
A PROOF OF THE TREE ALTERNATIVE
CONJECTURE UNDER THE TOPOLOGICAL MINOR

RELATION
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Abstract. In 2006 Bonato and Tardif posed the Tree Alternative
Conjecture (TAC): the equivalence class of a tree under the em-
beddability relation is, up to isomorphism, either trivial or infinite.
In 2022 Abdi, et al. provided a rigorous exposition of a counter-
example to TAC developed by Tetano in his 2008 PhD thesis. In
this paper we provide a positive answer to TAC for a weaker type
of graph relation: the topological minor relation. More precisely,
letting [T ] denote the equivalence class of T under the topological
minor relation we show that

(1) |[T ]| = 1 or |[T ]| ≥ ℵ0 and

(2) ∀r ∈ V (T ), |[(T, r)]| = 1 or |[(T, r)]| ≥ ℵ0.

In particular, by means of curtailing trees, we show that for any
tree T with at least one ray with infinitely many vertices with
degree at least 3: |[T ]| ≥ 2ℵ0 .

1. Introduction

In [4] Bonato and Tardif proved that |[T ]| = 1 or ∞ for any ray-
less tree and conjectured the same must be true of any tree: the Tree
Alternative Conjecture (TAC) stated that the number of isomorphism
classes of trees mutually embeddable with a given tree T is either 1 or
infinite. Since mutually embeddable finite trees are necessarily isomor-
phic, TAC is becomes true for finite trees, and it has been confirmed
for a number of nontrivial classes of infinite trees - [4], [11] and [15].
In particular, in [15] it is shown that TAC holds for all rooted trees,
where a rooted tree (T, r) is one with a distinguished vertex r ∈ V (T ).
In 2022 a counterexample to TAC was found by Abdi et al. [1] where
for each n ∈ N an unrooted and locally finite tree Tn is constructed
with |[Tn]| = n.
Herewith we present a proof of TAC with respect to the topological

minor relation ≤♯, where for trees T, S we have T ≤♯ S if some sub-
division of the tree T is isomorphic to a subgraph of S. The rooted
topological minor notion is defined analogously to the unrooted case.

1

ar
X

iv
:2

21
1.

15
18

7v
3 

 [
m

at
h.

C
O

] 
 4

 A
ug

 2
02

3



2 JORGE BRUNO AND PAUL J. SZEPTYCKI

In this paper we prove the following theorem, where [T ] represents the
equivalence class of T under the topological minor relation.
Theorem 1. For any tree T ,

(1) |[T ]| = 1 or |T | ≥ ℵ0 and

(2) ∀r ∈ V (T ), |[(T, r)]| = 1 or |[(T, r)]| ≥ ℵ0.

The techniques developed and employed to prove Theorem 1 heavily
rely on the fact the trees are, as discussed in the Background, well-
quasi-ordered (wqo) under the topological minor relation. Although
Tyomkyn in [15] establishes TAC for all rooted trees under the embed-
dability relation, there appears to be a strong connection between wqo
and TAC for unrooted trees and other similar structures.

The layout of the paper is quite simple: in Section 3 we prove Theo-
rem 1 for large trees by employing the method of curtailing - developed
by the present authors; and Section 4 deals with all small trees by
adapting the techniques developed by Bonato and Tardif in [4], Halin
in [6], and Polat and Sabidussi in [13] to the topological minor relation.

2. Background

2.1. Graph-theoretic background. Most notation is standard and
can be found in [5] but we present a brief summary of key concepts
and non-standard terminology employed in this paper. A rooted tree
(T, r) is composed of a tree T and a distinguished vertex r ∈ V (T ).
The isomorphism relation on rooted and unrooted trees is denoted by
≃ where, in the rooted case, an isomorphism must send root to root.
The splitting number of a vertex v, sp(v), in a rooted tree (T, r) is
simply deg(v)−1 if v ̸= r and deg(v) otherwise. Any rooted tree (T, r)
generates a partial ordering ≤T on its set of vertices by establishing
that s ≤T t provided that the unique path from r to t contains s; if
s <T t then we say that s is below t and that t is above s. This is
called the tree order on (T, r) and defines a meet semilattice order on
all vertices of (T, r); (T, r) is closed under all non-empty meets. We
denote the meet of a collection C ⊆ V (T ) by ∧TC and v1 ∧T . . . ∧T vn
if C is finite. A tree (T, r) is a rooted subtree of a tree (S, s) if T is
a subtree of S and v ≤S w ⇐⇒ v ≤T w for all v, w ∈ V (T ). Given
a vertex v ∈ V (T ) the full subtree of (T, r) rooted at v, (Tv, v), is the
rooted subtree of (T, r) induced by all vertices w with v ≤T w. A
subdivision of a tree T (resp. of a rooted tree (T, r)) is any tree (resp.
rooted tree) obtained by subdividing any number of its edges. A path,
p : v1, . . . , vn, is a sequence of distinct pairwise adjacent vertices (i.e., vi
adjacent to vi+1) and we demand vi <T vi+1 for all i ≤ n− 1 when p is
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in a rooted tree (T, r). The length of a path p, |p|, is simply the number
of vertices in it. A path p : v1, . . . , vn is bare if deg(vi) ≤ 2 for all i ≤ n,
and maximal bare if p is bare and not contained within any other bare
path. For vertices v ≤T w in a rooted tree (T, r), dT (v, w) = |p| − 1
where p : v, . . . , w is the unique path joining said vertices. For the case
where v = r we denote dT (v, w) = lT (w) and refer to it as the level of w.
For a vertex v we use pred(v) to denote the unique vertex immediately
preceding v and succ(v) to denote the set of immediate successors of v.
If sp(v) = 1 then we use succ(v) to denote the unique vertex succeeding
v instead of the set containing it. Given a ray R = v1v2 . . . we use the
notation Rn = vn and R↑

n = vnvn+1 . . .. A ray R is eventually bare if
for some N ∈ N, deg(Rn) = 2 for all n ≥ N , and bare if N = 1. A
rooted tree is said to be large if it contains at least one ray that is not
eventually bare. A rooted tree is then small if it’s not large. We also
define an unrooted tree T to be large (resp. small) if (T, r) is large
(resp. small) for any r ∈ V (T ).

2.2. Topological minor relation and wqos. Given trees T and S,
an injective map ϕ : V (T ) → V (S) is a minor embedding if ϕ can
be extended to an isomorphism between a subdivision of T and the
smallest subtree S ′ of S containing all vertices in ϕ(V (T )). If there
exists such a minor embedding ϕ then we say that T is a topological
minor of S and we write T ≤♯ S. We use the shorter term embedding
when referring to a minor embedding provided there is no danger of
ambiguity. If T ≤♯ S and T ≥♯ S then we write T ≡♯ S and say that
they are topologically equivalent or of the same topological type. The
equivalence class of topological types of a tree is denoted by [T ] and its
size by |[T ]|. These topological notions are defined in a similar way for
rooted trees. An injective map ϕ : V (T ) → V (S) between rooted trees
(T, r) and (S, s) is a rooted minor embedding if ϕ can be extended to an
isomorphism between a subdivision of (T, r) and the smallest rooted
subtree (S ′, s′) of (S, s) containing all vertices in ϕ(V (T )). A tree (T, r)
is self-similar provided that there exists v >T r with (T, r) ≤♯ (Tv, v).
An equivalent definition for a minor embedding ϕ : V (T ) → V (S) is
that of a meet semilattice homomorphism: for any pair w, v ∈ V (T ),
ϕ(v ∧T w) = ϕ(v) ∧S ϕ(w). If there exists an embedding ϕ : V (T ) →
V (S) then we say that (T, r) is a rooted topological minor of (S, s) and
we write (T, r) ≤♯ (S, s). If (T, r) ≤♯ (S, s) and (T, r) ≥♯ (S, s) then
we write (T, r) ≡♯ (S, s) and say that they are topologically equivalent.
The equivalence class of topological types of a tree is denoted by [(T, r)]
and its cardinality by |[(T, r)]|.
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A quasi-ordered set (X,≤) is well-quasi-ordered (wqo) if it is well-
founded and all antichains are finite. The rooted topological minor
relation is a wqo on the collection of trees ([9] and [14]). We make
use of the following equivalent characterisations for a quasi-ordered set
(X,≤) to be a wqo [12]:

• any sequence x1, x2, . . . in X contains a pair xi ≤ xj with i < j;
and

• any sequence x1, x2, . . . in X has an increasing subsequence
xn1 ≤ xn2 ≤ . . ..

Remark 2.1. Since the rooted topological minor relation well-quasi
orders rooted trees, for trees distinct from the ray or double ray, the
notion of being large is equivalent to having a self-similar subtree. In
particular, not having a self-similar subtree is equivalent to being small.

2.3. Set-theoretic background. We use some basic set-theoretic no-
tation and terminology which can be found in [7] or [8]. Recall that ℵ0

is the cardinality of the natural numbers and we use the set-theoretic
notation ω to denote the the set of natural numbers, N, with 0 in-
cluded. The continuum c or 2ℵ0 denotes the cardinality of the set of
real numbers (which is also equal to the cardinality of NN, the set of all
functions f : N → N). An almost disjoint family (a.d.f.) D is a collec-
tion of infinite subsets of N so that for any pair X, Y ∈ D, |X∩Y | ∈ N.
It is well know that there exists an almost disjoint family of size c (pg.
159, [8]).

3. Large Trees

In this section all trees are assumed to be large. We begin by in-
troducing the notion of curtailing and subsequently employ it to prove
Theorem 1 for all large trees. The outline is as follows: for a fixed tree
T and r ∈ V (T ) we create - by means of curtailing (T, r) - a tree (T ′, r)
of the same topological type as (T, r) and 2ℵ0 subdivisions of (T ′, r),
(T ′

κ, r) with κ ∈ 2ℵ0 , of the same topological type as (T ′, r) but T ′
κ ̸≃ T ′

γ

for any pair κ ̸= γ. Since T ′
κ ≡♯ T for all κ we obtain the following

result.

Theorem 3.1. For any large tree T :

(1) |[T ]| ≥ 2ℵ0 and
(2) ∀r ∈ V (T ), |[(T, r)]| ≥ 2ℵ0.

3.1. Curtailing. Fix a rooted tree (T, r) and a self-similar tree (S, s)
distinct from the ray. For any u ∈ V (T ) with (S, s) ≡♯ (Tu, u) and
sp(u) = 1 < sp(pred(u)) let pu : u, . . . , un be the maximal bare path
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(Tw, w)

r

pred(u)

u

un

w

(T ′
w, w)

r

pred(u)

w
eu

Figure 1. Turning a maximal bare path pu into an edge eu.

starting from u; such a path must always exist since (S, s) is not small.
Now define (T ′, r) as the tree obtained from (T, r) by simultaneously
replacing any such path pu with an edge eu = {pred(u), succ(un)}.
That is, simultaneously suppress all vertices in all paths pu. We say
that (T, r) is curtailed into (T ′, r) via (S, s). By design, all vertices of
splitting number greater than 1 in (T, r) are also present in (T ′, r). It
is entirely possible that (T, r) ≡♯ (S, s) and that sp(r) = 1. In which
case, the above construction would delete r. By Lemma 3.2 below
the tree obtained from deleting the maximal bare path starting at r
yields a topologically equivalent tree to (T, r). Hence, without loss of
generality, we assume that sp(r) > 1. Of course, if (S, s) ̸≡♯ (Tu, u) for
any u ∈ V (T ) then curtailing (T, r) via (S, s) results in (T, r) itself and,
trivially, Lemma 3.3 and Theorem 3.4 are true. We begin by proving
Lemma 3.2 .

Lemma 3.2. Let (T, r) be self-similar. It follows that the tree (T ′, r1)
that results from adding a bare path p : r1, . . . , rn below r is of the same
topological type as (T, r).

Proof. We need only show that (T ′, r1) ≤♯ (T, r). Since (T, r) is self-
similar we can create a sequence r <T ϕ(r) <T ϕ2(r) <T . . . where
ϕ : V (T ) → V (T ) witnesses (T, r)’s is self-similarity. Choose any k so
that given the path p′ : w1 = r, . . . , wj = ϕk(r) we have j > n = |p :
r1, . . . , rn|. Let ψ : V (T ′) → V (T ) with ψ(v) = ϕ(v) for all v ≥T ′ r and
ψ(ri) = wj. Then ψ is clearly a minor embedding. □
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Lemma 3.3. Let (T ′, r) be (T, r) curtailed via (S, s). For any v ∈ V (T )
with sp(v) > 1 if (Tv, v) ≡♯ (S, s), then (T ′

v, v) ≡♯ (S, s).

Proof. Since (Tv, v) is a subdivision of (T ′
v, v) then (T ′

v, v) ≤♯ (S, s)
whenever (Tv, v) ≤♯ (S, s). For the reverse inequality, let v ∈ V (T ) with
sp(v) > 1, (Tv, v) ≤♯ (S, s) witnessed by a ϕ : V (S) → V (Tv) and, by
Lemma 3.2, assume that sp(s) > 1. Next, we construct a rooted minor
embedding ψ : V (S) → V (T ′

v) witnessing (T ′
v, v) ≥♯ (S, s). In order

to so do, fix a minor rooted embedding η : V (S) → V (S) witnessing
(S, s)’s self-similarity (i.e., η(s) >S s)), set

Ln = {w ∈ V (S) | lS(w) = n}
and put (Sn, s) as the full subtree of (S, s) generated from all vertices
in L0 ∪ . . . ∪ Ln. We construct ψ by inducting on the (Sn, s)’s. More
precisely, for any k ∈ N we focus on the least nk ∈ N for which ψ(u) is
not defined for some u ∈ V (Snk

). By the minimality of nk, ψ ↾ (Snk
, s)

will be a rooted topological minor embedding.

Base Case: for any u ∈ L1 if ϕ(u) ∈ V (T ′
v), then we let ψ(u) =

ϕ(u); since sp(s) > 1 then ϕ(s) ∈ V (T ′
v) and ψ(s) = ϕ(s). Oth-

erwise, sp(ϕ(u)) = 1 and (S, s) ≡♯ (Tϕ(u), ϕ(u)). That is, ϕ(u) was
removed when constructing (T ′, r) because (S, s) ≡♯ (Tϕ(u), ϕ(u)). Let
ϕu : V (S) → V (Tϕ(u)) witness (S, s) ≤♯ (Tϕ(u), ϕ(u)) and consider the
increasing sequence ϕu◦η(s) <T ϕu◦η2(s) <T . . .. If (Su, u) is a bare ray
u = u1u2 . . . then extend ψ by letting ψ(ui) = ϕu ◦ηi(s). Otherwise, let
pu : u = u1, . . . , um be the maximal bare path in (S, s) starting with u
and extend ψ by letting ψ(ui) = ϕu◦ηi(s) and ψ(um+1) = ϕu◦ηm(um+1).
It is simple to verify that ψ is indeed a meet semilattice homomorphism
on (S1, s)

Inductive Case: at stage k ∈ N, let nk ∈ N be the smallest so that
there exists a vertex u ∈ V (Snk

) where ψ is undefined and so that
ψ : (Si, s) → (T, r) defines a meet semilattice homomorphism for all
i < nk. By construction, either

• ψ(pred(u)) = ϕw ◦ ηj(pred(u)), for some w <S u and j ∈ N, or
• ψ(pred(u)) = ϕ(pred(u)).

Set u∗ to be ϕ(u) or ϕw ◦ ηj(u) depending on the case above that is
true. If u∗ ∈ V (T ′) then set ψ(u) = u∗. Otherwise, as with the base
case, it must be that sp(u∗) = 1 and (S, s) ≤♯ (Tu∗ , u∗) with embedding
ϕu : V (S) → V (Tu∗). In which case, consider the increasing sequence
ϕu ◦ η(s) <T ϕu ◦ η2(s) <T . . .. If (Su, u) is a bare ray u = u1u2 . . .
then extend ψ by letting ψ(ui) = ϕu ◦ ηi(s). Otherwise, let pu : u =
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u1, . . . , um be the maximal bare path in (S, s) starting with u and
extend ψ by letting ψ(ui) = ϕu ◦ ηi(s) and ψ(um+1) = ϕu ◦ ηm(um+1).

To show that ψ is a meet semilattice homomorphism on (Sn, s) we
must verify a few cases separately. Firstly, observe that by construction
for any pair w,w′ ∈ V (Snk

) it follows that w ≤S w′ if, and only if,
ψ(w) ≤T ′ ψ(w′). If pred(w) ̸= pred(w′), then

ψ(w ∧S w
′) = ψ(pred(w) ∧S pred(w′)) = ψ(pred(w)) ∧T ′ ψ(pred(w′))

by the inductive hypothesis and

ψ(pred(w)) ∧T ′ ψ(pred(w′)) = ψ(w) ∧T ′ ψ(w′)

since ψ(w)⊥T ′ψ(w′), ψ(pred(w)) ≤T ′ ψ(w) and ψ(pred(w′)) ≤T ′ ψ(w′).
Otherwise we have that pred(w) = pred(w′). If ψ(pred(w)) = ϕ(pred(w)),
then, by construction, it follows that ψ(w) ≥T ϕ(w) and ψ(w′) ≥T

ϕ(w′). Hence,

ψ(w) ∧T ′ ψ(w′) = ϕ(w) ∧T ϕ(w
′) = ϕ(w ∧S w

′) = ψ(w ∧S w
′).

Finally, if ψ(pred(w)) = ϕt ◦ ηj(pred(w)) for some t ≤S pred(w) and
j ∈ N, then ψ(w) ≥T ϕt ◦ ηj(w) and ψ(w′) ≥T ϕt ◦ ηj(w′). Therefore,
ψ(w) ∧T ′ ψ(w′) = ψ(w) ∧T ψ(w

′) = ϕt ◦ ηj(w) ∧T ϕt ◦ ηj(w′) = ϕt ◦
ηj(w ∧S w

′) = ψ(w ∧S w
′). □

Theorem 3.4. Let (T ′, r) be (T, r) curtailed via (S, s). It follows that
for any v ∈ V (T ′), (T ′

v, v) ≡♯ (Tv, v). In particular, (T, r) ≡♯ (T ′, r).

Proof. Clearly, (T ′
v, v) ≤♯ (Tv, v). For the reverse inequality, notice that

if (S, s) ≡♯ (Tv, v), then by Lemma 3.3 we are done. Otherwise, much
in the same spirit as with Lemma 3.3, we construct a minor embedding
ψ : V (Tv) → V (T ′

v) by inducting on the full subtrees (T n
v , v) of (Tv, v)

generated by L0 ∪ . . . ∪ Ln where

Ln = {w ∈ V (Tv) | lTv(w) = n}.

Base Case: since L0 = {v} and, by assumption, (S, s) ̸≡♯ (Tv, v) then
v ∈ V (T ′

v) and we let ψ(v) = v. Take any u ∈ L1. If u ∈ V (T ′
v) then

we let ψ(u) = u. Otherwise, if u ̸∈ V (T ′) then (S, s) ≡♯ (Tu, u) and
sp(u) = 1. Let pu : u = u1, . . . , un be the maximal bare path starting
at u and put succ(un) = u∗. Since (S, s) ≡♯ (Tu, u) then Lemma 3.2
yields (Tu, u) ≡♯ (Tu∗ , u∗) and by Lemma 3.3, (S, s) ≡♯ (T ′

u∗ , u∗). In
turn, (Tu, u) ≡♯ (T ′

u∗ , u∗) and we extend ψ to all w ≥T u by mapping
w 7→ ϕu(w) where ϕu : V (Tu) → V (T ′

u∗) witnesses (Tu, u) ≤♯ (T ′
u∗ , u∗).

It is clear that ψ restricted to (T 1
v , v) defines a meet semilattice homo-

morphism.
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Inductive Case: set k ∈ N as the smallest for which we can find a ver-
tex u ∈ V (T nk

v ) where ψ is not defined. This implies that ψ(pred(u)) =
pred(u) and we apply the same logic as with the base case; distinguish
between whether or not (S, s) ≡♯ (Tu, u) and extend ψ accordingly.
The meet semilattice homomorphism property of ψ is verified by cases
as with Lemma 3.3. □

3.2. Proof of Theorem 3.1. Let us begin by restating the theorem.

Theorem 3.1. For any large tree T :

(1) |[T ]| ≥ 2ℵ0 and
(2) ∀r ∈ V (T ), |[(T, r)]| ≥ 2ℵ0.

Proof. (1) Start with a large tree T , a not eventually bare ray v0v1 . . .
witnessing this. Root T at r = v0 and put vk as the first vertex
along the ray with (Tvk , vk) ≤♯ (Tvj , vj) for some j > k > 0 as rooted
subtrees of (T, r). Set s = vk and (S, s) = (Tvk , vk) and by Lemma 3.2
we can assume that both sp(s) > 1 and sp(r) > 1. Since (S, s) is
self-similar there exists an embedding ϕ : V (S) → V (S) witnessing
this. Set r1 = s, rn = ϕn(s) for n > 2, and put D : r1 . . . as the
unique ray in (T, r) containing all rn’s. Observe that ϕ establishes that

(Tri , ri) ≡♯ (Trj , rj) for all i, j ≥ 1 and that ϕi(V (D↑
i )) ⊆ V (D↑

i ). Let
(T ′, r) denote the curtailed tree (T, r) via (S, s) and denote the ray
D′ in (T ′, r) as the obtained from D in (T, r). A moments thought
reveals that one can modify ϕ into an embedding η : V (T ′

r1
) → V (T ′

r1
)

with η(ri) = ri+1 and η(V (D
′↑)) ⊆ V (D

′↑). This is since all vertices
of degree at most 3 in D remain in D′ (e.g., all roots ri remain in D′)
and by Theorem 3.4 all subtrees of (Tr1 , r1) rooted on vertices off the
ray D remain topologically equivalent to their curtailed versions. Set
en = {pred(rn), rn} in (T ′, r) for each n ∈ N, and for each f ∈ NN we
let (T ′

f , r) denote the tree generated from (T ′, r) by replacing the edge
en with a bare path of length f(n). Let D′

f denote the subdivision
of D′ in (T ′

f , r). Observe that by curtailing (T, r) and subsequently
subdividing D′ the only bare paths in D′

f above pred(r1) are those
bare paths ending in an rn. Next we prove that

• (T ′
f , r) ≡♯ (T, r) for all f ∈ NN (hence T ′

f ≡♯ T ), and

• ∃D ⊂ NN of size c where T ′
f ̸≃ T ′

g for all f, g ∈ D.

Lemma 3.4. Assume that T ′
f ≃ T ′

g for some g, f ∈ NN with bijection

ψf
g : V (T ′

f ) → V (T ′
g) witnessing this. It follows that ψf

g must map a
final segment of D′

f entirely within D′
g.
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b1

ψf
g (r)

r

Figure 2. The ray B in green with initial vertex b1.
Also the initial segment of the ray ψf

g (D
′
f ) and the ray

D′
g highlighted in red and blue, resp.

Proof. Assume that ψf
g does not map a final segment of D′

f = u1 . . .
entirely within D′

g, put

m = min{n ∈ N | ∀j ≥ n, ψf
g (uj) ̸∈ D′

g and ψf
g (uj) ≤T ′

g
ψf
g (uj+1)}

and B = b1 . . . the ray in (T ′
g, r) containing all vertices ψf

g (un) with
n ≥ m (i.e., the ray B is disjoint from D′

g, as in Figure 2). Recall
that all of the rn (i.e., those used to define D in (T, r)) are in D′

f .

Let rl ∈ V (D′
f ) so that ϕf

g (rl) = bj for some j > 2 (we can choose an

arbitrarily large value of j since the ψf
g (ri) are cofinal in B for i ≥ l).

It follows that the rooted tree ([T ′
g]bj , bj) (i.e., the full subtree of (T

′
g, r)

rooted at bj) is isomorphic to (Trl , rl). Indeed, m was chosen so that
rl >T ′

g
rl−1 and, thus, ψf

g preserves the order of (Trl , rl) in (T ′
g, r). In

turn, ([T ′
g]bj , bj) and rl >T ′

g
rl−1 are of the same topological type as

(S, s). But since sp(pred(bj)) > 1 in (T ′
g, r) and sp(pred(rl)) = 1 by

design of (T ′
f , r) this contradicts that ψ

f
g is an isomorphism. □

Next, we focus on proving that T ′
f ̸≃ T ′

g for continuum many f, g ∈
NN. By Lemma 3.4 given f, g ∈ NN with ψf

g : V (T ′
f ) → V (T ′

g) witness-

ing T ′
f ≃ T ′

g it follows that ψ
f
g must map a final segment of D′

f entirely

within D′
g. Given that ψf

g maps bare paths to bare paths, the final
segment of D′

f that is mapped entirely within D′
g must have its bare

paths of the same length as those in D′
g. Let D be an a.d.f. of size c

and for each X = {x1, x2, . . .} ∈ D set fX(n) = xn. Then T ′
fX

≃ T ′
fY

precisely when X = Y . To finish the proof of Theorem 3.1 (1) we
establish the following result.

Lemma 3.5. For all f ∈ NN, T ′
f ≡♯ T .
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Proof. Notice that curtailing (T ′
f , r) via (S, s) yields (T ′, r) and, thus,

by Theorem 3.4 the result follows. □

(2) The construction of each (T ′
f , r), for f ∈ NN, based on an un-

rooted tree T can be applied directly to (T, r) by selecting any ray D in
(T, r) that is not eventually bare. This means that there are continuum
many unrooted trees T ′

f with T ′
f ̸≃ T (hence, (T ′

f , r) ̸≃ (T, r)) but with

(T ′
f , r) ≡♯ (T, r).

□

4. Small Trees

We now turn our attention to small trees. We first prove Theorem
1 for all rooted small trees and extend the result to all small trees by
adapting a fixed-point result from Polat and Sabidussi to the topolog-
ical minor relation.

4.1. Rooted small trees. Unlike the scenario encountered for large
trees, given a pair small trees (T, r) ≡♯ (S, s) (distinct from the ray)
any rooted minor embedding ψ witnessing (T, r) ≤♯ (S, s) must map
r to s. Indeed, otherwise for any ϕ that witnesses (T, r) ≥♯ (S, s)
it follows that the sequence (ϕ ◦ ψ)n(r) spans a ray in T that is not
eventually bare. This observations then allows us to directly employ
the arguments developed in [15] and [4] to the rooted topological minor
relation. In the following lemmas for a rooted tree (T, r), S(T ) =
{(Tu, u) | u ∈ succ(r)}.

Lemma 4.1. For any (Tu, u) ∈ S(T ), |[(Tu, u)]| ≤ |[(T, r)]|.

Proof. The proof of this lemma is exactly that of Lemma 2 in [15] but
we reproduce it here. Fix a v ∈ succ(r) and take any (U, u) ∈ [(Tv, v)]
(i.e., a non-isomorphic tree of the same topological type as (Tv, v)).
Construct the tree (TU , r) as follows: for any w ∈ succ(v)

• replace (Tw, w) with (U, u) if (Tw, w) ≡♯ (U, u), and
• leave (Tw, w) as it is, otherwise.

By design, (TU , r) ≡♯ (T, r) and (TU , r) ̸≃ (T, r). Moreover, for any
other (W,w) ∈ [(Tv, v)] non-isomorphic to (U, u) it follows that (TU , r) ̸≃
(TW , r). □

In view of the above and given a small tree (T, r) next we prove
that if |[(Tv, v)]| = 1 for all v ∈ succ(r), then |[(T, r)]| = 1 or ≥ ℵ0.
This would then complete the proof of Theorem 1 for small rooted
trees. Indeed, by Lemma 4.2, that ℵ0 > (T, r) > 1 implies the same
of at least one (Tv, v) for v ∈ succ(r), which in turn implies the same
of some (Tw, w) for w ∈ succ(v), and so on. This would create a
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sequence (|[(Tvn , vn)]|)n∈N with vn ∈ succ(vn−1) and |[(Tvn , vn)]| > 1. A
contradiction since any such sequence in a small tree ends on a terminal
vertex or spans an eventually bare ray (i.e., a tail of all 1’s).

Lemma 4.2. Let (T, r) be small. If for all (Tu, u) ∈ S(T ), |[(Tu, u)]| =
1 then |[(T, r)]| = 1 or ≥ ℵ0.

Proof. Lemma 2 in [4] after exchanging rooted subgraph with rooted
topological minor but we also reproduce a simplified version here. Let
(T, r) and (U, u) be two non-isomorphic trees with (U, u) ∈ [(T, r)],
and rooted embeddings ϕT : V (T ) → V (U) and ϕU : V (U) → V (T )
witnessing this. Further assume that |[(Tv, v)]| = 1 for any v ∈ succ(r).
We seek to prove that |[(T, r)]| ≥ ℵ0.
Put I = {(Xα, α) | α ∈ κ} as the set of all isomorphism types of

all rooted trees (Tv, v) and (Uw, w) with v ∈ succ(r) and w ∈ succ(u).
Define fT : {(Tv, v) | v ∈ succ(r)} → κ so that fT (Tv, v) = α provided
(Tv, v) ≃ (Xα, α) (resp. fU : {(Uw, w) | w ∈ succ(u)} → κ so that
fU(Uw, w) = α provided (Uw, w) ≃ (Yα, α)). Since (T, r) ̸≃ (U, u) there
must exist a β ∈ κ for which, without loss of generality, |f−1

T (β)| <
|f−1

U (β)|. Put η = |f−1
T (β)| and ζ = |f−1

U (β)|, and enumerate the
elements of f−1

T (β) and f−1
U (β) as (Ti, i) and (Uj, j) with i ∈ η and

j ∈ ζ. Before moving further with this proof, let us establish some
more notation: put (T ∗, r) as (T, r) but with all full subtrees (Ti, i),
i ∈ η, removed - of course, this also includes the roots i of each (Ti, i)
and the edge joining i with r. In what follows we fix a (Tk, k) ∈ f−1

T (β)
and for each cardinal λ denote (T ∗

λ , r) as (T
∗, r) with λ copies ((T ∗

λl
, λl)

with l ∈ λ) of (Tk, k) attached to r. Clearly, (T ∗
η , r) ≃ (T, r) and

(T ∗
ν , r) ̸≃ (T ∗

ξ , r) for any pair of cardinals ν ̸= ξ.

Fix a γ ∈ ζ for which ϕU(Uγ, γ) ⊆ (Tv, v) ̸∈ f−1
T (β). Next, for

each n ∈ ω, put wn ∈ succ(s) so that (ϕT ◦ ϕU)
n[(Uγ, γ)] ⊆ (Uwn , wn)

and vn ∈ succ(r) with ϕU ◦ (ϕT ◦ ϕU)
n[(Uγ, γ)] ⊆ (Tvn , vn). Clearly,

(Uw0 , w0) = (Uγ, γ) and (Tv0 , v0) = (Tv, v), and

(Uw0 , w0) ≤∗ (Tv0 , v0) ≤∗ (Uw1 , w1) ≤∗ (Tv1 , v1) ≤∗ . . .

Observe that wn ̸= w0 for any n ∈ ω since then (Uγ, γ) ≃ (Tv, v) from
the assumption that |[(Tu, u)]| = 1 for any u ∈ succ(r). The same
logic dictates (Uwn , wn) ̸∈ f−1

U (β) and (Tvn , vn) ̸∈ f−1
T (β) for any n > 1.

Thus, we get two sequences of non-repeating elements: (wn)n∈ω and
(vn)n∈ω.

If η is finite, then for each λ ≥ η it follows that (T ∗
λ , λ) ≥♯ (T, r).

For any for each λ ∈ (η,∞) put ϕλ : V (T ∗
λ ) → V (T ) with

• ϕλ((T
∗
λl
, λl)) = ϕU ◦ (ϕT ◦ ϕU)

l[(Uγ, γ)] for each l ≤ λ,
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• ϕλ((Tvn , vn)) = ϕU ◦ (ϕT ◦ϕU)
n+λ+1[(Uγ, γ)] for each n ∈ ω, and

• the identity everywhere else.

Since (Uγ, γ) ≡♯ (Tk, k), ϕλ is a witness of (T ∗
λ , λ) ≤♯ (T, r) for each

finite λ ≥ η but (T ∗
λ , λ) ̸≃ (T, r) for any λ > η. If η ≥ ℵ0, then

since ζ > η one can easily adapt the proof of finite η to create ζ many
non-isomorphic (T ∗

λ , λ), λ ∈ ζ, of the same topological type as (T, r).
□

4.2. Unrooted small trees. Given a rayless tree T the authors of
[13] showed that there exist a vertex or edge of T fixed by all automor-
phisms of T . By modifying the arguments used in the above to minor
embeddings one can easily obtain an analogous result for all small trees
different to the ray or double ray. Firstly, let us remark that a minor
self-embedding of a finite tree T is necessarily an automorphism and,
as such, it must either fix a vertex or an edge of T - [6], Lemma 2. In
fact, more is true: given a set S ⊆ V (T ) let S denote the subtree of T
generated by the union of all paths joining any pair of vertices in S ,
FT = {v ∈ V (Tλ) | deg(v) > 2} and TME(T ) as the collection of all
topological minor embeddings of T . Let T be locally finite, small, infi-
nite and distinct from the ray or double ray. It follows that FT ̸= ∅ is
finite (since T is small) and any minor embedding ψ induces a permuta-
tion of FT where deg(v) = deg(ψ(v)) for all v ∈ FT . It then follows that
ψ ↾ FT ∈ TME(FT ) and, thus, that ψ induces an automorphism of FT .
Since FT is finite then ψ restricted to FT is actually an automorphism
and FT has either a fixed edge or vertex by all ψ ∈ TME(T ). It then
follows that T itself has a fixed edge or vertex for all ψ ∈ TME(T ).

Lemma 4.3. Any small and locally finite tree T , distinct from the ray
or double ray, has an edge or vertex fixed by all ψ ∈ TME(T ).

We extend the above to all small trees by means of employing the
following lemma from [13].

Lemma 4.4. [Lemma 1.1, [13]] Let G be a rayless graph, (Aα)α∈Ord a
decreasing sequence of subsets of V (G) so that

(1) Aα =
⋂

β<αAβ for any limit α and

(2) each Aα induces a connected subgraph of G.

By κ denote the smallest ordinal for which the sequence (Aα)α∈Ord be-
comes constant. If Aκ = ∅, then κ is a successor ordinal.

Lemma 4.5. Given a small tree T , distinct from the ray or double ray,
there exists a vertex or edge of T fixed by all ψ ∈ TME(T ).
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Proof. Given Lemma 4.3, let T be small but not locally finite, and set
T1 = infinite(T ), where infinite(T ) ⊂ V (T ) is the set consisting all
vertices of infinite degree. Clearly, T1 is connected, rayless, properly
contained in T - since T1 does not contain any end-points or rays from
T - and for any ψ ∈ TME(T ) we have ψ ↾ T1 ∈ TME(T1). For all
α ∈ Ord construct Tα as

Tα =

{
inf(Tβ) if α = β + 1 and⋂

β<α Tβ, otherwise

Let κ denote the smallest ordinal for which (Tα) is constant. This
happens when Tκ = ∅. Indeed, otherwise the sequence (Tα) would
not be constant. Therefore, by Lemma 4.4, that κ = λ + 1 for some
λ ∈ Ord. In turn, Tλ is locally finite and small and any such ψ defines
an automorphism on Tλ. Hence, there must exist a vertex of edge of T
fixed by all ψ ∈ TME(T ). □

Notice that Lemma 4.5 establishes a dichotomy in the following
sense; if an edge e = {r, s} in a tree T is fixed by all minor embeddings
with ψ(r) = s, for all ψ ∈ TME(T ), then T does not have a fixed
vertex - the converse is also true. Indeed, all minor embeddings swap s
with r precisely when any vertex in V is sent to the opposite connected
component of T ∖ {e}. This observation is important for the proof of
the following theorem.

Theorem 4.1. For any small tree T , |[T ]| = 1 or |[T ]| ≥ ℵ0.

Proof. The proof of Theorem 1 in [4] applies directly to this theorem
and, for completeness, we reproduce it below.
Let T be small and assume that |[T ]| > 1. Next we show that |[T ]| ≥

ℵ0. Since T is small then, by Lemma 4.5, T has either a fixed vertex r
or edge {r, s}. Let T ∗ be a non-isomorphic topologically equivalent tree
to T , and ψT , ψT ∗ denote minor embedding witnessing T ≤♯ T ∗ and
T ≥♯ T ∗, respectively. Consider the tree (T, r) and observe that (T, r)
and (T ∗, ψT (r)) are not isomorphic. If r is a fixed vertex of T then
(T, r) and (T ∗, ψT (r)) are of the same topological type as witnessed by
ψT , ψT ∗ . Hence, |[(T, r)]| ≥ ℵ0. If {r, s} is a fixed edge then the rooted
embeddings ψT and ψT ∗ ◦ ψT ◦ ψT ∗ witness (T, r) ≡♯ (T ∗, ψT (r)) and
|[(T, r)]| ≥ ℵ0 as well. In either case, (T, r) is topologically equivalent
to at least infinitely many other non-isomorphic rooted trees.

By virtue of the previous paragraph, for a small tree T with |[T ]| > 1
we let C = {(Ti, ri) | i ∈ ω} be an infinite collection of mutually non-
isomorphic rooted trees topologically equivalent to (T, r). We show
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that {Ti | i ∈ ω} contains an infinite collection of non-isomorphic
trees topologically equivalent to T . In order to achieve this goal, we
show that given any triplet (Tj, rj), (Tk, rk) and (Tl, rl) from C at least
one pair from the set {Tj, Tk, Tl} are non-isomorphic. For the sake
of contradiction assume otherwise and let hj : V (Tl) → V (Tj) and
hk : V (Tl) → V (Tk) denote the respective isomorphisms - observe that
hj(rl) ̸= rj and hk(rl) ̸= rk. Since (T, r), (Tj, rj), (Tk, rk) and (Tl, rl) are
of the same topological type there exist rooted minor embeddings gj :
V (Tj) → V (T ), gk : V (Tk) → V (T ) and gl : V (T ) → V (Tl) witnessing
this. Recall that rooted minor embeddings between small trees must
map roots to roots. It follows that gk ◦ hk ◦ gl(r) ̸= r ̸= gj ◦ hj ◦ gl(r).
In turn, the edge {r, s} is a fixed edge of T and gk ◦ hk ◦ gl(r) =
gj◦hj◦gl(r) = s and gk◦hk◦gl(s) = gj◦hj◦gl(s) = r. The contradiction
is then the following one: since h−1

j (rj) = gl(s) = h−1
k (rk) then hj ◦h−1

k

establishes an isomorphism between (Tj, rj) and (Tk, rk) - impossible
by our assumption. □
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