List 4-colouring of planar graphs

Xuding Zhu*

May 25, 2022

Abstract

This paper proves the following result: If G is a planar graph and L is a 4list assignment of G such that $|L(x) \cap L(y)| \leq 2$ for every edge $x y$, then G is L-colourable. This answers a question asked by Kratochvíl, Tuza and Voigt in [Journal of Graph Theory, 27(1):43-49, 1998].

Keywords: planar graph; lists with separation; list colouring.

1 Introduction

A list assignment of a graph G is a mapping L which assigns to each vertex v of G a set $L(v)$ of permissible colours. An L-colouring of G is a proper colouring f of G such that for each vertex v of $G, f(v) \in L(v)$. We say G is L-colourable if G has an L-colouring. A k-list assignment of G is a list assignment L with $|L(v)| \geq k$ for each vertex v. We say G is k-choosable if G is L-colourable for any k-list assignment L of G. The choice number $\operatorname{ch}(G)$ of G is the minimum integer k such that G is k-choosable.

It is known that there are planar graphs G and 4-list assignments L of G such that G is not L-colourable [15]. A natural direction of research is to put restrictions on the list assignments so that for any planar graph G and any 4-list assignment L of G satisfying the restrictions, G is L-colourable. Indeed, the Four Colour Theorem can be formulated as such a result: For any planar graph G, if L is a 4-list assignment of G with $L(x)=L(y)$ for any edge $x y$ of G, then G is L-colourable.

Are there other natural restrictions for which the corresponding "list 4-colouring theorem" is true?

By changing the equality to inequality in the above formulation of the Four Colour Theorem, one may ask the following question:

Is it true that for any planar graph G, any 4-list assignment L of G such that $L(x) \neq$ $L(y)$ (or equivalently, $|L(x) \cap L(y)| \leq 3$), G is L-colourable?

[^0]The answer is NO. Mirzakhani [13] constructed a planar graph G and a 4-list assignment L of G such that $|L(x) \cap L(y)| \leq 3$, and G is not L-colourable.

On the other hand, Kratochvíl, Tuza and Voigt [10] proved that for any planar graph G, for any 4 -list assignment L of G such that for any edge $x y,|L(x) \cap L(y)| \leq 1, G$ is L-colourable. Then they asked the following question:

Question 1 [10] Is it true that for any planar graph G and any 4-list assignment L of G such that $|L(x) \cap L(y)| \leq 2$ for every edge $x y, G$ is L-colourable?

This question received a lot of attention [1, 2, 4, 5, 6, 6, 7, 2, 11, 16, 17, 18. Most of the works deal with variations of this problem. There was not much progress on the question itself. In this paper, we answer this question in affirmative.

Definition 1 Assume G is a graph and k, s are positive integers. $A(\star, s)$-list assignment of G is a list assignment L of G such that $|L(x) \cap L(y)| \leq s$ for each edge $x y$. A (k, s)-list assignment of G is a (\star, s)-list assignment of G with $|L(v)| \geq k$ for each vertex v. A graph G is called (k, s)-choosable if G is L-colourable for any (k, s)-list assignment L of G.

The following is the main result of this paper.
Theorem 1 Every planar graph is $(4,2)$-choosable.

2 The proof

It suffices to prove Theorem 1 for 2-connected near-triangulations of the plane: for each non-triangular face, we can add a new vertex adjacent to all vertices of the face, and assign new colours to the added vertex so that the resulting list assignment is still a $(4,2)$-list assignment. For a 2-connected plane graph G, we denote by $B(G)$ the boundary cycle of G.

Definition $2 A$ rooted plane graph is a pair $\left(G, v_{1} v_{2}\right)$, where G is a 2-connected neartriangulation of the plane, and $v_{1} v_{2}$ is a boundary edge.

The vertices v_{1}, v_{2} are called the root vertices and $v_{1} v_{2}$ is called the root edge.
Definition 3 Assume $\left(G, v_{1} v_{2}\right)$ is a rooted plane graph. Assume v is a non-root boundary vertex, and $N_{G}(v) \cap B(G)=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}(k \geq 2)$, and $\left(v, u_{1}, u_{2}, \ldots, u_{k}\right)$ occur in $B(G)$ is this cyclic order. The vertices u_{1}, \ldots, u_{k} are called the boundary neighbours of v. If the rooted edge is contained in the boundary path from u_{i} to u_{i+1}, then u_{i} and u_{i+1} are called the primary boundary neighbours of v.

Note that each non-root boundary vertex of a rooted plane graph has exactly two primary boundary neighbours.

Definition $4 A$ list assignment of a rooted plane graph $\left(G, v_{1} v_{2}\right)$ is a mapping L which assigns to each vertex $v \neq v_{1}, v_{2}$ a set $L(v)$ of colours, and assigns to the ordered pair $\left(v_{1}, v_{2}\right)$ a set $L\left(v_{1}, v_{2}\right)$ of ordered pairs of distinct colours. An L-colouring of $\left(G, v_{1} v_{2}\right)$ is a proper colouring f of G such that for each $v \neq v_{1}, v_{2}, f(v) \in L(v)$, and $\left(f\left(v_{1}\right), f\left(v_{2}\right)\right) \in$ $L\left(v_{1}, v_{2}\right)$.

Assume L is a list assignment of $\left(G, v_{1} v_{2}\right)$. The list assignment \tilde{L} of G associated to L is the list assignment of G defined as $\tilde{L}(v)=L(v)$ for $v \neq v_{1}, v_{2}$ and $\tilde{L}\left(v_{1}\right)=\{c$: $\left.\exists d,(c, d) \in L\left(v_{1}, v_{2}\right)\right\}$ and $\tilde{L}\left(v_{2}\right)=\left\{d: \exists c,(c, d) \in L\left(v_{1}, v_{2}\right)\right\}$. We say L is a $(\star, 2)$-list assignment of $\left(G, v_{1} v_{2}\right)$ if \tilde{L} is a $(\star, 2)$-list assignment of G.

Definition 5 Assume L is a $(\star, 2)$-list assignment of $\left(G, v_{1} v_{2}\right)$, and $v \in B(G)$ is a nonroot vertex, and u is a primary boundary neighbour of v. We say u is a good neighbour of v, if one of the following holds:

- $|\tilde{L}(u) \cap \tilde{L}(v)| \leq 1$, or
- $|\tilde{L}(u)|=4$.

Definition $6 A(\star, 2)$-list assignment of a rooted plane graph $\left(G, v_{1} v_{2}\right)$ is valid $i f|L(v)|=$ 4 for each interior vertex v, and one of the following holds:
(A) $\left|L\left(v_{1}, v_{2}\right)\right| \geq 1$ and $|L(v)| \geq 3$ for each non-root boundary vertex v.
(B) $\left|L\left(v_{1}, v_{2}\right)\right| \geq 2$, and there exists a unique non-root boundary vertex v^{*} such that $|L(v)| \geq 3$ for $v \in B(G)-\left\{v_{1}, v_{2}, v^{*}\right\},\left|L\left(v^{*}\right)\right|=2$ and v^{*} has a good neighbour.

Assume L is a valid list assignment of $\left(G, v_{1} v_{2}\right), v^{*}$ is a non-root boundary vertex with $\left|L\left(v^{*}\right)\right|=2$ and u is a good neighbour of v^{*}. If $|L(u)|=4$, then we may delete one colour from $L(u) \cap L\left(v^{*}\right)$ so that $\left|L(u) \cap L\left(v^{*}\right)\right| \leq 1$. So if L is a valid list assignment of $\left(G, v_{1} v_{2}\right)$, and u is a good neighbour of v^{*}, then we assume that $|\tilde{L}(u) \cap L(v)| \leq 1$. However to prove that u is a good neighbour of v^{*}, it suffices to prove that either $|L(u)|=4$ or $|\tilde{L}(u) \cap L(v)| \leq 1$.

Theorem 2 If L is a valid list assignment of a rooted plane graph ($G, v_{1} v_{2}$), then there exists an L-colouring of $\left(G, v_{1} v_{2}\right)$.

Proof. The proof is by induction on $|V(G)|$.
Assume first that G is a triangle $\left(v_{1}, v_{2}, v_{3}\right)$.
If (A) holds, then $\left|L\left(v_{3}\right)\right|=3$. Assume $L\left(v_{1}, v_{2}\right)=\left\{\left(c_{1}, c_{2}\right)\right\}$. Let $c_{3} \in L\left(v_{3}\right)-\left\{c_{1}, c_{2}\right\}$. Then $f\left(v_{i}\right)=c_{i}$ for $i=1,2,3$ is an L-colouring of $\left(G, v_{1} v_{2}\right)$.

Assume (B) holds. Then $\left|L\left(v_{3}\right)\right|=2$ and $L\left(v_{1}, v_{2}\right)=\left\{\left(c_{1}, c_{2}\right),\left(c_{1}^{\prime}, c_{2}^{\prime}\right)\right\}$. We may assume that v_{2} is a good neighbour of v_{3}. If $c_{1}=c_{1}^{\prime}$, then $c_{2} \neq c_{2}^{\prime}$. Let $c_{3} \in L\left(v_{3}\right)-\left\{c_{1}\right\}$. One of c_{2}, c_{2}^{\prime} is distinct from v_{3}. Without loss of generality, we may assume that $c_{2} \neq c_{3}$. Then $f\left(v_{i}\right)=c_{i}$ for $i=1,2,3$ is an L-colouring of $\left(G, v_{1} v_{2}\right)$. The case $c_{2}=c_{2}^{\prime}$ is symmetric.

Assume $c_{1} \neq c_{1}^{\prime}, c_{2} \neq c_{2}^{\prime}$. As v_{2} is a good neighbour of $v_{3},\left|L\left(v_{3}\right) \cap\left\{c_{2}, c_{2}^{\prime}\right\}\right| \leq 1$. Assume $c_{2} \notin L\left(v_{3}\right)$. Let $c_{3} \in L\left(v_{3}\right)-\left\{c_{1}\right\}$. Then $f\left(v_{i}\right)=c_{i}$ for $i=1,2,3$ is an L-colouring of ($G, v_{1} v_{2}$).

Assume $|V(G)|=n \geq 4$ and the theorem is true for any smaller rooted plane graphs.
For a cycle C of $G, \operatorname{Int}[C]$ is the graph of all vertices and edges inside or on C, $\operatorname{Ext}[C]$ is the graph of all vertices and edges outside or on C. If G has a separating triangle $C=\left(u_{1}, u_{2}, u_{3}\right)$, then let $G_{1}=\operatorname{Ext}[C]$. Then $\left(G_{1}, v_{1} v_{2}\right)$ has an L-colouring f. Let $G_{2}=\operatorname{Int}[C]-\left\{u_{3}\right\}$. Let L^{\prime} be the list assignment of $\left(G_{2}, u_{1} u_{2}\right)$ defined as $L^{\prime}\left(u_{1}, u_{2}\right)=\left\{\left(f\left(u_{1}\right), f\left(u_{2}\right)\right)\right\}$, and for $v \in V\left(G_{2}\right)-\left\{u_{1}, u_{2}\right\}$,

$$
L^{\prime}(v)= \begin{cases}L(v)-\left\{f\left(u_{3}\right)\right\}, & \text { if } v \in N_{G}\left(u_{2}\right) \\ L(v), & \text { otherwise }\end{cases}
$$

Then L^{\prime} is a valid list assignment of $\left(G_{2}, u_{1} u_{2}\right)$. By induction hypothesis, there is an L^{\prime}-colouring g of $\left(G_{2}, u_{1} u_{2}\right)$. The union of f and g is an L-colouring of $\left(G, v_{1} v_{2}\right)$.

In the following, we assume that G has no separating triangle.
Case $1 B(G)$ has a chord $x y$.
Let G_{1}, G_{2} be the two subgraphs of G separated by $x y$, (i.e., G_{1}, G_{2} are connected induced subgraphs of G with $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{x, y\}$ and $\left.V\left(G_{1}\right) \cup V\left(G_{2}\right)=V(G)\right)$, and assume G_{1} contains the root edge $v_{1} v_{2}$.
Case 1(i) There is a chord $x y$ such that $|L(v)|=3$ for all $v \in B\left(G_{2}\right)-\{x, y\}$.
Let L_{1} be the restriction of L to $\left(G_{1}, v_{1} v_{2}\right)$. Then L_{1} is a valid list assignment of $\left(G_{1}, v_{1} v_{2}\right)$. By induction hypothesis, there exists an L_{1}-colouring f of $\left(G_{1}, v_{1} v_{2}\right)$.

Let L_{2} be the list assignment of $\left(G_{2}, x y\right)$ defined as $L_{2}(x, y)=\{(f(x), f(y))\}$ and $L_{2}(v)=L(v)$ for $v \in V\left(G_{2}\right)-\{x, y\}$. Then L_{2} is a valid list assignment of $\left(G_{2}, x y\right)$. By induction hypothesis, there exists an L_{2}-colouring g of $\left(G_{2}, x y\right)$. The union of f and g is an L-colouring of $\left(G, v_{1} v_{2}\right)$.
Case 1(ii) There is a vertex $v^{*} \in B(G)-\left\{v_{1}, v_{2}\right\}$ with $\left|L\left(v^{*}\right)\right|=2$, and every chord $x y$ separates v^{*} and the root edge, i.e., $v_{1} v_{2} \in E\left(G_{1}\right)$ and $v^{*} \in V\left(G_{2}\right)-\{x, y\}$.

We choose the chord $x y$ so that G_{1} is minimum. Then $B\left(G_{1}\right)$ has no chord.
As there is a vertex $v^{*} \in B(G)-\left\{v_{1}, v_{2}\right\}$ with $\left|L\left(v^{*}\right)\right|=2$, we know that $\left(G, v_{1} v_{2}\right)$ satisfies (B). We may assume that $\left|L_{1}\left(v_{1}, v_{2}\right)\right|=2$.

Similarly, L_{1} is a valid list assignment of $\left(G_{1}, v_{1} v_{2}\right)$ and hence there is an L_{1}-colouring f of $\left(G_{1}, v_{1} v_{2}\right)$.

Claim 1 There is another L-colouring f^{\prime} of $\left(G_{1}, v_{1} v_{2}\right)$ for which $\left(f^{\prime}(x), f^{\prime}(y)\right) \neq(f(x), f(y))$.
Assume Claim 1 is true. Let L_{2} be the list assignment of $\left(G_{2}, x y\right)$ defined as $L_{2}(x, y)=$ $\left\{(f(x), f(y)),\left(f^{\prime}(x), f^{\prime}(y)\right)\right\}$ and $L_{2}(v)=L(v)$ for $v \in V\left(G_{2}\right)-\{x, y\}$. Note that $\tilde{L}_{2}(v) \subseteq$ $L(v)$ for $v \in\{x, y\}$, and the primary neighbours of v^{*} in $\left(G_{2}, x y\right)$ are the same as its primary neighbours in $\left(G, v_{1} v_{2}\right)$. So v^{*} has a good neighbour in $\left(G_{2}, x y\right)$. Thus L_{2} is a valid list assignment of $\left(G_{2}, x y\right)$.

By induction hypothesis, there exists an L_{2}-colouring g of $\left(G_{2}, x y\right)$. Depending on $(g(x), g(y))=(f(x), f(y))$ or $\left(f^{\prime}(x), f^{\prime}(y)\right)$, the union of g and f or the union of g and f^{\prime} is an L-colouring of $\left(G, v_{1} v_{2}\right)$. To finish the proof of Case 1 , it remains to prove Claim 1.

Proof of Claim 1

Without loss of generality, we assume that $y \notin\left\{v_{1}, v_{2}\right\}$. Let $L_{1}^{\prime}=L_{1}$, except that $L_{1}^{\prime}(y)=L(y)-\{f(y)\}$. If L_{1}^{\prime} is a valid list assignment of $\left(G_{1}, v_{1} v_{2}\right)$, then by induction hypothesis, there is an L_{1}^{\prime}-colouring f^{\prime} of $\left(G_{1}, v_{1} v_{2}\right)$, and we are done.

Thus we may assume that L_{1}^{\prime} is not a valid list assignment of $\left(G_{1}, v_{1} v_{2}\right)$. This happens only if $\left|L_{1}^{\prime}(y)\right|=2$ and y has no good neighbour in $\left(G_{1}, v_{1} v_{2}\right)$. Assume $L_{1}^{\prime}(y)=\left\{c_{1}, c_{2}\right\}$.

As $B\left(G_{1}\right)$ has no chord, y has exactly two boundary neighbours, and one of them is x. Let y^{\prime} be the other boundary neighbour of y, i.e., $N_{G}(y) \cap B\left(G_{1}\right)=\left\{x, y^{\prime}\right\}$. Then

$$
\left\{c_{1}, c_{2}\right\} \subseteq \tilde{L}_{1}^{\prime}(x) \cap \tilde{L}_{1}^{\prime}\left(y^{\prime}\right)
$$

If x is a root vertex, say $x=v_{1}$, then $\tilde{L}_{1}(x)=\left\{c_{1}, c_{2}\right\}$ (as $L_{1}^{\prime}(y) \subseteq \tilde{L}_{1}(x)$ and $\left.\tilde{L}_{1}(x) \mid \leq 2\right)$.
Assume $L\left(v_{1}, v_{2}\right)=\left\{\left(c_{1}, c_{1}^{\prime}\right),\left(c_{2}, c_{2}^{\prime}\right)\right\}$ for some colours $c_{1}^{\prime}, c_{2}^{\prime}$ (possibly $\left.c_{1}^{\prime}=c_{2}^{\prime}\right)$. Assume $c_{1} \neq f(x)$.

Let $L_{1}^{\prime \prime}=L_{1}$, except that $L_{1}^{\prime \prime}\left(v_{1}, v_{2}\right)=\left(c_{1}, c_{1}^{\prime}\right)$. As $\left|L_{1}^{\prime \prime}(v)\right| \geq 3$ for all $v \in B\left(G_{1}\right)-\left\{v_{1}, v_{2}\right\}$, $L_{1}^{\prime \prime}$ is a valid list assignment of $\left(G_{1}, v_{1} v_{2}\right)$. Hence there is an $L_{1}^{\prime \prime}$-colouring f^{\prime} of $\left(G_{1}, v_{1} v_{2}\right)$. As $f^{\prime}(x) \neq f(x)$, Claim 1 is proved.

Thus we may assume that x is not a root vertex.
Let $L_{1}^{\prime \prime}=L_{1}$ except that $L_{1}^{\prime \prime}(x)=L_{1}(x)-\{f(x)\}$. If $L_{1}^{\prime \prime}$ is a valid list assignment of $\left(G_{1}, v_{1} v_{2}\right)$, then again we obtain an L-colouring f^{\prime} of $\left(G_{1}, v_{1} v_{2}\right)$ with $\left(f^{\prime}(x), f^{\prime}(y)\right) \neq$ $(f(x), f(y))$ and we are done.

Thus assume that $L_{1}^{\prime \prime}$ is not a valid list assignment. This means that $\left|L^{\prime \prime}(x)\right|=2$ and x has no good neighbour. Let x^{\prime} be the other boundary neighbour of x. Then we have $L_{1}^{\prime \prime}(x)=\left\{c_{1}, c_{2}\right\}\left(\right.$ so $\left.f(x) \neq c_{1}, c_{2}\right)$, and

$$
\left\{c_{1}, c_{2}\right\}=L(x) \cap L(y) \cap \tilde{L}_{1}\left(x^{\prime}\right) \cap \tilde{L}_{1}\left(y^{\prime}\right)
$$

As G is a near-triangulation of the plane and G has no separating triangle, x and y have a unique common neighbour z in G_{1}, which is an interior vertex of G_{1}.

Since $B\left(G_{1}\right)$ has no chord, it is easy see that at least one of the following holds:

- $N_{G_{1}}\left(x^{\prime}\right) \cap N_{G_{1}}(y)-\{z\}=\varnothing$.
- $N_{G_{1}}\left(y^{\prime}\right) \cap N_{G_{1}}(x)-\{z\}=\varnothing$.

By symmetry, we may assume that $N_{G_{1}}\left(x^{\prime}\right) \cap N_{G_{1}}(y)-\{z\}=\varnothing$.
As $|L(z) \cap L(y)| \leq 2$, there exists $i \in\{1,2\}$, that $\left|L(z) \cap\left\{f(y), c_{i}\right\}\right| \leq 1$. Without loss of generality, we assume

$$
\left|L(z) \cap\left\{f(y), c_{1}\right\}\right| \leq 1
$$

Let

$$
G_{1}^{\prime}=G_{1}-\{x, y\} .
$$

Let L_{1}^{*} be the list assignment of $\left(G_{1}^{\prime}, v_{1} v_{2}\right)$ defined as follows:

$$
L_{1}^{*}(v)= \begin{cases}L(v)-\left\{c_{1}, f(y)\right\}, & \text { if } v=z, \\ L(v)-\{f(y)\}, & \text { if } v \in N_{G_{1}}(y)-\{z\}, \\ L(v)-\left\{c_{1}\right\}, & \text { if } v \in N_{G_{1}}(x)-\{z\}, \\ L(v), & \text { otherwise } .\end{cases}
$$

and

$$
L_{1}^{*}\left(v_{1}, v_{2}\right)= \begin{cases}L\left(v_{1}, v_{2}\right), & \text { if } x^{\prime} \text { is not a root vertex, or } c_{1} \notin \tilde{L}\left(x^{\prime}\right) \\ L\left(v_{1}, v_{2}\right)-\left\{\left(c_{1}, c_{1}^{\prime}\right)\right\}, & \text { if } x^{\prime}=v_{1} \text { and }\left(c_{1}, c_{1}^{\prime}\right) \in L\left(v_{1}, v_{2}\right)\end{cases}
$$

Note that $\left|L_{1}^{*}(z)\right| \geq 3$, and $L_{1}^{*}\left(y^{\prime}\right)=L\left(y^{\prime}\right)\left(\right.$ as $\left.f(y) \notin L\left(y^{\prime}\right)\right)$. If L_{1}^{*} is a valid list assignment of $\left(G_{1}^{\prime}, v_{1} v_{2}\right)$, then there is an L_{1}^{*}-colouring f^{\prime} of $\left(G_{1}^{\prime}, v_{1} v_{2}\right)$. By letting $\left(f^{\prime}(x), f^{\prime}(y)\right)=\left(c_{1}, f(y)\right)$, we obtain an L-colouring of $\left(G_{1}, v_{1} v_{2}\right)$ with $\left(f^{\prime}(x), f^{\prime}(y)\right) \neq$ $(f(x), f(y))$, and we are done.

Thus we assume that L_{1}^{*} is not a valid list assignment of $\left(G_{1}^{\prime}, v_{1} v_{2}\right)$.
This means that

- x^{\prime} is not a root vertex, x^{\prime} is the only boundary vertex of G_{1}^{\prime} with $\left|L_{1}^{*}\left(x^{\prime}\right)\right|=2$, and x^{\prime} has no good neighbour.

Assume $L\left(x^{\prime}\right)=\left\{c_{1}, c_{2}, c_{3}\right\}$ (and hence $L_{1}^{\star}\left(x^{\prime}\right)=\left\{c_{2}, c_{3}\right\}$).
Let z^{\prime} be the unique common neighbour of x and x^{\prime}, which is an interior vertex of G_{1}.
Let $x^{\prime \prime}$ be the other neighbour of x^{\prime} in $B\left(G_{1}\right)$. Then $x^{\prime \prime}$ is a primary boundary neighbour of x^{\prime} in G_{1}^{\prime}. Since $N_{G_{1}}\left(x^{\prime}\right) \cap N_{G_{1}}(y)-\{z\}=\varnothing$ and G has no separating triangle, z^{\prime} is the other primary boundary neighbour of x^{\prime}.

Since z^{\prime} is not a good neighbour of x^{\prime}, we conclude that

- $z^{\prime}=z ;$
- $c_{1} \notin L(z), c_{2}, c_{3}, f(y) \in L(z)$ and $c_{3} \neq f(y)$.

Now $z^{\prime}=z$ implies that $N_{G_{1}}\left(y^{\prime}\right) \cap N_{G_{1}}(x)-\{z\}=\varnothing$. So we can repeat the same argument as above, but interchange the roles of x, x^{\prime} and y, y^{\prime}. Then we conclude that the following hold:

- y^{\prime} is not a root vertex,
- z is adjacent to y^{\prime},
- $L\left(y^{\prime}\right)=\left\{c_{1}, c_{2}, c_{3}^{\prime}\right\}$,
- $c_{2}, c_{3}^{\prime}, f(x) \in L(z)$.

As $\left\{c_{2}, c_{3}, c_{3}^{\prime}, f(x), f(y)\right\} \subseteq L\left(z_{1}\right)$, we have $c_{3}=c_{3}^{\prime}($ as $|L(z)|=4$ and the other colours are pairwise distinct). I.e.,

$$
L(z)=\left\{c_{2}, c_{3}, f(x), f(y)\right\} .
$$

As $L_{1}^{*}\left(x^{\prime}\right)=\left\{c_{2}, c_{3}\right\} \subseteq \tilde{L}\left(x^{\prime \prime}\right)$, we know that $c_{1} \notin \tilde{L}\left(x^{\prime \prime}\right)$.
Let

$$
G_{1}^{\prime \prime}=G_{1}-\left\{x^{\prime}, x, y\right\} .
$$

Let $L_{1}^{* *}$ be the list assignment of $\left(G_{1}^{\prime \prime}, v_{1} v_{2}\right)$ defined as follows:

$$
L_{1}^{* *}(v)= \begin{cases}L(v)-\left\{c_{1}, c_{2}, f(y)\right\}, & \text { if } v=z, \\ L(v)-\{f(y)\}, & \text { if } v \in N_{G_{1}}(y), \\ L(v)-\left\{c_{2}\right\}, & \text { if } v \in N_{G_{1}}(x), \\ L(v)-\left\{c_{1}\right\}, & \text { if } v \in N_{G_{1}}\left(x^{\prime}\right), \\ L(v), & \text { otherwise. }\end{cases}
$$

and

$$
L_{1}^{* *}\left(v_{1}, v_{2}\right)= \begin{cases}L\left(v_{1}, v_{2}\right), & \text { if } x^{\prime \prime} \text { is not a root vertex, or } c_{1} \notin \tilde{L}\left(x^{\prime \prime}\right), \\ L\left(v_{1}, v_{2}\right)-\left\{\left(c_{1}, c_{1}^{\prime}\right)\right\}, & \text { if } x^{\prime \prime}=v_{1} \text { and }\left(c_{1}, c_{1}^{\prime}\right) \in L\left(v_{1}, v_{2}\right) .\end{cases}
$$

If $L_{1}^{* *}$ is a valid list assignment of $\left(G_{1}^{\prime \prime}, v_{1} v_{2}\right)$, then there is an $L_{1}^{* *}$-colouring f^{\prime} of $\left(G_{1}^{\prime \prime}, v_{1} v_{2}\right)$, which extends to an L-colouring of $\left(G_{1}, v_{1} v_{2}\right)$ by letting $f^{\prime}\left(x^{\prime}\right)=c_{1}, f^{\prime}(x)=c_{2}$ and $f^{\prime}(y)=f(y)$, and we are done.

Thus we may assume that $L_{1}^{* *}$ is not a valid list assignment of $\left(G_{1}^{\prime \prime}, v_{1} v_{2}\right)$. It is easy to check that z is the only vertex of $B\left(G_{1}^{\prime \prime}\right)-\left\{v_{1}, v_{2}\right\}$ with $\left|L^{* *}(z)\right|<3$. Note that

$$
L^{* *}(z)=L(z)-\left\{c_{2}, f(y)\right\}=\left\{c_{3}, f(x)\right\} .
$$

The only reason that $L_{1}^{* *}$ is not a valid list assignment of $\left(G_{1}^{\prime \prime}, v_{1} v_{2}\right)$ is that z has no good neighbour. Let w_{1}, w_{2} be the two primary boundary neighbours of z in $\left(G_{1}^{\prime \prime}, v_{1} v_{2}\right)$. We have

$$
\left\{c_{3}, f(x)\right\} \subseteq \tilde{L}\left(w_{1}\right), \tilde{L}\left(w_{2}\right) .
$$

This implies that y^{\prime} is not a primary boundary neighbour of z in $\left(G_{1}^{\prime \prime}, v_{1} v_{2}\right)$ (although y^{\prime} is a boundary neighbour of z in $\left.G_{1}^{\prime \prime}\right)$.

We repeat the above argument, but interchange the roles of x, x^{\prime} and y, y^{\prime}. We conclude that for the two primary boundary neighbours $w_{1}^{\prime}, w_{2}^{\prime}$ of z in $\left(G_{1}-\left\{x, y, y^{\prime}\right\}, v_{1} v_{2}\right)$,

$$
\left\{c_{3}, f(y)\right\} \subseteq \tilde{L}\left(w_{1}^{\prime}\right), \tilde{L}\left(w_{2}^{\prime}\right) .
$$

This means that x^{\prime} is not a primary neighbour of z in $\left(G_{1}-\left\{x, y, y^{\prime}\right\}, v_{1} v_{2}\right)$. But then the primary neighbours of z in $\left(G_{1}-\left\{x, y, y^{\prime}\right\}, v_{1} v_{2}\right)$ and $\left(G_{1}-\left\{x^{\prime}, x, y\right\}, v_{1} v_{2}\right)$ are the same. I.e., $w_{1}^{\prime}=w_{1}$ and $w_{2}^{\prime}=w_{2}$. But then for $i=1,2$,

$$
\left\{c_{3}, f(x), f(y)\right\} \subseteq \tilde{L}\left(w_{i}\right) \cap L(z)
$$

contrary to the assumption that L is $(\star, 2)$-list assignment of $\left(G, v_{1} v_{2}\right)$. This completes the proof of Claim 1, and hence the proof of Case 1.

Case $2 B(G)$ has no chord.
Case 2(i) (A) holds, and $L\left(v_{1}, v_{2}\right)=\left\{\left(c_{1}, c_{2}\right)\right\}$.
Let u be the other boundary neighbour of v_{2} in G. Similarly, as G has no separating triangle and $B(G)$ has no chord, v_{1} and v_{2} has a unique common neighbour w, and u and v_{2} have a unique common neighbour z, and w, z are interior vertices of G (and possibly $w=z$).

Let $G^{\prime}=G-v_{2}$ and let L^{\prime} be the list assignment of $\left(G^{\prime}, v_{1} w\right)$ defined as

$$
L^{\prime}(v)= \begin{cases}L(v)-\left\{c_{2}\right\}, & \text { if } v \in N_{G}\left(v_{2}\right)-\left\{v_{1}, w\right\}, \\ L(v), & \text { if } v \in V(G)-N_{G}\left(v_{2}\right)\end{cases}
$$

and

$$
L^{\prime}\left(v_{1}, w\right)=\left\{\left(c_{1}, c_{3}\right),\left(c_{1}, c_{4}\right)\right\}, \text { where } c_{3}, c_{4} \in L(w)-\left\{c_{1}, c_{2}\right\}
$$

In the definition above, if $\left|L(w)-\left\{c_{1}, c_{2}\right\}\right| \geq 3$, then c_{3}, c_{4} are arbitrarily chosen from $L(w)-\left\{c_{1}, c_{2}\right\}$, with one exception:

If $c_{2} \notin L(w), w=z$ and $L(w) \cap L(u) \neq \varnothing$, then let $c^{\prime} \in L(w) \cap L(u)$, and we choose $c_{3}, c_{4} \in L(w)-\left\{c_{1}, c^{\prime}\right\}$.

We shall show that L^{\prime} is valid list assignment of $\left(G^{\prime}, v_{1} w\right)$.
If $c_{2} \notin L(u)$, then $\left|L^{\prime}(u)\right|=|L(u)|=3$, and (A) holds for L^{\prime} and $\left(G^{\prime}, v_{1} w\right)$. So L^{\prime} is a valid list assignment of $\left(G^{\prime}, v_{1} w\right)$.

Assume $c_{2} \in L(u)$ and hence $\left|L^{\prime}(u)\right|=2$. If $z \neq w$, then either $c_{2} \in L(z)$ and hence $\left|L^{\prime}(z) \cap L^{\prime}(u)\right| \leq 1$ or $\left|L^{\prime}(z)\right|=4$. So z is a good neighbour of u in $\left(G^{\prime}, v_{1} w\right)$, and L^{\prime} is a valid list assignment of $\left(G^{\prime}, v_{1} w\right)\left((\mathrm{B})\right.$ holds for L^{\prime} and $\left.\left(G^{\prime}, v_{1} w\right)\right)$.

If $z=w$, then by our choice of c_{3}, c_{4}, we know that $\left|\tilde{L}^{\prime}(w) \cap L^{\prime}(u)\right| \leq 1$, and hence w is a good neighbour of u, and L^{\prime} is a valid list assignment of $\left(G^{\prime}, v_{1} w\right)\left((\mathrm{B})\right.$ holds for L^{\prime} and ($\left.G^{\prime}, v_{1} w\right)$).

By induction hypothesis, $\left(G^{\prime}, v_{1} w\right)$ has an L^{\prime}-colouring f. By letting $f\left(v_{2}\right)=c_{2}$, we obtain an L-colouring of $\left(G, v_{1} v_{2}\right)$.

Case 2(i) (B) holds, and $v^{*} \in B(G),\left|L\left(v^{*}\right)\right|=2$, and u is a good neighbour of v^{*}.
It may happen that v^{*} has two good neighbours. In this case, the good neighbour u is usually arbitrarily chosen, unless v^{*} is adjacent to a root vertex v_{i} for some $i \in\{1,2\}$ and $\left|\tilde{L}\left(v_{i}\right)\right|=1$. In this case, we let $u=v_{i}$.

Let w be the other boundary neighbour of v^{*}, and let z be the common neighbours of v^{*} and w. Similarly, we know that the vertex z is unique and is an interior vertex of G.

By our choice of u, we know that either $w \neq v_{1}, v_{2}$, or $w=v_{i}$ for some $i \in\{1,2\}$ and $\left|\tilde{L}\left(v_{i}\right)\right|=2$ (for otherwise, we would have chosen w as the good neighbour of v^{*}).

Let

$$
G^{\prime}=G-\left\{v^{*}\right\}, c \in L\left(v^{*}\right)-L(u)
$$

If w is not a root vertex, then let L^{\prime} be the list assignment of $\left(G^{\prime}, v_{1} v_{2}\right)$ defined as $L^{\prime}\left(v_{1}, v_{2}\right)=L\left(v_{1}, v_{2}\right)$, and for $v \in V\left(G^{\prime}\right)-\left\{v_{1}, v_{2}\right\}$,

$$
L^{\prime}(v)= \begin{cases}L(v)-\{c\}, & \text { if } v \in N_{G}\left(v^{*}\right) \\ L(v), & \text { if } v \in V(G)-N_{G}\left(v^{*}\right)\end{cases}
$$

If $\left|L^{\prime}(w)\right| \geq 3$, then $\left|L^{\prime}(v)\right| \geq 3$ for every $v \in B\left(G^{\prime}\right)-\left\{v_{1}, v_{2}\right\}$ and hence L^{\prime} is a valid list assignment of $\left(G^{\prime}, v_{1} v_{2}\right)$. Otherwise, w is the unique boundary vertex of G^{\prime} with $\left|L^{\prime}(w)\right|=2$. Observe that either $c \in L(z)$ and hence $\left|L^{\prime}(z) \cap L^{\prime}(w)\right| \leq 1$, or $\left|L^{\prime}\left(z_{1}\right)\right|=$ $\left|L\left(z_{1}\right)\right|=4$. In any case, z is a good neighbour of w, and hence L^{\prime} is a valid list assignment of $\left(G, v_{1} v_{2}\right)$. By induction hypothesis, there is an L^{\prime}-colouring f of $\left(G^{\prime}, v_{1} v_{2}\right)$. By letting $f\left(v^{*}\right)=c$, we obtain an L-colouring of $\left(G^{\prime}, v_{1} v_{2}\right)$.

Assume w is a root vertex, say $w=v_{1}$. If $c \notin \tilde{L}\left(v_{1}\right)$, then the argument still works. Assume $c \in \tilde{L}\left(v_{1}\right)$. Without loss of generality, we may assume that $\left|L\left(v_{1}, v_{2}\right)\right|=2$, say $L\left(v_{1}, v_{2}\right)=\left\{(c, d),\left(c^{\prime}, d^{\prime}\right)\right\}$. As observed above, $\left|\tilde{L}\left(v_{1}\right)\right|=2$, i.e., $c \neq c^{\prime}$ (and it is possible that $\left.d=d^{\prime}\right)$. Let L^{\prime} be the list assignment of $\left(G^{\prime}, v_{1} v_{2}\right)$ defined as $L^{\prime}\left(v_{1}, v_{2}\right)=\left\{\left(c^{\prime}, d^{\prime}\right)\right\}$ and

$$
L^{\prime}(v)= \begin{cases}L(v)-\{c\}, & \text { if } v \in N_{G}\left(v^{*}\right) \\ L(v), & \text { if } v \in V(G)-N_{G}\left(v^{*}\right)\end{cases}
$$

Then for all $v \in B\left(G^{\prime}\right)-\left\{v_{1}, v_{2}\right\},\left|L^{\prime}(v)\right| \geq 3$. Hence L^{\prime} is a valid list assignment of $\left(G^{\prime}, v_{1} v_{2}\right)$. By induction hypothesis, there is an L^{\prime}-colouring f of $\left(G^{\prime}, v_{1} v_{2}\right)$. By letting $f\left(v^{*}\right)=c$, we obtain an L-colouring of $\left(G, v_{1} v_{2}\right)$.

This completes the proof of Theorem 2,
It is obvious that Theorem 1 follows from Theorem 2.

3 Some Remarks and Questions

For list colouring of planar graphs with list of separation, the following conjecture was propose in [16] and remains open:

Conjecture 3 Every planar graph is (3,1)-choosable.
There are some other restrictions on list assignments are studied in the literature [3, 12, 19]. We say a list assignment L is symmetric if colours in the lists are integers
and for each v, for each integer $i, i \in L(v)$ implies that $-i \in L(v)$. A graph G is called weakly k-choosable if G is L-colourable for any symmetric k-list assignment L of G. The following conjecture, which is a strengthening of the Four Colour Theorem, was proposed by Kündgen and Ramamurthi [12] and remains open.

Conjecture 4 Every planar graph is weakly 4-choosable.
A t-common k-list assignment of a graph G is a k-list assignment L of G such that $\left|\bigcap_{v \in V(G)} L(v)\right| \geq t$. It was asked by Choi and Kwon [3] whether every planar graph G is L-colourable for any 2 -common 4 -list assignment L. A positive answer would be a strengthening of the Four Colour Theorem. But Kemnitz and Voigt [8] proved that the answer to this question is negative.

References

[1] Z. Berikkyzy, C. Cox, M. Dairyko, K. Hogenson, M. Kumbhat, B. Lidický, K. Messerschmidt, K. Moss, K. Nowak, K. F. Palmowski, D. Stolee, (4; 2)-choosability of planar graphs with forbidden structures, Graphs Combin. 33 (2017), no. 4, 751-787.
[2] I. Choi, B. Lidicky, and D. Stolee, On choosability with separation of planar graphs with forbidden cycles, Journal of Graph Theory, 81 (2016), no. 3, 283-306.
[3] H. Choi and Y. Kwon, On t-common list-colorings, Electron. J. Combin. 24 (2017), no. 3, Paper 3.32, 10 pp.
[4] Z. Dvořák, L. Esperet, R. Kang and K. Ozeki, Single-conflict colouring, J. Graph Theory 97 (2021), no. 1, 148-160.
[5] L. Esperet, R. Kang and S. Thomassé, Separation choosability and dense bipartite induced subgraphs, Combin. Probab. Comput. 28 (2019), no. 5, 720-732.
[6] Z. Füredi, A. Kostochka and M. Kumbhat, Choosability with separation of complete multipartite graphs and hypergraphs, J. Graph Theory, 76(2014), 129-137.
[7] J. Hou and H. Zhu, Choosability with union separation of triangle-free planar graphs, Discrete Math. 343 (2020), no. 12, 112137, 10 pp.
[8] A. Kemnitz and M. Voigt, A note on non-4-list colorable planar graphs, Electron. J. Combin. 25 (2018), no. 2, Paper No. 2.46, 5 pp.
[9] H. Kierstead and B. Lidicky, On choosability with separation of planar graphs with lists of different sizes, Discrete Mathematics, 339(10):1779-1783, 2015.
[10] J. Kratochvíl, Z. Tuza, and M. Voigt, Brooks-type theorems for choosability with separation, Journal of Graph Theory, 27(1):43-49, 1998.
[11] M. Kumbhat, K. Moss and D. Stolee, Choosability with union separation, Discrete Math. 341 (2018), no. 3, 600-605.
[12] A. Kündgen, R. Ramamurthi, Coloring face-hypergraphs of graphs on surfaces, Journal of Combinatorial Theory Ser. B 85 (2002), 307-337.
[13] M. Mirzakhani, A small non-4-choosable planar graph, Bull. Inst. Combin. Appl. 17 (1996), 15-18.
[14] C. Thomassen, Every planar graph is 5-choosable, Journal of Combinatorial Theory, Series B, 62(1):180-181, 1994.
[15] M. Voigt, List colourings of planar graphs, Discrete Mathematics, 120(1):215-219, 1993.
[16] R. Škrekovski, A note on choosability with separation for planar graphs, Ars Combinatoria, 58:169-174, 2001.
[17] E. Smith-Roberge, On the choosability with separation of planar graphs and its correspondence colouring analogue, https://arxiv.org/abs/2203.13348.
[18] Y. Wang, J. Wu and D. Yang, On the (3,1)-choosability of planar graphs without adjacent cycles of length 5, 6, 7, Discrete Math. 342 (2019), no. 6, 1782-1791.
[19] X. Zhu, A refinement of choosability of graphs, Journal of Combinatorial Theory Ser. B 141 (2020), 143-164.

[^0]: *Department of Mathematics, Zhejiang Normal University, China. E-mail: xudingzhu@gmail.com. Grant numbers: NSFC 11971438,U20A2068, ZJNSFC LD19A010001.

