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Abstract

In this paper, we prove that for any k ≥ 3, there exist infinitely many minimal
asymmetric k-uniform hypergraphs. This is in a striking contrast to k = 2, where
it has been proved recently that there are exactly 18 minimal asymmetric graphs.

We also determine, for every k ≥ 1, the minimum size of an asymmetric k-
uniform hypergraph.

Keywords: asymmetric hypergraphs, k-uniform hypergraphs, automorphism.

1 Introduction

In this paper we deal with (undirected) graphs, oriented graphs and more general hy-
pergraphs and relational structures. Let us start with (undirected) graphs: An (undi-
rected) graph G is called asymmetric if it does not have a non-identity automorphism.
Any non-asymmetric graph is also called symmetric graph. A graph G is called minimal
asymmetric if G is asymmetric and every non-trivial induced subgraph of G is symmetric
(here G′ is a non-trivial subgraph of G if G′ is a subgraph of G and 1 < ∣V (G′)∣ < ∣V (G)∣).
In this paper all graphs are finite.
It is a folklore result that most graphs are asymmetric. In fact, as shown by Erdős and

Rényi [3] most graphs on large sets are asymmetric in a very strong sense. The paper
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[3] contains many extremal results (and problems), which motivated further research on
extremal properties of asymmetric graphs, see e.g. [6], [11]. This has been also studied
in the context of the reconstruction conjecture [7], [5].
The second author bravely conjectured a long time ago that there are only finitely

many minimal asymmetric graphs, see e.g. [2]. Partial results were given in [8], [9],
[12] and recently this conjecture has been confirmed by Pascal Schweitzer and Patrick
Schweitzer [10] (the list of 18 minimal asymmetric graphs has been isolated already in
[8]):

Theorem 1 [10] There are exactly 18 minimal asymmetric undirected graphs up to
isomorphism.

In this paper, we consider analogous questions for k-graphs (or k-uniform hyper-
graphs), i.e. pairs (X,M ) where M ⊆ (Xk ) = {A ⊆X; ∣A∣ = k}. Induced subhypergraphs,
asymmetric hypergraphs and minimal asymmetric hypergraphs are defined analogously
as for graphs.
We prove two results related to minimal asymmetric k-graphs.
Denote by n(k) the minimum number of vertices of an asymmetric k-graph.

Theorem 2 n(2) = 6, n(3) = 6, n(k) = k + 2 for k ≥ 4.

Our second result disproves analogous minimality conjecture (i.e. a result analogous
to Theorem 1) for k-graphs.

Theorem 3 For every integer k ≥ 3, there exist infinitely many k-graphs that are min-
imal asymmetric.

In fact we prove the following stronger statement.

Theorem 4 For every integer k ≥ 3, there exist infinitely many k-graphs (X,M ) such
that

1. (X,M ) is asymmetric.

2. If (X ′,M ′) is a non-trivial sub-k-graph of (X,M ) with at least two vertices, then
(X ′,M ′) is symmetric.

We call k-graphs that satisfy the two above properties strongly minimal asymmetric.
So strongly minimal asymmetric k-graphs do not contain any non-trivial (not necessarily
induced) asymmetric sub-k-graph. Note that some of the minimal asymmetric graphs fail
to be strongly minimal. For instance, as depicted in Figure 1, the graph X2 is minimal
asymmetric but not strongly minimal asymmetric, since X1 is a minimal asymmetric
subgraph of X2.
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An involution of a graph G is any non-identity automorphism ϕ for which ϕ ○ ϕ is an
identity. It was proved in [10] that all minimal asymmetric graphs are in fact minimal
involution-free graphs. However, it is not the case for k-graphs: there are k-graphs that
are (strongly) minimal asymmetric but not minimal involution-free (see examples after
the proof of Theorem 4 in Section 3.1). We prove the following form of Theorem 4
relating minimal asymmetric k-graphs for involutions.

Theorem 5 For every integer k ≥ 6, there exist infinitely many k-graphs (X,M ) such
that

1. (X,M ) is asymmetric.

2. If (X ′,M ′) is a sub-k-graph of (X,M ) with at least two vertices, then (X ′,M ′)
has an involution.

Theorem 4 and Theorem 5 are proved by constructing a sequence of strongly minimal
asymmetric k-graphs. We have two different constructions of increasing strength. In
Section 3.1 we give a construction with all vertex degrees bounded by 3. A stronger
construction which yields minimal asymmetric k-graphs (k ≥ 6) with respect to involu-
tions is given in the proof of Theorem 5 in Section 3.2. In Section 4 we consider minimal
asymmetric relations and their multiplicities and conclude with several open problems.

2 The proof of Theorem 2

Lemma 6 For k ≥ 3, we have n(k) ≥ k + 2.

Proof. Assume that there exists an asymmetric k-graph (X,M ) with ∣X ∣ = k+1. If for
each vertex u ∈X, there is a hyperedge M ∈M such that u ∉M , then M = (Xk ), which is
symmetric. Otherwise there exists u, v ∈X such that {u, v} ⊂M for every edge M ∈M ,
or there exist u′, v′ ∈ X and M1,M2 ∈M such that u′ ∉M1 and v′ ∉M2. In the former
case, there is an automorphism ϕ of (X,M ) such that ϕ(u) = v and ϕ(v) = u. In the
latter case there is an automorphism ϕ of (X,M ) such that ϕ(u′) = v′ and ϕ(v′) = u′.
In either case we have a contradiction.

For a k-graph G = (X,M ), the set-complement of G is defined as a (∣X ∣ − k)-graph
Ḡ = (X,M̄ ) = (X,{X−M ∣M ∈M }). Denote by Aut(G) the set of all the automorphisms
of G and thus we have Aut(G) = Aut(Ḡ). We define the degree of a vertex v in a k-graph
G as dG(v) = ∣{M ∈M ; v ∈M}∣.

Lemma 7 For k ≥ 4, we have n(k) = k + 2.

Proof. First, we construct an asymmetric 2-graph (X,M ) with ∣X ∣ = k + 2 for each
k ≥ 4. Examples of such graphs X1 and Tk+2 are depicted in Figure 1.
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X1 X2

Tk+2

Figure 1

For k = 4, take the set-complement of X1. For every k ≥ 5, take the set-complement of
Tk+2. It is easy to see that X1 and Tk+2 (k ≥ 5) are asymmetric. Thus set-complements
X̄1 and ¯Tk+2 (k ≥ 5) are also asymmetric k-graphs.
Each of the set-complements X̄1 and ¯Tk+2 has k + 2 vertices. Thus a non-trivial

subgraph of each of them is symmetric, by Lemma 6.

Lemma 8 For k = 3, we have n(3) = 6.

Figure 2: An asymmetric 3-graph with ∣X ∣ = 6

Proof. For n(3) ≤ 6, consider the following 3-graph G = (X,M ) depicted on Figure 2,
X = {v1, v2, v3, v4, v5, v6}, M = {{v1, v2, v3},{v2, v4, v5},{v2, v4, v6},{v3, v4, v5}}. Observe
that dG(v1) = dG(v6) = 1, dG(v2) = dG(v4) = 3, dG(v3) = dG(v5) = 2. It is not difficult to
see G is asymmetric.
Now we shall prove that n(3) ≥ 6.
Assume that there exists an asymmetric 3-graph H = (X,M ) with ∣X ∣ = 5. Let

X = {v1, v2, v3, v4, v5}. Without loss of generality, let M = {v1, v2, v3} ∈M . Then there
exists an edge M ∈M such that v4 ∈M and v5 ∉M , or v4 ∉M and v5 ∈M .
k-graph H is asymmetric if and only if (X, (X3 ) −M ) is asymmetric. Thus we can

sufficiently consider that ∣M ∣ ≤ (
5
3
)

2 = 5. If dH(v4) = dH(v5), which means both of v4 and
v5 have degree 1 or 2, then there exists an automorphism ϕ of H such that ϕ(v4) = v5.
Assume that dH(v4) > dH(v5).
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(a) (b) (c)

Figure 3

Case 1. There is no edge M ∈M such that {v4, v5} ⊆M
It is sufficient to consider two subcases: dH(v4) = 2 and dH(v5) = 1, or dH(v4) = 3 and

dH(v5) = 1. In the first subcase, up to isomorphism, we obtain two different graphs as
Figure 3(a) and 3(b) shown. There exists an automorphism ϕ of H such that ϕ(v2) = v3
in (a) (resp. ϕ(v3) = v4 in (b)). In the second subcase, there is only one possible graph
as Figure 3(c) shown. Observe that there exists an automorphism ϕ of H such that
ϕ(v2) = v3 or ϕ(v1) = v4.
Case 2. There exists M ∈M such that {v4, v5} ⊆M
Let M = {M ∈M ;{v4, v5} ⊆M}, then by symmetric, ∣M∣ ≠ 3. Since dH(v4) > dH(v5)

and ∣M ∣ ≤ 5, the graphs in this case we need to consider can be divide as follow:

1) ∣M −M∣ = 2, as Figure 4(a), 4(b) and 4(c) shown.

2) ∣M −M∣ = 3, as Figure 4(d), 4(e) and 4(f) shown.

3) ∣M −M∣ = 4, as Figure 4(g), 4(h), 4(i), 4(j), 4(k) and 4(l) shown.

It is easily to observe that there is an automorphism ϕ such that ϕ(v1) = v4 and ϕ(v3) = v5
in Figure 4(a), ϕ(v1) = v5 and ϕ(v2) = v4 in Figure 4(b), ϕ(v1) = v2 in Figure 4(c),
ϕ(v1) = v3 in Figure 4(d), ϕ(v1) = v4 in Figure 4(e), ϕ(v2) = v4 and ϕ(v3) = v5 in Figure
4(f), ϕ(v1) = v3 or ϕ(v2) = v4 in Figure 4(g), ϕ(v1) = v3 in Figure 4(h), ϕ(v3) = v4 in
Figure 4(i), ϕ(v1) = v4 or ϕ(v3) = v5 in Figure 4(j), ϕ(v1) = v2 and ϕ(v3) = v5 in Figure
4(k), ϕ(v3) = v4 in Figure 4(l). In each case, we obtain a contradiction.

3 Minimal asymmetric k-graphs

In this section, we give proofs of Theorem 4 and Theorem 5.

3.1 Proof of Theorem 4

We define the following k-graphs for k ≥ 3, t ≥ k − 2. (Note that for each positive integer
p, we denote by [p] the set {0,1,2, . . . , p − 1}.)
Gk,t = (Xk,t,Ek,t),
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4
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Xk,t = {ui; i ∈ [tk]} ∪ {vji ; i ∈ [tk], j ∈ [k − 2]}},
Ek,t = {Ei; i ∈ [tk]} ∪ {Ei,j; j ∈ {1,2, . . . , k − 3}, i = j + sk − 1, s ∈ [t]},

where Ei = {v0i , ui, v1i , v
2
i , . . . , v

k−3
i , v0i+1}, Ei,j = {vji , v

j
i+1, . . . , v

j
i+k−1}, and using addition

modulo tk.

G○k,t = {Xk,t ∪ {x},Ek,t ∪ {E0}}, where E0 = {v00, u0, v10, v
2
0, . . . , v

k−3
0 , x}.

The graphs Gk,t and G○k,t is schematically depicted on Figure 5.

Gk,t G○k,t

Figure 5

The proof of Theorem 4 follows from the following two lemmas.

Lemma 9 1) The graph Gk,t is symmetric and every non-identity automorphism ϕ
of Gk,t satisfies one of the following properties.

– There exists a positive integer c ≠ 0 mod tk such that for every i ∈ [tk],
j = (i + c), ϕ(Ei) = Ej (i.e. for each vertex v ∈ Ei, ϕ(v) ∈ Ej);

– There exists an i ∈ [tk] such that ϕ(Ei) = Ei+1;

– There exists an i ∈ [tk] such that ϕ(Ei) = Ei+2.

2) The only automorphism of Gk,t which leaves the set E0 ∖ {v1} invariant (i.e. for
each vertex v ∈ E0 ∖ {v1}, ϕ(v) ∈ E0 ∖ {v1}) is the identity.

3) Every non-trivial subgraph of Gk,t containing the vertices in E0 has a non-identity
automorphism ϕ which leaves the set E0 invariant.
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Proof. The first property can be seen to hold by considering the degrees of the vertices
in Gk,t. The second property follows easily from this.
To prove the third property, let G be a non-trivial subgraph of Gk,t containing the

vertices in E0 and let s be the maximal index such that G contains the edges E0, E1,
. . . , Es. Suppose first that s ≠ tk − 1. Since Es+1 is not in G, the vertices us and vs+1 are
of degree one. The automorphism ϕ of G which interchanges us and vs+1 and leaves all
the other vertices fixed is a (non-identity) involution. If s = kt − 1, there is an edge El,
l ∈ {i, i + 1, . . . , i + k − 1}, the vertices ul and vjl have degree one. So here also there is a

(non-identity) involution of G that interchanges ul and vjl and leaves all other vertices
fixed, in particular leaving E0 invariant.

Lemma 10 1) The graph G○k,t is asymmetric.

2) Every non-trivial subgraph of G○k,t has a non-identity automorphism.

Proof. To prove the first property, we first suppose that ϕ is an automorphism of G○k,t.
We can see that the edges E0 and E0 are invariant under ϕ by considering the degrees
of the vertices in G○k,t. Since Gk,t is a subgraph of G○k,t, the automorphism ϕ′ induced by
ϕ on Gk,t leaves the E0 ∖ {v1} invariant. By Lemma 9, ϕ′ is identity, thus ϕ is identity.
Therefore, G○k,t is asymmetric.
To prove the second property, let G be a non-trivial subgraph of G○k,t. If G contains

the edge E0, then either G = Gk,t or G contains a non-trivial subgraph of Gk,t containing
the vertices in E0. In both of the cases, according to Lemma 9, there is a non-identity
automorphism of G. Suppose that G does not contain the edge E0. If E0 is in G, then
there is a non-identity involution of G that interchanges x and u0 and leaving all other
vertices fixed. If E0 is not in G, then either G does not contain any edge Ei for all
i ∈ [tk] or there exist some i ∈ [tk] ∖ {0} such that Ei is an edge of G. In the former
case, G is consists of some pairwise disjoint edges, which is trivially symmetric. In the
latter case, let s be the minimal index such that Es is an edge of G. Since Es−1 is not
in G, there is a non-identity involution of G that interchanges v0s and us and leaving all
other vertices fixed.

It is easy to observe that the k-graphs G○k,t have vertex degrees at most three. However
note that in this construction, some of the strongly minimal asymmetric k-graphs G○k,t
are not minimal involution-free. In fact, when k ≥ 3, t ≥ k − 2 is odd, the sub-k-graph
G○k,t − x of G○k,t is involution-free. The most interesting form of Theorem 4 relates to
minimal asymmetric graphs for involutions. It will be proved next.

3.2 Proof of Theorem 5

Let us recall Theorem 5.

Theorem 5 For every k ≥ 6, there exist infinitely many k-graphs (X,M ) such that
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1. (X,M ) is asymmetric.

2. If (X ′,M ′) is a sub-k-graph of (X,M ) with at least two vertices, then (X ′,M ′)
has an involution.

(So we claim infinitely many strongly minimal involution-free k-graphs for every k ≥ 6.)
In the proof, we first construct the following k-graphs for k ≥ 4:
Gk = (Xk,Mk),Xk = {v1, v2, . . . , v2k−1}, Mk = {Mi = {vi, vi+1, . . . , vi+k−1}; i ∈ {1,2, . . . , k}}.
G∗k = (X∗k ,M ∗

k ), X∗k =Xk ∪ {x}, M ∗

k =Mk ∪ {M∗}, where M∗ = {x, v1, . . . , vk−2, vk+2}.
These k-graphs are depicted on Figure 6 and 7.

Figure 6: The graph Gk

Figure 7: The graph G∗k

They will be used as building blocks of our construction.

Lemma 11 1) The k-graph Gk is symmetric and the only non-identity automorphism
ϕ of Gk satisfies that ϕ(vi) = v2k−i for every i ∈ {1,2, . . . ,2k − 1}.

2) The only automorphism of Gk which leaves the set {v2k−2, v2k−1} invariant (i.e.
{ϕ(v2k−2), ϕ(v2k−1)} = {v2k−2, v2k−1}) is the identity.

3) Every non-trivial sub-k-graph of Gk containing vertices v2k−2, v2k−1 has an involu-
tion ϕ which leaves the set {v2k−2, v2k−1} invariant.

4) Every non-trivial sub-k-graph G of Gk with at least two vertices has a non-identity
automorphism ϕ, which is an involution (i.e. ϕ ○ ϕ = 1V (G)).

Proof. The first property holds by considering the degree of each vertex in Gk. Then
also the second property follows.
To prove the third one, we assume that G is a non-trivial sub-k-graph of Gk such that

G contains vertices v2k−2, v2k−1 and j is the maximal index such that G contains the edge
Mj = {vj, vj+1, . . . , vj+k−1}. Let i be the minimal index such that G contains the edges
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Mi,Mi+1, . . . ,Mj. Since G is a nontrival sub-k-graph of Gk, we have j < k and Mj+1 is
not in G or i > 1 and Mi−1 is not in G. It implies that vi+k−2, vi+k−1 share the same edges
Mi, Mi+1, . . . , Mj. If i ∉ {k − 1, k} then there is an involution ϕ of G which leaves the
set {v2k−2, v2k−1} invariant, ϕ(vi+k−2) = vi+k−1 and ϕ(vi+k−1) = vi+k−2. If i ∈ {k − 1, k} and
G contains an edge Ml (1 ≤ l < i− 1), then there is an involution ϕ of G which leaves the
set {v2k−2, v2k−1} invariant, ϕ(vi−2) = vi−1 and ϕ(vi−1) = vi−2, as Ml contains the vertex
vi−1 and Mi−1 is not in G. Now the remaining case is the edge set of G is contained in
{Mk−1,Mk}, which is easy to observe that there is an involution ϕ of G which leaves the
set {v2k−2, v2k−1} invariant.
As the proof of the last property is similar to the previous one we omit it.

Lemma 12 1) The k-graph G∗k is asymmetric.

2) Every non-trivial sub-k-graph of G∗k has an involution.

Proof. First, we prove that G∗k is asymmetric. Assume that ϕ is a non-identity auto-
morphism of G∗k. By considering the degrees of the vertices in the edges M∗ and Mk we
conclude that ϕ(x) = x and ϕ(v2k−1) = v2k−1 since x and v2k−1 are the only two vertices
in G∗k with degree one. As Gk is a sub-k-graph of G∗k, by Lemma 11, we know that
ϕ(vi) = vi for every i ∈ {1,2, . . . , k}. Thus G∗k is asymmetric. (Here one needs k ≥ 4,
which leads below to k ≥ 6).
To prove the second property of G∗k, we assume G is a non-trivial sub-k-graph of G∗k.

Then either G is a sub-k-graph of Gk or G is obtained by adding the vertex x and the
edge M∗ = {x, v1, . . . , vk−2, vk+2} to a non-trivial sub-k-graph of Gk. In the former case,
G has an involution by Lemma 11. In the latter case, since G contains M∗, if there exists
some i ∈ {1,2, . . . , k − 2} such that Mi is not an edge of G, then G has an involution ϕ
with ϕ(x) = vi and ϕ(vi) = x. Thus G contains all of the edges M1,M2, . . . ,Mk−2. Let j
be the maximal index that G contains the edges M1,M2, . . . ,Mj. Since G is a nontrival
sub-k-graph of G∗k, we have j < k and Mj+1 is not in G, hence j ∈ {k − 2, k − 1}. If Mk

is not an edge of G, then either j = k − 2 or j = k − 1 there is an involution ϕ such that
ϕ(vk−1) = vk and ϕ(vk) = vk−1. Thus G contains all the edges of G∗k but Mk−1. So there
is a (non-identity) involution of G that interchanges v2k−2 and v2k−1 and leaves all other
vertices fixed.

For a hypergraph G = (X,M ), let G̃ = (X̃,M̃ ) be a hypergraph with X̃ = X ∪
∣M ∣

⋃
i=1
{ai, bi} (where {ai, bi} ∩ {aj, bj} = ∅ and {ai, bi} ∩ X = ∅ for any i, j ∈ [∣M ∣]) and

M̃ = {Mi ∪ {ai, bi};Mi ∈M }.

Observation 13 For every hypergraph G = (X,M ), every automorphism of G̃ which
maps X to X is also an automorphism of G and every automorphism of G extends to
an automorphism of G̃.
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Lemma 14 Suppose ϕ is an automorphism of G̃k = (X̃k,M̃k) which leaves the set
{v1, v2k−2, v2k−1} invariant. Then ϕ restricted to Xk is identity.

Proof. Observe that the degree of each vertex in Xk ∖ {v1, v2k−2, v2k−1} in G̃k is at
least 2 while every vertex in X̃k ∖Xk has degree one. As ϕ is an automorphism of G̃k

which leaves the set {v1, v2k−2, v2k−1} invariant, ϕ maps Xk to Xk. By Lemma 11 and
Observation 13, ϕ restricted to Xk is identity.

Lemma 15 Suppose ϕ is an automorphism of G̃∗k = (X̃∗k ,M̃ ∗

k ) which leaves the vertices
x and v2k−1 invariant. Then ϕ restricted to X∗k is identity.

Proof. The proof of this lemma is very similar to the above proof of Lemma 14. Observe
that the degree of each vertex in X∗k ∖{x, v2k−1} is at least 2 while every vertex in X̃∗k ∖Xk

has degree one. As ϕ is an automorphism of G̃∗k which leaves the set {x, v2k−1} invariant,
ϕ maps X∗k to X∗k . By Lemma 12 and Observation 13, ϕ restricted to X∗k is identity.

After all these preparations we shall, for each k ≥ 6 and any non-negative integer s,
construct a k-graph Gk,s = (X,M ) with desired properties. Let n = (k−1)(k−2)s. First,
we construct a hypergraph H = (X,M̂ ), depicted as Figure 8, which is consist of s + 2
layers as follow:

• On layer 1, disjoint union of n copies of Gk.

• On layer 2, disjoint union of n
k−2 copies of Gk−2.

• On layer 3, disjoint union of n
(k−2)2 copies of Gk−2.

• ...

• On layer (s + 1), disjoint union of n
(k−2)s = k − 1 copies of Gk−2.

• On layer (s + 2), one copy of G∗k−2.

Intuitively, Gk,s is obtained from H by associating to each (k − 2)-edge in each copy
of Gk−2 on layer (i + 1) (or G∗k−2 on the last layer (s + 2)) a copy of Gk−2 on layer i,
i ∈ {1,2, . . . , s + 1} (or Gk on layer 1) and changing each (k − 2)-edge into a k-edge by
adding the last two vertices of the corresponding copy of Gk−2 (or Gk) to it.
Formally, the k-graph Gk,s = (X,M ) can be constructed in two steps as follows. As

above, set n = (k − 1)(k − 2)s. Consider first n copies of Gk,
n

(k−2) + n
(k−2)2 + ⋯ + (k − 1)

copies of Gk−2 and one copy of G∗k−2 arranged into s + 2 layers (see schematic Figure
8). We then have hypergraph G∗k−2 on layer (s + 2). Graphs on layer (s + 1) are k − 1
copies of Gk−2, which will be listed as G(1), G(2), . . . , G(k − 1). Graphs on layer l,
s + 1 ≥ l ≥ 1, will be n

(k−2)l−1
copies of Gk−2 (or Gk when l = 1) and they will be listed as

G(il, il+1, . . . , is+1), 1 ≤ ij ≤ k−2, j = l, l+1, . . . , s, 1 ≤ is+1 ≤ k−1. Then the vertices of Gk,s

are obtained from the vertices of the disjoint union of all hypergraphs G(il, il+1, . . . , is+1),

11



Figure 8: The hypergraph H

1 ≤ l ≤ s + 1 and G∗k−2. All this can be made more precise at the cost of more notation.
We leave this to the interested reader.
Next, modify the (k−2)-edges to k-edges, which enlarge G(il, il+1, . . . , is+1), 2 ≤ l ≤ s+1

and G∗k−2 to G̃(il, il+1, . . . , is+1), 2 ≤ l ≤ s + 1 and G̃∗k−2, as follows. We start with the last
layer s + 2.
Recall that Mk−2 = {M1,M2, . . . ,Mk−2} and M ∗

k−2 = {M∗

1 ,M
∗

2 , . . . ,M
∗

k−2,M
∗

k−1}. The
edge M∗

il
of G∗k−2 is enlarged by two last vertices of each hypergraph G(is+1) (on layer

s + 1), 1 ≤ is+1 ≤ k − 1.
The previous layer l, 2 ≤ l ≤ s + 1, are treated similarly: the edge M corresponding to

Mii−1 in G(il, . . . , is+1) on layer l is enlarged by the last two vertices of G(il−1, il, . . . , is+1)
on layer l − 1, 1 ≤ il ≤ k − 2.
This finishes the construction of the k-graph Gk,s. And it is easy to observe that all

vertices of k-graphs Gk,s have degree bounded by k.
In the remaining of the proof, we use G(i1, i2, . . . , is+1), G̃(il, il+1, . . . , is+1), 2 ≤ l ≤ s+1

and G̃∗k−2 as the corresponding sub-k-graphs of Gk,s. The corresponding vertex sets of
Gk,s are denoted by V (G(i1, i2, . . . , is+1)) 1 ≤ l ≤ s + 1 and V (G∗k−2).
Since s can be any non-negative integer, it is sufficient to prove that for each of

k-graphs Gk,s, the properties in Theorem 5 hold.
First, we prove asymmetry. To the contrary, we assume that Gk,s has a non-identity

automorphism ϕ.

Claim 16 ϕ(v) = v for every vertex v on layer (s + 2),

Proof. Observing the degree sequence of each edge in Gk,s, the degree one belongs to
four different types of degree sequences:

– the first edge in each copy G(i1, i2, . . . , is+1) of Gk: (1,2, . . . , k);
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– the corresponding edge M of edge Mil in each copy G(il, il+1, . . . , is+1) of Gk−2 on
layer l (2 ≤ l ≤ s + 1): (1,2,2,3,3 . . . , k − 2);

– the two corresponding edges M ′ and M ′′ of two different edges M∗

1 and M∗

k−1 of
G∗k−2 on layer (s+2): (1,2,2,3,3 . . . , k−3, k−3) and (1,2,2,3,3, . . . , k−4, k−3, k−
3, k − 2).

Thus the two vertices with degree one on layer (s + 2) are different from the others,
which implies that ϕ maps the V (G∗k−2) to itself. By Observation 13 and by Lemma 15,
we obtain that ϕ restricted to layer (s + 2) is identity.

Claim 17 If the only automorphism ϕ of Gk,s restricted to layer (l+1), l ≥ 1, is identity,
then ϕ restricted to layer l is also identity.

Proof. Since the automorphism ϕ of Gk,s restricted to layer (l + 1) is identity, the cor-
responding edges M of each edge Mil in G(il+1, il+2, . . . , is+1) on layer (l+1) are pairwise
different. It implies that the copies G(il, il+1, . . . , is+1) on layer l are pairwise different
and ϕ maps each G̃(il, il+1, . . . , is+1) to itself (if l = 1, ϕ maps each G(i1, i2, . . . , is+1) to
itself) and leaves the head vertex and the tail two vertices of G(il, il+1, . . . , is+1) invari-
ant. By Observation 13,and by Lemma 14, the automorphism ϕ of G restricted to each
vertex subset V (G(il, il+1, . . . , is+1)) on layer l is identity.

Claim 16 states that the automorphism ϕ of Gk,s induced on layer (s + 2) is identity.
Then by Claim 17, ϕ of Gk,s restricted to layer (s+1) is identity. Continuing this way, we
obtain that ϕ restricted to layer i is identity, i ∈ {1,2, . . . , s+2}. Thus Gk,s is asymmetric.

The involution property of Theorem 5, follows from the following claim.

Claim 18 For every k ≥ 6 and s ≥ 1, any proper sub-k-graph of Gk,s with at least 2
vertices has an involution.

Proof. For contradiction, assume that Gk,s contains a non-trivial sub-k-graph H such
that H has no involution. Without loss of generality, let us assume that H is connected.
Let l be the minimal layer such that there exists a copy G = G(il, il+1, . . . , is+1) of Gk−2

(G is a copy of Gk if l = 1 and G = G∗k−2 if l = s+2) with 1 < ∣V (H)∩V (G)∣ < ∣V (G)∣. Let
G′ be the sub-(k − 2)-graph (or sub-k-graph) of G induced by V (G′) = V (H) ∩ V (G),
and let G̃′ be the corresponding sub-k-graph of G′ in H. We distinguish two cases.
Case 1. Such an l exists.
Let x, y be the tail two vertices of G. If G′ is an empty graph, then V (G′) = {x, y},
hence H has an involution interchanging x and y. Assume that G′ is a non-trivial sub-
(k − 2)-graph (or sub-k-graph) of G. If G ≠ G∗k−2, by Lemma 11, G′ has an involution
which leaves x, y invariant if x or y belongs to V (G′). If G = G∗k−2, by Lemma 12, G′

has an involution. Then by Observation 13, G̃′ has an involution ϕ that maps V (G′) to
V (G′), which can be easily extended to H.
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Case 2. Such an l does not exist. This means for each copy G = G(im, im+1, . . . , is+1),
i ∈ {1,2, . . . , s+1}, or G = G∗k−2, either V (G)∩V (H) = V (G) and G̃ is a sub-(k−2)-graph
(or sub-k-graph) of H or V (G) ∩ V (H) = ∅.
Assume p is the maximal layer such that there is a copy G′ = G(ip, ip+1, . . . , is+1) of Gk−2

(G′ is a copy ofGk if p = 1 andG′ = G∗k−2 if p = s+2) with V (G′)∩V (H) = V (G′). It is easy
to check that the vertices of every G(iq, iq+1, . . . , ip−1, ip, . . . , is+1) (iq ∈ {1,2, . . . , k − 2},
2 ≤ q ≤ p − 1 and iq ∈ {1,2, . . . , k − 1} if q = 1) is contained in H, otherwise there exists a
copy G(it, it+1, . . . , ip−1, ip, . . . , is+1) for some 2 ≤ t ≤ p− 1, the vertices of which contained
in H are the tail two vertices, a contradiction. Since H is a non-trivial sub-k-graph of
Gk,s, G′ ≠ G∗k−2. By Lemma 11, G′ has an involution. Then by Observation 13, G̃′ has
an involution ϕ that maps V (G′) to V (G′), which can be extended to H.

This concludes the proof of Theorem 5.

4 Concluding remarks

1. Of course one can define the notion of asymmetric graph also for directed graphs.
One has then the following analogy of Theorem 1: there are exactly 19 minimal asym-

metric binary relations. (These are symmetric orientations of 18 minimal asymmetric
(undirected) graphs and the single arc graph ({0,1}, {(0,1)}).)
Here is a companion problem about extremal asymmetric oriented graphs. This is one

of the original motivation, see e.g. [2].
Let G = (V,E) be an asymmetric graph with at least two vertices. We say that G is

critical asymmetric if for every x ∈ V the graph G − x = (V ∖ {x},{e ∈ E;x ∉ e}) fails to
be asymmetric or it is exactly a single vertex. Recall that an oriented graph is a relation
not containing two opposite arcs.

Conjecture 1 There is no critical oriented asymmetric graph.
Explicitly: For every oriented asymmetric graph G with at least two vertices, there

exists x ∈ V (G) such that G − x is asymmetric.

Wójcik [12] proved that a critical oriented asymmetric graph has to contain a directed
cycle. In general, Conjecture 1 is open.

2. More generally, we could consider k-ary relational structures (X,R). We say the
multiplicity m(R) of a relation R is at most s if on every k-set there are at most s
tuples, 1 ≤ s ≤ k!. Thus oriented graphs are binary relations with multiplicity 1. It is
natural to ask for which multiplicities there are finitely many minimal asymmetric k-ary
relational structures (X,R).
There is exactly one minimal asymmetric k-ary relational structure with multiplicity

1, which is a single k-set. And by Theorem 4 we know there are infinitely many minimal
asymmetric k-ary relational structures (X,R) with m(R) = k!.
Note that if a k-ary relation R has multiplicity m(R) = 2, then on every k-set the 2

tuples should be different exactly at two places (if on every k-set the 2 tuples are not in
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this form, then R restricted to these k-tuples are asymmetric, which means that the min-
imal asymmetric k-ary relational structure with such R is a single k-set). For example,
for every k-set {x1, x2, x3, . . . , xk}, (x1, x2, x3, . . . , xk) ∈ R implies (x2, x1, x3, . . . , xk) ∈ R.
We use the construction G○3,t in Section 3.1 to prove that there are infinitely many

minimal asymmetric k-ary relational structures (k ≥ 3) with multiplicity 2. Since in the
proof it makes no diference if the two tuples of R differ at different places, we assume
that in R for every k-set the two tuples differ at the first two places.
We first construct infinitely many minimal asymmetric ternary relational structures
(X3,t,R′3,t) such that for every 3-set {x1, x2, x3}, (x1, x2, x3) ∈ R′3,t implies (x2, x1, x3) ∈
R′3,t. We use the construction of G○3,t as before in Section 3.1.
G3,t = (X3,t,E3,t),
G○3,t = ((X ′3,t,E ′3,t)) = (X3,t ∪ {x},E3,t ∪ {E3t}), where E3t = {v0, u0, x}.
For every set {u, v,w} ∈ E ′3,t, we have (u, v,w) ∈ R′3,t and (v, u,w) ∈ R′3,t.
The proof that G○3,t is minimal asymmetric in Section 3 also works here. And then

we obtain infinitely many minimal asymmetric k-ary relational structures (X,R) with
m(R) = 2 by adding the extra k − 3 (if k > 3) vertices separately to each corresponding
hyperedge as follows.

H○k,t = (X ′k,t,Mk,t), where X ′k,t = X3,t ∪ {x} ∪
3t

⋃
i=0
{w1

i ,w
2
i , . . . ,w

k−3
i } and Mk,t = {E′i =

Ei ∪ {w1
i ,w

2
i , . . . ,w

k−3
i }; i ∈ [3t + 1]}.

Every vertex w1
i ,w

2
i , . . . ,w

k−3
i in Ei for every i ∈ [3t+1] maps to itself in any automor-

phism of H○k,t according to the multiplicity of R, which complete the proof.
This also implies that for k-ary relation R with m(R) = k!−1 there is only one minimal

asymmetric relation while for m(R) = k!−2 we have infinitely many of them. Perhaps for
every m(R), 2 ≤m(R) ≤K!− 2 there are infinitely many minimal asymmetric relations.
Of interest are special cases such as cyclic relations. We call a relation R cyclic if it

has multiplicity k and on every k-set {x1, x2, . . . , xk} it contains all the following tuples
(x1, x2, x3, . . . , xk), (x2, x3, . . . , xk, x1), ⋯, (xk, x1, x2, . . . , xk−1).
Problem 2 Are there finitely many minimal asymmetric k-ary cyclic relational struc-
tures (X,R)?
It is not clear even for k = 3.

Acknowledgement. The authors thank Dominik Bohnert and Christian Winter for
finding a mistake in the original statement of Lemma 9.
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