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Abstract

In this paper, we prove that for any &k > 3, there exist infinitely many minimal
asymmetric k-uniform hypergraphs. This is in a striking contrast to k = 2, where
it has been proved recently that there are exactly 18 minimal asymmetric graphs.

We also determine, for every k£ > 1, the minimum size of an asymmetric k-
uniform hypergraph.
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1 Introduction

In this paper we deal with (undirected) graphs, oriented graphs and more general hy-
pergraphs and relational structures. Let us start with (undirected) graphs: An (undi-
rected) graph G is called asymmetric if it does not have a non-identity automorphism.
Any non-asymmetric graph is also called symmetric graph. A graph G is called minimal
asymmetric if G is asymmetric and every non-trivial induced subgraph of GG is symmetric
(here G is a non-trivial subgraph of G if G' is a subgraph of G and 1 < |[V(G")| < [V (G))).
In this paper all graphs are finite.

It is a folklore result that most graphs are asymmetric. In fact, as shown by Erdés and
Rényi [3] most graphs on large sets are asymmetric in a very strong sense. The paper
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[3] contains many extremal results (and problems), which motivated further research on
extremal properties of asymmetric graphs, see e.g. [6], [I1]. This has been also studied
in the context of the reconstruction conjecture [7], [5].

The second author bravely conjectured a long time ago that there are only finitely
many minimal asymmetric graphs, see e.g. [2]. Partial results were given in [], [9],
[12] and recently this conjecture has been confirmed by Pascal Schweitzer and Patrick
Schweitzer [10] (the list of 18 minimal asymmetric graphs has been isolated already in

B]):

Theorem 1 [10] There are exactly 18 minimal asymmetric undirected graphs up to
1somorphism.

In this paper, we consider analogous questions for k-graphs (or k-uniform hyper-
graphs), i.e. pairs (X,.#) where .# < () = {Ac X;|A| = k}. Induced subhypergraphs,
asymmetric hypergraphs and minimal asymmetric hypergraphs are defined analogously
as for graphs.

We prove two results related to minimal asymmetric k-graphs.

Denote by n(k) the minimum number of vertices of an asymmetric k-graph.

Theorem 2 n(2) =6, n(3) =6, n(k) =k+2 for k> 4.

Our second result disproves analogous minimality conjecture (i.e. a result analogous
to Theorem (1| for k-graphs.

Theorem 3 For every integer k > 3, there exist infinitely many k-graphs that are min-
imal asymmetric.

In fact we prove the following stronger statement.

Theorem 4 For every integer k > 3, there exist infinitely many k-graphs (X, #') such
that

1. (X, .A) is asymmetric.

2. If (X', .4") is a non-trivial sub-k-graph of (X, . #') with at least two vertices, then
(X', ") is symmetric.

We call k-graphs that satisfy the two above properties strongly minimal asymmetric.
So strongly minimal asymmetric k-graphs do not contain any non-trivial (not necessarily
induced) asymmetric sub-k-graph. Note that some of the minimal asymmetric graphs fail
to be strongly minimal. For instance, as depicted in Figure [I] the graph X5 is minimal
asymmetric but not strongly minimal asymmetric, since X; is a minimal asymmetric
subgraph of Xo.



An involution of a graph G is any non-identity automorphism ¢ for which ¢ o ¢ is an
identity. It was proved in [10] that all minimal asymmetric graphs are in fact minimal
involution-free graphs. However, it is not the case for k-graphs: there are k-graphs that
are (strongly) minimal asymmetric but not minimal involution-free (see examples after
the proof of Theorem [ in Section [3.1). We prove the following form of Theorem

relating minimal asymmetric k-graphs for involutions.

Theorem 5 For every integer k > 6, there exist infinitely many k-graphs (X, #') such
that

1. (X, A ) is asymmetric.

2. If (X', ") is a sub-k-graph of (X, .#') with at least two vertices, then (X', . #")

has an involution.

Theorem 4] and Theorem [5| are proved by constructing a sequence of strongly minimal
asymmetric k-graphs. We have two different constructions of increasing strength. In
Section we give a construction with all vertex degrees bounded by 3. A stronger
construction which yields minimal asymmetric k-graphs (k > 6) with respect to involu-
tions is given in the proof of Theorem [5|in Section In Section [4] we consider minimal
asymmetric relations and their multiplicities and conclude with several open problems.

2 The proof of Theorem
Lemma 6 For k>3, we have n(k) >k + 2.

Proof. Assume that there exists an asymmetric k-graph (X, .#) with | X|=k+1. If for
each vertex u € X, there is a hyperedge M € .# such that u ¢ M, then .# = (),f), which is
symmetric. Otherwise there exists u,v € X such that {u,v} ¢ M for every edge M € .#,
or there exist u/,v' € X and My, My € .# such that u' ¢ M; and v’ ¢ Ms. In the former
case, there is an automorphism ¢ of (X,.#) such that ¢(u) = v and ¢(v) = u. In the
latter case there is an automorphism ¢ of (X, .#') such that ¢(u’') = v" and ¢(v') = u'.
In either case we have a contradiction. H

For a k-graph G = (X, .#'), the set-complement of G is defined as a (|X| - k)-graph
G=(X,#)=(X,{X-M|M e.#}). Denote by Aut(G) the set of all the automorphisms
of G and thus we have Aut(G) = Aut(G). We define the degree of a vertex v in a k-graph
G asdg(v)=|{Me.M;veM}|.

Lemma 7 For k>4, we have n(k) =k + 2.

Proof. First, we construct an asymmetric 2-graph (X,.#) with |X| = k + 2 for each
k > 4. Examples of such graphs X; and Ty, are depicted in Figure [I}
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For k =4, take the set-complement of X;. For every k > 5, take the set-complement of
Tivo. It is easy to see that X; and T, (k > 5) are asymmetric. Thus set-complements
X, and Tyo (k> 5) are also asymmetric k-graphs.

Each of the set-complements X; and Tj.» has k + 2 vertices. Thus a non-trivial
subgraph of each of them is symmetric, by Lemma [0 I

Lemma 8 For k=3, we have n(3) = 6.

.UG

Figure 2: An asymmetric 3-graph with |X| =6

Proof. For n(3) <6, consider the following 3-graph G = (X, .#') depicted on Figure 2]
X ={v1,v9,v3,04,05,06}, M = {{v1,v2,03}, {v2, 4,05}, {v2,v4,06},{V3,v4,05}}. Observe
that dg(v1) = da(ve) = 1, dg(ve) = dg(vy) = 3, dg(vs) = dg(vs) = 2. It is not difficult to
see (G is asymmetric.

Now we shall prove that n(3) > 6.

Assume that there exists an asymmetric 3-graph H = (X,.#) with |X| = 5. Let
X = {v1,v9,v3,04,v5}. Without loss of generality, let M = {vy,vs,v3} € 4. Then there
exists an edge M € .# such that vy e M and vs ¢ M, or vy ¢ M and vs € M.

k-graph H is asymmetric if and only if (X, ()3() - ) is asymmetric. Thus we can

sufficiently consider that |.Z| < % =5. If dg(vys) = dg(vs), which means both of v, and
vs have degree 1 or 2, then there exists an automorphism ¢ of H such that ¢(vy) = vs.
Assume that dg(vy) > dy(vs).
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Case 1. There is no edge M € .# such that {vs,v5} € M

It is sufficient to consider two subcases: dgy(vs) =2 and dy(vs) =1, or dy(vs) = 3 and
dy(vs) = 1. In the first subcase, up to isomorphism, we obtain two different graphs as
Figure 3(a) and 3(b) shown. There exists an automorphism ¢ of H such that ¢(vq) = v3
in (a) (resp. ¢(v3) =wvy in (b)). In the second subcase, there is only one possible graph
as Figure 3(c) shown. Observe that there exists an automorphism ¢ of H such that

¢(va) = vz or ¢(vy) = vy.

Case 2. There exists M € . such that {vy,v5} € M
Let M = {M e .#;{v4,v5} € M}, then by symmetric, [M| # 3. Since dy(vs) > dg(vs)
and || < 5, the graphs in this case we need to consider can be divide as follow:

1) |# -M)| =2, as Figure 4(a), 4(b) and 4(c) shown.
2) |4 - M| =3, as Figure 4(d), 4(e) and 4(f) shown.
3) |-# —M]| =4, as Figure 4(g), 4(h), 4(i), 4(j), 4(k) and 4(1) shown.

It is easily to observe that there is an automorphism ¢ such that ¢(v;) = v4 and ¢(v3) = vs
in Figure 4(a), ¢(v1) = vs and ¢(vg) = vy in Figure 4(b), ¢(v1) = vy in Figure 4(c),
¢(v1) = vz in Figure 4(d), ¢(v1) = vy in Figure 4(e), ¢(ve) = v4 and ¢(v3) = v in Figure
4(f), ¢(v1) = vz or ¢(ve) = vy in Figure 4(g), ¢(v1) = vs in Figure 4(h), ¢(vs) = vy in
Figure 4(i), ¢(v1) = vg or ¢(v3) = vs in Figure 4(j), ¢(v1) = vo and ¢(v3) = v5 in Figure
4(k), ¢(v3) = vy in Figure 4(1). In each case, we obtain a contradiction. Il

3 Minimal asymmetric k-graphs

In this section, we give proofs of Theorem [4] and Theorem [5|

3.1 Proof of Theorem /4]

We define the following k-graphs for k > 3, t > k—2. (Note that for each positive integer
p, we denote by [p] the set {0,1,2,...,p—1}.)

Gk,t = (Xk,t7 éak,t)a
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Xie = {uzi € [th]} o {v}yi € [th],j € [k - 2]}},

ght: {E“ZE [tk’]}U{E%]h]E{l,Q,,k—g},Z:]+Sk—17S€ [t]},
where E; = {09, u;, v}, 02, ., 0F 3,00}, By = {vl,vl,,,...,v],, ,}, and using addition
modulo tk.

Gy, = {Xpsu{z}, &t {E}}, where EO = {v),ug, v}, 03, ..., 053, a}.

The graphs G and Gy ; is schematically depicted on Figure .
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The proof of Theorem 4] follows from the following two lemmas.
Lemma 9 1) The graph Gy is symmetric and every non-identity automorphism ¢
of G+ satisfies one of the following properties.
— There exists a positive integer ¢ # 0 mod tk such that for every i € [tk],
j=(i+c), ¢(E;) = E; (i.e. for each vertex v e E;, ¢p(v) € E;);
— There exists an i € [tk] such that ¢(FE;) = Eiq;
— There exists an i € [tk] such that ¢(E;) = Eys.

2) The only automorphism of Gy which leaves the set Ey \ {v1} invariant (i.e. for
each vertex v e Eg N~ {v1}, ¢(v) € Eg ~ {v1}) is the identity.

3) Every non-trivial subgraph of Gy, containing the vertices in Ey has a non-identity
automorphism ¢ which leaves the set Ey invariant.



Proof. The first property can be seen to hold by considering the degrees of the vertices
in Gy ¢. The second property follows easily from this.

To prove the third property, let G’ be a non-trivial subgraph of Gy, containing the
vertices in Fjy and let s be the maximal index such that G' contains the edges Ey, F1,
..., B,. Suppose first that s # tk—1. Since F,,; is not in G, the vertices u; and v,,; are
of degree one. The automorphism ¢ of G which interchanges ug and v,,; and leaves all
the other vertices fixed is a (non-identity) involution. If s = kt — 1, there is an edge Ej,
le{iyi+1,...,i+k—1}, the vertices u; and ’Ulj have degree one. So here also there is a
(non-identity) involution of G that interchanges u; and vlj and leaves all other vertices
fixed, in particular leaving Ej invariant. Hl

Lemma 10 1) The graph szt 18 asymmetric.

2) Every non-trivial subgraph of G3, has a non-identity automorphism.

Proof. To prove the first property, we first suppose that ¢ is an automorphism of Gy ;.
We can see that the edges E° and Ej are invariant under ¢ by considering the degrees
of the vertices in G ,. Since Gy, is a subgraph of Gy, ,, the automorphism ¢’ induced by
¢ on Gy, leaves the Eo\ {v1} invariant. By Lemma@ ¢' is identity, thus ¢ is identity.
Therefore, G}, is asymmetric.

To prove the second property, let G' be a non-trivial subgraph of G} ,. If G contains
the edge Ly, then either G' = G}, or G contains a non-trivial subgraph of G+ containing
the vertices in Ey. In both of the cases, according to Lemma [9] there is a non-identity
automorphism of GG. Suppose that G does not contain the edge Ey. If £ is in G, then
there is a non-identity involution of GG that interchanges z and uy and leaving all other
vertices fixed. If EY is not in G, then either G does not contain any edge FE; for all
i € [tk] or there exist some i € [tk] ~ {0} such that F; is an edge of G. In the former
case, GG is consists of some pairwise disjoint edges, which is trivially symmetric. In the
latter case, let s be the minimal index such that E, is an edge of GG. Since E,_; is not
in G, there is a non-identity involution of G that interchanges v? and u, and leaving all
other vertices fixed.

It is easy to observe that the k-graphs G , have vertex degrees at most three. However
note that in this construction, some of the strongly minimal asymmetric k-graphs Gy
are not minimal involution-free. In fact, when k > 3, t > k — 2 is odd, the sub-k-graph
Gy, —x of Gy, is involution-free. The most interesting form of Theorem H relates to
minimal asymmetric graphs for involutions. It will be proved next.

3.2 Proof of Theorem [

Let us recall Theorem [l
Theorem |5 For every k > 6, there exist infinitely many k-graphs (X, .#) such that



1. (X, .#) is asymmetric.
2. If (X', 4") is a sub-k-graph of (X,.#) with at least two vertices, then (X', .Z")
has an involution.

(So we claim infinitely many strongly minimal involution-free k-graphs for every k > 6.)
In the proof, we first construct the following k-graphs for k > 4:
Gy = (Xi, M), Xy = {v1,02, .. Vop1 )y M = {M; = {05,541, - .-, Vg1 131 € {1,2, ..k} )
G; = (X}, 47), X = Xpu{a}, A = My o {M~*}, where M* = {z,v1,..., U2, Vs2}
These k-graphs are depicted on Figure [6] and [7]
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Figure 6: The graph Gy
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Figure 7: The graph G}
They will be used as building blocks of our construction.

Lemma 11 1) The k-graph Gy, is symmetric and the only non-identity automorphism
¢ of Gy satisfies that ¢(v;) = vap_; for everyie{1,2,...,2k—-1}.

2) The only automorphism of Gy which leaves the set {vog_o, Vo 1} invariant (i.e.
{d)(l]gk_g), ¢(U2k_1)} = {’ng_g, U2k—1}) 18 the zdentzty

3) Every non-trivial sub-k-graph of Gy containing vertices voy_s, Vor_1 has an involu-
tion ¢ which leaves the set {vog_o,Vox_1} invariant.

4) Every non-trivial sub-k-graph G of Gy, with at least two vertices has a non-identity
automorphism ¢, which is an involution (i.e. ¢po ¢ =1y ().

Proof. The first property holds by considering the degree of each vertex in Gj. Then
also the second property follows.

To prove the third one, we assume that G is a non-trivial sub-k-graph of GG, such that
G contains vertices vor_s, v9x_1 and j is the maximal index such that G contains the edge
M; = {vj,vjs1,...,Vj4k-1}. Let i be the minimal index such that G contains the edges



M;, M1, .., M;. Since G is a nontrival sub-k-graph of Gy, we have j < k and Mj,, is
not in GG or i > 1 and M;_; is not in GG. It implies that v;,x_o, v;;x_1 share the same edges
M;, My, ..., M;. If i ¢ {k—-1,k} then there is an involution ¢ of G which leaves the
set {vog_o, Uo_1} invariant, ¢(viig_o) = Viyp—1 and G(visg-1) = Vipp—o. If i € {k—1,k} and
G contains an edge M, (1 <l <i-1), then there is an involution ¢ of G which leaves the
set {vo 9, vop_1} invariant, ¢(v;_2) = v;-1 and ¢(v;_1) = v;_o, as M, contains the vertex
v;-1 and M;_; is not in G. Now the remaining case is the edge set of G is contained in
{Mj._1, M.}, which is easy to observe that there is an involution ¢ of G which leaves the
set {Vgg_o,Vox_1} invariant.
As the proof of the last property is similar to the previous one we omit it. l

Lemma 12 1) The k-graph G} is asymmetric.

2) Every non-trivial sub-k-graph of G}, has an involution.

Proof. First, we prove that G} is asymmetric. Assume that ¢ is a non-identity auto-
morphism of G;. By considering the degrees of the vertices in the edges M* and M), we
conclude that ¢(z) = x and ¢(vox_1) = vor_1 since x and vg_1 are the only two vertices
in G} with degree one. As G}, is a sub-k-graph of G}, by Lemma , we know that
é(v;) = v; for every i € {1,2,...,k}. Thus G} is asymmetric. (Here one needs k > 4,
which leads below to k > 6).

To prove the second property of G}, we assume G is a non-trivial sub-k-graph of G7.
Then either G is a sub-k-graph of Gy or G is obtained by adding the vertex x and the
edge M* ={z,v1,...,05_2,V512} to a non-trivial sub-k-graph of Gj. In the former case,
G has an involution by LemmalI1] In the latter case, since G contains M*, if there exists
some i € {1,2,...,k -2} such that M; is not an edge of GG, then G has an involution ¢
with ¢(x) = v; and ¢(v;) = 2. Thus G contains all of the edges My, My, ..., My_o. Let j
be the maximal index that G contains the edges M, My, ..., M;. Since G is a nontrival
sub-k-graph of G}, we have j < k and Mj,; is not in G, hence j € {k -2,k -1}. If M,
is not an edge of GG, then either j = k-2 or j = k-1 there is an involution ¢ such that
&(vk-1) = v and ¢(vg) = vp—1. Thus G contains all the edges of G but Mj_;. So there
is a (non-identity) involution of G that interchanges vgy_s and vgr_1 and leaves all other
vertices fixed. ll

For a hypergraph G = (X,.#), let G = (X,.#) be a hypergraph with X = X u
|-
U{ai, b} (where {a;,b;} n{a;,b;} = @ and {a;,b;} n X = @ for any 7,5 € [|.#]]) and
i=1
M = {M; U{a;, b} My e MY
Observation 13 For every hypergraph G = (X, #), every automorphism of G which

maps X to X is also_an automorphism of G and every automorphism of G extends to
an automorphism of G.

10



Lemma 14 Suppose ¢ is an automorphism of Gy = (Xy, . #,) which leaves the set
{v1, Vop_2,Vo_1} tnvariant. Then ¢ restricted to Xy, is identity.

Proof. Observe that the degree of each vertex in Xy \ {vy,vop_2,v95-1} in ék is at
least 2 while every vertex in Xj, \ X}, has degree one. As ¢ is an automorphism of G
which leaves the set {v1,vox_o, V9, 1} invariant, ¢ maps X; to X;. By Lemma and
Observation [L3], ¢ restricted to X}, is identity. H

Lemma 15 Suppose ¢ is an automorphism of é}; = (X,:, ,/Z/,E) which leaves the vertices
x and vo_y tnvariant. Then ¢ restricted to X} 1s identity.

Proof. The proof of this lemma is very similar to the above proof of Lemmal[l4] Observe
that the degree of each vertex in X} \{z, vg_1} is at least 2 while every vertex in X; \ X,

has degree one. As ¢ is an automorphism of é,’; which leaves the set {x,vo,_1} invariant,
¢ maps X to X;. By Lemma (12| and Observation ¢ restricted to X is identity. Il

After all these preparations we shall, for each k > 6 and any non-negative integer s,
construct a k-graph Gy, s = (X, #') with desired properties. Let n = (k-1)(k—-2)*. First,
we construct a hypergraph H = (X ,//Z ), depicted as Figure 8 which is consist of s+ 2
layers as follow:

e On layer 1, disjoint union of n copies of Gy.

On layer 2, disjoint union of 5 copies of Gy_s.

On layer 3, disjoint union of ﬁ copies of G_s.

On layer (s + 1), disjoint union of ﬁ =k —1 copies of Gj_s.
e On layer (s +2), one copy of G} _,.

Intuitively, G s is obtained from H by associating to each (k —2)-edge in each copy
of Gi—s on layer (i +1) (or G;_, on the last layer (s +2)) a copy of Gj_, on layer 1,
ie{l,2,...,s+1} (or Gy on layer 1) and changing each (k —2)-edge into a k-edge by
adding the last two vertices of the corresponding copy of Gj_» (or G},) to it.

Formally, the k-graph Gy s = (X, #) can be constructed in two steps as follows. As
above, set n = (k- 1)(k - 2)*. Consider first n copies of Gy, 5y + gz + - + (k= 1)
copies of Gy and one copy of G} _, arranged into s + 2 layers (see schematic Figure
. We then have hypergraph G;_, on layer (s +2). Graphs on layer (s +1) are k-1
copies of Gj_a, which will be listed as G(1), G(2), ..., G(k —1). Graphs on layer [,
s+1>1>1, will be W copies of Gy_s (or G, when [ = 1) and they will be listed as
G(ir, Gi1, -y 0s01), 1 <45 <k=2,j=1,1+1,...,5, 1 <igy <k—1. Then the vertices of Gy
are obtained from the vertices of the disjoint union of all hypergraphs G (i, 141, - - -, iss1),

11
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Figure 8: The hypergraph H

1<l<s+1and Gj_,. All this can be made more precise at the cost of more notation.
We leave this to the interested reader.

Next, modify the (k—2)-edges to k-edges, which enlarge G (i), 4141, .,0541), 2 <1< 5+1
and G} _, to é(il,im, ciyisi1), 2<1<s+1 and 62_2, as follows. We start with the last
layer s + 2.

Recall that #),_o = {My,M,,..., Mo} and 4}, = {M},M;,...., M} ,, M} }. The
edge M; of G} _, is enlarged by two last vertices of each hypergraph G(is41) (on layer
s+1), 1<ig <k-1.

The previous layer [, 2 <1 < s+ 1, are treated similarly: the edge M corresponding to
M;. , in G(iy, ..., is1) on layer [ is enlarged by the last two vertices of G(i;_1, 71, ..., is511)
onlayer [ -1, 1< <k-2.

This finishes the construction of the k-graph Gy ;. And it is easy to observe that all
vertices of k-graphs G s have degree bounded by &.

In the remaining of the proof, we use G(iy,s,...,7s1), é(il,im, coyise1), 2< 1< s+1
and é;_Q as the corresponding sub-k-graphs of Gy . The corresponding vertex sets of
Gl are denoted by V(G (i1,1a,...,i51)) 1 <l<s+1 and V(G}_,).

Since s can be any non-negative integer, it is sufficient to prove that for each of
k-graphs G}, s, the properties in Theorem [5| hold.

First, we prove asymmetry. To the contrary, we assume that Gy s has a non-identity
automorphism ¢.

Claim 16 ¢(v) = v for every vertex v on layer (s+2),

Proof. Observing the degree sequence of each edge in Gy s, the degree one belongs to
four different types of degree sequences:

— the first edge in each copy G(i1,7a,...,i51) of Gg: (1,2,...,k);

12



— the corresponding edge M of edge M;, in each copy G (41,441, ... ,is+1) of G2 on
layer [ (2<i<s+1): (1,2,2,3,3...,k-2);

— the two corresponding edges M’ and M" of two different edges M} and M ;| of
G5 _,onlayer (s+2): (1,2,2,3,3...,k-3,k-3) and (1,2,2,3,3,...,k-4,k-3,k-
3,k-2).

Thus the two vertices with degree one on layer (s + 2) are different from the others,
which implies that ¢ maps the V(G;_,) to itself. By Observation [13|and by Lemma |15]
we obtain that ¢ restricted to layer (s+2) is identity. H

Claim 17 If the only automorphism ¢ of Gy, s restricted to layer (I1+1), [ > 1, is identity,
then ¢ restricted to layer | is also identity.

Proof. Since the automorphism ¢ of Gy ¢ restricted to layer (I +1) is identity, the cor-
responding edges M of each edge M;, in G(ij11, l42, - - ., s+1) on layer (I+1) are pairwise
different. It implies that the copies G(i;,i141,...,is41) on layer [ are pairwise different
and ¢ maps each é(il,ilﬂ, ooy dgs1) to itself (if [ = 1, ¢ maps each G(iy,iz,...,is1) tO
itself) and leaves the head vertex and the tail two vertices of G(i;,441, .. .,%s:1) invari-
ant. By Observation [I3]and by Lemma [I4] the automorphism ¢ of G restricted to each
vertex subset V(G (i, 4541, .. ,4s:1)) on layer [ is identity. l

Claim [16] states that the automorphism ¢ of Gy induced on layer (s +2) is identity.
Then by Claim[L7], ¢ of Gy, restricted to layer (s+1) is identity. Continuing this way, we
obtain that ¢ restricted to layer ¢ is identity, i € {1,2,...,s+2}. Thus Gy is asymmetric.

The involution property of Theorem |5} follows from the following claim.

Claim 18 For every k > 6 and s > 1, any proper sub-k-graph of Gy s with at least 2
vertices has an involution.

Proof. For contradiction, assume that Gy s contains a non-trivial sub-k-graph H such
that H has no involution. Without loss of generality, let us assume that H is connected.
Let [ be the minimal layer such that there exists a copy G = G(iy, 79151, - - -, 1s+1) of Gi_2
(Gisacopy of Gpifl=1and G =Gj_,if [ =s+2) with 1 <|V(H)nV(G)| <|V(G)|. Let
G’ be the sub-(k — 2)-graph (or sub-k-graph) of G' induced by V(G') = V(H) nV(G),
and let G’ be the corresponding sub-k-graph of G’ in H. We distinguish two cases.
Case 1. Such an [ exists.
Let x, y be the tail two vertices of G. If G’ is an empty graph, then V(G') = {x,y},
hence H has an involution interchanging x and y. Assume that G’ is a non-trivial sub-
(k - 2)-graph (or sub-k-graph) of G. If G # G;_,, by Lemma G’ has an involution
which leaves z, y invariant if = or y belongs to V/(G’). If G = G;_,, by Lemma , G’
has an involution. Then by Observation , G’ has an involution ¢ that maps V(G') to
V(G"), which can be easily extended to H.
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Case 2. Such an [ does not exist. This means for each copy G = G(im,imi1;---,0s41),
i€{1,2,...,5+1}, or G = G}_,, either V(G)nV(H) = V(G) and G is a sub-(k-2)-graph
(or sub-k- graph) of Hor V(G)nV(H) = @.

Assume p is the maximal layer such that there is a copy G’ = G(ip, ip+1,- - ., ts11) of G_o
(G'isacopy of Grifp=1and G’ = G}_, if p = s+2) with V(G")nV (H) = V(G'). It is easy
to check that the vertices of every G(ig, lge1, -« ip-1,0ps ..., is11) (ig € {1,2,...,k -2},
2<g<p-landi,e{l,2,....,k-1}if g=1) is contained in H, otherwise there exists a
copy G(it,dts1y- -y 0p-1s0p,--.,0s11) for some 2 <t < p-1, the vertices of which contained
in H are the tall two vertlces a contradiction. Since H is a non-trivial sub-k-graph of
G, G"# G;_,. By Lemma |11} G" has an involution. Then by Observation 3| G’ has
an involution ¢ that maps V(G’) to V/(G"), which can be extended to H. Il

This concludes the proof of Theorem

4 Concluding remarks

1. Of course one can define the notion of asymmetric graph also for directed graphs.

One has then the following analogy of Theorem 1: there are exactly 19 minimal asym-
metric binary relations. (These are symmetric orientations of 18 minimal asymmetric
(undirected) graphs and the single arc graph ({0,1}, {(0,1)}).)

Here is a companion problem about extremal asymmetric oriented graphs. This is one
of the original motivation, see e.g. [2].

Let G = (V, E) be an asymmetric graph with at least two vertices. We say that G is
critical asymmetric if for every x € V the graph G —x = (V \ {z},{e € E;z ¢ e}) fails to
be asymmetric or it is exactly a single vertex. Recall that an oriented graph is a relation
not containing two opposite arcs.

Conjecture 1 There is no critical oriented asymmetric graph.
Explicitly: For every oriented asymmetric graph G with at least two vertices, there
exists x € V(G) such that G -z is asymmetric.

Wjcik [12] proved that a critical oriented asymmetric graph has to contain a directed
cycle. In general, Conjecture 1 is open.

2. More generally, we could consider k-ary relational structures (X, R). We say the
multiplicity m(R) of a relation R is at most s if on every k-set there are at most s
tuples, 1 < s < k!. Thus oriented graphs are binary relations with multiplicity 1. It is
natural to ask for which multiplicities there are finitely many minimal asymmetric k-ary
relational structures (X, R).

There is exactly one minimal asymmetric k-ary relational structure with multiplicity
1, which is a single k-set. And by Theorem 4| we know there are infinitely many minimal
asymmetric k-ary relational structures (X, R) with m(R) = k!.

Note that if a k-ary relation R has multiplicity m(R) = 2, then on every k-set the 2
tuples should be different exactly at two places (if on every k-set the 2 tuples are not in
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this form, then R restricted to these k-tuples are asymmetric, which means that the min-
imal asymmetric k-ary relational structure with such R is a single k-set). For example,
for every k-set {xq,xo,x3,..., 2k}, (x1,22,23,...,21) € R implies (z2, 21, 3,...,2) € R.

We use the construction G735, in Section 3.1 to prove that there are infinitely many
minimal asymmetric k-ary relational structures (k > 3) with multiplicity 2. Since in the
proof it makes no diference if the two tuples of R differ at different places, we assume
that in R for every k-set the two tuples differ at the first two places.

We first construct infinitely many minimal asymmetric ternary relational structures
(X34, 3,) such that for every 3-set {x1, 72,23}, (71, 72,73) € Ry, implies (v, 21,73) €
R3 ;. We use the construction of G5, as before in Section .

Gs = (X34, 63,4),

Gs, = ((X5,,63,)) = (Xzru{x}, & U{Es}), where Es = {vo, up,z}.

For every set {u,v,w} € &, we have (u,v,w) € Ry, and (v,u,w) € Rj,.

The proof that G735, is minimal asymmetric in Section 3 also works here. And then
we obtain infinitely many minimal asymmetric k-ary relational structures (X, R) with
m(R) =2 by adding the extra k -3 (if k > 3) vertices separately to each corresponding
hyperedge as follows.

3
Hy, = (X],, M), where X[, = X3, u{z} v U{w}, w2, ...,wF3} and A, = {E] =
) I k) i:o

E;u{w!, w2, ... wi3};ie[3t+1]}.

Every vertex w!,w?,...,wf3 in E; for every i € [3¢t+1] maps to itself in any automor-
phism of H}, according to the multiplicity of R, which complete the proof.

This also implies that for k-ary relation R with m(R) = k!-1 there is only one minimal
asymmetric relation while for m(R) = k!-2 we have infinitely many of them. Perhaps for
every m(R), 2<m(R) < K!-2 there are infinitely many minimal asymmetric relations.

Of interest are special cases such as cyclic relations. We call a relation R cyclic if it
has multiplicity k& and on every k-set {x1,xs,...,2} it contains all the following tuples
(r1,29,23, ..., k), (T2, T3, .., Tk, x1), =, (T, T1, T, ..., Tpo1).

Problem 2 Are there finitely many minimal asymmetric k-ary cyclic relational struc-
tures (X, R)?
It is not clear even for k = 3.

Acknowledgement. The authors thank Dominik Bohnert and Christian Winter for
finding a mistake in the original statement of Lemma 9.
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