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Matching minors are a specialisation of minors fit for the study of graph with

perfect matchings. The notion of matching minors has been used to give a structural

description of bipartite graphs on which the number of perfect matchings can be

computed efficiently, based on a result of Little, by McCuaig et al. in 1999.

In this paper we generalise basic ideas from the graph minor series by Robertson

and Seymour to the setting of bipartite graphs with perfect matchings. We introduce

a version of Erdős-Pósa property for matching minors and find a direct link between

this property and planarity. From this, it follows that a class of bipartite graphs with

perfect matchings has bounded perfect matching width if and only if it excludes a

planar matching minor. We also present algorithms for bipartite graphs of bounded

perfect matching width for a matching version of the disjoint paths problem, match-

ing minor containment, and for counting the number of perfect matchings. From our

structural results, we obtain that recognising whether a bipartite graph G contains a

fixed planar graph H as a matching minor, and that counting the number of perfect

matchings of a bipartite graph that excludes a fixed planar graph as a matching

minor are both polynomial time solvable.

Keywords: Disjoint Paths, Matching Minor, Perfect Matching, Erdős-Pósa prop-

erty, Counting Perfect Matchings, Digraphs, Butterfly Minor

1 Introduction

Graph minors are a generalisation of subgraphs which preserve, among other attributes, the

topological properties of their host graph. In particular this means that a graph G embeds on a

surface of genus g if and only if all of its minors do so. The classical theorem of Kuratowski and

Wagner [Wag37, Kur30] uses this link between embeddability and the exclusion of certain minors

by providing a compellingly short list of excluded minors which characterise exactly those graphs

embeddable in the plane, namely K3,3 and K5. The fact that the number of excluded minors for

this famous theorem is finite lead to the question whether this is just a coincidence, or if there is
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a bigger rule behind it. This question became known as Wagner’s Conjecture, which was made

a theorem almost 70 years later by Robertson and Seymour as the final result of their Graph

Minors Project [RS04]. The Graph Minors Project revealed several deep connections between

graph compositions, excluded minors and graphs that embed on surfaces of bounded genus. In

particular, the main tools and findings of the Graph Minors Project can be seen as a natural

generalisation of Wagner’s characterisation of K5-minor free graphs as those which can be built

from planar graphs and a single non-planer graph W8 by means of small clique sums [Wag37].

Roughly speaking, the Graph Minors Project can be broken down into the following steps or

tools:

i) The introduction of a complexity measure that describes the structure of a graph and

allows to rapidly simplify graphs where the measure is small. In the Graph Minors Project

this role is played by treewidth and the idea of tree-decompositions [Hal76, RS86a].

ii) A (rough) characterisation of minor closed classes of graphs where the complexity measure

is small by linking the measure to a topological property. In the case of graph minors this

was done in form of the Grid Theorem and the resulting corollary that any proper minor

closed class of graphs has bounded treewidth if and only if it excludes a planar minor

[RS86b].

iii) An extension of the second step to fully describe highly connected graphs where the com-

plexity measure is large, but which exclude some non-planar minor [RS95, KTW20].

iv) Finally, a combination of all previous steps which results in a rough (but global) description

of all graphs excluding a fixed minor [RS03, KTW20].

An equivalent formulation of Pólya’s Permanent Problem, the problem of recognising those

0-1-matrices whose permanent can be computed efficiently using a specific method, which is

known as the bipartite Pfaffian Recognition Problem was shown in 1975 to correspond to the

containment of K3,3 as a so called matching minor1 in bipartite graphs with perfect matchings

[Lit75]. A structural description of bipartite graphs excluding K3,3 as a matching minor was

later found by Seymour et al. and McCuaig independently [RST99, McC04]. Interestingly, this

description is somewhat similar to Wanger’s Theorem on K5-minor free graphs in the following

sense: The theorem states that every brace that excludes K3,3 as a matching minor can be

created from planar braces and a single non-planar brace by means of a matching theoretic

analogue of clique sums. Inspired by this observation, we pursue an extension of the Graph

Minors Project to matching minors in bipartite graphs.

The project so far This paper is part of the larger project of extending the graph minors

theory of Robertson and Seymour to bipartite graphs with perfect matchings.

A matching theoretic analogue of treewidth, called perfect matching width, was introduced by

Norine [Nor05]. Together with Hatzel and Rabinovich, the third author also derived a grid

theorem for bipartite graphs with perfect matchings and perfect matching width from the related

Directed Grid Theorem [HRW19a, HRW19b].

Roughly speaking, perfect matching width is a branch decomposition over the set of vertices of

a graph and the weight of the edges of the corresponding cubic decomposition tree depends on

1A version of graph minors which also preserves the structure of perfect matchings in a graph. We give formal
definitions of these concepts in Section 1.4.
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the perfect matchings of the graph. By pmw(G) we denote the perfect matching width of a

graph.

Figure 1: The cylindrical matching grid of order 4 with the canonical matching on the left and
an internal quadrangulation on the right.

Theorem 1.1 ([HRW19a, HRW19b]). There exists a function gcyl : N → N such that for every

k ∈ N and every bipartite graph B with a perfect matching M either pmw(B) ≤ gcyl(k) or B

contains CGk as an M -minor such that M contains the canonical matching of CGk.

1.1 Our Contribution

Towards the greater goal of extending the Graph Minors Project to bipartite graphs with perfect

matchings and matching minors, this paper focusses on [RS86b] and the completion of step ii)

of the Graph Minors Project. Since many of the notions used to state our results are relatively

technical we postpone a formal introduction of the definitions to Section 1.4. For the readers

convenience each statement contains references to the necessary definitions.

Theorem 1.2. A proper matching minor closed class B of bipartite graphs has bounded

perfect matching width if and only if it excludes a planar bipartite matching covered graph.

To prove this theorem we first show that the cylindrical grid, which is guaranteed by Theorem 1.1,

contains a square grid as a matching minor. Then we use the theory of ear decompositions of

matching covered graphs to construct a matching minor model of any fixed planar and matching

covered graph within an appropriately sized square grid.

Theorem 1.3. For every planar bipartite matching covered graph H there exists a number

ωH ∈ N such that H is a matching minor of the cylindrical matching grid of order ωH .

Besides the characterisation of classes of bounded perfect matching width, we find an extension

of the Erdős-Pósa property for minors to bipartite graphs with perfect matchings.

Definition 1.4 ((Bipartite) Erdős-Pósa Property for Matching Minors). A (bipartite) matching

covered graph H has the (bipartite) Erdős-Pósa property for matching minors if there exists a

function εH : N → N such that for every k ∈ N any given (bipartite) matching covered graph G

3



with a perfect matching M has k-pairwise disjoint M -conformal subgraphs, all of which contain

H as a matching minor, or there exists an M -conformal set SH ⊆ V (G) with |SH | ≤ εH(k) such

that G− SH does not have H as a matching minor.

Theorem 1.5. A bipartite matching covered graph H has the bipartite Erdős-Pósa property

for matching minors if and only if it is planar.

Towards establishing Theorem 1.5 we overcome two particular challenges:

• We need to establish that for any perfect matching M and any edge cut ∂(X) there exists

a set F ⊆ M of size bounded in a function of the matching porosity of ∂(X) such that

F meets all M -alternating cycles with edges in ∂(X). The existence of such sets is not

guaranteed by the definition of perfect matching width. By using these sets we are also

able to improve on several results of [HRW19a] regarding directed treewidth. This is the

foundation of our algorithmic applications of perfect matching width.

• By deleting a conformal set it is possible to drastically reduce the number of perfect

matchings in a bipartite graph. In particular, a subgraph H of B might be conformal in

B, but if F is subset of edges of some perfect matching M of B such that H is not M -

conformal, then F might not be a conformal subgraph of B − V (F ). This means that the

set SH from Definition 1.4 is not necessarily a hitting set for all matching minor models

of H within B, but still makes sure that B−SH does not contain H as a matching minor.

For this reason the method to prove that a non-planar graph cannot have the Erdős-Pósa

property for minors cannot be extended to bipartite graphs with perfect matchings in a

straightforward fashion.

Our resolution of the first challenge also solves an Erdős-Pósa type problem on directed cycles

through a given set of vertices and it is probably the deepest result in this paper. The second

challenge is resolved by describing what excluding a matching minor means for digraphs, and

establishing a strong version of genus and a new notion of the Erdős-Pósa property for digraphs.

These new concepts are built upon the fact that whole anti-chains of butterfly minors can,

in some sense, be identified with a single bipartite graph with a perfect matching. By using

these anti-chains and the insight gained from the matching theoretic context, we are able to

reformulate and resolve some problems from the world of structural digraph theory. How the

setting of digraphs relates to bipartite graphs with perfect matchings is briefly described in

Section 1.2, where we also discuss our contributions to digraph theory.

Algorithmic Applications of Perfect Matching Width In their seminal work on directed

treewidth [JRST01] Johnson et al. listed three main points which, in their eyes, made treewidth

a successful parameter2. These points are

• It served as a cornerstone of the Graph Minors Project,

• it can be used to prove structural theorems, and

• it has algorithmic applications due to the fact that many NP-hard problems become

tractable on classes of bounded width.

2They actually list four points, but the fourth is the successful use of treewidth in practical application which is
unlikely to be replicable for perfect matching width at the time of writing.
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The current state of research, in particular Theorem 1.1 and Theorem 1.2, can be seen as evi-

dence that perfect matching width can take the place of treewidth in the context of matching

minors in bipartite graphs for the first point. For the second point we can consider Theorem 1.5

to be a nice first result made possible through perfect matching width. Hence, to further

strengthen our claim for the usefulness of perfect matching width, we introduce some algorith-

mic applications of perfect matching width. When considering bipartite graphs from the view

of Matching Theory, two particular problems appear naturally, namely

i) what is the computational complexity of recognising whether a given bipartite graph con-

tains a fixed bipartite and matching covered graph H as a matching minor, and

ii) what is the complexity of counting the number of perfect matchings in bipartite graphs

excluding a fixed graph H as a matching minor?

To be able to use perfect matching width for any of these two questions, we must first show that

we can compute a decomposition of bounded width in polynomial time.

Theorem 1.6. Let B be a bipartite graph with a perfect matching and pmw(B) ≤ w. There

exists a constant cpmw ∈ N and an algorithm with running time 2O(w logw)nO(1) that computes

a perfect matching decomposition of width at most cpmw · w2 for B.

Towards the first question we show that perfect matching width can be used for recognising the

existence of a fixed matching minor within a bipartite graph.

Theorem 1.7. Let H be a fixed bipartite matching covered graph and B a bipartite graph with

a perfect matching. There exists an algorithm with running time |V (B)|O(|V (H)|2+pmw(B)2) that

decides whether B contains H as a matching minor.

The algorithm from Theorem 1.7 is achieved by solving a more general problem on bipartite

graphs of bounded perfect matching width, namely a matching version of the so-called t-Linkage

Problem, or t-Disjoint Paths Problem.

Additionally, counting the number of perfect matchings on bipartite graphs of bounded perfect

matching width can also be solved efficiently.

Theorem 1.8. Let B be a bipartite graph with a perfect matching. There exists an algorithm

with running time |V (B)|O(pmw(B)2) that computes the number of perfect matchings in B.

By combining Theorem 1.2 and Theorem 1.3 with these algorithms, we obtain the following

results for classes of bipartite graphs with perfect matchings that exclude a planar and matching

covered matching minor.

Corollary 1.9. Let H be a fixed planar and bipartite matching covered graph and let ωH be the

number from Theorem 1.3. There exists an algorithm with running time |V (B)|O(ω2

H
) that de-

cides whether a given bipartite graph B with a perfect matching contains H as a matching minor.

Corollary 1.10. Let H be a fixed planar and bipartite matching covered graph, let ωH be the

number from Theorem 1.3, and let B be a bipartite graph with a perfect matching that does

not contain H as a matching minor. There exists an algorithm with running time |V (B)|O(ω2

H )

that computes the number of perfect matchings of B.
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1.2 A Comparison to the Directed Case

Structural Digraph Theory, especially the study of butterfly minors, and Bipartite Matching

Theory are closely linked via a powerful construction that translates every digraph into a bipar-

tite graph with a perfect matching and vice versa. See Figure 2 for an example.

Definition 1.11 (M -Direction). Let B = (V1 ∪ V2, E) be a bipartite graph and let M ∈ M(G)

be a perfect matching of B. The M -direction D(B,M) of B is defined as follows.

i) V (D(G,M)) := M and

ii) E(D(G,M)) :=
{

(e, f) ∈
(

M
2

)

there is g ∈ E(B) such that ∅ 6= e ∩ g ⊆ V1 and

∅ 6= f ∩ g ⊆ V2

}

.

Figure 2: Left: A bipartite graph B with a perfect matching M . Right: The arising M -direction
D(B,M).

Similarly, every undirected graph can be turned into a digraph by simply replacing every undi-

rected edge uv with the directed edges (u, v) and (v, u).

Every digraph D can be made into an undirected graph by simply ‘forgetting’ the orientation

of the edges. There is also a way to interpret any undirected graph as a digraph.

Definition 1.12 (Biorientation). Let G be a graph. The digraph

↔

G := (V (G), {(u, v), (v, u) | uv ∈ E(G)})

is called the biorientation of G. A digraph D for which a graph G exists with D =
↔

G is called

a bioriented graph or symmetric digraph.

Several properties of matching covered bipartite graphs naturally correspond to properties of

digraphs. In particular this is the case for strong connectivity, as one can easily observe that

the M -alternating cycles of a bipartite graph B with a perfect matching M are in bijection with

the directed cycles of its M -direction. The following statement is folklore (a proof can be found

in [ZL10], but the result was already known by [RST99]).

Theorem 1.13. Let B be a bipartite graph with a perfect matching M and k ∈ N be a positive

integer. Then B is k-extendable if and only if D(B,M) is strongly k-connected.

Even more important, and part of the main motivation behind this research is the following

relation between butterfly minors and matching minors.
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Lemma 1.14 ([McC00]). Let B and H be bipartite matching covered graphs. Then H is a

matching minor of B if and only if there exist perfect matchings M ∈ M(B) and M ′ ∈ M(H)

such that D(H,M ′) is a butterfly minor of D(G,M).

Indeed, to the best of our knowledge, all exact characterisations of classes of digraphs in form

of excluded families of butterfly minors are due to, or at least closely related to, Lemma 1.14

[ST87, GT11, Wie20].

Building on the introduction of directed treewidth in [JRST01], Kawarabayashi et al. [KK15,

AKKW16, GKKK20] have started the project of extending the Graph Minors Theory of Robert-

son and Seymour to digraphs. However, when dealing with excluding a planar butterfly minor,

especially with extensions of [RS86b], some problems arise. A key observation is that, while

the cylindrical grid3 as guaranteed by the Directed Grid Theorem from [KK15] is indeed a pla-

nar digraph, it does not contain every planar digraph as a butterfly minor. For an example

of such a digraph see Figure 3. Because of this, the strongly connected digraphs which have

the Erdős-Pósa property are exactly those which are butterfly minors of the cylindrical grid

[AKKW16].

Figure 3: A strongly connected and planar digraph that is not a butterfly minor of the cylindrical
grid.

As pointed out in [RST99, McC04], the class of digraphs excluding all
↔

Cn, where n ≥ 3 is odd,

corresponds exactly to the class of bipartite graphs without K3,3 as a matching minor via the

M -direction and Lemma 1.14. So excluding a single matching minor in a bipartite graph B

corresponds to excluding a, possible infinite, anti-chain of butterfly minors in the M -directions

of B.

By using Lemma 1.14 we formalise these anti-chains based on a single bipartite graph with a

perfect matching in Section 4.2. This leads to a new way of handling butterfly minor closed

classes of digraphs in terms of excluded anti-chains instead of individual digraphs. By doing

so we are able to give digraphic analogues of Theorems 1.2, 1.3 and 1.5 by replacing a single

digraph with a whole anti-chain and planarity with a stronger version, more suited for the theory

of butterfly minors.

1.3 Organisation

In Section 1.4 we present a collection of all necessary definitions. The remainder of this article

is organised as follows:

3The cylindrical grid is the M -direction of the cylindrical matching grid, where M is its canonical matching.
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i) Section 2 deals with finding a bounded size cover for all M -alternating cycles crossing over

an edge cut of bounded matching porosity.

ii) We then use these bounded size covers in Section 3 to give explicit bounds for the rela-

tion of the perfect matching width of a bipartite graph with a perfect matching and the

directed treewidth of its M -directions, thereby substantially improving on the previous

result from [HRW19a].

iii) In Section 4 we introduce a notion of models for matching minors based on previous

definitions from [NT07] and formalise the link between the exclusion of a single matching

minor and a whole anti-chain of butterfly minors.

iv) Section 5 is dedicated to the proofs of Theorems 1.2, 1.3 and 1.5 and their analogues for

digraphs.

v) Finally, in Section 6 we describe the algorithms and present the necessary proofs towards

Theorems 1.6 to 1.8.

1.4 Preliminaries

In the following we introduce basic terminology as well as all concepts necessary for the state-

ments of our main results as presented above. All graphs and digraphs in this article are consid-

ered simple, that is we do now allow multiple edges or loops and wherever such objects would

arise from contraction, we identify multiple edges and remove loops. For a deeper introduction

to Matching Theory the reader may consult [LP09], while for Digraph Theory we recommend

[BJG18].

For integers i, j ∈ Z we use the notation [i, j] for the set {i, i+ 1, . . . , j}, where [i, j] = ∅ if i > j.

Since the majority of our research is focussed on bipartite graphs we fix the following convention.

Wherever possible we use B as the standard name for a bipartite graph and G for arbitrary

graphs if not stated explicitly otherwise. Moreover, we assume every bipartite graph to come

with a bipartition into the colour classes V1 and V2, where in our figures V1 is represented by

black vertices and the vertices in V2 are depicted white. In case ambiguity arises we either treat

Vi as the placeholder for all possible vertices of colour i ∈ [1, 2], or we write Vi(B) to specify

which graph we are talking about.

If X and Y are two finite sets, we denote the symmetric difference by X∆Y := (X \Y )∪(Y \X).

Matching Theory

Definition 1.15 (Perfect Matching and Matching Covered). Let G be a graph. A matching is

a set F ⊆ E(G) of pairwise disjoint edges, by V (F ) we denote the set
⋃

e∈F e, and we say that a

vertex v ∈ V (G) is covered by F if v ∈ V (F ). A matching M ⊆ V (G) is perfect if V (M) = V (G),

an edge e ∈ E(G) which is contained in a perfect matching of G is called admissible. We denote

by M(G) the set of all perfect matchings of G. The graph G is called matching covered if it is

connected, and every edge of G is contained in a perfect matching.

Since we are interested in graphs with perfect matchings, we need a restricted notion of subgraphs

which preserves, at least in parts, the matching structure within our graphs.
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Definition 1.16 (Conformal Sets and Subgraphs). Let G be a graph with a perfect matching

M . A set X ⊆ V (G) is called conformal if G−X has a perfect matching, it is M -conformal, if

M contains a perfect matching of G − X. Similarly, a subgraph H ⊆ G is conformal if V (H)

is conformal4. Moreover, H is M -conformal if V (H) is M -conformal and M contains a perfect

matching of H.

For a theory of connectivity and routing with respect to the perfect matchings within a graph

we need specialised versions of paths and cycles.

Definition 1.17 (Alternating Paths and Cycles). Let G be a graph and F a matching in G. A

path P is said to be F -alternating, if there exists a subset S of the endpoints of P such that F

contains a perfect matching of P −S. The path P is alternating if there is a maximum matching

M of G such that P is M -alternating.

A cycle C is said to be F -alternating if F contains a perfect matching of C. The cycle C is said

to be alternating if G has a maximum matching M for which C is M -alternating.

A key notion, especially for bipartite graphs, in Matching Theory is the property of being able to

extend small matchings to perfect matchings of the whole graph. As illustrated by Theorem 1.13

this property can be seen as the matching theoretic version of strong connectivity.

Definition 1.18 (Extendability). Let G be a graph with a perfect matching and F ⊆ E(G) a

matching. We say that F is extendable if there exists M ∈ M(G) such that F ⊆ M .

For any positive integer k ∈ N, G is said to be k-extendable if it is connected, has at least 2k+2

vertices, and every matching of size k in G is extendable.

We also need a specialisation of minors which also preserves the existence of perfect matchings.

In particular this means that every time we perform one atomic instance of contraction we must

identify an odd number of vertices, since the total number of vertices must stay even.

Let G be a graph with a perfect matching and v ∈ V (G) a vertex of degree two with NG(v) =

{v1, v2}. Let

G′ := G− {v1, v, v2}+ u+ {uw | w ∈ NG−v(v1) ∪NG−v(v2)} ,

where u /∈ V (G). We say that G′ is obtained from G by bicontracting v.

Definition 1.19 (Matching Minor). Let G and H be graphs with perfect matchings and let M

be a perfect matching of G. We say that H is a matching minor of G if H can be obtained

from a conformal subgraph of G by a sequence of bicontractions. If H can be obtained from an

M -conformal subgraph of G by a sequence of bicontractions we say that H is an M -minor of

G.

A class B of bipartite graphs is called a proper matching minor closed class if every member of

B has a perfect matching, for every B ∈ B if H is a matching minor of B, then H ∈ B, and B

does not contain all bipartite graphs with perfect matchings.

4At first glance, this definition might seem unintuitive. However, for our applications we only ever consider
conformal subgraphs H which themselves also have a perfect matching. With V (H) being conformal that
means we can combine any perfect matching of G − H with any perfect matching of H to obtain a perfect
matching of G as a whole. Hence it suffices to only require G−H to have a perfect matching.
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Perfect Matching Width In this paragraph we introduce the matching theoretic version of

treewidth our theory is based on: perfect matching width.

Let G be a graph and X ⊆ V (G) a set of vertices. The edge cut around X in G is defined as

the set ∂G(X) := {uv ∈ E(G) | e ∈ X and v /∈ X}. The sets X and X := V (G) \X are called

the shores of ∂G(X).

Definition 1.20 (Matching Porosity). The matching porosity of an edge cut in a graph G with

a perfect matching is the value

mp(∂G(X)) := max
M∈M(G)

|M ∩ ∂G(X)|.

Let T be a tree and t1t2 ∈ E(T ), then T − t1t2 consists of two components, each containing

exactly one endpoint of t1t2. For i ∈ {1, 2} we denote by Tti the component of T−t1t2 containing

ti. Moreover, if T is rooted and t ∈ V (T ) a vertex different from the root, then there exists a

unique vertex d ∈ V (T ) such that dt is the edge on the path from t to the root. In this case, we

denote by Tt the component of T − dt containing t. Finally, we denote by L(T ) the vertices of

T of degree one called the leaves of T .

Definition 1.21 (Perfect Matching Width). LetG be a graph with a perfect matching. A perfect

matching decomposition of G is a tuple (T, δ), where T is a cubic tree and δ : L(T ) → V (G) a

bijection. Let t1t2 be an edge in T , then the partition of the tree into Tt1 and Tt2 also yields a

partition of the vertices in G that are mapped to the leaves of T . Let

Xi :=
⋃

t∈L(T )∩V (Tti
)

{δ(t)}

be the two classes of the partition. Note that ∂G(X1) = ∂G(X2) defines an edge cut in G,

we refer to it by ∂G(t1t2). The width of a perfect matching decomposition (T, δ) is given by

width(T, δ) := maxt1t2∈E(T )mp(∂G(t1t2)) and the perfect matching width of G is then defined as

pmw(G) := min
(T,δ) perfect matching
decomposition of G

max
t1t2∈E(T )

mp(∂G(t1t2)).

A class B of bipartite graphs with perfect matchings is said to be of bounded perfect matching

width if there exists a constant cB ∈ N such that pmw(B) ≤ cB for all B ∈ B.

Definition 1.22 (Cylindrical Matching Grid). The cylindrical matching grid CGk of order

k is defined as follows. Let C1, . . . , Ck be k vertex disjoint cycles of length 4k. For every

i ∈ [1, k] let Ci = (vi1, v
i
2, . . . , v

i
4k), V

i
1 :=

{

vij | j ∈ {1, 3, 5, . . . , 4k − 1}
}

, V i
2 := V (Ci) \ V

i
1 , and

Mi :=
{

vijv
i
j+1 | v

i
j ∈ V i

1

}

. Then CGk is the graph obtained from the union of the Ci by adding

{

vijv
i+1
j+1 | i ∈ [1, k − 1] and j ∈ {1, 5, 9, . . . , 4k − 3}

}

, and
{

vijv
i−1
j+1 | i ∈ [2, k] and j ∈ {3, 7, 11, . . . , 4k − 1}

}
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to the edge set. We call M :=
⋃k

i=1Mi the canonical matching of CGk. See Figure 1 for an

illustration.

Digraphs

Definition 1.23 (Butterfly Minor). Let D be a digraph and (u, v) ∈ E(D). The edge (u, v) is

butterfly contractible if Nout

D (u) = {v}, or N in

D(v) = {u}.

Suppose (u, v) is butterfly contractible and let

D′ := D − u− v + x+ {(w, x) | (w, u) ∈ E(D) or (w, v) ∈ E(D)}

+ {(x,w) | (u,w) ∈ E(D) or (v,w) ∈ E(D)} ,

where x /∈ V (D). We say that D′ is obtained from D by butterfly contraction of (u, v).

A digraph H is a butterfly minor of D if it can be obtained from D by a sequence of edge-

deletions, vertex-deletions, and butterfly contractions.

Let D be a digraph and X ⊆ V (D). A directed walk W is a directed X-walk if it starts and

ends in X, and contains a vertex of V (D − X). We say that Y ⊆ V (D) strongly guards X if

every directed X-walk in D contains a vertex of Y .

An arborescence is a digraph ~T obtained from a tree T by selecting a root r ∈ V (T ) and orienting

all edges of T away from r. If e is a directed edge and v is an endpoint of e we write v ∼ e.

Definition 1.24 (Directed Treewidth). Let D be a digraph. A directed tree decomposition for

D is a tuple (T, β, γ) where T is an arborescence, β : V (T ) → 2V (D) is a function that partitions

V (D), into sets called the bags5, and γ : E(T ) → 2V (D) is a function, giving us sets called the

guards, satisfying the following requirement:

For every (d, t) ∈ E(T ), γ(d, t) strongly guards β(Tt) :=
⋃

t′∈V (Tt)
β(t′).

Here Tt denotes the subarboresence of T with root t. For every t ∈ V (T ) let Γ(t) := β(t) ∪
⋃

t∼e γ(e). The width of (T, β, γ) is defined as

width(T, β, γ) := max
t∈V (T )

|Γ(t)| − 1.

The directed treewidth of D, denoted by dtw(D), is the minimum width over all directed tree

decompositions for D.

2 Matching Porosity, Directed Cycles, and Separation

Inspecting the guard sets of a directed tree decomposition more closely reveals that guards are

not supposed to block all directed paths that go in one direction. Instead, the guards are meant

to make sure that no strong component of D avoids the guards and contains vertices from below

and above the guarded edge in the directed tree decomposition. Indeed, that means that the

guard set of any given edge e in a directed tree decomposition is a hitting set for all directed

5This means {β(t) | t ∈ V (T )} is a partition of V (D) into non-empty sets.
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cycles that contain vertices from the bags below the head of e, but are not fully contained in

their union. Since, through the eyes of the M -direction, the vertices of a digraph are in fact

the edges of a perfect matching in a bipartite graph we are interested in a similar property

for subsets of perfect matchings on cuts of bounded matching porosity. Explicitly, given a cut

∂B(X) in a bipartite graph B with a perfect matching M we are interested in a set F ⊆ M that

meets all M -conformal cycles with vertices in X and X, and whose size is upper bounded by

some function of mp(∂B(X)).

Definition 2.1 (Guarding Set). Let B be a bipartite graph with a perfect matching M , and

X ⊆ V (B). An M -conformal cycle C is said to cross the cut ∂B(X) if E(C) ∩ ∂B(X) 6= ∅. A

set F ⊆ M is a hitting set for a family C of M -conformal cycles if F ∩ E(C) 6= ∅ for all C ∈ C.

Moreover, F is called a guard for ∂B(X) if ∂B(X)∩M ⊆ F and F is a hitting set for the family

of all M -conformal cycles that cross ∂B(X).

This section is dedicated to the proof of the following theorem and its consequences for digraphs.

Theorem 2.2. Let B be a bipartite graph with a perfect matching M , and X ⊆ V (B) a

set of vertices with mp(∂B(X)) = k, then there exists a guarding set F ⊆ M of ∂B(X) with

|F | ≤ 2k + k2.

Let G be a graph with a perfect matching. We call the graph induced by the admissible edges of

G the cover graph of G. A component of the cover graph of G is an elementary component of G

and the set of all elementary components of G is denoted by E(G). With respect to elementarity,

guarding sets for cuts can be seen as a matching analogue of strong separators.

Definition 2.3 (Dulmage-Mendelsohn Decomposition). Let B be a bipartite graph with a

perfect matching, and i ∈ [1, 2].

For any two elementary components K1,K2 ∈ E(B) we set K1 ≤◦
i K2 if K1 = K2, or there

exists an edge with one endpoint in Vi ∩ E(K2) and the other one in E(K1) \ Vi.

We then write K1 ≤i K
2 for any two elementary components of B if there exist H1, . . . ,Hk ∈

E(B), k ≥ 1, such that H1 = K1, Hk = K2, and Hj ≤
◦
i Hj+1 for all j ∈ [1, k − 1].

In particular, this means K1 ≤1 K
2 if and only if K2 ≤2 K

1. This relation, in a way, resembles

the topological ordering of strong components of digraphs, as in every step we leave a component

going from Vi to Vj, inside the component we pass over to Vi again and may now move to the

next component.

Theorem 2.4 ([DM58, DM59, DM63]). Let B be a bipartite graph with a perfect matching.

Then for any i ∈ [1, 2], the binary relation ≤i is a partial order over E(B).

Lemma 2.5. Let B be a bipartite graph with a perfect matching M , and X ⊆ V (B). If F ⊆ M

is a guard for ∂B(X), then no elementary component of B − V (F ) can contain vertices of both

X \ V (F ) and of X \ V (F ).

Proof. Suppose there exists an elementary component K with vertices in both X \ V (F ) and

X\V (F ). ThenK must have at least four vertices since otherwise, K would be isomorphic to K2
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and its single edge would have to be an edge of M ∩ ∂B(X) ⊆ F . Now let e ∈ E(K)∩ ∂B(X) be

an edge of K (and observe that, by definition, e /∈ M). Also, let M ′ be a perfect matching of K

containing e. Since F ⊆ M and K is an elementary component of B− V (F ), MK := M ∩E(K)

is a perfect matching of K. Moreover, e /∈ MK . If we consider the subgraph K ′ of K consisting

solely of the edges ofM ′ andMK , every component either is anM -conformal cycle, or isomorphic

to K2. Since e /∈ MK , the endpoints of e are covered by distinct edges of M , and thus the

component of K ′ containing e must be an M -conformal cycle that crosses ∂B(X) and avoids F .

However, such a cycle cannot exist by definition.

An important observation one can make in the proof of the lemma above is that, if one were to

delete the vertices of a set F ⊆ M and there still is an elementary component with vertices on

both sides of ∂B(X), there exists a cycle C that is M -conformal in B, which still has edges in

∂B(X). That means, if F = ∂B(X)∩M , then there exists the perfect matching M ′ := M∆E(C)

with |∂B(X) ∩M ′| ≥ |∂B(X) ∩M | + 2. We make this observation more exact in the following

lemma.

Lemma 2.6. Let B be a bipartite graph with a perfect matching M , X ⊆ V (B) such that

mp(∂B(X)) = k, and |M ∩ ∂B(X)| = k. Then M ∩ ∂B(X) is a guard for ∂B(X).

Proof. Suppose there is an M -conformal cycle C avoiding F := M ∩ ∂B(X) but crossing ∂B(X).

Let W := E(C) ∩ ∂B(X), then clearly W ∩M = ∅. However, since C avoids F we can define a

new perfect matching M ′ of B as M ′ := M∆E(C). Then W ∪F ⊆ M ′ and thus |M ′∩∂B(X)| >

k = mp(∂B(X)) which is a contradiction. Hence no M -alternating cycle that crosses ∂B(X) can

avoid F .

For the next part, we need some additional notation. Let B be a bipartite graph with a perfect

matching M , X ⊆ V (B) be an M -conformal set of vertices and M ′ 6= M another perfect

matching of B. Then let us denote for every W ⊆ M ′ by FM ′,M(W ) the set of edges of M

that match the vertices in V (W ). Note that |FM ′,M(W )| ≤ 2|W |. Let H be an elementary

component of B −W , the M-box of H is the set �H,M := V (H) \ V (FM ′,M(W )).

The following observation is an immediate consequence of the definition of ≤2, Theorem 2.4,

and V (W ) ⊆ V (FM ′,M (W )).

Observation 2.7. Let B be a bipartite graph with perfect matchings M and M ′, let W ⊆ M ′

and H1 and H2 be two distinct elementary components of B−V (W ). Then, if H1 ≤2 H2, there

is no internally M -conformal path P in B − V (FM ′,M(W )) such that P starts in a vertex of

V2 ∩�H1,M , ends in a vertex of V1 ∩�H2,M , and is otherwise disjoint from �H1,M ∪�H2,M .

We fix the following for the upcoming lemmata.

Let B be a bipartite graph with a perfect matching M . Let X ⊆ V (B) be an M -conformal

set and let M ′ be a perfect matching with |∂B(X) ∩ M ′| = mp(∂B(X)) = k as well as W :=

∂B(X) ∩ M ′. Let λ be a linearisation of the partial order ≤2 of elementary components of

B − V (W ) and let us number the elementary components H1, . . . ,Hℓ of B − V (W ) such that

λ(Hi) = i for all i ∈ [1, ℓ].

A set I ⊆ [1, ℓ] is a dangerous configuration if there exists an M -conformal cycle C of B −

V (FM ′,M(W )) such that
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i) V (C) ⊆
⋃

i∈I �Hi,M ,

ii) �Hi,M ∩ V (C) 6= ∅ for all i ∈ I, and

iii) there are i, j ∈ I such that �Hi,M ⊆ X and �Hj ,M ⊆ X .

If I is a dangerous configuration, we call iI := max I the endpoint of I, the cycle C is a base

cycle of I.

Lemma 2.8. Let B′ := B − V (FM ′,M (W )). There exists an M -conformal cycle C in B′ that

crosses ∂B′(X \V (FM ′,M(W ))) if and only if there exists a dangerous configuration I with C as

a base cycle.

Proof. The reverse direction follows immediately from the definition of dangerous configura-

tions. If I is dangerous with base cycle C, then C contains vertices of both X and X

and thus crosses ∂B′(X \ V (FM ′,M(W ))). Hence it suffices to prove the forward direction.

So let C be an M -conformal cycle in B′ that crosses ∂B′(X \ V (FM ′,M (W ))). Now let

I := {i ∈ [1, ℓ] | �Hi,M ∩ V (C) 6= ∅}. Then V (C) ⊆
⋃

i∈I �Hi,M and clearly, the second re-

quirement is met by the definition of I. At last we know that C crosses ∂B′(X \V (FM ′,M (W ))).

By lemmata 2.5 and 2.6 there cannot exist j ∈ [1, ℓ] such that V (Hj)∩X 6= ∅ and V (Hj)∩X 6= ∅

at the same time. Hence there must be i, j ∈ I such that �Hi,M ⊆ V (Hi) ⊆ X and

�Hj ,M ⊆ V (Hj) ⊆ X.

In the fixed setting we are working on, let i ∈ [1, ℓ− 1] be any number. We associate a specific

edge cut in B with i and λ as follows:

∂λ(Hi) := ∂B(
i
⋃

j=1

V (Hj) ∪ V1(W )).

Lemma 2.9. For all i ∈ [1, ℓ−1] and all perfect matchings M ′′ of B, we have |∂λ(Hi)∩M ′′| = k.

Proof. Let i ∈ [1, ℓ − 1] be arbitrary. By definition of the partial order ≤2 of the Hj no vertex

v ∈
⋃i

j=1 V2(Hj) can have a neighbour in
⋃ℓ

j=i+1 V (Hj). So the only neighbours v can have

outside of
⋃i

j=1 V (Hj) must be vertices of V1(W ). Hence every perfect matching M ′′ of B must

match v to a vertex within
⋃i

j=1 V (Hj) ∪ V1(W ) and thus it must have exactly

|
i
⋃

j=1

V1(Hj) ∪ V1(W )| − |
i
⋃

j=1

V2(Hj)| = |V1(W )| = k

many edges in ∂λ(Hi).

Lemma 2.10. Let I ⊆ [1, ℓ] be a dangerous configuration and let C be a base cycle of I.

Moreover, let i := min I and i ≤ j < iI , then ∂λ(Hj) ∩ E(C) ∩M 6= ∅.

Proof. Clearly, with C being a cycle, |E(C)∩∂λ(Hj)| ≥ 2. Now suppose ∂λ(Hj)∩E(C)∩M = ∅

and let e1, e2 ∈ E(C)∩∂λ(Hj) be two distinct edges with ep = upvp such that vp ∈
⋃j

j′=1 V (H ′
j)∪

V1(W ) for each p ∈ [1, 2]. Let us further choose e1 and e2 such that there is a subpath P of C

from v1 to v2 that avoids u1 and u2 and does not contain an edge of ∂λ(Hj). To find P move
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along C starting in v1 and away from u1 until the first time we reach an endpoint of another

edge in ∂λ(Hj), this will be v2. By our assumption {e1, e2} ∩ M = ∅ and thus, with C being

M -conformal, E(P )∩M must be a perfect matching of P . Hence P must have an even number

of vertices in particular and thus is of odd length. But by Observation 2.7 v1, v2 ∈ V1 and thus

P is an odd length path joining two vertices of V1. With B being bipartite this is impossible

and our claim follows.

We are finally ready to prove the main result of this section.

Proof of Theorem 2.2. First let F−1 := M ∩ ∂B(X), B0 := B − V (F−1), X0 := X \ V (F−1),

and M0 := M \ F−1. Clearly, every M0 conformal cycle in B0 is also an M -conformal cycle

in B that avoids F−1. Each such cycle that crosses ∂B0
(X0) also crosses ∂B(X), and every

conformal set in B0 is also conformal in B. Moreover, mp(∂B0
(X0)) = k0 := k − |F−1| and X0

is M0-conformal. Now let M ′ be a perfect matching of B0 with |M ′ ∩ ∂B0
(X0)| = k0 and let

F0 := FM ′,M0
(∂B0

(X0) ∩M ′). Then |F0| ≤ 2k0 since every edge of F0 covers an endpoint of an

edge in ∂B0
(X0) ∩M ′ and there are 2k0 such endpoints.

Let λ be a linearisation of the partial order ≤2 of the elementary components of B0−V (∂B0
(X0)∩

M ′). Let us number the elementary components of B0−V (∂B0
(X0)∩M ′) H1, . . . ,Hℓ such that

λ(Hi) = i for all elementary components. We can now choose i1 ∈ [1, ℓ] to be the smallest

number such that there is a dangerous configuration I1 with i1 = iI1 . Then for every dangerous

configuration I with the smallest element i ≤ i1 we must have iI ≥ i1. Hence each base

cycle of such a configuration must have an edge in F1 := (∂λ(Hi1−1) ∩M0) ∪ (∂λ(Hi1) ∩M0) by

Lemma 2.10. Indeed, every M0-conformal cycle that crosses ∂B0
(X0), avoids F0, and has vertices

in
⋃i1

j=1�Hj ,M0
is met by F1 by Lemma 2.8. Moreover, by Lemma 2.9 we have |F1| ≤ 2k0.

Now suppose the sets F1, . . . , Fp−1 ⊆ M0 with |Fj | ≤ 2k0 for all j ∈ [1, p− 1] have already been

constructed together with pairwise disjoint dangerous configurations I1, . . . , Ip−1. Moreover let

us assume that 1 ≤ j < j′ ≤ p − 1 implies iIj < h where h is the smallest member of Ij′

and
⋃p−1

j=1 Fj meets all base cycles of dangerous configurations I for which some i′′ ∈ I exists

with i′′ < iIp−1
. Let ip ∈ [ip−1 + 1, ℓ] be the smallest number such that there is a dangerous

configuration Ip with base cycle C that avoids
⋃p−1

j=1 Fj . This means Ip must be disjoint from
⋃p−1

j=1 Ij . Let Fp := (∂λ(Hip−1)∩M0)∪ (∂λ(Hip)∩M0). By lemmata 2.8 and 2.10,
⋃p

j=1 Fj meets

all ∂B0
(X0) crossing M0-conformal cycles that avoid F0 and have a vertex in

⋃ip
j=1�Hj ,M0

. With

Lemma 2.9 we also have |Fp| ≤ 2k0.

With B being finite and thus ℓ being a natural number there must be some q such that we cannot

find an iq+1 as above. Suppose q > k0
2 . Clearly every Ij , j ∈ [1, q] has a base cycle Cj that is M0

conformal and crosses ∂B0
(X0). However, with X0 being M0-conformal, Cj must have at least

two edges in ∂B0
(X0) that do not belong to M0. Since I1, . . . , Iq are pairwise disjoint, also the

C1, . . . , Cq are also pairwise disjoint. So we construct the following perfect matching of B0:

M ′′ := M0∆

q
⋃

j=1

E(Cj).

15



Then |∂B0
(X0) ∩ M ′′| ≥

∑q
j=1 |∂B0

(X0) ∩ E(Cj) \ M0| ≥ 2q > 2k0
2 = mp(∂B0

(X0)) which is

impossible. Hence our process must stop after q ≤
⌊

k0
2

⌋

many steps. In total we get a set

F := F−1 ∪ F0 ∪
⋃q

j=1 Fj that meets all M -conformal cycles crossing ∂B(X) and satisfying

∂B(X) ∩M ⊆ F . So F is a guard of ∂B(X). Moreover, we have

|F | ≤ |F−1|+ |F0|+

q
∑

j=1

|Fj |

≤ k − k0 + 2k0 +
k0
2
2k0

≤ k + k0 + k20

≤ 2k + k2.

2.1 Cycle Porosity and Strong Separators

How can we translate results on matching porosity into the setting of digraphs using our notion

of M -directions? To answer this question let us consider some graph G with a perfect matching

M . Note that G is not necessarily bipartite as this general idea can be applied to any graph

with a perfect matching. Now let X ⊆ V (G) be an M -conformal set with mp(∂G(X)) = k

for some k ∈ N. Since X is M -conformal, ∂G(X) ∩ M = ∅. Let M ′ ∈ M(G) be a perfect

matching with |M ′ ∩ ∂G(X)| = k and consider the graph G′ := G[M ′ ∪ M ] that only consists

of edges from M ′ ∪M . That is, G′ is the subgraph of G induced by the edge set M ′ ∩M , so

its vertex set is V (M ′ ∪ M) and its edge set is M ′ ∪ M . Observe that, since M and M ′ are

perfect matchings, every component of G′ either is an M -M ′-conformal cycle or isomorphic to

K2. Moreover, no edge of M ′ ∩ ∂G(X) can belong to a component isomorphic to K2 in G′ and

thus each of these edges must be contained in an M -M ′-conformal cycle. Let C be the collection

of all components of G′ that have an edge in ∂G(X). Then we have
⋃

C∈C E(C) ∩ ∂G(X) ⊆ M ′

and in particular |
⋃

C∈C E(C) ∩ ∂G(X)| = k. Hence if the matching porosity of ∂G(X) is k we

find a family of pairwise disjoint M -conformal cycles in G that share k edges with ∂G(X) in

total. Now let Y ⊆ V (G) be another M -conformal set, and let C be a family of pairwise disjoint

M -conformal cycles in G. Suppose |
⋃

C∈C E(C) ∩ ∂G(Y )| = k′ for some k′ ∈ N. Let us denote

by E(C) the set
⋃

C∈C E(C), and let M ′′ := M∆E(C). Then M ′′ is a perfect matching of G

and |∂G(Y ) ∩M ′′| = k′ which implies mp(∂G(Y )) ≥ k′. So if we can find a family of pairwise

disjoint M -conformal cycles in G, then the number of edges this family has in our cut is a lower

bound on its matching porosity. Suppose G is bipartite, then there is a bijection between the

M -conformal cycles in G and the directed cycles in D(G,M). This leads us to the following

definitions and observation.
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Definition 2.11 (Cycle Porosity). Let D be a digraph, and X ⊆ V (D). The cycle porosity of

the cut ∂D(X) is defined as

cp(∂D(X)) := max
C family of

pairwise disjoint
directed cycles

|E(C) ∩ ∂D(X)|.

Let G be a graph with a perfect matching M , and X ⊆ V (G) be an M -conformal set. We

denote by M(X) the set of edges of M with both endpoints in X.

Observation 2.12. Let B be a bipartite graph with a perfect matching M and X ⊆ V (B) be

an M -conformal set. Then mp(∂B(X)) = cp(∂D(B,M)(M(X))).

Corollary 2.13. Let D be a digraph and X ⊆ V (D). If cp(∂D(X)) = k, then there is a hitting

set of size at most k2 + 2k for all directed cycles crossing ∂D(X).

Proof. With D being a digraph there exists a bipartite graph B and a perfect matching M

such that D = D(B,M). For every v ∈ V (D) let us identify the edge ev ∈ M that uniquely

corresponds to v in B. Then X naturally corresponds to the set Y := V ({ev | v ∈ X}) ⊆ V (B).

By calling upon Theorem 2.2, it now suffices to show mp(∂B(Y )) ≤ k in order to prove our claim.

In fact mp(∂B(Y )) = k follows immediately from Observation 2.12 and thus we are done.

Please note that the proofs of Theorem 2.2 and Corollary 2.13 are constructive in the sense that

the construction of the separators and the digraphs Di can be done in polynomial time. This

yields the following algorithmic result.

Corollary 2.14. Let D be a digraph and X ⊆ V (D). There exists a polynomial time algorithm

that finds a hitting set S for all directed cycles that cross ∂D(X) of size at most cp(∂D(X))2 +

2cp(∂D(X)).

3 Perfect Matching Width and Directed Treewidth

We are now ready to apply the findings of Section 2 to prove a close relation between the perfect

matching width of any bipartite graph B with a perfect matching M and its M -direction. To

achieve this we use the analogue of perfect matching width for digraphs induced by cycle porosity

from [HRW19a] called cycle width. We then use the relation between a version of the cops &

robber game and directed treewidth and Corollary 2.13 to show that bounded cycle width implies

bounded directed treewidth.

Definition 3.1 (Cycle Width). Let D be a directed graph. A cycle decomposition of D is a

tuple (T, δ) where T is a cubic tree and δ : L(T ) → V (D) a bijection. Let t1t2 be an edge in T ,

then the partition of the tree into Tt1 and Tt2 also yields a partition of the vertices in D that

are mapped to the leaves of T . Let

Xi :=
⋃

t∈L(T )∩V (Tti
)

{δ(t)}
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be the two classes of the partition. Note that ∂D(X1) = ∂D(X2) defines an edge cut in D, we

refer to it by ∂D(t1t2). The width of a cycle decomposition (T, δ) is defined as half6 of the value

maxe∈E(T ) cp(∂D(e)). Finally, the cycle width of D, denoted by cycw(D), is the minimum width

over all cycle decompositions for D.

The close relation between the perfect matching width of a bipartite graph B with a perfect

matching M and the cycle width of its M -direction has been established in [HRW19a].

Theorem 3.2 ([HRW19a]). Let B be a bipartite graph with a perfect matching M . Then
1
2 pmw(B) ≤ cycw(D(B,M)) ≤ pmw(B).

In light of Theorem 3.2 it is clear that it suffices to relate cycle width and directed treewidth in

order to also obtain a close relationship between directed treewidth and perfect matching width.

The remainder of this section is dedicated to proving the following result.

Proposition 3.3. Let D be a digraph. Then cycw(D) − 1 ≤ dtw(D) ≤ 18 cycw(D)2 +

36 cycw(D)− 2.

While the first inequality has already been proven in [HRW19a], the second inequality is a

major improvement over the former bound which depended on the function of the Directed Grid

Theorem.

Lemma 3.4 ([HRW19a]). Let D be a digraph. Then cycw(D) ≤ dtw(D) + 1.

Let us now define the cops & robber game for digraphs. Let D be a digraph, the cops & robber

game on D is played as follows:

i) Initially the cops announce a starting position C0 ⊆ V (D) and the robber chooses her

starting position R0 which is a strong component of D − C0.

ii) Suppose the game has been played for i ∈ N rounds, Ci ⊆ V (D) is the current position

of the cops and Ri is the current position of the robber. Then the cops announce a new

position Ci+1 ⊆ V (D) and the robber announces a new position Ri+1 such that Ri+1 is a

strong component of D − Ci+1, and there exists a strong component R in D − Ci ∩ Ci+1

such that Ri ∪ Ri+1 ⊆ R. In case no such Ri+1 can be chosen, the robber is caught after

i+ 1 rounds.

If the cops can guarantee that, no matter how the robber plays, she is always caught after finitely

many rounds we say that the cops have a winning strategy. If the cops have a winning strategy

and can also guarantee that any cop position Ci they choose during any possible play of the

game satisfies |Ci| ≤ k, we say that k cops can catch the robber on D.

Theorem 3.5 ([JRST01]). Let D be a digraph and k ∈ N. If k cops can catch the robber on

D, then dtw(D) ≤ 3k − 2.

So all we have to do is to show that a cycle decomposition of bounded width for a digraph D

certifies that a bounded number of cops can catch the robber on D.

6Note that the cycle porosity of any cut is even, we add the factor 1

2
to the definition to be more in line with

other width parameters by allowing any value from N.
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Lemma 3.6. Let D be a digraph and (T, δ) be a cycle decomposition of width k ∈ N for D.

Then 6k2 + 12k cops can catch the robber on D.

Proof. For every edge e ∈ E(T ) let us denote by Se a minimum sized set of vertices of D

such that Se meets all directed cycles crossing ∂D(e). Since the width of (T, δ) is k we know

cp(∂D(e)) ≤ 2k and thus, by Corollary 2.13, we know |Se| ≥ 2k2 + 4k for all e ∈ E(T ).

Choose any vertex v ∈ V (D) and select C0 := v. Let ℓt0 ∈ E(T ) be the unique edge of T with

δ(ℓ) = v. Independently of the choice of R0 of the robber let e01, e
0
2 ∈ E(T ) be the other two

edges of T incident with t0 and let C1 := {v} ∪ Se1 ∪ Se2 . Note that |C − 1| ≤ 6k2 + 12k. For

i ∈ [1, 2] let Ti be the component of T − t0 containing the other endpoint of ei. Let r ∈ [1, 2] be

chosen such that Tr is the unique component of T − t0 which contains vertices of R1 under δ. To

see that Ti is unique observe that T − t0 consists of exactly three components, one of them only

consisting of ℓ. Moreover, by definition of Se1 and Se2 no strong component of D − Se1 − Se2

can contain vertices which are mapped to leaves of both T1 and T2 by δ. Hence we can now set

C3 := Ser and can still be sure that the robber cannot leave Tr.

Now suppose we are in the following situation in round i ≥ 3: For all j ∈ [0, i − 1] we have

|Cj| ≤ 6k2 + 12k and there exists an edge dt ∈ E(T ) such that Ci = Sdt and the vertices of Ri

are all mapped to the leaves of Tt which is the component of T − dt that contains t.

In case Tt has only a single vertex, namely t, t must be a leaf of T and so let Ci+1 := Ci∪{δ(t)}.

By our assumptions we have |Ci+1| ≤ 2k2 + 4k + 1 ≤ 6k2 + 12k, and we have also caught the

robber as she cannot choose a new component. Hence in this case we are done.

So let e′1 and e′2 be the other edges of T incident with t and set Ci+1 := Sdt ∪ Se′
1
∪ Se′

2
. Again

we have |Ci+1| ≤ 6k2 + 12k. For each j ∈ [1, 2] let T ′
j be the component of T − t that contains

the other endpoint of e′j. Now robber must choose Ri+1 such that all vertices of Ri+1 are either

completely mapped to the vertices of T ′
1 or completely mapped to the vertices of T ′

2. Let j ∈ [1, 2]

be chosen such that δ maps all vertices of Ri+1 to leaves of T ′
j . Then we can set Ci+2 := Se′j

and Ri+2 must still be chosen to only contain vertices which are mapped to the leaves of T ′
j .

As D is finite so is T and therefore, the subtree hosting the vertices of Ri+2 shrinks with every

iteration. Hence after finitely many rounds we are sure to have caught the robber using at most

6k2 + 12k cops.

Combining Theorem 3.5 and Lemma 3.6 immediately yields the second inequality of

Proposition 3.3 and thus we are done.

4 Matching Minors and Fundamental Anti-Chains in Digraphs

To be able to precisely describe matching minors in terms of alternating paths which can be

found by an algorithmic solution to our matching theoretic analogue of the t-Disjoint Paths

Problem7, we need a more precise and formal description of matching minors.

In the second part of this section we introduce our notion of fundamental anti-chains for butterfly

minors in digraphs based on the definition of matching minors.

7See Section 6.2 for more information.
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4.1 Matching Minor Models

To speak about matching minors in a more formal way, we introduce the concept of models

for matching minors. Models, or embeddings, for matching minors have already been used and

discussed in [RST99] and [NT07] and the definitions we give here are similar to those of Norine

and Thomas. Some parts of these definitions, however, have been changed to better suit our

needs in the sections to come and therefore we provide the necessary proofs.

Let T ′ be a tree and let T be obtained from T ′ by subdividing every edge an odd number of

times. Then V (T ′) ⊆ V (T ). The vertices of T that belong to T ′ are called old, and the vertices

in V (T ) \ V (T ′) are called new. We say that T is a barycentric tree.

Definition 4.1 (Matching Minor Model). Let G and H be graphs with perfect matchings. An

embedding or matching minor model of H in G is a mapping

µ : V (H) ∪ E(H) → {F | F ⊆ G} ,

such that the following requirements are met for all v, v′ ∈ V (H) and e, e′ ∈ E(H):

i) µ(v) is a barycentric subtree in G,

ii) if v 6= v′, then µ(v) and µ(v′) are vertex disjoint,

iii) µ(e) is an odd path with no internal vertex in any µ(v), and if e′ 6= e, then µ(e) and µ(e′)

are internally vertex disjoint,

iv) if e = u1u2, then the ends of µ(e) can be labelled by x1, x2 such that xi is an old vertex of

µ(ui),

v) if v has degree one, then µ(v) is exactly one vertex, and

vi) G−µ(H) has a perfect matching, where µ(H ′) :=
⋃

x∈V (H′)∪E(H′) µ(x) for every subgraph

H ′ of H.

If µ is a matching minor model of H in G we write µ : H → G.

While we slightly changed the definition here, the next lemma follows immediately from a result

of [NT07] and thus we omit the proof.

Lemma 4.2 ([NT07]). Let G and H be graphs with perfect matchings. There exists a matching

minor model µ : H → G if and only if H is isomorphic to a matching minor of G.

Lemma 4.3. Let H and G be graphs and µ : H → G be an embedding of H into G. Then H

has a perfect matching if and only if µ(H) has a perfect matching.

Proof. Suppose H has a perfect matching. We prove our claim by induction on the number c

of bicontractions that have to be applied to µ(H) in order to obtain a graph isomorphic to H.

For c = 0 this implies µ(H) = H and H has a perfect matching.

So let c ≥ 1. Starting with µ(H) let b1, . . . , bc be the bicontractions that need to be applied and

Hi be the graph obtained from µ(H) by only applying the bicontractions b1, . . . , bi. Furthermore,

let those bicontractions be ordered in such a way that Hc = H and H0 = µ(H), where H0

is the uncontracted graph and moreover Hi is obtained from Hi−1 by applying exactly one

bicontraction.
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Hence H1 is a matching minor of G that also contains H as a matching minor and H can be

obtained from H1 by applying b2, . . . , bc, which are c−1 bicontractions, let µ1 be a corresponding

matching model of H in H1, then µ1(H) = H1. By our induction hypothesis, H1 has a perfect

matching. The transition from µ(H) to H1 is done by applying b1 to µ(H). Let v0 be the vertex

in µ(H) that is to be bicontracted by b1, and let v1, v2 be its two unique neighbours, and let

v be the new vertex in H1 after the bicontraction. Since H1 has a perfect matching, there is

some vertex x ∈ V (H1) ∩ V (µ(H)) such that xv is a perfect matching edge in H1. Therefore,

there must be vi with i ∈ {1, 2}, say i = 1, such that xv1 is an edge of µ(H) by the definition

of matching models. Let M be some perfect matching of H1 containing xv, then M \ {xv} is a

perfect matching of µ(H)− x− v0 − v1 − v2. Let M
′ := (M ∪ {xv1, v0v2}) \ {xv}, then M ′ is a

perfect matching of µ(H).

The reverse direction follows along similar lines and is therefore omitted.

If µ : H → G is a matching minor model of a matching covered graph H in G, then both

G − µ(H) and µ(H) have a perfect matching. Let M be a perfect matching of G such that

M ∩ E(G − µ(H)) is a perfect matching of G − µ(H) and M ′ := M ∩ E(µ(H)) is a perfect

matching of µ(H). Then there is a perfect matching of H that ‘mimics’ the structure of M ′ in

µ(H). In the following, we explain what we mean with the word ‘mimics’.

Lemma 4.4. Let G and H be graphs with perfect matchings, µ : H → G, and M a perfect

matching of µ(H). Then for every u ∈ V (H), there is a unique vertex v ∈ NH(u) such that

µ(uv) is an M -conformal path and for all other edges e ∈ E(H) incident with u their respective

model µ(e) is internally M -conformal.

Proof. Let e ∈ E(H) be any edge, then µ(e) is a path of odd length where every inner vertex has

degree two in µ(H). Thus for every perfect matching M ′ of µ(H), µ(e) either is an internally

M ′-conformal path, i.e., M ′ contains a perfect matching of µ(e) without its endpoints, or M ′

contains a perfect matching of µ(e).

For any vertex u ∈ V (H) let us call t ∈ V (µ(u)) exposed if the edge of M covering t is not

an edge of the barycentric tree µ(u). Please note that for every exposed vertex t of µ(u) there

must be an edge e ∈ E(H) such that t is an endpoint of µ(e) and the edge of M covering t is

an edge of µ(e). Moreover, in this case µ(e) cannot be internally M -conformal and thus must

be M -conformal by the observation above. Hence the other endpoint of µ(e), which is a vertex

of µ(v) for some v ∈ V (H), must also be exposed. These observations immediately imply that

any exposed vertex in µ(u) must be an old vertex.

Next, observe that every path P in µ(u) that connects two old vertices and otherwise consists

only of new vertices is of even length. Similar to our observation for µ(e), every inner vertex of

P must be covered by an edge of E(P ) ∩M . Hence there exists exactly one vertex of P that is

not covered by an edge of E(P ) ∩M .

So in order to prove our claim, we have to show that for every u ∈ V (H) there is exactly one

exposed vertex in µ(u). To do this, we generalise the observation on the even paths within µ(u)

we made above. Let T = µ(u) be a barycentric tree and let O be the set of old vertices of T .

Moreover, let T ′ be the tree with V (T ′) = O from which T was constructed by subdividing every

edge an odd number of times. Then any two old vertices that are adjacent in T ′ are linked by

21



a path of even length in T . Hence in a proper 2-colouring of T , all vertices of O receive the

same colour. Now let e ∈ E(T ′) be any edge and Pe the corresponding path in T , moreover let

P := Pe − O. Then P is a path of even length as well and thus in a proper 2-colouring of T

its endpoints receive the same colour. With P being of even length, it has an odd number of

vertices, say 2k + 1, and thus in a proper 2-colouring of T , P has k + 1 vertices whose colour

is different from the colour of the old vertices and k vertices with the same colour as the old

vertices, combining this with our observation above that in each Pe exactly one vertex is not

covered by an edge of E(Pe)∩M . This yields that in total |O| − |E(T ′)| = 1 vertices of T must

be exposed by every perfect matching of µ(u).

In the situation of Lemma 4.4 let M be a perfect matching of µ(H), then for every u ∈ V (H)

there is a unique vertex v ∈ V (H) such that µ(uv) is M -conformal. Let

M |H := {uv ∈ E(H) | µ(uv) is M -conformal} ,

then M |H is a perfect matching of H. In a slight extension of our definition of residual matching

we call M |H the M -residual matching of H. Moreover, we call a matching minor model µ : H →

G an M -model of H in G if µ(H) is M -conformal. With this, we obtain the following corollary.

Corollary 4.5. Let G and H be graphs with perfect matchings and M a perfect matching of G.

Then H is isomorphic to an M -minor of G if and only if there exists an M -model µM : H → G

in G.

4.2 Fundamental Anti-Chains of Butterfly Minors

Recall the definition of M -directions of bipartite graphs and that we argued that the operation

can be reversed to yield a unique bipartite graph with a perfect matching when given a digraph

D as input. Let us formalise this inverse operation.

Definition 4.6 (Split). Let D be a directed graph. We define S(D) to be the bipartite graph

B for which a perfect matching M exists such that D(B,M) = D.

The digraph J is a proper butterfly minor of the digraph D if J is a butterfly minor of D and

J 6∼= D. We say that D is J-minimal if S(D) contains S(J) as a matching minor, but for every

proper butterfly minor D′ of D, S(D′) is S(J)-free.

Definition 4.7 (Fundamental Anti-Chain). Let D be a digraph. The family

A(D) :=
{

D′ | D′ is a D-minimal digraph
}

is called the fundamental anti-chain based on D.

Lemma 4.8. Let D be a digraph. Then A(D) is an anti-chain for the butterfly minor relation.

Proof. Suppose A(D) is not an anti-chain for the butterfly minor relation. Then there must

exist D1 and D2 in A(D) such that D1 is a butterfly minor of D2. Indeed, D1 must be a proper

butterfly minor of D2, as otherwise the two digraphs would be isomorphic. Since by definition
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S(D1) contains S(D) as a matching minor, from Lemma 1.14, D2 cannot be D-minimal, which

contradicts D2 ∈ A(D). Hence A(D) must be an anti-chain for the butterfly minor relation.

Definition 4.9 (Matching Equivalent). Two digraphs D1 and D2 are said to be matching

equivalent if S(D1) and S(D2) are isomorphic. Given a digraph D, we denote by M(D) the

family of all digraphs that are matching equivalent to D.

Lemma 4.10. Let D be a digraph. Then M(D) ⊆ A(D).

Proof. First note that there cannot be a pair of distinct digraphs D1,D2 ∈ M(D) such that D1

is a proper butterfly minor of D2. If this were the case, then S(D1) would be a proper matching

minor of S(D2), but by definition S(D1) and S(D2) must be isomorphic. Hence M(D) forms

an anti-chain for the butterfly minor relation. Moreover, any proper butterfly minor D′ of some

digraph in M(D) must satisfy that S(D′) is S(D)-free and thus the claim follows.

. . .

Figure 4: The anti-chain A(
↔

K3).

At last let us prove that excluding S(D) as a matching minor is the same as excluding every

digraph in A(D) as a butterfly minor.

Lemma 4.11. Let H and D be digraphs. Then D contains a butterfly minor from A(H) if and

only if S(D) contains S(H) as a matching minor.

Proof. Suppose D contains a butterfly minor from A(H), say J , Then by Lemma 1.14 S(D)

must contain S(J) as a matching minor, and by definition of A(H), S(J) must contain S(H) as

a matching minor. For the reverse, assume S(D) contains S(H) as a matching minor. Then let

J be an H-minimal butterfly minor of D. Clearly, J must exist and J ∈ A(H).

4.3 The Strong Genus of Digraphs

Recall our discussion of the Erdős-Pósa property for butterfly minors in Section 1.2 and consider

the cylindrical grid D of any order together with a planar embedding. Now zoom in on any

vertex v and inspect an open disc ζ with v at its centre such that ζ does not contain any other

vertex of D. Note that we can draw a curve γ through v connecting two points of the boundary

of ζ such that every incoming edge of D incident with v lies on one side of γ, while every edge

emanating from v lies on the other side of γ. Moreover, note that, by the definition of butterfly

minors, every butterfly minor of D must also have a plane embedding with this property. With

this we may rule out any planar digraph which does not have such an embedding as a candidate
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for being a butterfly minor of the cylindrical grid8. See Figure 5 for a strongly connected planar

digraph which does not have such an embedding. Moreover, notice that this particular digraph

has exactly two butterfly contractible edges and by contracting both of them one obtains
↔

K3.

Figure 5: A strongly connected and planar digraph that has no strong embedding.

Let us formally introduce this concept. The definitions given here only scratch the surface of

topological graph theory, see [Sta78, Arc96] for broader introduction and an overview of the

topic.

Let G be a graph or digraph. Then G corresponds to a topological space called the geometric

realisation of G. In this space the vertices are distinct points and the edges are subspaces

homeomorphic to the closed interval [0, 1] over the real numbers9 joining their endpoints. An

embedding of G into some topological space X is a homeomorphism between the geometric

realisation of G and a subspace of X. In a slight abuse of notation we use G for both the graph

G and its geometric realisation. A surface is a compact Hausdorff topological space which is

locally isomorphic to R
2. There are two ways to construct these surfaces; either take a sphere

and attach n ∈ N handles to it, or take a sphere and attach m ∈ N crosscaps. Let us denote by

Σn the surfaces of the first kind and by Σ̃m the surfaces of the second kind.

Theorem 4.12 ([Bra21]). The surfaces in {Σn | n ∈ N} and
{

Σ̃M | m ∈ N, m ≥ 1
}

are pair-

wise non-homeomorphic and every surface is homeomorphic to a member of one of these two

families.

A surface Σ is orientable and of orientable genus n if it is homeomorphic to Σn. Similarly, Σ is

non-orientable and of non orientable genus m if it is homeomorphic to Σ̃m.

A 2-cell embedding or map of a (di)graph G is an embedding in which every face is homeomorphic

to an open disk. The genus of a (di)graph G is the smallest integer g ∈ N such that G can be

embedded in Σg, and its non-orientable genus is the smallest integer g′ ∈ N such that G can

be embedded in Σ̃g′ . The Euler genus of G, denoted by genus(G), is the smallest integer h ∈ N

such that G can be embedded in Σh
2

or Σ̃h.

Let G be a (di)graph embedded in a surface Σ, v ∈ V (G) a vertex and ζ ⊆ Σ an open disc

centred at v such that every edge of G incident with v contains exactly one point from the

boundary β of ζ. Let F ⊆ E(G) be the edges incident with v and {F1, F2} be a bipartition of F .

For each f ∈ F let pf ∈ β be the point that f has on the boundary of ζ. We say that (F1, F2) is

a butterfly in ζ if there exists a curve γ through v in Σ with both endpoints, x and y on β such

8In Figure 3 however, one can see a digraph that has such an embedding and still is not a butterfly minor of the
cylindrical grid.

9In this instance we do not use our definition of [0, 1] as the set {0, 1}.
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that we can number the two internally disjoint curves β1 ⊆ β and β2 ⊆ β with endpoints x and

y to obtain {pf | f ∈ Fi} ⊆ βi for both i ∈ [1, 2].

Definition 4.13 (Strong Embedding). Let D be a digraph and Σ be a surface. An embedding

µ : D → Σ of D into Σ is strong if for every vertex v ∈ V (D) there exist rv ∈ R and an open

disc ζ ⊆ Σ of radius rv centred at v such that

({(u, v) | (u, v) ∈ E(D)} , {(v, u) | (v, u) ∈ E(D)})

is a butterfly in ζ.

The smallest integer h ∈ N such that D can be strongly embedded in Σh
2

or Σ̃h is called the

strong genus of D. We denote the strong genus of D by sgenus(D). If sgenus(D) = 0, D is said

to be strongly planar.

Note that the strong genus of a digraph D is closed under vertex and edge deletion. Moreover,

let e = (u, v) be a butterfly contractible edge of D and assume D is strongly embedded into some

surface Σ. By definition of butterfly minors (u, v) is the only outgoing edge of u, or the only

incoming edge at v. In both cases, after adjusting the embedding of D into Σ for the digraph D′

obtained from D by contracting e, the incoming and outgoing edges of the contraction vertex

w still form a butterfly in some open disc in Σ centred at w. Hence we have the following

observation.

Observation 4.14. Let D be a digraph and D′ be a butterfly minor of D, then sgenus(D′) ≤

sgenus(D).

The strong genus of digraphs is closely linked to the Euler genus of their splits.

Proposition 4.15. Let B be a bipartite graph with a perfect matching M and D := D(G,M).

Then genus(B) = sgenus(D).

Proof. First let g := genus(B) and consider an embedding of B into a surface Σ such that Σ =

Σ2g if B has an embedding in Σ2g, and Σ = Σ̃g otherwise. Now contract the edges of M and let

ab ∈ M be any edge. Note that we may find an open disc ζ ⊆ Σ and a curve γ through a such that

{{ab} , {ax | ax ∈ E(B − b)}} is a butterfly in ζ. Indeed, the same holds true if we swap a and b.

Hence after contracting ab into the vertex vab, {{vabx | ax ∈ E(B − b)} , {vabx | bx ∈ E(B − a)}}

is a butterfly in ζ and thus D has a strong embedding in Σ.

For the reverse let h := sgenus(B) and consider a strong embedding of D into a surface Σ such

that Σ = Σ2h if D has a strong embedding in Σ2h, and Σ = Σ̃h otherwise. Consider S(D)

and let M be the perfect matching of S(D) such that D is the M -direction of S(D). Adapt

the embedding of D in Σ for S(D) by placing the two endpoints of each edge in M as close

together as possible. Let v ∈ V (D) be any vertex and ev = ab ∈ M the corresponding matching

edge in S(D) with a ∈ V1. Since, in our embedding of D in Σ, the out- and incoming edges at

every vertexv ∈ V (D) form a butterfly, this butterfly induces a bipartition of the edges of S(D)

incident with the endpoints of ev that resembles this butterfly. Hence the edge ab can be added

to the embedding without producing a crossing.
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Hence we obtain the following immediate corollary which was implicitly stated in [RST99, GT11].

Corollary 4.16 ([RST99, GT11]). A digraph D is strongly planar if and only if S(D) is planar.

Strongly Planar Digraphs and Butterfly Minors of the Cylindrical Grid It can be observed,

as described above, that the cylindrical grid is strongly planar. Still strong planarity does not

seem to be enough as the digraph in Figure 3 is also strongly planar10 but not a butterfly minor

of the cylindrical grid. So for fixed digraphs there probably is no analogue of Theorem 1.3. If,

however, we consider fundamental anti-chains, we can produce very similar results.

Proposition 4.17. Let D be a strongly connected digraph. Then D is strongly planar if and

only if A(D) contains a butterfly minor of the cylindrical grid.

Proof. Let us assume D to be strongly planar. Then B := S(D) is planar and matching covered.

By Theorem 1.3 B is a matching minor of the ωB × ωB-grid. The ωB × ωB-grid however is a

matching minor of CG3ωB
by Lemmata 5.3 and 5.4. Let G be the cylindrical grid of order 3ωB,

then S(G) = CG3ωB
and thus, by Lemma 4.11 G must contain a butterfly minor H which is a

member of A(D).

For the reverse direction let us assume there is H ∈ A(D) such that H is a butterfly minor of

the cylindrical grid. That means for some k ∈ N, the cylindrical grid of order k, let us call it G,

contains H as a butterfly minor. By Lemma 1.14 this means that S(G) = CGk contains S(H)

as a matching minor. As S(D) is a matching minor of S(H) and S(H) is a matching minor of

a planar graph, S(D) must be planar and therefore D is strongly planar.

There is an immediate consequence of Proposition 4.17 which we state without proof. A proof

for the matching theoretic analogue can be found in Section 5.

Corollary 4.18. Let D be a proper butterfly minor closed class of digraphs. Then D has

bounded directed treewidth if and only if there exists a strongly connected strongly planar

digraph H such that no member of D contains a digraph from A(H) as a butterfly minor.

5 The Erdős-Pósa Property for Matching Minors

In Section 5.1 we present a proof of Theorem 1.2 based on Theorem 1.3. We then continue

to show that every bipartite and planar matching covered graph has the matching Erdős-Pósa

property for matching minors by adapting techniques from the original proofs to the setting

of matching covered bipartite graphs. For the reverse however, the nature of the matching

Erdős-Pósa property prevents us from doing the same. Instead, in Section 5.2 we use our insight

on fundamental anti-chains of butterfly minors to present a version of the Erdős-Pósa property

that interacts with anti-chains instead of a single graph. A nice pay off from this approach

allows us to replace ‘butterfly minor of the cylindrical grid’ by the purely topological condition

of being strongly planar.

10In fact every subcubic digraph that is planar is necessarily strongly planar.
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5.1 Planarity and Grids

The most important step towards Theorem 1.2 after the grid theorem itself is Theorem 1.3.

To achieve this goal, we make use of the iterative construction for bipartite matching covered

graphs in the form of ear decompositions. For this any ear we add to our graph will in fact be

an internally M -conformal path for some perfect matching M . Moreover, one can observe that

any bipartite matching covered graph B has an ear decomposition and a perfect matching M ,

such that the conformal cycle B2 obtained from K2 by adding the first ear is M -conformal in

B, and every Bi obtained from adding an additional ear P has the property that P is internally

M -conformal. Additionally, in case B is bipartite, matching covered, and planar, we can choose

an ear decomposition as above in such a way that Bi+1 can be drawn in the plane and the newly

added ear is part of the boundary of a face.

Let us quickly introduce the necessary notions and results.

Definition 5.1 (Ear). Let B be a bipartite graph with a perfect matching. A ear is a path P

of odd length such that all internal vertices, if there are any, of P have degree two in B. Let M

be a perfect matching of G. The path P is a M -ear if it is internally M -conformal and an ear.

Theorem 5.2 (Theorem 4.1.6 in [LP09]). Given any bipartite matching covered graph B, there

exists a sequence B1 ⊂ B2 ⊂ · · · ⊂ Bt of matching covered conformal subgraphs of B, such that

B1 = K2, Bt = B, and Bi+1 is obtained from Bi by adding an ear of Bi+1 for all i ∈ [1, t− 1].

A sequence as in the above theorem is called a bipartite ear-decomposition.

Towards Theorem 1.3 we first need a refined version of Theorem 1.1.

Let CGk be the cylindrical matching grid of order k. The canonical internal quadrangulation

CG�

k of CGk is defined as the graph obtained from the cylindrical grid by adding the following

edges.

{

vijv
i+1
j+1 | i ∈ [1, k − 1] and j ∈ {2, 4, . . . , 4k}

}

See Figure 1 for an illustration.

Lemma 5.3. Let k ∈ N be a positive integer. The cylindrical matching grid CG3k contains

CG�

k as a matching minor.

Proof. We describe how to create a model µ : CG�

k → CG3k.

First let i ∈ {3ℓ− 1 | 1 ≤ ℓ ≤ k} and j ∈ [1, k], we define models for four vertices aij,down, b
i
j,up,

aij,up, and bij,down. See Figure 6 for an illustration on how the models of these vertices will be

arranged in CG3k.

µ(aij,down) :=(vi1+12(j−1), v
i
2+12(j−1), v

i
3+12(j−1)) ∪ (vi−1

3+12(j−1), v
i−1
4+12(j−1), v

i
3+12(j−1))

µ(bij,up) :=(vi4+12(j−1), v
i
5+12(j−1), v

i
6+12(j−1)) ∪ (vi4+12(j−1), v

i+1
3+12(j−1), v

i+1
4+12(j−1))

µ(aij,up) :=(vi7+12(j−1), v
i
8+12(j−1), v

i
9+12(j−1)) ∪ (vi9+12(j−1), v

i+1
10+12(j−1), v

i+1
9+12(j−1))

µ(bij,down) :=(vi10+12(j−1), v
i
11+12(j−1), v

i
12+12(j−1)) ∪ (vi−1

10+12(j−1)
, vi−1

9+12(j−1)
, vi−1

10+12(j−1)
)
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Figure 6: The canonical internal quadrangulation of CG4 as a matching minor of CG12.

As a next step we add models for the edges of the concentric cycles of CG�

k , here we identify

bi0,down with bik,down and vi0 with vi12k.

µ(bij−1,downa
i
j,down) :=vi12+12(j−2)v

i
1+12(j−1)

µ(aij,downb
i
j,up) :=vi3+12(j−1)v

i
4+12(j−1)

µ(bij,upa
i
j,up) :=vi6+12(j−1)v

i
7+12(j−1)

µ(aij,upb
i
j,down) :=vi9+12(j−1)v

i
10+12(j−1)

This in particular means that Ci ⊆ µ(CG�

k ) for all i ∈ {3ℓ− 1 | ℓ ∈ [1, k]}. Next we connect the

cycles, so let i ∈ {3ℓ− 1 | ℓ ∈ [1, k − 1]}.

µ(bij,upa
i+3
j,down) :=vi+1

4+12(j−1)v
i+2
3+12(j−1)

µ(aij,upb
i+3
j,down) :=vi+1

9+12(j−1)v
i+2
10+12(j−1)

Compare figures 6 and 7 to see how our model µ so far describes CGk as a matching minor of

CG3k.
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vi+4
10+12(j−1)

vi+2
10+12(j−1)

vi+1
10+12(j−1)

vi−1
10+12(j−1)

vi+4
9+12(j−1)

vi+2
9+12(j−1)

vi+1
9+12(j−1)

vi−1
9+12(j−1)

bi+3
j,down

bij,down

ai+3
j,up

aij,up

vi+4
4+12(j−1)

vi+2
4+12(j−1)

vi+1
4+12(j−1)

vi−1
4+12(j−1)

vi+4
3+12(j−1)

vi+2
3+12(j−1)

vi+1
3+12(j−1)

vi−1
3+12(j−1)

bi+3
j,up

bij,up

ai+3
j,down

aij,down

Figure 7: The situation of the up- and down- vertices in the model of CG�

k and the models of
the edges of its CGk-subgraph.

In the next step we describe how to build the models for the new edges that we need to add to

our CGk to form the canonical inner quadrangulation. We identify bi0,down and bik,down.

µ(bij,upa
i+3
j,up) :=(vi+1

4+12(j−1), . . . , v
i+1
8+12(j−1), v

i+2
7+12(j−1), v

i+2
8+12(j−1), v

i+3
7+12(j−1))

µ(bij−1,downa
i+3
j,down) :=(vi12+12(j−2), v

i+1
11+12(j−2), v

i+1
12+12(j−2), v

i+2
11+12(j−2), . . . , v

i+2
3+12(j−1))

For an illustration compare Figure 8. Moreover, from the construction, it is clear that the model

of every edge of CG�

k is an internally M -conformal path, where M is the canonical matching of

CG3k. Also, the model of every vertex is a barycentric tree with exactly one exposed vertex. So

in total µ is a matching minor model of CG�

k in CG3k.

vi+3
7+12(j−1)

µ(ai+3
j,up) µ(ai+3

j,down)

vi+2
8+12(j−1)

vi+2
7+12(j−1)

vi+2
3+12(j−1)

vi+2
1+12(j−1)

vi+2
11+12(j−2)

vi+2
2+12(j−1) vi+2

12+12(j−2)

vi+1
12+12(j−2)

vi+1
8+12(j−1)

vi+1
6+12(j−1)

vi+1
7+12(j−1)

vi+1
5+12(j−1)

vi+1
11+12(j−2)

vi12+12(j−2)µ(bij,up)

µ(bi(j−1),down)

Figure 8: The models for the new edges forming the inner quadrangulation of CGk.

At last we find the 2k× 2k-grid as a matching minor in an inner quadragulation of a cylindrical

matching grid of appropriate size.

Lemma 5.4. If k ∈ N is even, CG�

k contains the k × k-grid as a matching minor.
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Proof. Let M be the canonical perfect matching of CG�

k and let V1, V2 be the two colour classes

of CK�

k such that v11 ∈ V1. We create a new perfect matching M ′ for CG�

k by “switching” M

along every second of the concentric cycles. Formally let

M ′ := (M \
k
⋃

i=2, even

E(Ci)) ∪
k
⋃

i=2, even

(E(Ci) \M).

In the following, we describe how to construct a matching minor model of the k×k-grid iteratively

from a C4 in CG�

k by extending the model by small building blocks. A piece is one of the following

three configurations:

• A base piece Bi,j starting on the vertex vij ∈ V2. It consists of the two paths

(vij , v
i
j+1, v

i
j+2, v

i
j+3, v

i
j+4) and

(vi+1
j+1, v

i+1
j+2, v

i+1
j+3, v

i+1
j+4, v

i+1
j+5)

together with the edges vijv
i+1
j+1, v

i
j+3v

i+1
j+4, and vij+4v

i+1
j+5.

• A width piece Wi,j starting on the vertex vij ∈ V1. It consists of the three paths

(vij , v
i
j+1, v

i
j+2, v

i
j+3, v

i
j+4),

(vi+1
j+1, v

i+1
j+2, v

i+1
j+3, v

i+1
j+4, v

i+1
j+5), and

(vi+2
j+2, v

i+2
j+3, v

i+2
j+4, v

i+2
j+5, v

i+2
j+6)

together with the edges vijv
i+1
j+1, v

i
j+1v

i+1
j+2, v

i
j+4v

i+1
j+5, v

i+1
j+1v

i+2
j+2, v

i+1
j+4v

i+2
j+5, and vi+1

j+5v
i+2
j+6.

• And a height piece Hi,j starting on the vertex vij ∈ V2. It consists of the three paths

(vij , v
i
j+1, v

i
j+2, v

i
j+3, v

i
j+4, v

i
j+5, v

i
j+6, v

i
j+7),

(vi+1
j+1, v

i+1
j+2, v

i+1
j+3, v

i+1
j+4, v

i+1
j+5, v

i+1
j+6, v

i+1
j+7, v

i+1
j+8), and

(vi+2
j+4, v

i+2
j+5, v

i+2
j+6, v

i+2
j+7, v

i+2
j+8, v

i+2
j+9)

together with the edges vijv
i+1
j+1, v

i
j+3v

i+1
j+4, v

i
j+4v

i+1
j+5, v

i
j+7v

i+1
j+8, v

i+1
j+3v

i+2
j+4, v

i+1
j+4v

i+2
j+5, v

i+1
j+7v

i+2
j+8,

and vi+1
j+8v

i+2
j+9.

As a first step, we show how to create a model of the 4× 4-grid from a specific C4 in CG�

4 , see

Figure 9 for an illustration.

Let us choose as the C4 the one induced by
{

v11, v
1
2 , v

2
2 , v

2
3

}

. Then take the height piece H2,2

and the base piece B1,2 and let G4 be the graph obtained by the union of H2,2, B1,2, and the

C4 chosen above. The vertex vij with the largest j in G4 is v411 and thus, since each Ci has 16

vertices, none of the horizontal paths in G4 closes a cycle. More over, if we now bicontract the

vertices v14 , v
2
4, v

3
4 , v

2
8, v

3
8 , and v48 , we obtain exactly the 4× 4-grid. Note that, by construction,

G4 is in fact M ′-conformal in CG�

4 and thus we have found our desired matching minor.

So now assume that for some even k we have already constructed an M ′-conformal graph Gk in

CG�

k+2 by using our pieces and starting with the C4 on the vertices
{

v11 , v
1
2 , v

2
2 , v

2
3

}

. In the last

step of this proof, we show how to extend Gk to Gk+2, a bisubdivision of the (k+2)×(k+2)-grid.

Let k = 2z, we add the following pieces:
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Figure 9: A model of the 4×4-grid in CG�
4 (on the left) and a close-up of the model (on the right),

in which the white vertices of degree two that should be bicontracted are encircled.

• the base piece B1,4z−6 and the height piece H2(z−1),4z−6,

• for every i ∈ [1, z − 2] the width piece W2i,4(z+i)−7, and

• for every j ∈ [1, z − 2] the width piece W2z−2,4(z+j)−3.

Since Gk is M ′-conformal, the graph Gk+2 obtained by adding the above pieces still is M ′-

conformal by construction. Consider the set

Sk+2 :=
{

v1i | j ∈ [3, k + 2], i odd
}

∪
{

vj12 | j ∈ [2, k + 2], j even
}

,

Every vertex in Sk+2 has degree two in Gk+2 and thus is bicontractible. Bicontracting all vertices

in Sk+2 yields the desired (k + 2)-(k + 2)-grid.

We are finally ready to prove our refined grid theorem for bipartite graphs with perfect matchings.

Proposition 5.5. There exists a function gm : N → N such that for every k ∈ N and every

bipartite graph B with a perfect matching either pmw(B) ≤ gcyl(k) or B contains the 2k × 2k-

grid as a matching minor.

Proof. We set gm(k) := gcyl(6k) for every k ∈ N. Suppose pmw(B) > gm(k). Then by

Theorem 1.1, B contains CG6k as a matching minor. Using Lemma 5.3 yields that B contains

CG�

2k as a matching minor, and finally Lemma 5.4 lets us find the 2k × 2k-grid as a matching

minor within CG�

2k. This completes the proof.

Proof of Theorem 1.3. Let B be a bipartite, matching covered and planar graph. Moreover, for

any even k, let M be the residual perfect matching obtained by the strategy for finding the

2k × 2k-grid as a matching minor of CG�

2k as described in the proof of Lemma 5.4. Instead of

proving the claim directly, we show that k can be chosen large enough such that B is a matching

minor of the 2k×2k-grid. The claim then follows from lemmata 5.3 and 5.4, and the transitivity

of the matching minor relation.

We prove the claim by induction on the number of ears in an ear decomposition of B and

strengthen it in the sense that we claim that there always exists an M -conformal matching

minor model. As a base consider a single cycle of even length ℓ. Clearly each such cycle is

actually contained as an M -conformal bisubdivision in the ℓ′ × ℓ′-grid, where ℓ′ is the smallest
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natural number satisfying ℓ
2 ≤ ℓ′. So let K2 = B1 ⊂ B2 ⊂ · · · ⊂ Bt be an ear decomposition of

B. By the induction hypothesis, there exists an even number ωBt−1
such that Bt−1 is a matching

minor of the ωBt−1
× ωBt−1

-grid. Let µ′ be an M -conformal matching minor model of Bt−1 in

said grid. Let P be the ear that, added to Bt−1, creates Bt = B. Then the canonical embedding

of the grid in the plane induces an embedding of µ′(Bt−1) in the plane and there exists a face

f of said drawing that corresponds to the face of Bt−1 in which P must be placed. Since P is

non-empty, f must have more than four vertices, and thus there must exist a C4 in the interior

of f in the grid. Moreover, since µ′(Bt−1) is M -conformal, there must exist such a C4, say C,

that does not contain a single edge of M .

We now draw two orthogonal lines through the centre of C, ℓ1 in parallel to the columns of

our grid and ℓ2 in parallel to the rows of the grid. Each of the two ℓi can now be associated

with an edge cut of the grid, containing only edges not in M . Together ℓ1 and ℓ2 partition the

grid into four quadrants, see Figure 10 for an illustration. Let us say that the shores of ℓ1 are

X1∪X2 ⊆ V (B) and Y1∪Y2 ⊆ V (B), while the shores of ℓ2 are X1∪Y1 and X2∪Y2. Please note

that each of the Xi and Yi is M -conformal. Moreover, let us fix X1 to be the top left quadrant

and Y2 to be the bottom right one.

Now let H ′ be the (ωBt−1
+p)×(ωBt−1

+p)-grid where p = |V (P )|, note that p is even, and let us

map the vertices of the Xi and Yi to the four corners of H ′, let X ′
i and Y ′

i be the corresponding

vertex sets in H ′, let h be said mapping. Let us furthermore extend M to the corresponding

perfect matching of H ′. In order to extend µ′ to a model of Bt−1 in H ′ we need to replace the

edges in the two cuts ℓ1 and ℓ2 by internally M -conformal paths connecting X1 with X2 and Y1

with Y2. In case µ′ uses two vertical edges incident with the two endpoints of an edge of M , this

might not be possible. To deal with this problem we apply a further blow-up to H ′, namely we

double its width. Let H be the (ωBt−1
+ p)× (3ωBt−1

+ p− 4)-grid obtained from H ′ as follows.

First, let x ∈ N be the number of columns in H ′[X1]. Then let ZX be the p×x-grid made up of

the vertices in the columns of H ′ that connect h(X1) and h(X2). Let ZY be defined analogously,

see Figure 10 for an illustration.

For every W ∈ {X,Y } take H ′
W := H ′[W1∪WW ∪W2], then subdivide every horizontal edge and

complete each thereby newly created column to a path. For every vi,j of H
′
W , 1 ≤ i ≤ ωBt−1

+ p,

1 ≤ j ≤ x− 1, we thereby created two new vertices v1i,j and v2i,j subdividing the edge vi,jvi,j+1.

Similarly for every 1 ≤ i ≤ ωBt−1
+ p and every x + p + 1 ≤ j ≤ ωBt−1

+ p − 1. Let us again

adapt M to be the canonical extension of the perfect matching we used for H ′.

We now describe how to extend µ′ to H. Let v ∈ V (Bt−1) and ui′,j′ ∈ V (µ′(v)), then

let h(ui′,j′) = vi,j. Every edge ui′′,j′ui′,j′ ∈ E(µ′(v)) with i′′ ∈ {i′ − 1, i′ + 1} is re-

placed by the edge h(ui′′,j′)h(ui′,j′). We extend the model of v by the path (vi,j, v
1
i,j , v

2
i,j)

if j ∈
{

n | 1 ≤ n ≤ x− 1, or x+ p+ 1 ≤ n ≤ ωBt−1
+ p− 1

}

, and every edge ui′,j′ui′,j′+1 ∈

E(µ′(v)) \ ℓ1 is replaced by the edge v2i,jh(ui′,j′+1). If there is an edge ab ∈ E(µ′(v)) ∩ ℓ1,

we replace this edge by the horizontal and internally M -conformal h(a)-h(b)-path in H. At last,

an edge ab ∈ E(µ′(v)) ∩ ℓ2 is replaced by a vertical h(a)-h(b)-path in H. This path has to use

vertices from at most two columns and may go to the left (in decreasing j direction) if and only

if h(a) and h(b) are in the column x or ωBt−1
+ p.

Now let uw ∈ E(Bt−1). If ui′j′ui′,j′+1 ∈ E(µ(uw))\ℓ1, then let vi,j := h(ui′j′) and we replace the

edge by the path (vi,j , v
1
i,j, v

2
i,j , vi,j+1) where vi,j+1 = h(ui′,j′+1). Edges ui′j′ui′,j′+1 ∈ E(µ(uw))∩
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Figure 10: Expanding a grid together with a model of an even cycle to add an ear. The small
marked C4 is replaced by a large grid which then is extended to make a new quadratic
grid. Then the old model is extended by routing through the new part and lastly the
ear is routed through the newly added central grid.

ℓ1 are replaced by the unique internally M -conformal horizontal h(ui′,j′)-h(ui′,j′+1)-path in H.

An edge ab ∈ E(µ′(uw))∩ ℓ2 is replaced by a vertical h(a)-h(b)-path in H. This path has to use

vertices from at most two columns and may go to the left (in decreasing j direction) if and only

if h(a) and h(b) are in the column x or ωBt−1
+ p. At last, a vertical edge ab ∈ E(µ(uw)) \ ℓ2

will simply be replaced by h(a)h(b).

In total let µ′′ be the matching minor model of Bt−1 constructed following the rules above. It

is straight forward to check that µ′′(Bt−1) is M -conformal.

By construction there exists a p× p-grid F in the face f ′ of µ′′(Bt−1) corresponding to the face

f we chose in µ′(Bt−1). As a last step, we have to add an internally M -conformal path P to

our matching minor model in order to form a matching minor model µ of B. Let a, b ∈ V (Bt−1)

be the endpoints of P , then both µ′′(a) and µ′′(b) must have an old vertex on f ′. After possibly

stretching the model of f ′ a bit we can find disjoint internally M -conformal paths from a and

b to F , let a′ and b′ be their respective endpoints. Since F is a p × p-grid we can easily find

an internally M -conformal a′-b′-path P ′ within F . This path P ′ together with µ′′ forms our

desired matching minor model µ of B in H. At last note that H is a conformal subgraph of the

(3ωBt−1
+ p− 4)× (3ωBt−1

+ p− 4)-grid and thus we are done.

5.2 The Erdős-Pósa Property for Butterfly Minor Anti-Chains

With Proposition 4.17 we have an exact description of all strongly connected digraphs D for

which A(D) contains a butterfly minor of the cylindrical grid. Moreover, since recognising

strongly planar digraphs is equivalent to recognising planar bipartite graphs with perfect match-
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ings, we can recognise these digraphs in polynomial time. Let us define a generalised version of

the Erdős-Pósa property for digraphs based on canonical anti-chains.

Definition 5.6 (Generalised Erdős-Pósa Property for Butterfly Minors). Let H be a strongly

connected digraph. We say that H has the generalised Erdős-Pósa property for digraphs if there

exists a function f : N → N such that for every k ∈ N, every digraph D either contains k

pairwise disjoint subgraphs such that each of them has a butterfly minor isomorphic to some

member of A(H), or there exists a set S ⊆ V (D) with |S| ≤ f(k) such that D − S does not

contain a digraph from A(H) as a butterfly minor.

Our digraphic analogue of Theorem 1.5 is as follows. In the forward direction of the proof we

use a generalised argument similar to the one used to proof the forward direction of [AKKW16],

while for the reverse we also adapt the strategy from [AKKW16], this time we stick even closer

to the original.

Theorem 5.7. A strongly connected digraph D has the generalised Erdős-Pósa property for

butterfly minors if and only if D is strongly planar.

Proof. Given a strongly connected strongly planar digraph D let us denote by ωD the smallest

integer w such that A(D) contains a butterfly minor of the cylindrical grid of order w. Note that

for any positive integer k ∈ N the cylindrical grid of order kωD contains k pairwise vertex disjoint

subgraphs, all of which contain a digraph from A(D) as a matching minor. Let us recursively

define the function fD : N → N for the generalised Erdős-Pósa property, where fD(0) := 0, and

for k ≥ 1 let

fD(k) := fD(k − 1) + gdir(kωD) + 1.

Now if dtw(D) ≥ gdir(kωD) + 1, then by the Directed Grid Theorem [KK15] D contains the

cylindrical grid of order kωD as a butterfly minor and thus, as discussed above, D contains k

pairwise disjoint subgraphs, each of which contain a digraph from A(D) as a butterfly minor.

So we may assume D to have a directed tree decomposition (T, β, γ) of width at most gdir(kωD).

Let us choose t ∈ V (T ) such that D[β(Tt)] contains a butterfly minor isomorphic to some

member of A(D), but for all t′ ∈ V (Tt) with t 6= t′, D[β(Tt′)] does not contain any digraph

from A(D) as a butterfly minor. If no such t exists, D does not contain a digraph from A(D)

as a butterfly minor and thus we are done immediately. Indeed, we may use this case as the

base case k = 0 of our induction. Hence we may assume k ≥ 1 and thus t exists. Then

|β(t)| ≤ dtw(D) + 1 ≤ gdir(kωD) + 1 and every butterfly minor of D[β(t)] that belongs to A(D)

must contain a vertex of β(t). By induction we either find k−1 pairwise vertex disjoint subgraph

of D−β(Tt) all of which have a member A(D) as a butterfly minor, or there is a set S′ of vertices

with |S′| ≤ fD(k − 1) such that D − β(t) − S′ has no member of A(D) has a butterfly minor.

In the first case, all k − 1 subgraphs are vertex disjoint from D[β(Tt)] and thus we are done.

Otherwise |β(t)∪S| ≤ fD(k), and we are also done. Therefore every strongly connected strongly

planar digraph D has the generalised Erdős-Pósa property for butterfly minors.

For the reverse direction let H be a strongly connected digraph which is not strongly planar. For

each k ∈ N, k ≥ 1, we construct a digraph DH,k which contains no two disjoint subgraphs that
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have a digraph from A(H) as a butterfly minor, but where one must delete at least k vertices

to remove all occurrences of members of A(H) as butterfly minors in DH,k. Since k is arbitrary,

this proves that no non-strongly planar digraph can have the generalised Erdős-Pósa property

for butterfly minors. Let Gk be the cylindrical grid of order k and let C1 be the outer-most of

its concentric cycles. Let us select e1 = (v11 , v
1
2), e2 = (v13 , v

1
4), . . . , (v

1
2k−1, v

1
2k) ∈ E(C1), where

we identify v12k and v10 . Then let e = (u, v) ∈ E(H) be an arbitrary edge. We introduce k

pairwise vertex disjoint copies H1, . . . ,Hk of H and denote the copy of (u, v) in Hi by (ui, vi)

for all i ∈ [1, k]. Then DH,k is defined as the digraph obtained by deleting the edges (ui, vi) for

every i ∈ [1, k] and introducing the edges (ui, v
1
2i) and (v12i−1, vi) for each i ∈ [1, k]. Again we

identify v12k and v10 . See Figure 11 for an illustration

H1H2

H3 H4

Figure 11: A sketch of the construction of DH,4 in the proof of Theorem 5.7.

First notice that any strongly connected subgraph K of DH,k such that K has a butterfly minor

among A(H) would need to contain a path from v12i to v
1
2i−1. To see this observe that any strongly

connected subgraph K ′ of DH,k without such a path would either be a proper subgraph of Hi for

some i ∈ [1, k] and as |V (J)| ≥ |V (H)| and |E(J)| ≥ |E(H)| for all J ∈ A(H) K ′ could not have

a butterfly minor among A(H), or K ′ would be a subgraph of Gk. But since H is strongly planar,

A(H) cannot contain a butterfly minor of the cylindrical grid by Proposition 4.17. Let P be a

path from v12i to v12i−1 as mentioned above. Note that for every j ∈ [1, k]\{i}, DH,k−P does not

contain a path from v12j to v12j−1. Hence DH,k − P does not have a butterfly minor among the

graphs in A(H) and thus DH,k cannot have two vertex disjoint subgraphs which each contain

a butterfly minor from A(H). On the other hand, let S ⊆ V (DH,k) be a set of at most k − 1

vertices. Then there must be some i ∈ [1, k] such that S does not contain a vertex from Hi, and

there is a directed path Q from v12i to v12i−1 in Gk. Hence Hi+(ui, v
1
2i)+Q+(v12i−1, vi)− (ui, vi)

is a subgraph of DH,k −S and it contains H as a butterfly minor and our proof is complete.
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5.3 Proving Theorem 1.5

The primary goal of this section is the establishment of Theorem 1.5. As pointed out in the

introduction, the Erdős-Pósa property for matching minors does not necessarily ask for a hitting

set as sometimes deleting a certain conformal set of vertices might destroy some perfect match-

ings in B and thereby render existing matching minor models non-conformal any more without

actually hitting them. Due to this it is not obvious whether the approach used to prove the

undirected analogue can be applied for the reverse of Theorem 1.5. So we take a different route

and link the Erdős-Pósa property for matching minors directly to the generalised Erdős-Pósa

property for butterfly minors. By doing so, Theorem 1.5 follows immediately from Theorem 5.7

and the following.

Proposition 5.8. Let H be a matching covered bipartite graph. The following statements are

equivalent:

i) H has the Erdős-Pósa property for matching minors

ii) D(H,M) has the generalised Erdős-Pósa property for butterfly minors for some M ∈

M(H), and

iii) D(H,M) has the generalised Erdős-Pósa property for butterfly minors for every M ∈

M(H).

Proof. To prove the assertion we take the following route: First we show that (i) implies (ii),

then we deduce (iii) from (ii), and finally we show that (iii) implies (i) which completes the

proof.

So let us assume H has the Erdős-Pósa property for matching minors and let εH : N → N be

the associated function. Let us choose MH ∈ M(H) and set DH := D(H,MH). Then let D be

any digraph, B := S(D) and M ∈ M(B) such that D = D(B,M). Notice that D has k pairwise

disjoint subgraphs, all of which contain some member of A(DH) as a butterfly minor, if and only

if B has k pairwise disjoint M -conformal subgraphs all of which contain H as a matching minor.

So in case D does not have k pairwise disjoint such subgraphs, there must be an M -conformal set

SH ⊆ V (B) with |SH | ≤ εH(k) such that B −SH does not contain H as a matching minor. Let

F := M ∩ E(B[SH ]). Then, as SH is M -conformal, we have |F | ≤ 1
2εH(k), and by Lemma 4.11

D− F does not contain any digraph from A(DH) as a butterfly minor. As our choice of D was

arbitrary, we may set fDH
:= 1

2εH and thus DH has the generalised Erdős-Pósa property for

butterfly minors.

Now let us assume there is MH ∈ M(H) such that DH := D(H,MH) has the generalised

Erdős-Pósa property for butterfly minors. Let M ′
H ∈ M(H) \ {MH} and D′

H := D(H,M ′
H).

Since the generalised Erdős-Pósa property for butterfly minors only cares about A(DH) and not

necessarily about DH itself, it suffices to show A(DH) = A(D′
H). Consider a digraph J ∈ A(D′

H).

Then every proper butterfly minor J ′ of J has the property that S(J ′) does not contain H as

a matching minor, while S(J) does contain H as a matching minor. Therefore, J must be DH -

minimal and thus J ∈ A(DH). With the same argument one can also obtain A(DH) ⊆ A(D′
H)

and our claim follows.

So at last we may assume D(H,MH) has the generalised Erdős-Pósa property for butterfly

minors for every MH ∈ M(H) and let us fix any MH ∈ M(H). Let DH := D(H,MH), and let
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fDH
: N → N be the function associated with the generalised Erdős-Pósa property for butterfly

minors of DH . Let B be any bipartite graph with a perfect matching M . As before, B contains

k pairwise disjoint M -conformal subgraph, all of which have H as a matching minor, if and only

if D := D(B,M) contains k pairwise disjoint subgraphs, all of which have a butterfly minor

from A(DH). So in case B does not have k such M -conformal subgraphs, then D does not

have k such subgraphs either and thus there must exist a set SH ⊆ V (D) with |SH | ≤ fDH
(k)

such that D − SH does not have any butterfly minor isomorphic to a member of A(DH). Note

that SH ⊆ M and thus |V (SH)| ≤ 2fDH
(k), and V (SH) is an M -conformal set of vertices in

B. Moreover, by Lemma 4.11 we know that B − V (SH) does not have H as a matching minor.

So by setting εH := 2fDH
we have found a function that witnesses the Erdős-Pósa property for

matching minors of H.

6 Algorithmic Applications of Perfect Matching Width

The majority of this section is dedicated to solve a matching theoretic version of the t-Disjoint

Paths Problem. Towards this goal we need to solve several small subproblems, including the

computation of a bounded width perfect matching decomposition with additional properties,

which is done in Section 6.1. As a special case we obtain Theorem 1.6 from this. In Section 6.2

we then discuss the dynamic programming for the matching theoretic linkage problem. Finally,

in Section 6.3, we present the dynamic programming necessary for Theorem 1.8. The proofs to

all other algorithmic results announced in the introduction can be found in Section 6.4.

Before we discuss the computation of a decomposition of bounded perfect width, we need to

make some preliminary observations regarding the matching theoretic Linkage Problem. We

start with a formal definition.

Definition 6.1 (The Bipartite k-Disjoint Alternating Paths Problem). Let B be a bipartite

graph with a perfect matching, k ∈ N a positive integer, and s1, . . . , st ∈ V1, t1, . . . , tk ∈ V2,

called the terminals. The question whether there exists a perfect matchingM of B and internally

M -conformal paths P1, . . . , Pk in B which are pairwise internally disjoint and for all i ∈ [1, k],

Pi has endpoints si and ti is called the bipartite k-disjoint alternating paths problem (k-DAPP).

From here on, most of our effort is directed towards proving the following statement.

Proposition 6.2. Let B be a bipartite graph with a perfect matching, k ∈ N a positive

integer and I a family of k terminal pairs. There exists an algorithm that decides in time

|V (B)|O(k+pmw(B)2) the k-DAPP with input I on B.

Let B be a bipartite graph with a perfect matching and I = {(s1, t1), . . . , (sk, tk)} a family of

terminal pairs. Let M be a perfect matching of B and P = {P1, . . . , Pk} a family of internally

disjoint and internally M -conformal paths in B such that Pi has endpoints si and ti for every

i ∈ [1, k]. We call (M,P) a solution for I. Let W ⊆ E(B) be a matching. A solution (M,P)

for I in B extends W if W ⊆ M and every terminal is matched by some edge in W .

A problem that needs to be addressed before we go any further is that our terminals are not

necessarily distinct. In some cases this might lead to problems for the way our algorithm works.
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Before we continue, let us discuss how we get around this issue. Notice the following: Let

x ∈ V (B), be a vertex that occurs in at least one pair of I and let us denote the total number

of occurrences of x as a terminal by multi(a). Then in every solution (M,P), every path P ∈ P

that connects x to some other terminal must end in an edge that is not contained in M and

connects x to some neighbour x′ of x. Moreover, the edge of M covering x cannot be contained

in any P ∈ P. Hence we may pick a collection of multi(x) many neighbours of x, select an

extendable matching W ′ that covers the selected vertices, but not x, and now for each of these

edges pick the endpoint not adjacent to x. Each of these picked vertices belong to the same

colour class as x. For our graph B let V ′
1 ⊆ V1 \ {s1, . . . , sk} and V ′

2 ⊆ V2 \ {t1, . . . , tk} be

selections of such vertices together with the extendable set of all matching edges W ′ covering

these new vertices. Note that W ′ must be chosen such that W ∪W ′ is extendable. For every

(si, ti) ∈ I now select a vertex s′i ∈ V ′
1 and t′i ∈ V ′

2 that is a neighbour of si, ti respectively. Then

we have formed a distinct family I ′ of k terminal pairs and therefore we may now consider an

instance of the bipartite k-matching linkage problem instead.

Let us now formalise the above discussion. Given a family of terminal pairs I =

{(s1, t1), . . . , (sk, tk)} and an extendable set W such that all terminals are matched by W and

every edge of W matches a terminal, we call a pair (I ′,W ′) a (I,W )-proxy if

i) I ′ = {(s′1, t
′
1), . . . , (s

′
k, t

′
k)} is a family of k terminal pairs where si 6= sj and ti 6= tj for

every choice of distinct values for i, j ∈ [1, k] (we call such a family distinct),

ii) W ′ ∪W is extendable, every terminal of I ′ is matched by some edge of W ′, every edge of

W ′ matches a terminal of I ′, and W ∩W ′ = ∅, and

iii) for every i ∈ [1, k], if s′iv ∈ W ′, then v is a neighbour of si and if vt′i ∈ W ′, then v is a

neighbour of ti.

It might happen, that si and ti of the original instance are already adjacent, in such cases, we

might have to consider additional cases of smaller instances, where the edge siti is already one

of the paths in a possible solution. Indeed, without loss of generality, we may always assume

siti to be part of our solution and thus the terminal pair (si, ti) does not need to be considered.

Hence we may assume all terminal pairs to be non-adjacent.

A perfect matching decomposition (T, δ) is safe for W and I if every W -extending solution P

for I satisfies the following inequality for every e ∈ E(T ):

|∂B(e) ∩
⋃

P∈P

E(P )| ≤ 2width(T, δ).

The high level strategy of our algorithm is as follows:

• We choose an extendable matching W ⊆ E(B) of size at most 2k such that all terminals

of I are covered.

• Next choose a (I,W )-proxy (I ′,W ′).

• Then we compute a perfect matching decomposition (T, δ) for B − V (W ) that is safe for

(I ′,W ′) and its width is bounded in a function of pmw(B) and k.

• We apply dynamic programming on (T, δ) in order to either find a solution that extends

W ′ or refute the existence of such a solution.

• Finally, if for some W and some (I,W )-proxy we find a solution we extend it to a solution

for I and W and return “Yes”, otherwise we return “No”.
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Let |V (B)| = n. If f1(pmw(B), k, n) describes the time needed to compute (T, δ) and

f2(pmw(B), k, n) describes the time necessary for the dynamic programming on (T, δ), the over-

all running time of our algorithm can then be expressed by O(n2k · n4k · f1(pmw(B), k, n) ·

f2(pmw(B), k, n)) where the constants only depend on k and pmw(B).

Once the functions f1 and f2 are established, Proposition 6.2 follows as an immediate conse-

quence of the high-level approach described above. Indeed, please note that, by slightly modify-

ing the proofs below, one can obtain the following more general result:

Corollary 6.3. Let B be a bipartite graph with a perfect matching, k ∈ N an integer, I a

family of k terminal pairs, and F ⊆ E(B) an extendable set. There exists an algorithm that

decides in time |V (B)|O(k+pmw(B))2 whether there exists an F -extending solution for I or not.

As an immediate consequence, if D = D(B,M) is some digraph, by choosing F = M

Corollary 6.3 together with Theorem 3.2 and Proposition 3.3 implies the original result on the

directed disjoint path problem for digraphs of bounded directed treewidth in [JRST01].

6.1 Computing A Perfect Matching Decomposition

Some preliminary results are needed. For one, we need to be able to check for given W ⊆ E(B)

whether there exists a perfect matching extending W if this is true, W is called an extendable

set. This boils down to checking if B − V (W ) has a perfect matching. And second, we must be

able to compute a perfect matching decomposition of bounded width.

The first problem can be solved in polynomial time by Edmonds’ famous Blossom Algorithm

[Edm65], or, since we work on bipartite graphs, by the Hungarian Method [Kuh55], so this part

will not be much of a concern to us.

For the second part, we make use of the following theorem.

A directed tree decomposition (T, β, γ) for a digraph D is nice if for every (t′, t) ∈ E(T ),

i) β(Tt) induces a strong component of D − γ(t′, t), and

ii) γ(t′, t) ∩ β(Tt) = ∅.

Theorem 6.4 ([CLMS19]). Let D be a digraph, k ∈ N, and dtw(D) ≤ k. There exists an

algorithm with running time 2O(k log k)nO(1) that computes a nice directed tree-decomposition

of width at most 3k − 2 for D.

Let B be a bipartite graph with a perfect matching M and D := D(B,M). In light of

Theorem 6.4, it would be enough to compute a perfect matching decomposition of bounded

width for B from a directed tree decomposition of bounded width for D which we already know

how to do in polynomial time by the results from [HRW19a]. We would like to maintain a bit

of this niceness in the perfect matching decomposition we produce.

Let B be a bipartite graph with a perfect matching. A perfect matching decomposition (T, δ)

of width w is nice if T is rooted at some vertex r ∈ V (T ) and

i) V (T − r) can be partitioned into four sets of vertices:

• The leaves, L(T ), which are the vertices of degree one.

• The basic vertices, basic(T ), which are those vertices t ∈ V (T ) whose successors are

leaves of T .
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• The joins, join(T ), which are the vertices t ∈ V (T ) with two distinct successors t1
and t2 such that there is no edge from V2 ∩ δ(Tt1) to V1 ∩ δ(Tt2), and B[δ(Tt1)] is

elementary.

• The guards, guard(T ), which are the vertices t ∈ V (T ) satisfying one of the following

properties:

• |δ(Tt)| ≤ 2k and δ(Tt) is conformal (Type 1), or

• t has two distinct successors t1 and t2 such that t1 is a guard of Type 1 and t2
either is a join, or B[δ(Tt2)] is conformal and elementary. (Type 2)

ii) if r is not a leaf of T for every successor t of r one of the following holds:

• t is a guard of Type 1, or

• t either is a join, or B[δ(Tt)] is conformal and elementary, and

the successors of r of this type can be sorted as t1, . . . , th, h ≤ 3 such that if 1 ≤ i < j ≤ h,

then there is no edge from V1 ∩ δ(Ttj ) to V2 ∩ δ(Tti ).

Given a distinct set I of terminal pairs for the k-DAPP on B and an extendable set W ⊆ E(B)

matching all terminals such that if e ∈ W , then an endpoint of e is a terminal, we call a perfect

matching decomposition (T, δ) a (I,W )-decomposition for B, if it is nice and safe for I and W .

In the following we describe how to obtain a (I,W )-decomposition for a bipartite graph B

with a perfect matching. As a base of our algorithm, we are going to use Theorem 6.4 and then

manipulate the obtained decomposition in order to create a nice perfect matching decomposition.

A tuple (T, β, γ) is called a proto-directed tree decomposition for the digraph D if it satisfies all

the conditions of a directed tree decomposition except that we allow empty bags and still every

vertex of D must be contained in exactly one bag of (T, β, γ).

A proto-directed tree decomposition (T, β, γ) of width w for a digraph D is prepared if

i) T is subcubic,

ii) if t ∈ V (T ) has a unique successor t′, then β(Tt′) induces a strong component of D−γ(t, t′)

or contains at most w + 1 vertices, and

iii) if t ∈ V (T ) has two distinct successors t1 and t2, then

• β(Tt1) either contains at most w+1 vertices and β(Tt2) also either has at most w+1

vertices or induces a strongly connected subgraph of D − γ(t, t2), or

• β(Tt1) induces a strongly connected subgraph of D− γ(t, t1) and there is no directed

edge with tail in β(Tt2) and head in β(Tt1) in D.

Lemma 6.5. Let D be a digraph and dtw(D) ≤ w. There exists an algorithm with running

time 2O(w logw)nO(1) that computes a prepared proto-directed tree-decomposition of width at

most 3w − 2 for D.

Proof. Let (T0, γ0, β0) be the nice directed tree-decomposition obtained via the algorithm in

Theorem 6.4. Let us call a proto-directed tree-decomposition where every vertex of degree

at most three satisfies the axioms of a prepared proto-directed tree decomposition and every

other vertex satisfies the axioms of a nice directed tree decomposition almost prepared. Clearly

(T0, γ0, β0) is almost prepared. Now let (Tj , γj , βj) be an almost prepared proto-directed tree-

decomposition.

Pick any vertex t ∈ V (T ) of degree more than three and let t1, . . . , tℓ be its successors. Then

βj(Tj,ti) induces a strong component of D − γj(t, ti) for all i ∈ [1, ℓ]. Indeed, βj(Tj,ti) induces a
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strong component of D−Γj(t) for all i ∈ [1, ℓ], without loss of generality let us assume that the

ti are numbered in such a way that for all 1 ≤ i < k ≤ ℓ there is no directed edge with tail in

βj(Tj,tk) and head in βj(Tj,ti). We define a proto-directed tree decomposition (Tj+1, βj+1, γj+1)

as follows. Let Tj+1 be the arborescence obtained from Tj by introducing a new vertex t′,

the edge (t, t′) and replacing (t, ti) by (t′, ti) for all i ∈ [2, ℓ]. Then βj+1(t
′′) := βj(t

′′) for all

t′′ ∈ V (Tj) and βj+1(t
′) := ∅. Moreover, let γj+1(e) := γj(e) for all e ∈ E(Tj)\{(t, t2), . . . , (t, tℓ)},

γj+1(t, t
′) := γj(d, t)∪ βj(t), where (d, t) is the unique ingoing edge at t in Tj , and γj+1(t

′, ti) :=

γj(t, ti) for all i ∈ [2, ℓ]. Clearly width(Tj+1, βj+1, γj+1) ≤ width(Tj , βj , γj), so we just need to

show that (Tj+1, γj+1, βj+1) is indeed a proto-directed tree decomposition. To be more precise,

we only need to show that γj+1(t, t
′) is a valid guard for βj+1(Tj+1,t′). Let P be any directed walk

starting and ending on a vertex of βj+1(Tj+1,t′) while containing a vertex of D − βj+1(Tj+1,t′).

If P lies in βj+1(Tj+1,t), then P must contain a vertex of βj+1(t) since there is no edge from

βj+1(Tj+1,t′) to βj+1(Tj+1,t1) by construction. So if P avoids βj+1(t), then P must contain a

vertex of D − βj+1(Tj+1,t) and thus, it must contain a vertex of γj+1(d, t).

Then (Ti+1, γi+1, βi+1) is almost prepared and has less vertices of degree at least four that

(Ti, γi, βi). In fact, after at most |V (T0)| steps we have obtained a prepared proto-directed tree

decomposition.

Given a bipartite graph B with a perfect matching, I = {(s1, t1), . . . , (sk, sk)} a distinct family

of terminal pairs, and an extendable W ⊆ E(B) matching all terminals, we call a set F ⊆
(

V (B)
2

)

a W -completion, if for every W -extending solution (M,P), the graph induced by the edge set

(F ∪W ∪
⋃

P∈P

E(P )) \ {xy ∈ W | x = si and y = ti for some i ∈ [1, k]}

consists exclusively of M -alternating cycles. Please note that, by definition, |F | ≤ k for all

W -completing F .

Lemma 6.6. Let B be a bipartite graph with a perfect matching, I = {(s1, t1), . . . , (sk, tk)} a

family of distinct terminal pairs, and W ⊆ E(B) an extendable set covering all terminals such

that if e ∈ W , then an endpoint of e is a terminal. Then a W -completion F can be found in

linear time.

Proof. We obtain F as follows: Initialise F and U with ∅. Pick some si ∈ V (I) \ U and add it

to U , let e ∈ W be the edge of W covering si and let x be its other endpoint. Next we have to

consider several cases. If x = ti we just add ti to U and continue with a new si′ ∈ V (I) \ U , in

this case nothing else must be done. If x = tj for some j ∈ [1, k] \ {i} add sj and tj to U , select

the edge e ∈ W to be the edge covering sj, let x be its other endpoint. In case sj was already

in U before, it must be equal to the original si′ this cycle of the process was started with. Then

every W -extending solution clearly closes an alternating cycle and we may proceed with a new

si ∈ V (I) \ U . Otherwise reiterate the process with sj in the role of si, in this case, we are still

within the same cycle. And at last, if x /∈ V (I) we may consider ti and the edge e′ ∈ W covering

ti, let y be its other endpoint.

The process here is rather similar to what came before. Clearly y 6= si and, moreover, y /∈ U .

If however y = sj for some i ∈ [1, k] \ {i}, then add sj and tj to U , set e′ ∈ W to be the edge
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covering tj and reiterate the process with tj in the role of ti. If, on the other hand, y /∈ V (I),

let si′ be the vertex this cycle was started with. Now any solution, together with the edges of

W , produces a path P ′ with endpoints x and y that can be made into an alternating cycle by

adding the edge xy to B if it does not already exist. Hence we add xy to F and proceed with

the next si ∈ V (I)\U . Once U = V (I) our set F is W -completing by the discussion above.

Adding a W -completion F to our graph B should not change its perfect matching width by too

much.

Observation 6.7. Let D be a digraph and F ⊆ E(D) a set of edges not in D. Then dtw(D +

F ) ≤ dtw(D) + |F |.

Proof. Let (T, β, γ) be a directed tree decomposition for D of optimal width and let S ⊆ V (D)

be the set of tails of the edges in F . Now add S to every guard of (T, β, γ). Clearly this

increases the width of our decomposition by at most |S| ≤ |F | and the result is a directed tree

decomposition for D + F .

Lemma 6.8. Let B be a bipartite graph, I = {(s1, t1), . . . , (sk, tk)} a distinct family of terminal

pairs, and W ⊆ E(B) an extendable set covering all terminals such that if e ∈ W , then an

endpoint of e is a terminal. Let pmw(B) ≤ w and n := |V (B)|. There exists an algorithm with

running time 2O((w2+k) log(w2+k))nO(1) that produces a (I,W )-decomposition of width at most

432w2 + 864w + 22 + 6k for B.

Proof. Let us first compute a perfect matching M extending W and a W -completing set F .

Clearly both can be done in polynomial time. Now let D := D(B,M), D′ := D(B + F,M),

and F ′ := E(D′) \ E(D). Then F ′ corresponds to the edges in F added to B. By Section 3 we

obtain dtw(D) ≤ 72 pmw(B)2+144pmw(B)+9. With Observation 6.7 this means dtw(D+F ) ≤

72 pmw(B)2+144pmw(B)+9+k. Observe that D+F ′ = D′. Now let (T, β, γ) be the prepared

proto-directed tree decomposition of width at most 216w2 + 432w + 10 + 3k obtained from

Lemma 6.5.

In the next step, we show how to obtain a nice perfect matching decomposition for B +F from

(T, β, γ). First of all, since D′ = D(B + F,M), every vertex v of D′ corresponds to an edge ev
of M , let us denote the endpoint of ev in V1 by av and the other endpoint by bv. Since T is

an arborescence, it already is rooted at some vertex, say r. In what follows, we explain how

to manipulate this tree T and how we define a bijection δ′ step by step in order to create a

cycle decomposition for D′ of bounded width. This cycle decomposition is then translated into

a perfect matching decomposition with the required properties.

Let t ∈ V (T ) be any vertex with β(t) 6= ∅ and let d be its predecessor. We only discuss the case

in which t is not the root, but the other case can be solved in a similar way. There are three

possible cases, depending on the number of successors t has in T .

Case 1: Vertex t is a leaf in T .

In this case, let us construct a rooted cubic tree T ′ with root t and otherwise disjoint from T such

that T ′ has exactly |β(t)| many leaves. Add T ′ to T and extend the bijection δ′ such that the

restriction of δ′ to the leaves of T ′ is a bijection between said leaves and β(t). Then the edge (d, t)

induces an edge cut ∂D(X) withX = β(t), and thus cp(∂D(X)) ≤ |β(t)| ≤ 216w2+432w+11+3k
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and every edge of T ′ induces an edge cut with even smaller cycle porosity. Mark every non-leaf

vertex in T ′ as a guard. This mark does not hold a special significance for this decomposition,

but will be used in the second half of this proof to show that we can construct a nice perfect

matching decomposition.

Case 2: Vertex t has a unique successor d′ in T .

Let T ′ be a rooted cubic tree with root t′, completely disjoint from T and exactly |β(t)| leaves,

add T ′ to T together with the edge (t, t′) and extend δ′ for the leaves of T ′ as above. With the

same arguments we obtain bounds on the cycle porosity of every edge of T ′ and the edge (t, t′).

Mark every non-leaf vertex in T ′ as a guard.

Case 3: Vertex t has two successors in T .

Here we first subdivide the edge (d, t), i.e. we replace it by the directed path (d, t′, t) where t′ is

a vertex newly introduced to T . Then we create a rooted cubic tree T ′ with exactly |β(t)| leaves,

rooted at t′′ that is disjoint from the modified tree T and introduce the edge (t′, t′′). Afterwards,

we extend δ′ to the leaves of T ′ as before and again obtain bounds on the cycle porosity of the

edge cuts induced by the edges of T ′ and (t′, t′′). Mark t′ and every non-leaf vertex in T ′ as

guards.

Let (T ′, δ′) be the cycle decomposition for D′ obtained by applying the above constructions to all

vertices of (T, β, γ) with non-empty bags. Since (T, β, γ) was a proto-directed tree decomposition

of width at most 216w2 +432w+10+3k it is straight forward to prove that all edges of T ′ that

were not discussed in the construction induce, with respect to δ′, edge cuts of cycle porosity at

most 432w2 + 864w + 22 + 6k in D′. Hence width(T ′, δ′) ≤ 432w2 + 864w + 22 + 6k.

Now let us create a new rooted tree T ′′ from T ′ by introducing for every leaf t of T ′ two new

successors tV1
and tV2

and defining δ(tV1
) := aδ′−1(t) and δ(tV2

) := bδ′−1(t). The result is a perfect

matching decomposition (T ′′, δ) for B + F . The bound width(t, δ) ≤ 432w2 + 864w + 22 + 6k

follows from Observation 2.12.

Additionally, since we started out with a prepared proto-directed tree decomposition, it is rela-

tively straight forward to check that (T ′′, δ) is nice. For the sake of completion we discuss this

in the following paragraph.

Let t ∈ V (T ′′) be any non-root vertex.

Case A: Vertex t is a leaf.

Here we are done immediately since t ∈ L(T ′′).

Case B: Vertex t is adjacent to a leaf.

In this case, by construction of T ′′ from T ′, t must have exactly two successor which both are

leaves and thus t ∈ basic(T ′′).

Case C: Vertex t is not adjacent to a leaf, but has been marked as a guard in the construction

of (T ′, δ′).

First let us assume t ∈ V (T ), in this case, t must have been a leaf of T and thus β(t) directly

corresponds to δ(T ′′
t ) and t is indeed a guard of T ′′. Otherwise, t must have been introduced

during the construction of T ′ from T and thus there must be a vertex d ∈ V (T ) with β(d) 6= ∅

that is responsible for the introduction of t. In case d has a unique successor in T , t belongs to

the newly introduced rooted cubic tree and thus δ(T ′′
t ) has at most 2w vertices and is conformal.

Thus t is indeed a guard. Hence we may assume d to have two successors in T . Then we
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subdivided the incoming edge at d with a new vertex, say d′ and added a rooted cubic tree R

with root d′′ as a new successor of d′. If t ∈ V (R) we are done by the same argument as above.

If t = d′, then the successors of d′ are d and d′′. We have already seen that d′′ is a guard of T

and since (T, β, γ) is a prepared proto-directed tree decomposition, d must be a join as d has

two successors t1 and t2 satisfying the appropriate requirements.

Case D: Vertex t is a vertex of the original T but has not been marked as a guard during the

construction of T ′.

This means in particular that t is not a leaf of T and does not have a unique successor. Indeed,

in this case, t must have exactly two successors t1 and t2. We may assume t1 and t2 to be

ordered such that there is no edge from β(Tt2) to β(Tt1). Let t
′
1 and t′2 be the two successors of

t in T ′′, then it follows that there is no edge from V2 ∩ δ(T ′′
t2
) to V1 ∩ δ(T ′′

t1
). Moreover, with the

same argument β(Tt1) is strongly connected and thus δ(T ′′
t1
) is elementary. Hence t is a join.

This completes the argument and thus (T ′′, δ) is nice. What is left to show is that (T ′′, δ) is safe

for I and W . Note that the width of (T ′′, δ) cannot increase by deleting F and thus it also is a

perfect matching decomposition for B with the same bound on its width.

We claim that (T ′′, δ) is safe for W and I. Suppose there exists a solution M ′,P and an edge

e ∈ E(T ′′) such that

|∂B(e) ∩
⋃

P∈P

E(P )| > 864w2 + 1728w + 44 + 12k.

With F being W -completing, F ∪W ∪
⋃

P∈P E(P ) induces a family C of pairwise disjoint M ′-

conformal cycles in B + F . Then let C′ be the collection of all cycles in C with edges in ∂B(e).

Let E(C′) :=
⋃

C∈C′ E(C). Since width(T ′′, δ) ≤ 432w2 + 864w + 22 + 6k, at most 432w2 +

864w + 22 + 6k of the edges in E(C′) ∩ ∂B(e) can belong to M ′. Hence |(E(C) ∩ ∂B(e)) \M
′| >

432w2+864w+22+6k. Consider the perfect matchingM ′′ := M ′∆E(C′) of B+F . Note that this

is the point where we need I to be a distinct family. Then |∂B(e)∩M
′′| > 432w2+864w+22+6k

contradicting our assumption. So our claim follows.

Note that in case t = 0, Lemma 6.8 implies the existence of an FPT-approximation algorithm

that produces a nice perfect matching decomposition for bipartite graphs B with a perfect

matching. Hence we have established Theorem 1.6.

6.2 The Matching Linkage Problem

With Lemma 6.8 we have fixed

f1(pmw(B), k, |V (B)|) := 2O((pmw(B)2+k) log(pmw(B)2+k))|V (B)|O(1),

so from now on we will only be concerned with the dynamic programming on (I,W )-

decompositions.

In most parts, we lean on the algorithm for the directed disjoint paths problem developed by

Johnson et al. for digraphs of bounded directed treewidth [JRST01]. However, we face several

challenges here. The first one is that we cannot assume that there is no perfect matching M

for which some internally M -conformal path P exists with |∂B(e)∩E(P )| ≫ 2width(T, δ). The
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only thing we can be sure of is that no such path can be part of our solution. Second, while

we are exclusively interested in perfect matchings of B that extend W , there might still be an

exponential number of them, and thus we must store additional information in order to cope

with this fact.

Let B be a bipartite graph with a perfect matching, I a distinct family of k terminal pairs for the

k-DAPP in B, W ⊆ E(B) an extendable set matching all terminals such that if e ∈ W , then an

endpoint of e is a terminal, and F a W -completion. A subgraph L of B is called a linkage if there

exists a perfect matching M and a family of pairwise internally disjoint internally M -conformal

paths P such that L =
⋃

P∈P P , and L has exactly |P| components. A linkage L is a (I,W )-

linkage if there exists a solution (M,P) for I in B extending W such that L =
⋃

P∈P P . Please

note that for a (I,W )-linkage L the corresponding W -extending solution (M,P) is uniquely

determined apart from the edges of M ∩ (E(B)\
⋃

P∈P E(P )). A part of L is a subgraph L′ ⊆ L

such that some path P ∈ P exists with L′ ⊆ P . Let X ⊆ V (B), a part of L in X is a component

of L[X ∩ V (L)], we denote the set of all parts of L in X by partsL(X).

We say that a linkage L in G is (k,w)-limited in X and G, for some integer w, if for every set

Y ⊆ X with mp(∂B(Y )) ≤ w we have |partsL(Y )| ≤ k + w.

Lemma 6.9. Let B be a bipartite graph with a perfect matching, I a distinct family of k

terminal pairs, W ⊆ E(B) an extendable set covering all terminals such that if e ∈ W , then an

endpoint of e is a terminal, and F a W -completion. Let X ⊆ V (B) and L a (I,W )-linkage in

B as well as w a positive integer, then L is (k,w)-limited in X and B + F .

Proof. The proof is similar to the safety-part in the proof of Lemma 6.8. Let Y ⊆ X be any set

with mp(∂B+F (Y )) ≤ w and suppose |partsL(Y )| ≥ k + w + 1. Let L′ be any component of L

and consider ℓ′ := |∂B+F (Y ) ∩E(L′)|. If ℓ′ ≥ 1, then

⌈

ℓ′

2

⌉

≤ |partsL′(Y )| ≤ 1 +
ℓ′

2
.

Hence we obtain the following:

k +w + 1 ≤ |partsL(Y )| =
∑

L′ component of L

|partsL′(Y )|

≤
∑

L′ component of L

1 +
|∂B+F (Y ) ∩ E(L′)|

2

= k +
|∂B+F (Y ) ∩ E(L)|

2

Therefore 2w+2 ≤ |∂B+F (Y )∩E(L)| and thus, with F being W -completing, there must exist a

W -extending perfect matching M of B such that L is a family of internally M -conformal paths

and thus, L + F is a family of M -alternating cycles. Hence there exists a perfect matching of

B + F with at least 2w + 2 edges in ∂B+F (Y ) contradicting the choice of Y .

Since we will be working on a (I,W )-decomposition of bounded width, from now on the case

where linkages are not (k,w)-limited will be ignored, as it wont occur in our algorithm.
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Let B be a bipartite graph with a perfect matching, W ⊆ E(B) an extendable set, k,w ∈ N two

integers, X ⊆ V (B), and U ⊆ ∂B(X) a set such that W ∪U is extendable and W ∩ ∂B(X) ⊆ U .

A (k,w)-U -itinerary for X is a mapping fU that assigns every tuple (ℓ,J , J), where

• ℓ ∈ [1, |X|] is an integer,

• J is a distinct family of j ∈ [0, k + w] terminal pairs from X \ V (U \ J), and

• J ⊆ E(B) is a matching covering all terminals of J and every edge of J covers some

terminal of J such that W ∪ U ∪ J is extendable, and J ∩ ∂B(X) = U ∩ ∂B(X),

a value 0 or 1 such that the following is guaranteed:

i) If fU(ℓ,J , J) = 0, then there exists no (J , J)-linkage L in B[X \V (U \J)] with |V (L)| = ℓ

such that a J-extending solution M,Q exists with W ∪J ∪U ⊆ M , which is (k,w)-limited

in X.

ii) If fU (ℓ,J , J) = 1, then there exists a (J , J)-linkage L in B[X \V (U \J)] with |V (L)| = ℓ

such that a J-extending solution M,Q exists with W ∪ J ∪ U ⊆ M .

Lemma 6.10. Let B be a bipartite graph with a perfect matching, W ⊆ E(B) an extendable

set, and k,w ∈ N two integers. Furthermore let X,Y ⊆ V (B) be two disjoint subsets such that

there is no edge between V1 ∩ Y and V2 ∩X and let U ⊆ ∂B(X ∪ Y ) be an extendable set with

W ∩ ∂B(X ∪ Y ) ⊆ U . Assume that for every Z ∈ {X,Y } and every extendable UZ ⊆ ∂B(Z)

with |UZ | ≤ w and W ∩ ∂B(Z) ⊆ UZ we are given a (k,w)-UZ -itinerary fZ
UZ

. Then there exists

an algorithm with running time O((k + w)!(2k + 3w)4(k+w)|X ∪ Y |4k+12w+2) that produces a

(k,w)-U -itinerary for X ∪ Y .

Proof. Let ℓ ∈ [1, |X ∪ Y |] and j ∈ [0, k + w], let J = {(s1, t1), . . . , (sj , tj)} be a distinct set of

j ∈ [0, k + w] terminal pairs in X ∪ Y and J ⊆ E(B) an extendable set such that every edge in

J covers a terminal of J and every terminal is covered by some edge in J . We need to choose

some additional sets of edges before we can start, in order to determine the value of fU (ℓ,J , J).

We iterate over all choices of sets R, H, RX , and RY satisfying the following requirements.

i) R ⊆ ∂B(X) ∩ ∂B(Y ) such that

• W ∩ ∂B(X) ∩ ∂B(Y ) ⊆ R,

• |(U ∩ ∂B(X)) ∪R| ≤ w and |(U ∩ ∂B(Y )) ∪R| ≤ w, and

• W ∪ U ∪ J ∪R is extendable.

ii) H ⊆ ∂B(X) ∩ ∂B(Y ) such that

• H is a matching of size at most w,

• no edge of H is incident with an edge of U ∪R, and

• the set of endpoints of the edges in H in Z ∈ {X,Y } is denoted by ZH .

iii) For Z ∈ {X,Y }, RZ ⊆ E(B[Z]) such that

• every vertex in ZH is covered by some edge of RZ ,

• every edge of RZ covers a vertex in ZH , and

• W ∪ U ∪ J ∪R ∪RZ is extendable.

In what follows let R, H, and the RZ be fixed. For Z ∈ {X,Y } let UZ := R ∪ (U ∩ ∂B(Z)) and

note that, by choice and our assumption, we are given a (k,w)-UZ -itinerary fZ
UZ

for Z. Let us

denote the set of endpoints in V2 of the edges in RX by V2,RX
and the set of endpoints in V1 of

the edges in RY by V1,RY
.
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There may exist some paths that belong to a linkage we are interested in which start in a vertex

of V1 ∩ Y and end in a vertex of V2 ∩X. However, each such path must necessarily use an edge

of R and in total, since we are still only interested in (k,w)-limited linkages, we cannot cross the

cut between X and Y too often. Still, we need to address this problem by possibly considering

additional terminals not belonging to those we were given by J . We approach the problem of

merging the two itineraries with respect to the chosen sets above by constructing an auxiliary

digraph DW,U,X,Y [J , J,R,H,RX , RY ] of constant size.

For the vertices of DW,U,X,Y [J , J,R,H,RX , RY ] we define the following sets:

VX := {si ∈ X | i ∈ [1, j]} ∪ {ti ∈ X | i ∈ [1, j]} ∪ V2,RX
∪ {ve | e ∈ R}

VY := {si ∈ Y | i ∈ [1, j]} ∪ {ti ∈ Y | i ∈ [1, j]} ∪ V1,RY
∪ {ve | e ∈ R} .

And for the edges let

EX := {(si, v) | si ∈ VX and v ∈ V2,RX
} ∪ {(ve, ti) | ti ∈ VX and e ∈ R}

∪ {(ve, u) | e ∈ R and u ∈ V2,RX
} , and

EY := {(si, ve) | si ∈ VY and e ∈ R} ∪ {(v, ti) | ti ∈ VY and v ∈ V1,RY
}

∪ {(u, ve) | e ∈ R and u ∈ V1,RY
} .

Then

DW,U,X,Y [J , J,R,H,RX , RY ] :=(VX , EX) ∪ (VY , EY )

+ {(u, v) | uw ∈ RX , wz ∈ H, and zv ∈ RY } .

Let L be a directed J -linkage in DW,U,X,Y [J , J,R,H,RX , RY ] such that L has at most t + w

components in (VZ , EZ) for both Z ∈ {X,Y }. Then from L we can derive two instances

of the linkage problem for the matching case, one in B[X] and the other in B[Y ], namely

JL,X := E(L) ∩EX and JL,Y := E(L) ∩EY . Additionally we define for Z ∈ {X,Y }

UL,Z := (∂B(Z) ∩ U) ∪R, and

JL,Z := {e ∈ J | e ∈ E(B[Z]) ∪ ∂B(Z)} ∪ {e ∈ RZ | e covers a terminal in JL,Z} .

If there now exist integers ℓ1 and ℓ2 with ℓ = ℓ1 + ℓ2 such that

fX
UL,X

(ℓ1,JL,X , JL,X) = fY
UL,Y

(ℓ1,JL,Y , JL,Y ) = 1,

the two solutions in B[X] and B[Y ] can be combined and we may set fU(ℓ,J , J) := 1.

In total, since we iterate over all possible choices and combinations, this process correctly com-

putes a (k + w)-U -itinerary for X ∪ Y . The running time follows from the number of possi-

ble choices we need to consider and the size and construction of DW,U,X,Y [J , J,R,H,RX , RY ].

Please note that the bound given in the statement of the lemma is probably not optimal, but it

suffices for our purposes.
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Lemma 6.10 describes how to merge partial solutions at join-vertices of a (I,W )-decomposition,

once a set U has been fixed. The next lemma addresses the same problem at guard-vertices.

Indeed for our purposes, it suffices to only consider guard- and join-vertices in a bottom-up

fashion in order to find the desired solution.

Lemma 6.11. Let B be a bipartite graph with a perfect matching, W ⊆ E(B) an extendable

set, and k,w ∈ N two integers. Furthermore let X,Y ⊆ V (B) be two disjoint subsets such that

mp(∂B(X)) ≤ w and |Y | ≤ w, and let U ⊆ ∂B(X∪Y ) be an extendable set withW∩∂B(X∪Y ) ⊆

U . Assume that for every extendable UX ⊆ ∂B(X) with |UX | ≤ w and W ∩ ∂B(X) ⊆ UX

we are given a (k,w)-UX -itinerary fX
UX

. Then there exists an algorithm with running time

O((w + k)!w
1

2
w(|X| +w)4k+10w+2) that produces a (k,w)-U -itinerary for X ∪ Y .

Proof. Let ℓ ∈ [1, |X ∪ Y |], j ∈ [0, k + w], and J = {(s1, t1), . . . , (sj , tj)} be a distinct set of

j ∈ [0, k + w] terminal pairs in X ∪ Y and J ⊆ E(B) an extendable set such that every edge

in J covers a terminal of J and every terminal is covered by some edge in J . Next we iterate

over all possible choices for the sets R, H, and RX defined analogously to those in the proof of

Lemma 6.10. Additionally, we iterate over all possible choices of W ∪U ∪ J ∪R∪RX-extending

perfect matchings MJ,R,RX
of the graph BY := B[Y ∪ V (W ) ∪ V (U) ∪ V (J) ∪ V (R) ∪ V (RX)].

Since |Y | ≤ w there are at most w
w
2 such perfect matchings of BY . We need six additional

vertex sets in order to construct another auxiliary digraph that will be used similarly to the

one in Lemma 6.10. However, since we do not know which colour the endpoints of an edge in

∂B(X) ∩ ∂B(Y ) have, with respect to the shore we are interested in, the construction is slightly

more complicated.

i) V1,R :=
⋃

e∈R e ∩ V1 ∩X

ii) V2,R :=
⋃

e∈R e ∩ V2 ∩X

iii) V1,H :=
⋃

e∈RX
e ∩ V1 \

⋃

e∈H e

iv) V2,H :=
⋃

e∈RX
e ∩ V2 \

⋃

e∈H e

v) V1,X := {si ∈ X | (si, ti) ∈ J }

vi) V2,X := {ti ∈ X | (si, ti) ∈ J }

As a first component we need the digraph D1 := D(BY ,MJ,R,RX
). Second let

VX :=
{

u′ | u ∈ V1,R ∪ V1,H ∪ V1,X

}

∪
{

v′ | v ∈ V2,R ∪ V2,H ∪ V2,X

}

,

EX :=
{

(u′, v′) | u ∈ V1,R ∪ V1,H ∪ V1,X and v ∈ V2,R ∪ V2,H ∪ V2,X

}

, and

E′ :=
{

(u′, ve) | u ∈ V1,H ∪ V1,R, u ∈ e ∈ R ∪RX , and ve ∈ V (D1)
}

∪
{

(ve, v
′) | v ∈ V2,H ∪ V2,R, v ∈ e ∈ R ∪RX , and ve ∈ V (D1)

}

.

In total these definitions give rise to the digraph

DW,U,X,Y [J , J,R,H,RX ,MJ,R,RX
] :=(VX , EX) ∪D1 + E′.

Now let

J ′ :=
{

(ui, wi) | ui = si if si ∈ Y if not, ui = s′i, wi = ti if ti ∈ Y if not, wi = t′i
}

.
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For every e ∈ J we identify any endpoint of J that is a terminal of J ′ with the vertex ve ∈

V (D1). Then, by construction, every solution P, M for J ′, W in B[X ∪ Y ] such that M

extends MJ,R,RX
naturally corresponds to a family of pairwise internally disjoint directed paths

in DW,U,X,Y [J , J,R,H,RX ,MJ,R,RX
] that links J ′. On the other hand, let P be a family of

pairwise internally disjoint directed paths linking J ′, such that the following requirements are

met:

i) Let Q :=
⋃

P∈P P , then the total number, over all paths P ∈ P, of subgraphs of Q that

are a maximal directed subpaths of P [VX ∪ {ve | e ∈ RX}] does not exceed k + w.

ii) If v ∈ V (P ) such that v = ve for some e ∈ MJ,R,RX
and there is some u′ ∈ VX such that

u ∈ e, then u′ does not occur in any other path of P. Similarly, if u′ ∈ V (P ) ∩ VX such

that some e ∈ MJ,R,RX
exists with u ∈ e, then ve does not occur in any path of P besides

possibly P .

Let P ′ be a subgraph of Q that is a maximal directed subpath of P [VX ∪{ve | e ∈ RX}] for some

P ∈ P and let u′P ′ be the starting point of P and v′P ′ its end. We define a terminal pair (u, v)

in B[X] as follows:

• If uP ′ ∈ V1,R ∪ V1,H ∪ V1,X set u := uP ′ , otherwise there must be some e ∈ RX such that

u′P ′ = ve. In this case let ue be the endpoint of e in V1 and set u := ue.

• Similarly, if vP ′ ∈ V2,R ∪ V2,H ∪ V2,X set v = vP ′ , otherwise there must be some e ∈ RX

such that v′P ′ = ve. In this case let u′e be the endpoint of e in V2 and set v := u′e.

Let JP be the collection of all terminal pairs (u, v) defined as above. Then no vertex of X occurs

in two different terminal pairs of JP and every terminal is covered by an edge of J ∪ RX . We

define two additional sets as before:

UP,X := (∂B(X) ∩ U) ∪R, and

JP,X := {e ∈ J | e ∈ E(B[X]) ∪ ∂B(X)} ∪ {e ∈ RX | e covers a terminal in JL,X} .

If there now exist integers ℓ1 and ℓ2 with ℓ = ℓ1 + ℓ2 such that

ℓ2 = 2|V (Q) ∩ {ve | e ∈ MJ,R,RX
\RX} |, and fX

UP,X
(ℓ1,JP , JP,X) = 1,

We can combine the parts of P in D1[{ve | e ∈ MJ,R,RX
\RX}] and a solution for JP to obtain

a solution for X ∪ Y and U . Hence we may set fU(ℓ,J , J) := 1. By iterating over all possible

choices for the various sets we are sure to produce a complete (k,w)-U -itinerary for X ∪ Y .

Using lemmata 6.10 and 6.11, we are now able to merge partial solutions at all join- and guard

vertices. For basic vertices obtaining partial solutions is straight forward, since we may only

choose the edges of the perfect matchings covering the two singular vertices that lie in the two

subtrees beneath. In order to obtain a (k,w)-U -itinerary for every possible U , we just have to

call the corresponding merge operation for every possible choice of U . At any given time there

are O(|V (B)|w) such choices, which overall implies the following:

Corollary 6.12. Let B be a bipartite graph with a perfect matching, I a distinct set of k

terminal pairs, W an extendable set covering all terminals such that every edge in W covers a

terminal and (T, δ) a (I,W )-decomposition of width w for B. There exists an algorithm that

decides in time O(|V (B)|4k+13w+3) whether there exists a solution for I, W or not.
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Corollary 6.12, together with the approximation factor for our (I,W )-decomposition from

Lemma 6.8, fixes

f2(pmw(B), k, |V (B)|) := O(|V (B)|5616 pmw(B)+11232 pmw(B)2+189+73k).

Together with our previous results this completes the proof of Proposition 6.2.

6.3 Counting Perfect Matchings

To count the number of perfect matchings in a graph of bounded perfect matching width is

another relatively straight forward application of dynamic programming. We describe the algo-

rithm for general, so not necessarily bipartite, graphs, however, for non-bipartite graphs there is

currently no algorithm known to compute a perfect matching decomposition of bounded width.

Hence we consider the decomposition itself to be part of the input. This means that Theorem 1.8

will follow from the results presented in this subsection by an application of Theorem 1.6.

Let G be a graph with a perfect matching and (T, δ) be a perfect matching decomposition of

width w ∈ N for G. Let us select a root r ∈ V (T ) and let ~T be the orientation of T obtained

by orienting every edge of T away from r. Moreover, for every (d, t) ∈ E(~T ) let Tt denote the

component of ~T − d that contains t.

For every vertex t ∈ V (T ) \ {r} with unique incoming edge (d, t) we will compute a value

µ(t, F ) ∈ N where F ⊆ ∂G(dt) and |F | ≤ w such that µ(t, F ) = 0 if and only if F is not

extendable, and otherwise µ(t, F ) is the number of perfect matchings of G[δ(t) ∪ V (F )] that

extend F . Since width(T, δ) = w no set F ⊆ ∂G(dt) with |F | ≥ w + 1 can be extendable and

thus for every t ∈ V (T ) \ {r} we only have to consider |V (G)|2w many such sets F . In an

additional step we will compute the value µ(r, ∅) using similar techniques as before to obtain

the total number of perfect matchings in G. In what follows we write µ(t, ·) as a placeholder for

µ(t, F ) for every F ⊆ ∂G(dt) with |F | ≤ w.

Proposition 6.13. Let G be a graph with a perfect matching and (T, δ) be a perfect match-

ing decomposition of width w ∈ N for G. There exists an algorithm that computes in time

O(|V (G)|4w+1) the number of perfect matchings in G.

Proof. Let us assume that the root r is not a leaf. Throughout the proof let us fix the convention

that, given t ∈ V (T ) \ {r}, d ∈ V (T ) is the unique vertex with (d, t) ∈ E(~T ).

Let us assume t ∈ V (T ) to be a leaf. In this case the only extendable sets F ⊆ ∂G(dt) are

of cardinality one. Indeed, we have to test at most |V (G)| − 1 edges incident with t whether

they are contained in a perfect matching or not. This can clearly be done in polynomial time

[Edm65].

Next let us assume t ∈ V (T ) \ {r} is not a leaf and has successors t1 and t2. Moreover,

assume that µ(ti, ·) have already been computed for both i ∈ [1, 2]. Observe that ∂G(dt) =

(∂G(tt1) ∪ ∂G(tt2)) \ (∂G(tt1) ∩ ∂G(tt2)). Let F ⊆ ∂G(dt) be an extendable set of edges and

let Fi := ∂G(tti) for both i ∈ [1, 2]. Let W be the collection of all sets W ⊆ ∂G(tt1) ∩ ∂G(tt2)

such that F ∪ W is extendable. Note that W ∩ F = ∅, and |Fi ∪ W | ≤ w for both i ∈ [1, 2]

by definition and the width of (T, δ). We claim that every perfect matching M of G with
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M ∩ ∂G(dt) = F contains such a set W . To see this simply observe that every edge of M which

belongs to ∂G(tt1) ∪ ∂G(tt2) but not to ∂G(dt) must belong to ∂G(tt1) ∩ ∂G(tt2). Hence with

M ∩ ∂G(tt1) ∩ ∂G(tt2) we have found the set we wanted. Therefore the number

µ(t, F ) :=
∑

W∈W

µ(t1, F1 ∪W ) · µ(t2, F2 ∪W )

is exactly the number of perfect matchings of G[V (F ) ∪ δ(Tt)] as intended. To compute this

number we have to consider every set W ⊆ ∂G(tt1) ∩ ∂G(tt2) of size at most w − |F | and test,

whether W ∪ F is extendable or not. So in total we perform O(|V (G)|2w) such tests. Since we

also have O(|V (G)|2w) such sets F we need to consider, µ(t, ·) can be computed in O(|V (G)|4w)

steps.

At last let us consider the root r with its three successors t1, t2, and t3 and suppose we are given

µ(ti, ·) for every i ∈ [1, 3]. Let M be any perfect matching of G, then M ∩
⋃3

i=1 ∂G(rti) can

be decomposed into two sets: A set FM ⊆ ∂G(rt1) and a set WM ⊆
⋃3

i=1 ∂G(rti) \ ∂G(rt1) =

∂G(rt2) ∩ ∂G(rt3). Hence we may use the same method as for ne non-root inner vertices to

compute µ(r, ∅) by simply considering all extendable sets F ⊆ ∂G(rt1) and then for each such

F every possible set W ⊆ ∂G(rt2) ∩ ∂G(rt3) such that F ∪W is extendable. Let Fr be the set

of all extendable subsets F of ∂G(rt1) and let Wr,F be the set of all sets W ⊆ ∂G(rt2) ∩ ∂G(rt3)

such that F ∪W is extendable. For each i ∈ [2, 3] let Fi := F ∩ ∂G(rti). We set

µ(r, ∅) :=
∑

F∈Fr

∑

W∈Wr,F

µ(t1, F ) · µ(t2, F2 ∪W ) · µ(t3, F3 ∪W ).

It follows from the discussion above that µ(r, ∅) is the number of perfect matchings of G. More-

over, since T is a cubic tree with |V (G)| leaves, we have |V (T )| ∈ O(|V (G)|), and thus, the total

running time of the procedure is O(|V (G)|4w+1).

6.4 Consequences for Matching Minor Checking and Bipartite Graphs Excluding a

Planar Matching Minor

The importance of the disjoint paths problem in the Graph Minors series by Robertson and

Seymour is due to the fact that checking for minor containment can be reduced to certain

instances of the disjoint paths problem. For bipartite graphs with perfect matchings, this is also

true.

Proof of Theorem 1.7. By Corollary 4.5, if H is a matching minor of B, then there exists a

perfect matching M of B such that there exists an M -model of H in B. Every vertex v ∈ V (H)

is represented by a barycentric tree in B, and it is not hard to see that we may always choose

such a barycentric tree such that the number of vertices of degree at least 3 is at most degH(v).

Let µ : H → B be such a model. By Lemma 4.4 we may further assume that M corresponds

to a perfect matching MH of H and µ(uv) is internally M -conformal if and only if uv /∈ MH .

Moreover, if uv ∈ MH , then µ(uv) is M conformal. Hence for every v, it suffices to guess the at

most degH(v) many edges of M and ask for pairwise internally disjoint internally M -conformal

paths connecting them in an appropriate way. Additionally, we need an internally M -conformal
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path representing every uv ∈ E(H) \MH and for each of those, we need to find an edge of M

for each of the two endpoints. Since we also guessed the edges of M covering the only vertex of

µ(x) not covered by E(µ(x)) ∩M for both x ∈ {u, v} if uv ∈ MH , the endpoints of these two

edges, not belonging to their respective vertex models must also be linked by paths. Since it is

not feasible to check for M -models of H for every perfect matching M of B, we instead check

all possible choices of extendable sets F of size at most 2|E(H)|+
∑

v∈V (H) degH(v) = 4|E(H)|.

In fact, since we also do not know which edge of our set F belongs to the model of which vertex

or edge of H, we also need to try all possible configurations. But this only worsens our running

time by a factor depending exclusively on the size of F . Hence in total we need to call the

algorithm from Proposition 6.2 at most O(|V (B)|4|E(H)|) times with k ≤ 4|E(H)| ≤ 4|V (H)|2,

and thus our claim follows.

Corollaries 1.9 and 1.10 now both follows by applying Theorem 1.2 to the findings from this

section. Additionally an algorithmic version of Theorem 1.5 can be achieved using similar ar-

guments. Moreover, it follows from Lemma 4.11 that we can obtain analogous results for the

testing for members of fundamental anti-chains as butterfly minors on digraphs of bounded

directed treewidth and, in particular, for every strongly connected strongly planar digraph H

there exists a polynomial-time algorithm that decides whether any given digraph D contains a

member of A(H) as a butterfly minor. This might be especially surprising since A(H) may be

infinite.

7 Conclusion

So far the only bipartite graphs with perfect matchings for which we were able to test for

matching minor containment in bipartite graphs were C4, the cube, and K3,3. Moreover, it was

part of the original motivation for the study of K3,3 matching minor free bipartite graphs that

on these graphs the number of perfect matchings can be computed efficiently. In this paper we

have established perfect matching width as a useful parameter for the study of matching minors,

at least in bipartite graphs. Moreover, we have shown both the recognition problem of classes of

bipartite graphs excluding a planar matching minor H, and the problem of counting the number

of perfect matchings in bipartite graphs in H matching minor free graphs to be in P. A natural

question to ask is, whether or not these observations can be extended to bipartite graphs with

perfect matchings that exclude some non-planar matching covered graph as a matching minor.

Towards this goal we formulate three questions, which pose as the main motivation of our

research.

Question 7.1. What is the computational complexity of the t-DAPP?

Question 7.2. Let H be a non-planar bipartite matching covered graph. What is the com-

putational complexity of deciding whether a given bipartite graph B with a perfect matching

contains H as a matching minor?

Question 7.3. Let H be any bipartite matching covered graph. What is the computational

complexity of computing the number of perfect matchings in a bipartite graph B which does

not contain H as a matching minor?
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Finally, we conclude this work with a question regarding infinite anti-chains of butterfly minors.

Let F be a, possibly infinite, family of digraphs. We say that F can be covered by a finite number

of fundamental anti-chains if there exist digraphs D1, . . . ,Dm such that F ⊆
⋃m

i=1 A(Di).

Question 7.4. Is there an infinite family F of strongly 2-connected digraphs such that F cannot

be covered by a finite number of fundamental anti-chains?
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