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Common graphs with arbitrary connectivity and chromatic number

Sejin Ko∗ Joonkyung Lee†

Abstract

A graph H is common if the number of monochromatic copies of H in a 2-edge-colouring of
the complete graph Kn is asymptotically minimised by the random colouring. We prove that,
given k, r > 0, there exists a k-connected common graph with chromatic number at least r.
The result is built upon the recent breakthrough of Král’, Volec, and Wei who obtained common
graphs with arbitrarily large chromatic number and answers a question of theirs.

1 Introduction

A central concept in graph Ramsey theory is the Ramsey multiplicity of a graph H, which counts
the minimum number of monochromatic copies of H in a 2-edge-colouring of the n-vertex complete
graph Kn. There are some graphs H, the so-called common graphs, such that the number of
monochromatic H-copies in a 2-edge-colouring of Kn is asymptotically minimised by the random
colouring. For example, Goodman’s formula [8] implies that a triangle K3 is common, which is one
of the earliest results in the area.

Partly inspired by Goodman’s formula, Erdős [5] conjectured that every complete graph is
common. This was subsequently generalised by Burr and Rosta [1], who conjectured that every
graph is common. In the late 1980s, both conjectures were disproved by Thomason [18] and by
Sidorenko [15], respectively. Since then, there have been numerous attempts to find new common
(or uncommon) graphs, e.g., [6, 11, 17]. Although the complete classification seems to be still out
of reach, new common graphs have been found during the last decade by using some advances on
Sidorenko’s conjecture [16] or the computer-assisted flag algebra method [14]. For more results
along these lines, we refer the reader to one of the most recent results [4] on Sidorenko’s conjecture
and some applications of the flag algebra method [9, 10] with references therein.

Despite all these studies on common graphs, all the known common graphs only had chromatic
numbers at most four. This motivated a natural question, appearing in [2, 10], to find a common
graphs with arbitrarily large chromatic number. This question remained open until its very recent
resolution by Král’, Volec, and Wei [12]. Since their construction connects a graph with high
chromatic number and girth to a copy of a complete bipartite graph by a long path, they asked [12,
Problem 25] if highly connected common graphs with large chromatic number exist. We answer
this question in the affirmative.

Theorem 1.1. Let k and r be positive integers. Then there exists a k-connected common graph
with chromatic number at least r.

We remark that this short follow-up note to the recent result only partially presents various
in-depth studies on common graphs and relevant questions. For a modern review of a variety of
results in the area, we refer the reader to recent articles [7, 12].
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2 Proof of the main theorem

A useful setting to analyse commonality of graphs is to use the modern theory of dense graph
limits [13]. A graphon is a two-variable symmetric measurable function W : [0, 1]2 → [0, 1] and the
homomorphism density of a graph H is defined by

t(H,W ) :=

∫

∏

uv∈E(H)

W (xu, xv) dµ
V (H),

where µ denotes the Lebesgue measure on [0, 1]. In this language, a graph H is common if and
only if t(H,W ) + t(H, 1 −W ) ≥ 21−e(H) for every graphon W , where e(H) denotes the number of
edges in H.

The q-book Hq
I of H along an independent set I ⊆ V (H) of H is the graph obtained by taking

q vertex-disjoint copies of H and identifying the corresponding vertices in I. The following lemma
is a straightforward consequence of Jensen’s inequality.

Lemma 2.1. Let I be an independent set of a graph H. If H is common, then Hq
I is also common

for every positive integer q.

Proof. By a standard application of Jensen’s inequality, the inequality t(Hq
I ,W ) ≥ t(H,W )q holds

for every graphon W . Therefore,

t(Hq
I ,W ) + t(Hq

I , 1−W ) ≥ t(H,W )q + t(H, 1−W )q

≥ 2 ·

(

t(H,W ) + t(H, 1−W )

2

)q

≥ 21−q·e(H) = 21−e(Hq

I
),

where the second inequality is again by convexity and the last inequality uses commonality of H.
This proves commonality of Hq

I .

To summarise, commonality is preserved under the q-book operation. Another advantage of the
operation is that it preserves chromatic numbers. Indeed, a proper colouring of H can be naturally
extended to Hq

I by assigning the same colour as a vertex of H to its ‘clones’ in Hq
I . Our key idea

is to repeatedly apply the q-book operation to a common graph H, which increases connectivity
while maintaining the chromatic number and commonality of H.

First, enumerate the vertices in an r-vertex graph H by V (H) = {v1, v2, · · · , vr}. Let H0 := H
and let Hi := (Hi−1)

q
Ui
, the q-book of Hi−1 along Ui, where Ui is the set of all copies of vi in Hi−1.

The q-bookpile H(q) of H is then the graph H(q) := Hr after the full r-step iteration. It is not
hard to see that this graph H(q) is independent of the initial enumeration and hence well-defined.
For example, if H = Kr and q = 2, then H(2) is the line graph of an r-dimensional hypercube
graph. This graph in fact appeared in [3] in a different context, which partly inspired our approach.
As each Hi decomposes to q edge-disjoint copies of Hi−1, the q-bookpile H(q) decomposes to qr

edge-disjoint copies of H. To distinguish these, we say that the qr edge-disjoint H-subgraphs of
H(q) as the standard copies of H in H(q).

As already sketched, the following theorem together with the construction of connected common
graphs H with arbitrarily large chromatic number in [12] implies Theorem 1.1:

Theorem 2.2. Let H be a connected graph. For every positive integer k, there exists q = q(k,H)
such that the q-bookpile H(q) of H is k-connected.
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To analyse connectivity of H(q), we consider an auxiliary hypergraph on V (H(q)) whose edge
set consists of the standard copies of H in H(q). We shall first describe what this hypergraph looks
like.

Write [q] := {1, 2, · · · , q} and let α be a variable. Let V (q, r, α) be the set of r-tuples v =
(n1, n2, · · · , nr), where all but exactly one entry are in [q] and the one exceptional entry is α. We
call this unique entry the α-bit of v. Let Hr

q be the r-uniform hypergraph on V (q, r, α) with the
edge set [q]r, where a vertex v = (n1, n2, · · · , nr) with ni = α is incident to an edge e if substituting
α by an integer value in [q] gives the edge e ∈ [q]r. Note that Hr

q is always a linear r-graph. Indeed,
the codegree of a vertex pair is one if they share all the non-α-bits and zero otherwise. In particular,
if q = 2, then this is the line hypergraph of the r-dimensional hypercube graph.

Proposition 2.3. Let H be the auxiliary r-graph on V (H(q)) whose edge set consists of the standard
copies of H in H(q). Then H is isomorphic to Hr

q.

Proof. At the i-th iteration of the blow-up procedure, each copy of vj , j 6= i, is replaced by q
copies of it, each of which is in the edge-disjoint copies of Hi−1 glued along copies of vi’s. By
enumerating the q edge-disjoint copies of Hi−1 in Hi, we label each copy of vj ∈ V (H) by a vector
(n1, n2, · · · , nr) ∈ V (q, r, α), where nj = α and ni, i 6= j, indicates that the vertex is in the ni-th
copy of Hi−1 in Hi. Let φ : V (H) → V (q, r, α) be this labelling map.

We claim that this function φ is an isomorphism from H to Hr
q. Indeed, two vertices labelled by

(n1, n2, · · · , nr) and (m1,m2, · · · ,mr), respectively, are in the same standard H-copy if and only if
mi = ni for all i except their α-bits. Hence, r vertices in V (H) form an edge if and only if their
labels by φ in V (q, r, α) form an edge in V (Hr

q), which proves the claim.

From now on, we shall identify the r-graph H with Hr
q. In a linear hypergraph, a path P from

a vertex u to another vertex v is an alternating sequence v0e1v1e2 · · · vℓ−1eℓvℓ of vertices and edges,
where v0 = u, vℓ = v, {vi, vi+1} ⊆ ei+1, and any non-consecutive edges are disjoint. Two paths
ue1v1e2 · · · vℓ−1eℓv and ue′1v

′

1e
′

2 · · · v
′

t−1e
′

tv from u to v are internally vertex-disjoint if e1∩e′1 = {u},
eℓ ∩ e′t = {v}, and all the other pairs ei and e′j are disjoint.

We say that the two paths are vertex-disjoint if all edges of one path are disjoint from all edges
of the other. Multiple paths P1, P2, · · · , Pk are (internally) vertex-disjoint if they are pairwise
(internally) vertex-disjoint. An r-graph G is k-connected if there are at least k internally vertex-
disjoint paths from a vertex u to another vertex v for all pairs of distinct vertices u and v. We show
that Hr

q is highly connected in this sense for large enough q in the following proposition, whose
proof will be postponed for a while.

Proposition 2.4. For integers k, r ≥ 2, there exists q = qk,r such that Hr
q is k-connected.

Let Wi, i ∈ [q], and Ur be subsets of V (q, r, α) defined by

Wi := {v = (n1, · · · , nr) : nr = i} and Ur := {u = (m1, · · · ,mr) : mr = α}.

Let Hi = Hr
q[Wi∪Ur] for brevity. The r-extension of an (r−1)-graph G is the r-graph obtained by

adding e(G) extra vertices, each of which is added to a unique (r− 1)-uniform edge in G. Then Hi

is isomorphic to the r-extension of a copy of the (r−1)-graph Hr−1
q on Wi by the isomorphism that

maps each vertex v = (n1, · · · , nr−1, i) in Hi to (n1, · · · , nr−1) ∈ V (q, r−1, α) and (n1, · · · , nr−1, α)
to the extra vertex added to extend the edge (n1, · · · , nr−1).

For vertex subsets U and V , a U–V path is a path v0e1v1e2 · · · vℓ−1eℓvℓ such that v0 ∈ U ,
vℓ ∈ V , and vi /∈ U ∪ V for each i distinct from 0 and ℓ.
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Lemma 2.5. For r ≥ 3 and 1 ≤ s ≤ q, let U and V be subsets of Ur of size at least s. Then there
exist vertex-disjoint U–V paths Q1, Q2, · · · , Qs such that each Qi is a path in Hi.

Proof. Consider the auxiliary graph G on Ur such that ww′ ∈ E(G) if and only if w and w′ share a
neighbour in Hi. That is, ww

′ is an edge in G if w = (n1, · · · , nr−1, α) and w′ = (n′

1, · · · , n
′

r−1, α)
differ by exactly one entry, which is at the α-bit of their common neighbour in Wi. Hence, this
graph G is isomorphic to the graph Kr−1

q obtained by taking Cartesian product of r−1 copies of Kq

and moreover, the graph G is independent of the choice of i ∈ [q]. In particular, G is (r− 1)(q− 1)-
connected, see, e.g., Theorem 1 in [19]. By Menger’s theorem, there are at least s vertex-disjoint
U–V paths in G, which we denote by P1, P2, · · · , Ps, provided (r − 1)(q − 1) ≥ q ≥ s.

Our goal is to construct a U–V path Qi in Hi by using Pi. We may assume that U and V
are disjoint, as otherwise, one may assign a trivial path at each vertex in the intersection and
consider U ′ := U \ V and V ′ = V \ U instead of U and V , respectively. It then suffices to find s′

vertex-disjoint U ′–V ′ paths, s′ < s, where induction on s applies.
We choose vertex-disjoint paths P1, P2, · · · , Ps that minimise the sum of the length of each path.

Then each Pi is an induced path, i.e., there are no G-edges on V (Pi) other than E(Pi). To see
this, let Pi = u0u1 · · · uℓ with u0 = u and uℓ = v. If there is an edge uiuj with i+ 1 < j, then one
can shorten the length of Pi by replacing the path uiui+1 · · · uj by uiuj . The internal vertices of
the shorter path P ′

i is still non-empty as uv /∈ E(G) and disjoint from the internal vertices of other
Pj ’s, so we strictly reduce the sum of the s vertex-disjoint paths.

Now each U–V path Pi = u0u1u2 · · · uℓ yields a U–V path Qi in Hi. Indeed, there exists a
unique edge ej ∈ Hi containing uj such that ej and ej+1 share a vertex wj in Wi by definition of G.
Furthermore, two non-consecutive edges ej and ej′ , j + 1 < j′, are always disjoint, as otherwise
ujuj′ ∈ E(G). Therefore, u0e1u1e2 · · · uℓ−1eℓuℓ is a path in Hi. It then remains to check whether
Q1, · · · , Qk in Hr

q are vertex-disjoint. The vertices in Qi and Qj are in Wi ∪ Ur and Wj ∪ Ur,
respectively. Indeed, the two sets Wi and Wj are disjoint and the vertices of Qi and Qj in Ur are
disjoint too, as they are exactly vertices of Pi and Pj , respectively.

Proof of Proposition 2.4. If r = 2 then Hr
q is a copy of Kq,q, which is q-connected. We may hence

assume that r ≥ 3. Take q ≥ max{qr−1,k, 3(k + 1)} which is a multiple of 3. Let u, v be distinct
vertices in Hr

q. By induction on r, Hr−1
q is k-connected. As Hi is the r-extension of Hr−1

q , there
are at least k internally vertex-disjoint paths in Hi from u to v if both vertices are in Wi.

Suppose that u, v ∈ Ur. For 1 ≤ i ≤ q/3, let Pi be the path uei,1wiei,2ui in Hi, i.e., wi ∈ Wi,
ui ∈ Ur, and ei,1 is the only edge inHi containing u. We may further assume that all ui’s are distinct,
as there are q − 1 neighbours of wj in Ur except u. Analogously, take paths P ′

j = vej,1wjej,2vj for
q/3 < j ≤ 2q/3 in Hj where vj’s are all distinct. Applying Lemma 2.5 with U = {ui : 1 ≤ i ≤ q/3},
V = {vj : q/3 < j ≤ 2q/3}, and s = q/3 gives q/3 vertex-disjoint U–V paths, each of which uses
a unique Ht for some t > 2q/3. Here we relabel Hi’s if necessary. Thus, concatenating these U–V
paths with Pi and P ′

j yields at least k internally vertex-disjoint paths from u to v.
Next, suppose that u ∈ Ur and v ∈ Wj. For all i ∈ [q/3] \ {j}, we analogously collect paths Pi

of length two from u such that each Pi is in Hi and ends at ui ∈ Ur, where ui’s are all distinct.
There are q neighbours of v in Ur, which we denote by N(v;Ur). Then again by Lemma 2.5, there
are at least q/3 − 1 vertex-disjoint U–V paths from U = {ui : i ∈ [q/3] \ {j}} to V = N(v;Ur),
each of which uses distinct Ht such that t 6= j and t > q/3. Concatenating these U–V paths with
Pi’s and the edges incident to v gives k internally vertex-disjoint paths from u to v.

Lastly, suppose that u ∈ Wi and v ∈ Wj for i 6= j. Let N(u;Ur) and N(v;Ur) be neighbours
of u and v in Ur, respectively. Then Lemma 2.5 gives q vertex-disjoint N(u;Ur)–N(v;Ur) paths.
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After deleting those paths in Hi or Hj, there are still at least k paths left, which allow us to make k
internally vertex-disjoint path from u to v.

Theorem 2.2 follows from the fact that internally disjoint paths in Hr
q translate to internally

disjoint paths in H(q).

Lemma 2.6. Let H be a connected graph and let P1, P2, · · · , Pk be k internally vertex-disjoint paths
from u to v in Hr

q. Then there exist internally vertex-disjoint paths Q1, Q2, · · ·Qk from u to v in
H(q) such that each Qi, i ∈ [k], only uses those edges and vertices in the standard H-copies that
correspond to edges in Pi.

Proof. Let Pi = vi,0ei,1vi,1ei,2 · · · vi,ℓi−1
ei,ℓivi,ℓi . As H is connected, there exists a path Qi,j+1

from vi,j to vi,j+1 in the standard copy of H that corresponds to the edge ei,j+1. For paths P from
x to y and P ′ from y to z, we write xPyP ′z for the concatenation of the two paths from x to z. For
each i ∈ [k], let Qi = vi,0Qi,1vi,1Qi,2 · · · vi,ℓi−1

Qi,ℓivi,ℓi . We claim that these paths Q1, Q2, · · · , Qk

are internally vertex-disjoint. Indeed, Qi,1 and Qi′,1 are in the H-copies that correspond to ei,1
and ei′,1, respectively, who share the vertex u = vi,0 = vi′,0 only; by the same reason, Qi,ℓi and Qi′,ℓi′

are also disjoint except the vertex v = vi,ℓi = vi′,ℓi′ ; the other Qi,j and Qi′,j′ are vertex-disjoint,
since ei,j and ei′,j′ are disjoint edges in Hr

q.

3 Concluding remarks

After Theorem 1.1, it would be natural to ask for examples of common graphs that are even more
challenging to find. We suggest to find a common graph with arbitrarily large girth, chromatic
number, and connectivity.

Question 3.1. Let r, k, g ≥ 3 be integers. Does there exist an r-chromatic k-connected common
graph with girth at least g?

We believe that such a common graph exists; however, our blown-up graph H(q) in Theorem 1.1
may decrease the girth of H, as the construction produces 4-cycles whenever q ≥ 2 and E(H) is
nonempty. This suggests that solving Question 3.1 might require new ideas.
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[19] Simon Špacapan. Connectivity of Cartesian products of graphs. Appl. Math. Lett., 21:682–685,
2008. doi:10.1016/j.aml.2007.06.010.

6

https://doi.org/10.19086/da
https://doi.org/10.1002/jgt.20256
https://doi.org/10.2307/2310464
https://doi.org/10.1017/S0963548322000074
https://doi.org/10.1017/S0963548312000107
https://doi.org/10.1007/BF01300130
https://books.google.co.uk/books?id=FsFqHLid8sAC
https://doi.org/10.2178/jsl/1203350785
https://doi.org/10.1007/BF01139620
http://dx.doi.org/10.1007/BF02988307
https://doi.org/10.1007/BF02988307
https://doi.org/10.1002/(SICI)1098-2418(199605)8:3<229::AID-RSA6>3.3.CO;2-F
https://doi.org/10.1112/jlms/s2-39.2.246
https://doi.org/10.1016/j.aml.2007.06.010.

	Introduction
	Proof of the main theorem
	Concluding remarks

