is a chord xy such that ∣L(v)∣ = 3 for all v ∈ B(G2) − {x, y}.
Let L1 be the restriction of L to (G1, v1v2). Then L1 is a valid list assignment of
(G1, v1v2). By induction hypothesis, there exists an L1-colouring f of (G1, v1v2).
Let L2 be the list assignment of (G2, xy) defined as L2(x, y) = {(f(x), f(y))} and

L2(v) = L(v) for v ∈ V (G2) − {x, y}. Then L2 is a valid list assignment of (G2, xy). By
induction hypothesis, there exists an L2-colouring g of (G2, xy). The union of f and g

is an L-colouring of (G,v1v2).

Case 1(ii) There is a vertex v∗ ∈ B(G) − {v1, v2} with ∣L(v∗)∣ = 2, and every chord xy

separates v∗ and the root edge, i.e., v1v2 ∈ E(G1) and v∗ ∈ V (G2) − {x, y}.
We choose the chord xy so that G1 is minimum. Then B(G1) has no chord.
As there is a vertex v∗ ∈ B(G) − {v1, v2} with ∣L(v∗)∣ = 2, we know that (G,v1v2)

satisfies (B). We may assume that ∣L1(v1, v2)∣ = 2.
Similarly, L1 is a valid list assignment of (G1, v1v2) and hence there is an L1-colouring

f of (G1, v1v2).

Claim 1 There is another L-colouring f ′ of (G1, v1v2) for which (f ′(x), f ′(y)) ≠ (f(x), f(y)).

Assume Claim 1 is true. Let L2 be the list assignment of (G2, xy) defined as L2(x, y) =
{(f(x), f(y)), (f ′(x), f ′(y))} and L2(v) = L(v) for v ∈ V (G2)−{x, y}. Note that L̃2(v) ⊆
L(v) for v ∈ {x, y}, and the primary neighbours of v∗ in (G2, xy) are the same as its
primary neighbours in (G,v1v2). So v∗ has a good neighbour in (G2, xy). Thus L2 is a
valid list assignment of (G2, xy).
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By induction hypothesis, there exists an L2-colouring g of (G2, xy). Depending on
(g(x), g(y)) = (f(x), f(y)) or (f ′(x), f ′(y)), the union of g and f or the union of g and
f ′ is an L-colouring of (G,v1v2). To finish the proof of Case 1, it remains to prove Claim
1.

Proof of Claim 1
Without loss of generality, we assume that y ∉ {v1, v2}. Let L′

1
= L1, except that

L′
1
(y) = L(y) − {f(y)}. If L′

1
is a valid list assignment of (G1, v1v2), then by induction

hypothesis, there is an L′
1
-colouring f ′ of (G1, v1v2), and we are done.

Thus we may assume that L′
1
is not a valid list assignment of (G1, v1v2). This happens

only if ∣L′
1
(y)∣ = 2 and y has no good neighbour in (G1, v1v2). Assume L′

1
(y) = {c1, c2}.

As B(G1) has no chord, y has exactly two boundary neighbours, and one of them is
x. Let y′ be the other boundary neighbour of y, i.e., NG(y) ∩B(G1) = {x, y′}. Then

{c1, c2} ⊆ L̃
′
1(x) ∩ L̃

′
1(y

′).

If x is a root vertex, say x = v1, then L̃1(x) = {c1, c2} (as L′1(y) ⊆ L̃1(x) and L̃1(x)∣ ≤ 2).
Assume L(v1, v2) = {(c1, c′1), (c2, c

′
2
)} for some colours c′

1
, c′

2
(possibly c′

1
= c′

2
). Assume

c1 ≠ f(x).
Let L′′

1
= L1, except that L′′1(v1, v2) = (c1, c

′
1
). As ∣L′′

1
(v)∣ ≥ 3 for all v ∈ B(G1)−{v1, v2},

L′′
1
is a valid list assignment of (G1, v1v2). Hence there is an L′′

1
-colouring f ′ of (G1, v1v2).

As f ′(x) ≠ f(x), Claim 1 is proved.
Thus we may assume that x is not a root vertex.
Let L′′

1
= L1 except that L′′

1
(x) = L1(x) − {f(x)}. If L′′

1
is a valid list assignment of

(G1, v1v2), then again we obtain an L-colouring f ′ of (G1, v1v2) with (f ′(x), f ′(y)) ≠
(f(x), f(y)) and we are done.
Thus assume that L′′

1
is not a valid list assignment. This means that ∣L′′(x)∣ = 2 and

x has no good neighbour. Let x′ be the other boundary neighbour of x. Then we have
L′′
1
(x) = {c1, c2} (so f(x) ≠ c1, c2), and

{c1, c2} = L(x) ∩L(y) ∩ L̃1(x
′) ∩ L̃1(y

′).

As G is a near-triangulation of the plane and G has no separating triangle, x and y

have a unique common neighbour z in G1, which is an interior vertex of G1.
Since B(G1) has no chord, it is easy see that at least one of the following holds:

• NG1
(x′) ∩NG1

(y) − {z} = ∅.

• NG1
(y′) ∩NG1

(x) − {z} = ∅.

By symmetry, we may assume that NG1
(x′) ∩NG1

(y) − {z} = ∅.
As ∣L(z) ∩ L(y)∣ ≤ 2, there exists i ∈ {1,2}, that ∣L(z) ∩ {f(y), ci}∣ ≤ 1. Without loss

of generality, we assume
∣L(z) ∩ {f(y), c1}∣ ≤ 1.
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Let
G′1 = G1 − {x, y}.

Let L∗
1
be the list assignment of (G′

1
, v1v2) defined as follows:

L∗1(v) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

L(v) − {c1, f(y)}, if v = z,

L(v) − {f(y)}, if v ∈ NG1
(y) − {z},

L(v) − {c1}, if v ∈ NG1
(x) − {z},

L(v), otherwise.

and

L∗1(v1, v2) =
⎧⎪⎪
⎨
⎪⎪⎩

L(v1, v2), if x′ is not a root vertex, or c1 ∉ L̃(x′),

L(v1, v2) − {(c1, c′1)}, if x′ = v1 and (c1, c′1) ∈ L(v1, v2).

Note that ∣L∗
1
(z)∣ ≥ 3, and L∗

1
(y′) = L(y′) (as f(y) ∉ L(y′)). If L∗

1
is a valid list

assignment of (G′
1
, v1v2), then there is an L∗

1
-colouring f ′ of (G′

1
, v1v2). By letting

(f ′(x), f ′(y)) = (c1, f(y)), we obtain an L-colouring of (G1, v1v2) with (f ′(x), f ′(y)) ≠
(f(x), f(y)), and we are done.
Thus we assume that L∗

1
is not a valid list assignment of (G′

1
, v1v2).

This means that

• x′ is not a root vertex, x′ is the only boundary vertex of G′
1
with ∣L∗

1
(x′)∣ = 2, and

x′ has no good neighbour.

Assume L(x′) = {c1, c2, c3} (and hence L∗
1
(x′) = {c2, c3}).

Let z′ be the unique common neighbour of x and x′, which is an interior vertex of G1.
Let x′′ be the other neighbour of x′ in B(G1). Then x′′ is a primary boundary

neighbour of x′ in G′
1
. Since NG1

(x′) ∩ NG1
(y) − {z} = ∅ and G has no separating

triangle, z′ is the other primary boundary neighbour of x′.
Since z′ is not a good neighbour of x′, we conclude that

• z′ = z;

• c1 ∉ L(z), c2, c3, f(y) ∈ L(z) and c3 ≠ f(y).

Now z′ = z implies that NG1
(y′) ∩ NG1

(x) − {z} = ∅. So we can repeat the same
argument as above, but interchange the roles of x,x′ and y, y′. Then we conclude that
the following hold:

• y′ is not a root vertex,

• z is adjacent to y′,

• L(y′) = {c1, c2, c′3},
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• c2, c
′
3
, f(x) ∈ L(z).

As {c2, c3, c′3, f(x), f(y)} ⊆ L(z1), we have c3 = c′3 (as ∣L(z)∣ = 4 and the other colours
are pairwise distinct). I.e.,

L(z) = {c2, c3, f(x), f(y)}.

As L∗
1
(x′) = {c2, c3} ⊆ L̃(x′′), we know that c1 ∉ L̃(x′′).

Let
G′′1 = G1 − {x

′, x, y}.

Let L∗∗
1

be the list assignment of (G′′
1
, v1v2) defined as follows:

L∗∗1 (v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(v) − {c1, c2, f(y)}, if v = z,

L(v) − {f(y)}, if v ∈ NG1
(y),

L(v) − {c2}, if v ∈ NG1
(x),

L(v) − {c1}, if v ∈ NG1
(x′),

L(v), otherwise.

and

L∗∗1 (v1, v2) =
⎧⎪⎪
⎨
⎪⎪⎩

L(v1, v2), if x′′ is not a root vertex, or c1 ∉ L̃(x′′),

L(v1, v2) − {(c1, c′1)}, if x′′ = v1 and (c1, c′1) ∈ L(v1, v2).

If L∗∗
1

is a valid list assignment of (G′′
1
, v1v2), then there is an L∗∗

1
-colouring f ′ of

(G′′
1
, v1v2), which extends to an L-colouring of (G1, v1v2) by letting f ′(x′) = c1, f ′(x) = c2

and f ′(y) = f(y), and we are done.
Thus we may assume that L∗∗

1
is not a valid list assignment of (G′′

1
, v1v2). It is easy

to check that z is the only vertex of B(G′′
1
) − {v1, v2} with ∣L∗∗(z)∣ < 3. Note that

L∗∗(z) = L(z) − {c2, f(y)} = {c3, f(x)}.

The only reason that L∗∗
1

is not a valid list assignment of (G′′
1
, v1v2) is that z has no

good neighbour. Let w1,w2 be the two primary boundary neighbours of z in (G′′
1
, v1v2).

We have
{c3, f(x)} ⊆ L̃(w1), L̃(w2).

This implies that y′ is not a primary boundary neighbour of z in (G′′
1
, v1v2) (although

y′ is a boundary neighbour of z in G′′
1
).

We repeat the above argument, but interchange the roles of x,x′ and y, y′. We conclude
that for the two primary boundary neighbours w′

1
,w′

2
of z in (G1 − {x, y, y′}, v1v2),

{c3, f(y)} ⊆ L̃(w
′
1), L̃(w

′
2).
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This means that x′ is not a primary neighbour of z in (G1 − {x, y, y′}, v1v2). But then
the primary neighbours of z in (G1 − {x, y, y′}, v1v2) and (G1 − {x′, x, y}, v1v2) are the
same. I.e., w′

1
= w1 and w′

2
= w2. But then for i = 1,2,

{c3, f(x), f(y)} ⊆ L̃(wi) ∩L(z),

contrary to the assumption that L is (⋆,2)-list assignment of (G,v1v2). This completes
the proof of Claim 1, and hence the proof of Case 1.

Case 2 B(G) has no chord.

Case 2(i) (A) holds, and L(v1, v2) = {(c1, c2)}.
Let u be the other boundary neighbour of v2 in G. Similarly, as G has no separating

triangle and B(G) has no chord, v1 and v2 has a unique common neighbour w, and
u and v2 have a unique common neighbour z, and w,z are interior vertices of G (and
possibly w = z).
Let G′ = G − v2 and let L′ be the list assignment of (G′, v1w) defined as

L′(v) =
⎧⎪⎪
⎨
⎪⎪⎩

L(v) − {c2}, if v ∈ NG(v2) − {v1,w},

L(v), if v ∈ V (G) −NG(v2),

and
L′(v1,w) = {(c1, c3), (c1, c4)},where c3, c4 ∈ L(w) − {c1, c2}.

In the definition above, if ∣L(w) − {c1, c2}∣ ≥ 3, then c3, c4 are arbitrarily chosen from
L(w) − {c1, c2}, with one exception:
If c2 ∉ L(w), w = z and L(w) ∩ L(u) ≠ ∅, then let c′ ∈ L(w) ∩ L(u), and we choose

c3, c4 ∈ L(w) − {c1, c′}.
We shall show that L′ is valid list assignment of (G′, v1w).
If c2 ∉ L(u), then ∣L′(u)∣ = ∣L(u)∣ = 3, and (A) holds for L′ and (G′, v1w). So L′ is a

valid list assignment of (G′, v1w).
Assume c2 ∈ L(u) and hence ∣L′(u)∣ = 2. If z ≠ w, then either c2 ∈ L(z) and hence
∣L′(z) ∩L′(u)∣ ≤ 1 or ∣L′(z)∣ = 4. So z is a good neighbour of u in (G′, v1w), and L′ is a
valid list assignment of (G′, v1w) ((B) holds for L′ and (G′, v1w)).
If z = w, then by our choice of c3, c4, we know that ∣L̃′(w) ∩ L′(u)∣ ≤ 1, and hence w

is a good neighbour of u, and L′ is a valid list assignment of (G′, v1w) ((B) holds for L′

and (G′, v1w)).
By induction hypothesis, (G′, v1w) has an L′-colouring f . By letting f(v2) = c2, we

obtain an L-colouring of (G,v1v2).

Case 2(i) (B) holds, and v∗ ∈ B(G), ∣L(v∗)∣ = 2, and u is a good neighbour of v∗.
It may happen that v∗ has two good neighbours. In this case, the good neighbour u

is usually arbitrarily chosen, unless v∗ is adjacent to a root vertex vi for some i ∈ {1,2}
and ∣L̃(vi)∣ = 1. In this case, we let u = vi.
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Let w be the other boundary neighbour of v∗, and let z be the common neighbours of
v∗ and w. Similarly, we know that the vertex z is unique and is an interior vertex of G.
By our choice of u, we know that either w ≠ v1, v2, or w = vi for some i ∈ {1,2} and
∣L̃(vi)∣ = 2 (for otherwise, we would have chosen w as the good neighbour of v∗).
Let

G′ = G − {v∗}, c ∈ L(v∗) −L(u).

If w is not a root vertex, then let L′ be the list assignment of (G′, v1v2) defined as
L′(v1, v2) = L(v1, v2), and for v ∈ V (G′) − {v1, v2},

L′(v) =
⎧⎪⎪
⎨
⎪⎪⎩

L(v) − {c}, if v ∈ NG(v∗),

L(v), if v ∈ V (G) −NG(v∗).

If ∣L′(w)∣ ≥ 3, then ∣L′(v)∣ ≥ 3 for every v ∈ B(G′) − {v1, v2} and hence L′ is a valid
list assignment of (G′, v1v2). Otherwise, w is the unique boundary vertex of G′ with
∣L′(w)∣ = 2. Observe that either c ∈ L(z) and hence ∣L′(z) ∩ L′(w)∣ ≤ 1, or ∣L′(z1)∣ =
∣L(z1)∣ = 4. In any case, z is a good neighbour of w, and hence L′ is a valid list assignment
of (G,v1v2). By induction hypothesis, there is an L′-colouring f of (G′, v1v2). By letting
f(v∗) = c, we obtain an L-colouring of (G′, v1v2).
Assume w is a root vertex, say w = v1. If c ∉ L̃(v1), then the argument still works.

Assume c ∈ L̃(v1). Without loss of generality, we may assume that ∣L(v1, v2)∣ = 2, say
L(v1, v2) = {(c, d), (c′, d′)}. As observed above, ∣L̃(v1)∣ = 2, i.e., c ≠ c′ (and it is possible
that d = d′). Let L′ be the list assignment of (G′, v1v2) defined as L′(v1, v2) = {(c′, d′)}
and

L′(v) =
⎧⎪⎪
⎨
⎪⎪⎩

L(v) − {c}, if v ∈ NG(v∗),

L(v), if v ∈ V (G) −NG(v∗).

Then for all v ∈ B(G′) − {v1, v2}, ∣L′(v)∣ ≥ 3. Hence L′ is a valid list assignment of
(G′, v1v2). By induction hypothesis, there is an L′-colouring f of (G′, v1v2). By letting
f(v∗) = c, we obtain an L-colouring of (G,v1v2).
This completes the proof of Theorem 2.

It is obvious that Theorem 1 follows from Theorem 2.

3 Some Remarks and Questions

For list colouring of planar graphs with list of separation, the following conjecture was
propose in [16] and remains open:

Conjecture 3 Every planar graph is (3,1)-choosable.

There are some other restrictions on list assignments are studied in the literature
[3, 12, 19]. We say a list assignment L is symmetric if colours in the lists are integers
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and for each v, for each integer i, i ∈ L(v) implies that −i ∈ L(v). A graph G is called
weakly k-choosable if G is L-colourable for any symmetric k-list assignment L of G. The
following conjecture, which is a strengthening of the Four Colour Theorem, was proposed
by Kündgen and Ramamurthi [12] and remains open.

Conjecture 4 Every planar graph is weakly 4-choosable.

A t-common k-list assignment of a graph G is a k-list assignment L of G such that
∣ ⋂v∈V (G)L(v)∣ ≥ t. It was asked by Choi and Kwon [3] whether every planar graph G

is L-colourable for any 2-common 4-list assignment L. A positive answer would be a
strengthening of the Four Colour Theorem. But Kemnitz and Voigt [8] proved that the
answer to this question is negative.
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