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Abstract
Let ℱ1, . . . ,ℱℓ be families of subsets of {1, . . . , 𝑛}. Suppose that for distinct 𝑘, 𝑘′

and arbitrary 𝐹1 ∈ ℱ𝑘, 𝐹2 ∈ ℱ𝑘′ we have |𝐹1 ∩ 𝐹2| 6 𝑚. What is the maximal value of
|ℱ1| . . . |ℱℓ|? In this work we find the asymptotic of this product as 𝑛 tends to infinity for
constant ℓ and 𝑚.

This question is related to a conjecture of Bohn et al. that arose in the 2-level polytope
theory and asked for the largest product of the number of facets and vertices in a two-level
polytope. This conjecture was recently resolved by Weltge and the first author.

The main result can be rephrased in terms of colorings. We give an asymptotic answer
to the following question. Given an edge coloring of a complete 𝑚-uniform hypergraph
into ℓ colors, what is the maximum of

∏︀
𝑀𝑖, where 𝑀𝑖 is the number of monochromatic

cliques in 𝑖-th color?

1 Introduction
A polytope 𝑃 ⊂ R𝑑 is called 2-level if for each facet 𝐹 there are two parallel hyperplanes 𝐻,𝐻 ′

such that 𝐹 ⊂ 𝐻 and all vertices of 𝑃 are contained in 𝐻 ∪ 𝐻 ′ Several standard polytope
families are 2-level, e.g. hypercubes, cross-polytopes, simplices. The class of 2-level polytopes
includes a number of important polytopal families like Hanner polytopes, Birkhoff polytopes,
the Hansen polytopes and others [6]. These polytopes arise in such areas of mathematics as
the semidefinite programming, communication complexity and polyhedral combinatorics.

A number of authors studied combinatorial structure of 2-level polytopes [12, 8, 6, 3]. Bohn
et al. [6] suggested a beautiful conjecture on the tradeoff between the number of vertices 𝑓0(𝑃 )
and the number of 𝑑− 1-dimensional facets 𝑓𝑑−1(𝑃 ) of a 2-level polytope 𝑃 ⊂ R𝑑. Concretely,
they asked if it is true that 𝑓0(𝑃 )𝑓𝑑−1(𝑃 ) 6 𝑑2𝑑+1 for all 𝑑. This bound is sharp for cubes
and cross-polytopes. Recently, Kupavskii and Weltge answered this question in the positive [3].
Actually, they proved the following variation of the conjecture of Bohn et al., from which it
is easy to deduce the original conjecture. For two vectors a,b ∈ R𝑛 let ⟨a,b⟩ stand for their
scalar product.
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Theorem 1 ([3]). Let 𝒜, ℬ be families of vectors in R𝑛 that both linearly span R𝑛. Suppose
that ⟨a,b⟩ ∈ {0, 1} holds for all a ∈ 𝒜, b ∈ ℬ. Then we have |𝒜| · |ℬ| 6 (𝑛+ 1)2𝑛.

The bound in the theorem is tight since one can take 𝒜 = {0, e1, . . . , e𝑛} and ℬ = {0, 1}𝑛.
Some of the previous works dealt with the particular case of Theorem 1 when 𝒜,ℬ ⊂ {0, 1}𝑛.

The problem is then much simpler. Actually, we will present a very short and elegant argument
due to Peter Frankl that proves Theorem 1 in the {0, 1} case.

In this work, we provide the generalization of Theorem 1 on {0, 1}𝑛 to several families.
Compared to the two families case for {0, 1}𝑛, this problem becomes much more challenging,
and it seems almost hopeless to determine the exact extremal function. The proofs involve
some interesting ingredients, such as correlation inequalities for several families. We will say
more on these points after we introduce the necessary notation and formulate the main result.
In what follows, we will work with families of sets instead of families of {0, 1}-vectors.

1.1 Notation

Put [𝑛] = {1, . . . , 𝑛}, and, more generally, [𝑎, 𝑏] = {𝑎, 𝑎 + 1, . . . , 𝑏} for positive integers 𝑎, 𝑏, 𝑛.
Given a set 𝑋, we denote by 2𝑋 the set of all subsets of 𝑋. We denote by

(︀
𝑋
𝑘

)︀
(
(︀
𝑋
6𝑘

)︀
) the family

of all subsets of 𝑋 of cardinality 𝑘 (at most 𝑘). We also denote
(︀

𝑛
6𝑚

)︀
:=
⃒⃒⃒(︀

[𝑛]
6𝑚

)︀⃒⃒⃒
=
∑︀𝑚

𝑡=0

(︀
𝑛
𝑡

)︀
.

In this paper, we study families of sets with the “m-overlapping property”, which is defined
below.

Definition 1. Fix a positive integer ℓ. Let m = (m𝑆)𝑆∈([ℓ]2 )
be a vector of non-negative integers

indexed by unordered pairs {𝑘, 𝑘′} ∈
(︀
[ℓ]
2

)︀
. For simplicity we suppress brackets in m{𝑘,𝑘′} and

assume that m𝑘,𝑘′, m𝑘′,𝑘, and m{𝑘,𝑘′} identify the same entry. Families ℱ1, . . . ,ℱℓ ⊂ 2[𝑛] satisfy
an m-overlapping property if for any distinct 𝑘1, 𝑘2 ∈ [ℓ] and any sets 𝐹1 ∈ ℱ𝑘1, 𝐹2 ∈ ℱ𝑘2 we
have

|𝐹1 ∩ 𝐹2| 6 m𝑘1,𝑘2 .

If m𝑘1,𝑘2 = 𝑚 for all pairs 𝑘1, 𝑘2 then the property is referred to as 𝑚-overlapping, and over-
lappling if additionally 𝑚 = 1.

1.2 Problem statement and results

In this work, we address the following problem.

Problem 1. Let 𝑛, ℓ be positive integers, m be a vector of
(︀
ℓ
2

)︀
non-negative integers and

ℱ1, . . . ,ℱℓ ⊂ 2[𝑛] be families with the m-overlapping property. What is the maximal value
𝑠*(𝑛, ℓ,m) of the product |ℱ1| · . . . · |ℱℓ|?

If all coordinates of m are equal to 𝑚, we denote 𝑠*(𝑛, ℓ,𝑚) := 𝑠*(𝑛, ℓ,m).
It is easy to see that 𝑠*(𝑛, ℓ, 0) = 2𝑛: indeed, supports of sets in distinct families are disjoint.

Recently, Aprile, Cevallos, and Faenza [8] showed that 𝑠*(𝑛, 2, 1) = (𝑛 + 1)2𝑛. In personal
communication, Peter Frankl [14] gave a simple and elegant proof that 𝑠*(𝑛, 2, 𝑡) = 2𝑛

∑︀𝑡
𝑖=0

(︀
𝑛
𝑖

)︀
using Harris–Kleitman correlation inequality (we present his proof in Theorem 6). In [9], Ryser
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studied a similar question for one family. In particular, he showed that if for 𝑛 /∈ {9, 10} 𝑛
sets of size at least 3 intersect each other in at most 1 element, then they form either a finite
projective plane or a symmetric group divisible design.

The main result of this paper is the following theorem:

Theorem 2. Let ℓ, be positive integers and let m be a vector of integers as above. Then, as
𝑛 → ∞, we have the following.

𝑠*(𝑛, ℓ,m) =

(︂
1 +𝑂

(︂
1√
𝑛

)︂)︂
· 2𝑛 ·

∏︁
𝑆∈([ℓ]2 )

(︂
1

m𝑆!

(︁ m𝑆 · 𝑛∑︀
𝑆′∈([ℓ]2 )

m𝑆′

)︁m𝑆

)︂
. (1)

Unlike in the case ℓ = 2, it seems extremely challenging to determine the exact behaviour of
𝑠*(𝑛, ℓ,m) for general ℓ. In the follow-up paper [13], we improve the precision of the asymptotic
from 𝑂(𝑛−1/2) to 𝑂(𝑛−1). More importantly, we will show that all extremal examples must be
superfamilies of a certain tuple of families that deliver lower bound in Theorem 2. However,
even coming up with the right extremal construction for general ℓ seems to be very difficult.

From the theorem above we immediately derive a cleaner formula for the asymptotic of
𝑠*(𝑛, ℓ,𝑚).

Corollary 3. Suppose ℓ and 𝑚 are fixed integers. Then, as 𝑛 → ∞, we have the following.

𝑠*(𝑛, ℓ,𝑚) =

(︂
1 +𝑂

(︂
1√
𝑛

)︂)︂[︃
1

𝑚!

(︃
𝑛(︀
ℓ
2

)︀)︃𝑚]︃(ℓ2)
2𝑛.

There is an equivalent formulation of Problem 1 for m = (𝑚,𝑚, . . . ,𝑚).

Problem 2. Let 𝑛, ℓ,𝑚 be integers and 𝐻 be a complete (𝑚 + 1)-uniform hypergraph on 𝑛
vertices. Take some coloring of edges of 𝐻 into ℓ colours. Let 𝑘𝑖, 𝑖 = 1, . . . , ℓ be the number of
monochromatic cliques of colour 𝑖 in 𝐻. What is the maximum value 𝑠(𝑛, ℓ,𝑚) of 𝑘1 ·. . .·𝑘ℓ over
all possible colorings? (We assume that each of the sets of size 6 𝑚−1 forms a monochromatic
clique in each color.)

In particular, 𝑠(𝑛, 2, 1) is the maximum of the product of the number of cliques and the
number of independent sets in a graph 𝐺 on 𝑛 vertices. In [8] it was shown that Problem 1 and
Problem 2 for are equivalent for 𝑚 = 1. Generally, the following holds.

Proposition 4. Let 𝑛, ℓ be integers, then 𝑠*(𝑛, ℓ,𝑚) = 𝑠(𝑛, ℓ,𝑚).

The rest of the paper is organised as follows. In Section 2 we list some tools that we use
and give Peter Frankl’s proof that determines 𝑠*(𝑛, 2,𝑚). We prove Proposition 4 and discuss
related questions in Section 3. In Section 4 we give the sketch of the proof of Theorem 2. In
Section 5 we prove the lower bound in (1). In Section 6 we prove the upper bound.

In what follows, the standard asymptotic notation such as 𝑓 = 𝑜(𝑔), 𝑓 = Ω(𝑔) etc. for some
functions 𝑓, 𝑔 is always with respect to 𝑛 → ∞.
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2 Tools
There is a trivial bijection between 2[𝑛] and the Boolean cube {0, 1}𝑛. Given a set 𝑋, we consider
its characteristic vector c𝑋 whose 𝑖-th coordinate c𝑋𝑖 equals 0 if 𝑖 ̸∈ 𝑋 and 1 otherwise. We
will take these two equivalent points of view on sets, families, etc. interchangeably.

2.1 Correlation inequalities

Given a probability measure on the Boolean cube, we can consider a family of subsets as an
event. For example, consider a uniform measure on the Boolean cube {0, 1}𝑛 and some family
of sets ℱ ⊂ 2[𝑛]. For a random set 𝑋 sampled from the uniform measure, the probability of an
event {𝑋 ∈ ℱ} is |ℱ|

2𝑛
.

This point of view provides us with a range of tools that we use throughout this work. In
this subsection, we discuss correlation inequalities which are a powerful tool in Combinatorics
and Extremal Set Theory. Alon and Spencer in their book [10] write that the first appearance
of correlation inequalities can probably be attributed to Harris [2] and Kleitman [7].

We say that a family of subsets is down-closed (a downset) if 𝐴 ∈ ℱ and 𝐵 ⊂ 𝐴 implies
𝐵 ∈ ℱ . Harris–Kleitman correlation inequality is as follows.

Theorem 5 (Harris–Kleitman correlation inequality). Let 𝒜,ℬ ⊂ 2[𝑛] be down-closed. Then

|𝒜||ℬ| 6 2𝑛|𝒜 ∩ ℬ|.

If we reformulate the statement in the following way:

|𝒜|
2𝑛

· |ℬ|
2𝑛

6
|𝒜 ∩ ℬ|
2𝑛,

we see that it states that the events {𝑋 ∈ 𝒜} and {𝑋 ∈ ℬ} are positively correlated for 𝑋
that is uniformly distributed over the Boolean cube.

Somewhat surprisingly, this inequality alone can be used to solve our problem in the case
of two families. This solution was given by Peter Frankl in a private conversation. We provide
it here.

Theorem 6 (Frankl [14]). Let 𝒜 ⊂ 2[𝑛] and ℬ ⊂ 2[𝑛] be such families that for any 𝐴 ∈ 𝒜 and
any 𝐵 ∈ ℬ it holds that |𝐴 ∩𝐵| 6 𝑚. Then

|𝒜||ℬ| 6 2𝑛
𝑚∑︁
𝑡=0

(︂
𝑛

𝑡

)︂
.

It is not difficult to see that 𝒜 = 2[𝑛] and ℬ =
(︀
[𝑛]
6𝑚

)︀
satisfy the conditions of the theorem

and attain equality in the inequality above.

Proof. Consider families 𝒜 and ℬ that maximize |𝒜||ℬ|. They are down-closed, otherwise
consider their down-closures 𝒜↓,ℬ↓, where

ℱ↓ = {𝐹 ⊂ [𝑛] : ∃𝐹 ′ ∈ ℱ 𝐹 ⊂ 𝐹 ′}. (2)

4



Clearly, 𝒜↓,ℬ↓ satisfy the 𝑚-overlapping property as well, which by maximality implies 𝒜 =
𝒜↓,ℬ = ℬ↓.

Since 𝒜 and ℬ is down-closed, we can apply Theorem 5. Then

|𝒜||ℬ| 6 2𝑛|𝒜 ∩ ℬ|.

But 𝒜 ∩ ℬ can consist only of sets of cardinality at most 𝑚. Thus, 𝒜 ∩ ℬ ⊂
(︀
[𝑛]
6𝑚

)︀
and

|𝒜||ℬ| 6 2𝑛
𝑚∑︁
𝑡=0

(︂
𝑛

𝑡

)︂
.

Note that if 𝑚 = 1 then Theorem 6 implies the bound of Aprile et al [8] and is a special
case of Kupavskii and Weltge’s result [3].

Meanwhile, Theorem 5 is not sufficient to resolve Problem 1 already for ℓ = 3. There are
several correlation inequalities that generalize Harris–Kleitman correlation inequality. One is
Daykin’s inequality [1]. Before we present it, we introduce some extra notation. Given vectors
x and y from R𝑛 we define vectors x ∧ y and x ∨ y such that (x ∨ y)𝑗 = max(x𝑗,y𝑗) and
(x ∧ y)𝑗 = min(x𝑗,y𝑗).

It is easy to see that ∨ and ∧ restricted on the Boolean cube relate to union and intersection
of sets respectively. For two families ℱ1 and ℱ2 we denote by ℱ1 ∧ ℱ2, ℱ1 ∨ ℱ2 the family of
pairwise intersections and pairwise unions of sets from ℱ1 and ℱ2, respectively:

ℱ1 ∧ ℱ2 = {𝐹1 ∩ 𝐹2 : 𝐹1 ∈ ℱ1, 𝐹2 ∈ ℱ2},

ℱ1 ∨ ℱ2 = {𝐹1 ∪ 𝐹2 : 𝐹1 ∈ ℱ1, 𝐹2 ∈ ℱ2}.

Note that for down-closed families 𝒜 and ℬ we have 𝒜 ∧ ℬ = 𝒜 ∩ ℬ.
Then Daykin’s correlation inequality states the following.

Theorem 7 (Daykin correlation inequality). Let 𝒜 and ℬ be two families of sets. Then

|𝒜||ℬ| 6 |𝒜 ∨ ℬ||𝒜 ∧ ℬ|.

Actually, Daykin’s inequality works in a more general setting which we omit. Fortuin,
Kasteleyn and Ginibre proposed another generalization of the Harris–Kleitman inequality in [5]
to a wide class of log-supermodular measures. We will refer to such measures as the FKG-
measures.

Definition 2 (FKG-measure). A 𝜎-finite (nonegative) measure 𝜇 on R𝑛 is said to be an FKG
measure if 𝜇 has a density function 𝜙 with respect to some product measure 𝑑𝜎 on R𝑘, (that is,
𝑑𝜎(x) =

∏︀𝑘
𝑗=1 𝑑𝜎(x𝑗), and 𝑑𝜇(x) = 𝜙(x)𝑑𝜎(x)), where 𝜙 satisfies for all x and y in R𝑘

𝜙(x)𝜙(y) 6 𝜙(x ∧ y)𝜙(x ∨ y). (3)

This definition is slightly different from the definition used by Fortuin et al in [5]. It is taken
from [4], where the authors prove a correlation inequality for several families that we will also
need in this work.
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Theorem 8 (Rinott—Saks correlation inequality [4]). Let ℓ, 𝑛 be positive integers. Let 𝑓1, 𝑓2, . . . , 𝑓ℓ
and 𝑔1, . . . , 𝑔ℓ be nonnegative real-valued functions defined on R𝑛 that satisfy following condi-
tion: for every sequence x1, . . . ,xℓ of elements from R𝑛 we have

ℓ∏︁
𝑖=1

𝑓𝑖(x
𝑖) 6

ℓ∏︁
𝑖=1

𝑔𝑖

⎛⎜⎝ ⋁︁
𝑆∈([𝑛]

𝑖 )

⋀︁
𝑗∈𝑆

x𝑗

⎞⎟⎠ . (4)

Then, for any FKG-measure 𝜇 on R𝑛 we have

𝑚∏︁
𝑖=1

∫︁
R𝑛

𝑓𝑖(x)𝑑𝜇(x) 6
𝑚∏︁
𝑖=1

∫︁
R𝑛

𝑔𝑖(x)𝑑𝜇(x). (5)

With appropriate measures and functions, this inequality implies all of the previous ones
we listed. We will need the following {0, 1}-corollary of Theorem 8:

Corollary 9 (Theorem 4.1 from [4]). For any families of sets 𝒜1, . . . ,𝒜ℓ,

ℓ∏︁
𝑘=1

|𝒜𝑘| 6
ℓ∏︁

𝑘=1

⃒⃒⃒⃒
⃒⃒⃒ ⋁︁
𝑆∈([ℓ]𝑘 )

(︃⋀︁
𝑠∈𝑆

𝒜𝑠

)︃⃒⃒⃒⃒⃒⃒⃒ . (6)

Corollary 9 can be derived by taking integral over the counting (i.e., uniform) measure
on {0, 1}𝑛. The corresponding 𝑓1, . . . , 𝑓ℓ and 𝑔1, . . . , 𝑔ℓ are simply the indicator functions
that for a given set indicate if it belongs to the corresponding family: 𝑓𝑖 for 𝒜𝑖 and 𝑔𝑗 for⋁︀

𝑆∈([ℓ]𝑗 )
(︀⋀︀

𝑠∈𝑆 𝒜𝑠

)︀
.

According to Theorem 8, we can replace the uniform with any FKG-measure. An important
example of an FKG-measure is the 𝑝-biased measure with 0 6 𝑝 6 1 for the sets 𝑋 ⊂ [𝑛] and
families ℱ ⊂ 2[𝑛], defined as follows.

𝜇𝑝(𝑋) =𝑝|𝑋|(1− 𝑝)𝑛−|𝑋| =

(︂
𝑝

1− 𝑝

)︂|𝑋|

(1− 𝑝)𝑛,

𝜇𝑝(ℱ) =
∑︁
𝑋∈ℱ

𝜇𝑝(𝑋).

We say that two measures 𝜇, 𝜇′ are proportional if there is a non-zero constant 𝐶 such that
𝜇(𝑥) = 𝐶𝜇′(𝑥) for any 𝑥. We get the following corollary which slightly more general than
Corollary 9.

Corollary 10. For any collection of families 𝒜1, . . . ,𝒜ℓ ⊂ 2[𝑛] and 0 6 𝑝 6 1 we have

ℓ∏︁
𝑘=1

𝜇𝑝(𝒜𝑘) 6
ℓ∏︁

𝑘=1

𝜇𝑝

⎛⎜⎝ ⋁︁
𝑆∈([ℓ]𝑘 )

(︃⋀︁
𝑠∈𝑆

𝒜𝑠

)︃⎞⎟⎠ . (7)

Moreover, the same holds for any measure that is proportional to 𝜇𝑝.
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2.2 Entropy

Another probabilistic tool that we use in our work is entropy. One can find a detailed survey
in [10]. Consider a random variable 𝑋 with finite support. Then the entropy H[𝑋] is defined
as

H[𝑋] = −
∑︁

𝑥∈supp𝑋

P[𝑋 = 𝑥] log2 P[𝑋 = 𝑥]. (8)

It is a non-negative function that satisfies the following properties:

Claim 11. We have

(i) If 𝑋 and 𝑌 are arbitrary random variables distributed over a finite set, then H[𝑋, 𝑌 ] 6
H[𝑋] +H[𝑌 ].

(ii) Consider a random variable 𝑋 distributed over the sets of a family ℱ . Then H[𝑋] 6
log2 |ℱ|. The equality holds if and only if 𝑋 is uniformly distributed over ℱ .

The proof of both statements can be found in [10].
Another similar function that characterizes the difference between two distributions is the

cross-entropy. For the particular application that it has in our work, we define it as follows:

H ((𝑝𝑖)𝑖∈𝑆, (𝑞𝑖)𝑖∈𝑆) = −
∑︁
𝑖∈𝑆

𝑝𝑖 log2 𝑞𝑖,

where (𝑝𝑖)𝑖∈𝑆, (𝑞𝑖)𝑖∈𝑆 are two arbitrary discrete distributions with the same support 𝑆.

Proposition 12. Given a distribution (𝑝𝑖)𝑖∈𝑆, the cross-entropy as a function of (𝑞𝑖)𝑖∈𝑆 achieves
its minimum when distributions (𝑝𝑖)𝑖∈𝑆 and (𝑞𝑖)𝑖∈𝑆 coincide.

For the proof see, for example, [11].

2.3 Coverings and matchings

Our problem has a natural hypergraph interpretation, and so we will need some simple tools
from hypergraph theory. We call a subset 𝑇 of 𝑉 a covering for a hypergraph (𝑉,𝐸), if for any
edge 𝑒 ∈ 𝐸 we have 𝑒 ∩ 𝑇 ̸= ∅. A subset ℳ of 𝐸 is a matching if edges of ℳ are pairwise
disjoint. A matching ℳ is maximal if it is impossible to enlarge it by adding another 𝑒 ∈ 𝐸.
A covering 𝑇 is called minimum if there is no covering of smaller cardinality.

The following statement is folklore.

Proposition 13. Let (𝑉,𝐸) be an arbitrary hypergraph with edges of size at most 𝑡. Then the
size of a minimum covering 𝑇 is at most size of any maximal matching ℳ times 𝑡.

Proof. Note that ⊔ℳ is a covering. Otherwise, if an edge is not covered by ⊔ℳ then we can
add it to ℳ, contradicting the maximality of ℳ. The cardinality of ⊔ℳ is 𝑡|ℳ|. Since 𝑇 is
a minimum covering, |𝑇 | 6 𝑡|ℳ|.

3 Counting monochromatic sets
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Figure 1: Graph coloring

First, consider the case m𝑆 = 1 for any 𝑆 ∈
(︀
ℓ
2

)︀
.

We claim that there is a correspondence between
our families and cliques in a colored graph. This
connection was previously discussed in [8]. To il-
lustrate it, we need the following claim:

Claim 14. Let ℱ1, . . . ,ℱ𝑙 satisfy the overlapping
property and that are, moreover, maximal w.r.t.
this property. Then for each ℱ𝑘 it holds that

• a subset 𝐾 of [𝑛] is contained in ℱ𝑘 if and
only if for each pair 𝑖, 𝑗 ∈ 𝐾 {𝑖, 𝑗} is con-
tained in ℱ𝑘,

• empty set and every singleton from [𝑛] be-
longs to ℱ𝑘,

and, moreover, for each {𝑖, 𝑗} ⊂ [𝑛] there is a
unique 𝑘′ such that {𝑖, 𝑗} ∈ ℱ𝑘′.

Proof. First, if 𝐾 belongs to ℱ𝑘 then each pair {𝑖, 𝑗} from 𝐾 belongs to ℱ𝑘 because of down-
closeness. Conversely, suppose that every {𝑖, 𝑗} ⊂ 𝐾 is contained in ℱ𝑘. Then for each 𝑘′ ̸= 𝑘
and a set 𝐹 ∈ ℱ𝑘′ we have |𝐹 ∩𝐾| 6 1. Therefore, by maximality of ℱ1, . . . ,ℱℓ, 𝐾 ∈ ℱ𝑘.

Second, adding the empty set and singletons does not break the overlapping property, so
by maximality they must belong to each family.

Third, if {𝑖, 𝑗} does not belong to any ℱ𝑘 then adding it to any of ℱ𝑖 does not break the
overlapping property, and so by maximality each {𝑖, 𝑗} must belong to some ℱ𝑘.

Next, let us construct a coloring of the complete graph 𝐾𝑛 on the vertex set [𝑛] into ℓ colors
based on a maximal collection of families ℱ1, . . . ,ℱℓ with overlapping property. Color the edge
{𝑖, 𝑗} with color 𝑘 iff {𝑖, 𝑗} ∈ ℱ𝑘 and put 𝐸𝑘 = {{𝑖, 𝑗} : 𝑖 ̸= 𝑗 and {𝑖, 𝑗} ∈ ℱ𝑘}. Note that the
cardinality of ℱ𝑘 is equal to the number of cliques in the graph 𝐺𝑘 := ([𝑛], 𝐸𝑘), induced by
the edges of 𝑘-th color. Conversely, any coloring of any graph 𝐺 on vertex set [𝑛] is associated
with some families of subsets of [𝑛] with overlapping property. For example, the coloring on
Figure 3 produces the following families of sets:

ℱ1 =

(︂
[𝑛]

6 1

)︂
∪ 2{1,2,3,4} ∪ {{5, 𝑛− 1}, {𝑛− 1, 𝑛}},

ℱ2 =

(︂
[𝑛]

6 1

)︂
∪ 2{4,5,6} ∪ {{6, 𝑛− 1}, {2, 5}},

ℱ3 =

(︂
[𝑛]

6 1

)︂
∪ {{5, 𝑛}, {6, 𝑛}, {3, 6}}.

Let us briefly discuss how to generalize this correspondence to the m-overlapping setting.
Previously, we could as well consider the complement of 𝐺𝑘 and and count independent sets

in this complement. It is natural to generalize this point of view. Consider a maximal collection
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ℱ1, . . . ,ℱℓ that are m-overlapping. For each family ℱ𝑘 we construct the following hypergraph:

𝐻𝑘 =

⎛⎝[𝑛],
⋃︁

𝑘′∈[ℓ]∖{𝑘}

ℱ (m𝑘,𝑘′+1)

𝑘′

⎞⎠ ,

where ℱ (𝑡) denotes ℱ ∩
(︀
[𝑛]
𝑡

)︀
.

We call 𝐼 ⊂ [𝑛] independent in the hypergraph 𝐻𝑘 if it does not contain any edge of 𝐻𝑘.
We claim that the number of independent sets in 𝐻𝑘 equals |ℱ𝑘|.

Claim 15. If ℱ1, . . . ,ℱℓ are maximal and m-overlapping then ℱ𝑘 consists of all independent
sets in 𝐻𝑘, where 𝐻𝑘 is defined above.

Sketch of the proof. It follows from two implications:

1. If 𝐼 is independent in 𝐻𝑘 then it intersects any set of ℱ𝑘′ , 𝑘′ ∈ [ℓ] ∖ {𝑘}, in at most m𝑘,𝑘′

elements. Thus, it is contained in ℱ𝑘 due to maximality.

2. If 𝐹 ∈ ℱ𝑘 then it intersects any set of ℱ𝑘′ , 𝑘′ ∈ [ℓ]∖{𝑘}, in at most m𝑘,𝑘′ elements. Thus,
𝐹 is an independent set in the hypergraph 𝐻𝑘.

In addition, if all entries of m are equal to 𝑚, then 𝐻𝑘 becomes the complement to the
subhypergraph of 𝐾𝑚+1

𝑛 consisting of all edges colored into color 𝑘. This proves Proposition 4.
(Recall that we assume that any 𝑚 or less vertices form a monochromatic clique in any color.)

4 Sketch of the proof of Theorem 2

Figure 2: Octopuses described in Section 4.

Throughout this section, we assume that ℱ1, . . . ,ℱℓ

are m-overlapping and extremal (that is, maximize
the product of cardinalities).

First, we find the lower bound that matches
the asymptotic in (1). The construction of the
example is based on the following guess: since
𝑠*(𝑛, ℓ,m) is proportional to 2𝑛, each ℱ𝑘, 𝑘 ∈ [ℓ]
should contain some “center” set 𝐶*

𝑘 such that
ℱ𝑘 contains all subsets of 𝐶* and these sets to-
gether cover [𝑛] completely. That guarantees that
2𝐶

*
𝑘 ⊂ ℱ𝑘 and that the “exponential part” of the

product
∏︀

𝑘∈[ℓ] |ℱ𝑘| is 2𝑛. The polynomial part of
|ℱ𝑘| arises from concatenations of subsets from 𝐶*

𝑘

and elements from other centers. That makes a
family ℱ𝑘 look like an “octopus” with “body” 𝐶*

𝑘

and “tentacles” directed to the centers of others.

9



For instance, in the case of 𝑚 = 1, a family ℱ1 presented on Figure 2 can be decomposed as
follows:

ℱ1 ≃ 2𝐶
*
1 ∨
(︂
𝐴13

6 1

)︂
∨
(︂
𝐴14

6 1

)︂
with the body 𝐶*

1 and tentacles
(︀
𝐴13

61

)︀
∨
(︀
𝐴14

61

)︀
. We use “≃” instead of “=” because in extremal

examples we need to add all small sets, but they typically account for a negligibly small fraction
of the family.

This summarizes the rough structure on which we based the example for the lower bound
in Section 5. In what follows, we discuss the upper bound.

The proof of the upper bound is based on a bootstrapping idea: establishing the asymptotic
helps to obtain understanding of the structure of extremal examples and vice versa. First, we
prove that a set 𝑀𝑘 of maximal cardinality from each family ℱ𝑘 can be considered as a proxy
of the center 𝐶*

𝑘 . More precisely, we prove that
⃒⃒⃒
[𝑛] ∖

⋃︀
𝑘∈[ℓ]𝑀𝑘

⃒⃒⃒
= 𝑂(log 𝑛) using Rinott—Saks

inequality for 𝑝-biased measures (Corollary 10). The detailed argument is given in Lemma 17.
In what follows, we will use the definition of a (normalized) degree of a set with respect to

some family. The degree 𝑑𝑘 of a set 𝐹 in a family ℱ𝑘 is

𝑑𝑘(𝐹 ) :=
|{𝐹 ′ ∈ ℱ𝑘 : 𝐹 ⊂ 𝐹 ′}|

|ℱ𝑘|
.

The degree 𝑑𝑘(𝑥) of an element 𝑥 ∈ [𝑛] is just 𝑑𝑘({𝑥}).
We next show that an inductive application of Daykin’s inequality (Theorem 7) over 𝑘 ∈ ℓ

delivers the asympotic of 𝑠*(𝑛, ℓ,m) up to a constant factor. It allows to have a good control
on the degrees: given a subset 𝐾 ⊂ [ℓ] and sets 𝐹𝑘 ∈ ℱ𝑘, 𝑘 ∈ 𝐾, we have∏︁

𝑘∈𝐾

𝑑𝑘(𝐹𝑘) = 𝑂

(︂
𝑛
−

∑︀
{𝑘,𝑘′}∈(𝐾2 )

|𝐹𝑘∩𝐹𝑘′ |
)︂
, (9)

and, in particular,

𝑑𝑘1(𝑥)𝑑𝑘2(𝑥)𝑑𝑘3(𝑥) = 𝑂(𝑛−3) (10)

for any distinct 𝑘1, 𝑘2, 𝑘3 and 𝑥 ∈ [𝑛]. Indeed, it is easy to see that families ℱ𝑘(𝐹𝑘), ℱ𝑘′ for
𝑘 ∈ 𝐾 and 𝑘′ ∈ [𝑛] ∖𝐾 are m′-overlapping for a suitable m′ 6 m. Using the upper bound for
𝑠*(𝑛, ℓ,m′) that follows from iterative Daykin’s inequality applications and the lower bound for
𝑠*(𝑛, ℓ,m) allows to obtain (9) and (10).

The entropy argument of Proposition 19 guarantees that most of the elements of [𝑛] have
positive constant degrees in some ℱ𝑘. If we denote the 𝑘-th least normalized degree by 𝑑(𝑘)(𝑥)
and the index of corresponding family by (𝑘)(𝑥), we notice that for most of elements in [𝑛],
𝑑(𝑙)(𝑥) has constant lower bound, and, consequently, 𝑑(𝑙−2)(𝑥) = 𝑂(𝑛−3/2) due to (10). In this
way, removing suitable sets, we are able to prune families ℱ𝑘 such that their size changes by
a factor

(︀
1−𝑂(𝑛−1/2)

)︀
and 𝑑𝑘(𝑥) = 0 if 𝑘 ̸∈ {(ℓ)(𝑥), (ℓ − 1)(𝑥)}. In other words, in the

modified families each element has non-zero degree only in two families that correspond to two
initial families in which 𝑑𝑘(𝑥) was the first and the second largest. While the set of maximal
cardinality 𝑀𝑘 is a proxy of the octopus’s body of ℱ𝑘, the set {𝑥 ∈ [𝑛] : 𝑘 = (𝑙 − 1)(𝑥)} is a
proxy of its tentacles.
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𝐶*
ℓ−1 = 𝐴ℓ−1,ℓ

𝐶*
ℓ−2 = 𝐴ℓ−2,ℓ ∪ 𝐴ℓ−2,ℓ−1

. . . . . .
𝐶*

2 = 𝐴2,ℓ ∪ 𝐴2,ℓ−1 ∪ . . . ∪ 𝐴2,3

𝐶*
1 = 𝐴1,ℓ ∪ 𝐴1,ℓ−1 ∪ . . . ∪ 𝐴1,3 ∪ 𝐴1,2

ℱℓ ℱℓ−1 . . . ℱ3 ℱ2

Table 1: In our example for Theorem 16 each set in the family ℱ𝑘 consists of two parts: an
arbitrary subset of the center 𝐶*

𝑘 =
⋃︀

𝑘′>𝑘 𝐴𝑘,𝑘′ (note that 𝐶*
ℓ = ∅) and subsets (“tentacles”) of

size at most m𝑘′,𝑘 in each of the domains 𝐴𝑘′,𝑘, 𝑘
′ < 𝑘. The rows of the table above are indexed

by the corresponding domains of the families and the columns are indexed by the families,
where the column indexed by ℱ𝑖 consists of the “target sets” of the tentacles of sets from ℱ𝑖.
Note that ℱ1 has no tentacles.

We denote these pruned families by ℱ ′
𝑘. By construction, for any 𝐾 ⊂ [ℓ] of cardinality

greater than 2, we have
⋀︀

𝑘∈𝐾 ℱ ′
𝑘 = {∅}. That significantly simplifies the Rinott-Saks inequality

for families of sets (Corollary 9), since among multipliers from the right-hand side only two
factors remain. They can be bounded as follows:⃒⃒⃒⃒

⃒⃒⃒ ⋁︁
𝑆∈([ℓ]2 )

⋀︁
𝑠∈𝑆

ℱ ′
𝑠

⃒⃒⃒⃒
⃒⃒⃒ 6 ∏︁

𝑆∈([ℓ]2 )

⃒⃒⃒⃒(︂
supp∧𝑠∈𝑆ℱ ′

𝑠

6 m𝑆

)︂⃒⃒⃒⃒
, (11)

⃒⃒⃒⃒
⃒⃒ ⋁︁
𝑘∈[ℓ]

ℱ ′
𝑘

⃒⃒⃒⃒
⃒⃒ 6 2𝑛.

Optimizing over sizes of disjoint sets supp(∧𝑠∈𝑆ℱ ′
𝑠), we obtain tight upper bound of 𝑠*(𝑛, ℓ,m)

up to a factor 1 + 𝑂(𝑛−1/2). (Note that the error term 𝑂(𝑛−1/2) is an artefact of the pruning
that we did.)

In the follow-up paper [13], we will improve the error term and determine a bulk of the
structure of extremal examples. The tentacle analogy is very useful in understanding their
structure.

5 Proof of the lower bound
In this section, we provide a construction that gives the lower bound in Theorem 2.

Theorem 16. There are families ℱ1, . . . ,ℱℓ ∈ 2[𝑛] satisfying m-overlapping property such that

ℓ∏︁
𝑘=1

|ℱ𝑘| =
(︀
1 +𝑂(𝑛−1)

)︀
2𝑛 ·

∏︁
𝑆∈([ℓ]2 )

(︂
1

m𝑆!

(︁m𝑆 · 𝑛
𝜎

)︁m𝑆

)︂
=
(︀
1 +𝑂(𝑛−1)

)︀
𝐶𝑛𝜎2𝑛,

where 𝜎 =
∑︀

𝑆∈([ℓ]2 )
m𝑆 and 𝐶 is a constant depending on ℓ and m only.
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Proof. Consider some vector n with coordinates indexed by 𝑆, 𝑆 ∈
(︀
[ℓ]
2

)︀
, and a partition of the

set [𝑛] into
(︀
𝑙
2

)︀
sets 𝐴𝑘,𝑘′ , 1 6 𝑘 < 𝑘′ 6 ℓ, such that |𝐴𝑘,𝑘′ | = n𝑘,𝑘′ . Then, define (cf. Table 1)

ℱ𝑘 =
(︀
2
⋃︀

𝑘′>𝑘 𝐴𝑘,𝑘′
)︀
∨
⋁︁
𝑘′<𝑘

(︂
𝐴𝑘′,𝑘

6 m𝑘,𝑘′

)︂
.

Obviously, if 𝐹 ∈ ℱ𝑘1 , 𝐺 ∈ ℱ𝑘2 and 𝑘1 < 𝑘2, then the intersection of 𝐹 and 𝐺 is contained in
𝐴𝑘1,𝑘2 . At the same time, by definition, each set from ℱ𝑘2 contains at most m𝑘1,𝑘2 elements in
𝐴𝑘1,𝑘2 . Thus, ℱ1, . . . ,ℱℓ satisfy the m-overlapping property.

It is easy to see that

|ℱ𝑘| =
∏︁
𝑘′<𝑘

(︂
|𝐴𝑘′,𝑘|
6 m𝑘′,𝑘

)︂
2
∑︀

𝑘′>𝑘 |𝐴𝑘,𝑘′ |,

and, consequently,

ℓ∏︁
𝑘=1

|ℱ𝑘| =
∏︁

𝑆∈([ℓ]2 )

(︂
n𝑆

6 m𝑆

)︂
2𝑛.

Maximizing over n delivers the following optimization problem:

max
n

∏︁
𝑆∈([ℓ]2 )

(︃
m𝑆∑︁
𝑡=0

(︂
n𝑆

𝑡

)︂)︃
, (12)

s.t.
∑︁

𝑆∈([ℓ]2 )

n𝑆 = 𝑛,

where n is a vector of non-negative integers. To determine the asymptotic of the solution, note
that

m𝑆∑︁
𝑡=0

(︂
n𝑆

𝑡

)︂
∼
(︂
n𝑆

m𝑆

)︂
∼ nm𝑆

𝑆

m𝑆!
.

Maximizing the product of these expressions is equivalent to maximizing the sum of their loga-
rithms. Thus, ignoring lower order terms, the target function of the optimization problem (12)
can be changed to

max
n

∑︁
𝑆∈([ℓ]2 )

m𝑆

𝜎
log

n𝑆

𝑛
.

The last expression is the minus cross-entropy between discrete distributions (m𝑆/𝜎)𝑆∈([ℓ]2 )
and

(n𝑆/𝑛)𝑆∈([ℓ]2 )
. By Proposition 12, its maximum is achieved when distributions coincide, which

proves the lower bound and, moreover, shows that the corresponding example is optimal in the
class of examples that we considered.
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6 Proof of the upper bound
We employ the following standard notation for a family ℱ and sets 𝐴 ⊂ 𝐵 :

ℱ|𝐵 := {𝐹 ∩𝐵 : 𝐹 ∈ ℱ},

ℱ(𝐴,𝐵) := {𝐹 ∖𝐵 : 𝐹 ∈ ℱ and 𝐹 ∩𝐵 = 𝐴},

ℱ(𝐴) := ℱ(𝐴,𝐴),

ℱ
(︀
𝐴
)︀
:= ℱ(∅, 𝐴).

When dealing with singletons, we suppress brackets for simplicity, i.e. ℱ(𝑥) = ℱ({𝑥}) and
ℱ(𝑥) = ℱ

(︁
{𝑥}
)︁
.

In what follows, we work with families ℱ1, . . . ,ℱℓ that are m-overlapping and that are
extremal, i.e., that maximize the product. Due to extremality, they possess certain useful
properties, in particular, they must be down-closed. We call a collection of families ℱ𝑘, 𝑘 ∈
𝐾 ⊂ [ℓ] extremal if they arise in some extremal example.

6.1 Maximal sets cover [𝑛] almost completely

Lemma 17. Let ℱ1, . . . ,ℱℓ be a collection of m-overlapping extremal families and let 𝑀𝑘 ∈ ℱ𝑘,
𝑘 ∈ [ℓ] be the sets of maximal cardinality in the respective families. Define 𝑅 = [𝑛] ∖

⋃︀𝑙
𝑘=1𝑀𝑘.

Then there is a constant 𝐶 such that

|𝑅| 6 𝐶 log2 𝑛.

Proof. We have the following decomposition for ℱ𝑘:

|ℱ𝑘| =
∑︁

𝐹∈ℱ𝑘|𝑅

|ℱ𝑘(𝐹,𝑅)|.

It follows from the definitions that

|ℱ𝑘(𝐹,𝑅)| 6
⃒⃒
ℱ𝑘(𝐹,𝑅)|𝑀𝑘

⃒⃒ ⃒⃒
ℱ𝑘|⋃︀𝑖 𝑀𝑖∖𝑀𝑘

⃒⃒
.

To bound the size of ℱ𝑘(𝐹,𝑅)|𝑀𝑘
, consider a hypergraph 𝐻:

𝐻 :=

⎛⎝𝐹 ∪𝑀𝑘,
⋃︁

𝑘′∈[ℓ]∖{𝑘}

(ℱ𝑘′ |𝐹∪𝑀𝑘
)(m𝑘,𝑘′+1)

⎞⎠
and its induced hypergraph 𝐻 ′:

𝐻 ′ := (𝑀𝑘, 𝐸(𝐻)|𝑀𝑘
) .

Any edge of 𝐻 intersects both 𝐹 and 𝑀𝑘 since both 𝐹 and 𝑀𝑘 are contained in ℱ𝑘, and thus
cannot contain a set of size 𝑚𝑘,𝑘′ + 1 from ℱ𝑘′ . Consider a vertex cover 𝑇 for 𝐻 ′ and consider
a set (𝑀𝑘 ∖ 𝑇 ) ∪ 𝐹 . This set does not contain any edge from 𝐻 and hence it should belong to
ℱ𝑘 due to maximality. At the same time, its size is equal to |𝑀𝑘|+ |𝐹 | − |𝑇 |, which is at most
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|𝑀𝑘| due to maximality of 𝑀𝑘. Consequently, |𝑇 | > |𝐹 |, i.e. covering number of 𝐻 ′ is at least
|𝐹 |.

Slightly abusing notation, put 𝑚 = max𝑘,𝑘′ m𝑘,𝑘′ . Any edge of 𝐻 ′ has size at most 𝑚 and
the vertices of any maximal matching in 𝐻 ′ form a vertex cover for 𝐻. Thus the size of the
largest matching in 𝐻 ′ is at least |𝐹 |/𝑚 by Proposition 13. Denote one such matching by
ℳ ⊂ 𝐸(𝐻 ′). We bound from above |ℱ𝑘(𝐹,𝑅)|𝑀𝑘

| using that none of the sets in ℱ𝑘(𝐹,𝑅)|𝑀𝑘

can contain an edge from ℳ.

|ℱ𝑘(𝐹,𝑅)|𝑀𝑘
| 6 2|𝑀𝑘|−|

⨆︀
ℳ|
∏︁
𝑒∈ℳ

(2|𝑒| − 1) = 2|𝑀𝑘|
∏︁
𝑒∈ℳ

(1− 2−|𝑒|) 6 (1− 2−𝑚)
|𝐹 |
𝑚 2|𝑀𝑘|.

At the same time, it is easy to see that 𝐹 ∈ ℱ𝑘 satisfies |𝐹 ∩𝑀𝑖| 6 m𝑖,𝑘 for every 𝑖 ̸= 𝑘,
and thus ℱ𝑘|⋃︀𝑖 𝑀𝑖∖𝑀𝑘

has cardinality at most 𝑛𝑚(ℓ−1). Thus, the size of ℱ𝑘 can be bounded as
follows:

|ℱ𝑘| 6 𝑛𝑚(ℓ−1)2|𝑀𝑘|
∑︁

𝐹∈ℱ|𝑅

(1− 2−𝑚)
|𝐹 |
𝑚 .

Denote (1− 2−𝑚)
1
𝑚 by 𝜀𝑚 and note that 𝜀𝑚 < 1 is some constant depending on 𝑚 only.

Consequently, we can bound the product as follows

ℓ∏︁
𝑘=1

|ℱ𝑘| 6 𝑛𝑚ℓ(ℓ−1)2
∑︀ℓ

𝑘=1 |𝑀𝑘|
ℓ∏︁

𝑘=1

⎛⎝ ∑︁
𝐹∈ℱ𝑘|𝑅

𝜀|𝐹 |
𝑚

⎞⎠ .

It is easy to see that
∑︀ℓ

𝑘=1 |𝑀𝑘| 6 |
⋃︀ℓ

𝑘=1𝑀𝑘|+ 𝑚ℓ(ℓ−1)
2

, and, thus,

ℓ∏︁
𝑘=1

|ℱ𝑘| 6 𝑛𝑚ℓ(ℓ−1)2|
⋃︀ℓ

𝑘=1 𝑀𝑘|+𝑚ℓ(ℓ−1)
2

ℓ∏︁
𝑘=1

⎛⎝ ∑︁
𝐹∈ℱ𝑘|𝑅

𝜀|𝐹 |
𝑚

⎞⎠
6 𝑛𝑚ℓ(ℓ−1)2𝑛−|𝑅|+𝑚ℓ(ℓ−1)

2

ℓ∏︁
𝑘=1

⎛⎝ ∑︁
𝐹∈ℱ𝑘|𝑅

𝜀|𝐹 |
𝑚

⎞⎠ . (13)

We neeed to bound the last product. To this end, note that the function that assigns to a
set 𝐹 the value (𝜀𝑚)

|𝐹 | is proportional to the 𝑝-biased measure 𝜇𝑝 with some 𝑝, and thus we
can apply Corollary 10 to it. Put

ℛ[𝑘] :=
⋁︁

𝐾∈([ℓ]𝑘 )

⋀︁
𝑘′∈𝐾

(︀
ℱ𝑘′
)︀⃒⃒

𝑅
.

Note that ⋀︁
𝑘′∈𝐾

(︀
ℱ𝑘′
)︀⃒⃒

𝑅
=
⋂︁
𝑘′∈𝐾

(︀
ℱ𝑘′
)︀⃒⃒

𝑅
⊂
(︂

𝑅

6 𝑚

)︂
,

and, consequently,

ℛ[𝑘] ⊂
(︂

𝑅

6
(︀
ℓ
𝑘

)︀
𝑚

)︂
.
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Figure 3: A hypergraph from the proof of Lemma 17.

Thus, using Corollary 10 in the first inequality below, we get

ℓ∏︁
𝑘=1

∑︁
𝐹∈ℱ𝑘|𝑅

𝜀|𝐹 |
𝑚 6

ℓ∏︁
𝑘=1

∑︁
𝐹∈ℛ[𝑘]

𝜀|𝐹 |
𝑚 6

⎛⎝ |𝑅|∑︁
𝑖=0

(︂
|𝑅|
𝑖

)︂
𝜀𝑖𝑚

⎞⎠ ℓ∏︁
𝑘=2

(︂
|𝑅|

6
(︀
ℓ
𝑘

)︀
𝑚

)︂

= (1 + 𝜀𝑚)
|𝑅| ·

ℓ∏︁
𝑘=2

(︂
|𝑅|

6
(︀
ℓ
𝑘

)︀
𝑚

)︂
.

Due to Theorem 16,
∏︀ℓ

𝑘=1 |ℱ𝑘| = Θ(𝑛𝜎2𝑛), where 𝜎 =
∑︀

𝑆∈([ℓ]2 )
m𝑆. Thus, combining the above

with (13), we get

Θ(𝑛𝜎2𝑛) = |𝑅|𝑂(1) (1 + 𝜀𝑚)
|𝑅| 2𝑛−|𝑅|,(︂

2

1 + 𝜀𝑚

)︂|𝑅|

= 𝑛𝑂(1).

Since 𝜀𝑚 < 1, the last inequality implies that

|𝑅| = 𝑂 (log 𝑛) .

6.2 Weak upper bound

In this section, we give a simple argument that allows to determine the value of 𝑠*(𝑛, ℓ,m) up
to a constant. The argument is via an iterative application of Daykin’s inequality and is due
to Sergei Kiselev.

Proposition 18. Put 𝜎 =
∑︀

𝑆∈([ℓ]2 )
m𝑆. Then there is a constant 𝐶 depending on ℓ and m

such that

𝑠*(𝑛, ℓ,m) 6 𝐶𝑛𝜎2𝑛.
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Proof. Consider a collection of families ℱ1, . . . ,ℱℓ satisfying the m-overlapping property. We
prove that

ℓ∏︁
𝑘=1

|ℱ𝑘| 6
ℓ−1∏︁
𝑘=1

⃒⃒⃒⃒
⃒
(︃

𝑘⋁︁
𝑘′=1

ℱ𝑘′

)︃
∧ ℱ𝑘+1

⃒⃒⃒⃒
⃒ ·
⃒⃒⃒⃒
⃒

ℓ⋁︁
𝑘=1

ℱ𝑘

⃒⃒⃒⃒
⃒ (14)

by induction on ℓ. The statement is true for ℓ = 2 due to Theorem 7. Suppose that ℓ > 3 and
that the statement holds for ℓ− 1. Then

ℓ∏︁
𝑘=1

|ℱ𝑘| 6

[︃
ℓ−2∏︁
𝑘=1

⃒⃒⃒⃒
⃒
(︃

𝑘⋁︁
𝑘′=1

ℱ𝑘′

)︃
∧ ℱ𝑘+1

⃒⃒⃒⃒
⃒ ·
⃒⃒⃒⃒
⃒
ℓ−1⋁︁
𝑘=1

ℱ𝑘

⃒⃒⃒⃒
⃒
]︃
|ℱℓ|.

Due to Theorem 7 ⃒⃒⃒⃒
⃒
ℓ−1⋁︁
𝑘=1

ℱ𝑘

⃒⃒⃒⃒
⃒ · |ℱℓ| 6

⃒⃒⃒⃒
⃒
(︃

ℓ−1⋁︁
𝑘=1

ℱ𝑘

)︃
∧ |ℱℓ|

⃒⃒⃒⃒
⃒ ·
⃒⃒⃒⃒
⃒

ℓ⋁︁
𝑘=1

ℱ𝑘

⃒⃒⃒⃒
⃒ ,

which proves (14). Next we bound its factors. Obviously,

|ℱ1

⋁︁
ℱ2| 6

⃒⃒⃒⃒(︂
[𝑛]

6 m1,2

)︂⃒⃒⃒⃒
More generally, for any 𝑘 ∈ [2, ℓ− 1] we have⃒⃒⃒⃒

⃒
(︃

𝑘⋁︁
𝑘′=1

ℱ𝑘′

)︃
∧ ℱ𝑘+1

⃒⃒⃒⃒
⃒ 6

⃒⃒⃒⃒(︂
[𝑛]

6
∑︀𝑘

𝑘′=1m𝑘′,𝑘+1

)︂⃒⃒⃒⃒
.

Finally, ⃒⃒⃒⃒
⃒

ℓ⋁︁
𝑘=1

ℱ𝑘

⃒⃒⃒⃒
⃒ 6 2𝑛.

Substituting these bounds in (14), we derive the statement of the proposition.

6.3 Degrees

In what follows, we will be extensively working with the degrees of elements w.r.t. ℱ1, . . . ,ℱℓ.
We use the notion of the normalized degree of an set 𝐹 , defined as follows:

𝑑(𝐹,ℱ) =
|ℱ(𝐹 )|
|ℱ|

,

For brevity, we write 𝑑𝑘(𝐹 ) instead of 𝑑(𝐹,ℱ𝑘) and 𝑑𝑘(𝑥) instead of 𝑑𝑘({𝑥}).

Proposition 19. Let ℱ1, . . . ,ℱℓ be a collection of m-overlapping families that is extremal.
Then there is a set 𝐼 of size 𝑂(log 𝑛), such that for each 𝑥 ∈ [𝑛] ∖ 𝐼 there is 𝑘 ∈ [ℓ] such that
𝑑𝑘(𝑥) > 1

3
.
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Proof. Fix some 𝑘 ∈ [ℓ] and take a uniformly random set 𝑋 ∈ ℱ𝑘. Let v = (v1, . . . ,v𝑛) be a
random variable equal to the characteristic vector of 𝑋. For a subset 𝑆 of [𝑛] we denote (v𝑖)𝑖∈𝑆
by v𝑆. Thus, due to Claim 11 (i)

H[v] 6
∑︁
𝑖∈𝑀𝑘

H [v𝑖] +H
[︀
v[𝑛]∖𝑀𝑘

]︀
.

It easy to see that v𝑖 = 1 with probability 𝑑𝑘(𝑖). Moreover, by Claim 11 (ii) we have H[v[𝑛]∖𝑀𝑘
] 6

log2
⃒⃒
ℱ𝑘|[𝑛]∖𝑀𝑘

⃒⃒
. Obviously,

⃒⃒
ℱ𝑘|[𝑛]∖𝑀𝑘

⃒⃒
6 2|𝑅|

⃒⃒
ℱ𝑘|⋃︀𝑖 𝑀𝑖∖𝑀𝑘

⃒⃒
and, thus, log2

⃒⃒
ℱ𝑘|[𝑛]∖𝑀𝑘

⃒⃒
6 |𝑅| +

𝑂(log 𝑛) = 𝑂(log 𝑛) due to Lemma 17. Because H[v] = log2 |ℱ𝑘| > |𝑀𝑘|, we observe

|𝑀𝑘| 6
∑︁
𝑖∈𝑀𝑘

ℎ2 (𝑑𝑘(𝑥)) +𝑂(log 𝑛),

where ℎ2(𝑝) = −𝑝 log2 𝑝−(1−𝑝) log2(1−𝑝) is the binary entropy. Using the fact that |
⋃︀

𝑘 ̸=𝑘′ 𝑀𝑘∩
𝑀𝑘′ | 6

(︀
ℓ
2

)︀
= 𝑂(1), we get⃒⃒⃒⃒

⃒
ℓ⋃︁

𝑘=1

𝑀𝑘

⃒⃒⃒⃒
⃒ 6

ℓ∑︁
𝑘=1

|𝑀𝑘| 6
∑︁

𝑖∈[𝑛]∖𝑅

max
𝑘

ℎ2 (𝑑𝑘(𝑖)) +𝑂(log 𝑛).

Using Lemma 17, we get

𝑛 6
𝑛∑︁

𝑖=1

max
𝑘

ℎ2 (𝑑𝑘(𝑖)) +𝑂(log 𝑛)

For each real-valued 𝜀 ∈ [0, 1] define 𝐼𝜀 as

𝐼𝜀 :=
{︁
𝑖 ∈ [𝑛] : max

𝑘
ℎ2 (𝑑𝑘(𝑖)) < 𝜀

}︁
.

Since ℎ2(𝑝) 6 1 for any 0 6 𝑝 6 1, we obtain

𝑛−𝑂(log 𝑛) 6 𝜀|𝐼𝜀|+ (𝑛− |𝐼𝜀|),

|𝐼𝜀| 6
𝑂(log 𝑛)

1− 𝜀
.

Note that ℎ2(1/3) = log2 3− 2/3. Putting 𝜀 = log2 3− 2/3 in the expression above, we get that
for each 𝑥 ∈ [𝑛]∖𝐼𝜀 there is a family of sets ℱ𝑘 such that 𝑑𝑘(𝑥) > 1

3
and that |𝐼𝜀| = 𝑂(log 𝑛).

In addition, we observe the following property of degrees:

Proposition 20. Let ℱ1, . . . ,ℱℓ be a collection of m-overlapping families that is extremal.
Then for any subset of indices of 𝐾 ⊂ [ℓ] and sets 𝐹𝑘 ∈ ℱ𝑘, 𝑘 ∈ 𝐾∏︁

𝑘∈𝐾

𝑑𝑘(𝐹𝑘) 6 𝐶𝐷𝑛
−

∑︀
{𝑘,𝑘′}∈(𝐾2 )

|𝐹𝑘∩𝐹𝑘′ |
,

where 𝐶𝐷 is some constant depending on m, ℓ.
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Proof. If for some 𝑘, 𝑘′ we have 𝐹𝑘, 𝐹𝑘′ such that |𝐹𝑘 ∩ 𝐹𝑘′| > m𝑘,𝑘′ , then either 𝑑𝑘(𝐹𝑘) = 0
or 𝑑𝑘′(𝐹𝑘′) = 0 and the inequality is trivial. Thus, assume |𝐹𝑘 ∩ 𝐹𝑘′| 6 m𝑘,𝑘′ for each 𝑘, 𝑘′.
Consider families ℱ𝑘, 𝑘 ∈ [ℓ] ∖ 𝐾, and ℱ𝑘(𝐹𝑘), 𝑘 ∈ 𝐾 as families in 2[𝑛]. They satisfy the
m′-overlapping property, where

m′
𝑆 =

{︃
m𝑆, 𝑆 ̸⊂ 𝐾

m𝑆 −
⃒⃒⋂︀

𝑠∈𝑆 𝐹𝑠

⃒⃒
, 𝑆 ⊂ 𝐾.

According to Theorem 18,∏︁
𝑘∈[ℓ]∖𝐾

|ℱ𝑘|
∏︁
𝑘∈𝐾

|ℱ𝑘(𝐹𝑘)| = 𝑂

(︂
𝑛
𝜎−

∑︀
{𝑘,𝑘′}∈(𝐾2 )

|𝐹𝑘∩𝐹𝑘′ |
2𝑛
)︂
.

Meanwhile, due to Theorem 16 ∏︁
𝑘∈[ℓ]

|ℱ𝑘| = Θ(𝑛𝜎2𝑛),

and, consequently, ∏︁
𝑘∈𝐾

𝑑𝑘(𝐹𝑘) = 𝑂(1) · 𝑛
−

∑︀
{𝑘,𝑘′}∈(𝐾2 )

|𝐹𝑘∩𝐹𝑘′ |
.

6.4 Proof

Proposition 20 implies the following Lemma which is crucial for the understanding the asymp-
totic of 𝑠*(𝑛, ℓ,m):

Lemma 21. Let ℱ1, . . . ,ℱℓ be families from the extremal example. Then there are subfamilies
ℱ ′

𝑘 ⊂ ℱ𝑘, 𝑘 ∈ [ℓ] such that

1. Every element 𝑥 ∈ [𝑛] is contained in at most two subfamilies ℱ ′
𝑘’s.

2. For every 𝑘 ∈ [ℓ] it holds that |ℱ ′
𝑘| > (1− 𝛿𝑛)|ℱ𝑘|, where 𝛿𝑛 = 𝑂(𝑛−1/2).

Proof. Given 𝑥 ∈ [𝑛], consider two cases: 𝑥 ∈ 𝐼 and 𝑥 ̸∈ 𝐼, where 𝐼 is defined as in Proposi-
tion 19. If 𝑥 ∈ [𝑛] ∖ 𝐼, then there is 𝑘* ∈ [ℓ] such that 𝑑𝑘*(𝑥) > 1

3
. Consider any subset 𝐾 of

[ℓ] ∖ {𝑘*} of cardinality 2. From Proposition 20 we get

𝑑𝑘*(𝑥)
∏︁
𝑘∈𝐾

𝑑𝑘(𝑥) = 𝑂
(︀
𝑛−3
)︀
.

Thus, there is 𝑘 ∈ 𝐾 such that

𝑑𝑘(𝑥) = 𝑂
(︀
𝑛−3/2

)︀
.
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It implies that there are ℓ− 2 families in which 𝑥 has normalized degree 𝑂
(︀
𝑛−3/2

)︀
. We put

𝑇𝑥 =
{︀
𝑘 : 𝑑𝑘(𝑥) = 𝑂

(︀
𝑛−3/2

)︀}︀
.

If 𝑥 ∈ 𝐼, there may be no 𝑘* ∈ 𝐾 such that 𝑑𝑘*(𝑥) > 1/3. Thus, consider an arbitrary set
𝐾 ⊂ [ℓ] of cardinality 3. Then ∏︁

𝑘∈𝐾

𝑑𝑘(𝑥) = 𝑂
(︀
𝑛−3
)︀
,

and consequently, there is 𝑘 ∈ 𝐾 such that

𝑑𝑘(𝑥) = 𝑂
(︀
𝑛−1
)︀
.

Since 𝐾 is arbitrary, there are at least ℓ− 2 families for which this inequality holds. We put

𝑆𝑥 =
{︀
𝑘 : 𝑑𝑘(𝑥) = 𝑂

(︀
𝑛−1
)︀}︀

.

Put 𝑊𝑘 = {𝑥 : 𝑘 ∈ 𝑇𝑥 ∪ 𝑆𝑥}. Define ℱ ′
𝑘 = ℱ𝑘(𝑊𝑘). Then

|ℱ ′
𝑘|

|ℱ𝑘|
> 1−

(︀
|{𝑥 : 𝑘 ∈ 𝑆𝑥}|𝑂

(︀
𝑛−1
)︀
+ |{𝑥 : 𝑘 ∈ 𝑇𝑥}|𝑂

(︀
𝑛−3/2

)︀)︀
> 1−𝑂

(︂
|𝐼|
𝑛

+ 𝑛−1/2

)︂
=: 1− 𝛿𝑛.

Since |𝐼| = 𝑂(log 𝑛) due to Proposition 19, we obtain 𝛿 = 𝑂(𝑛−1/2).

We are ready to prove the upper bound.

Proof of the upper bound in Theorem 2. Let ℱ ′
1, . . . ,ℱ ′

ℓ be the families from Lemma 21. Then

𝑙∏︁
𝑘=1

|ℱ𝑘| 6 (1− 𝛿𝑛)
−ℓ

𝑙∏︁
𝑘=1

|ℱ ′
𝑘| (15)

and each {𝑥}, 𝑥 ∈ [𝑛], is contained in the sets from at most two families ℱ ′
𝑘. Thus, for each

𝑆 ⊂ [𝑙] with |𝑆| > 2 we have ⋀︁
𝑘∈𝑆

ℱ ′
𝑘 = ∅. (16)

Consequently, the sets supp(ℱ𝑘 ∧ ℱ𝑘′) are disjoint for different pairs {𝑘, 𝑘′}, where suppℱ =
{𝑥 ∈ [𝑛] : {𝑥} ∈ ℱ}. Hence, we can use Corollary 9 and obtain

𝑙∏︁
𝑘=1

|ℱ ′
𝑘| 6

⃒⃒⃒⃒
⃒ ⋁︁
16𝑘<𝑘′6𝑙

(ℱ ′
𝑘 ∧ ℱ ′

𝑘′)

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

𝑙⋁︁
𝑘=1

ℱ ′
𝑘

⃒⃒⃒⃒
⃒ 6 ∏︁

16𝑘<𝑘′6ℓ

(︂
| supp(ℱ ′

𝑘 ∧ ℱ ′
𝑘′)|

6 m𝑘,𝑘′

)︂
2𝑛

where the last inequality is due to the following obvious fact:

ℱ ′
𝑘 ∧ ℱ ′

𝑘′ ⊂
(︂
supp(ℱ ′

𝑘 ∧ ℱ ′
𝑘′)

6 m𝑘,𝑘′

)︂
.
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Optimizing over the choices for cardinalities of supports of ℱ ′
𝑘 ∧ ℱ𝑘 leads us to the opti-

mization problem (12). As a reminder, it is formulated as follows:

𝜁* = max
n

∏︁
𝑆∈([ℓ]2 )

(︂
n𝑆

6 𝑡

)︂
s.t.

∑︁
𝑆∈([ℓ]2 )

n𝑆 = 𝑛.

The asymptotics of the solution was obtained in the proof of Theorem 16. Substituting the
obtained bound on 𝜁* into (15) concludes the proof.
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