
Engineering Graph-Based Models for Dynamic
Timetable Information Systems∗

Alessio Cionini1, Gianlorenzo D’Angelo2, Mattia D’Emidio1,
Daniele Frigioni1, Kalliopi Giannakopoulou3,4, Andreas
Paraskevopoulos3,4, and Christos Zaroliagis3,4

1 Department of Information Engineering, Computer Science and Mathematics,
University of L’Aquila, Italy.
alessio.cionini@gmail.com, {mattia.demidio, daniele.frigioni}@univaq.it

2 Gran Sasso Science Institute (GSSI), L’Aquila, Italy.
gianlorenzo.dangelo@gssi.infn.it

3 Computer Technology Institute and Press “Diophantus”, Patras, Greece.
4 Department of Computer Engineering and Informatics, University of Patras,

26504 Patras, Greece. {gianakok,paraskevop,zaro}@ceid.upatras.gr

Abstract
Many efforts have been done in the last years to model public transport timetables in order to
find optimal routes. The proposed models can be classified into two types: those representing the
timetable as an array, and those representing it as a graph. The array-based models have been
shown to be very effective in terms of query time, while the graph-based models usually answer
queries by computing shortest paths, and hence they are suitable to be used in combination with
speed-up techniques developed for road networks.

In this paper, we focus on the dynamic behavior of graph-based models considering the case
where transportation systems are subject to delays with respect to the given timetable. We
make three contributions: (i) we give a simplified and optimized update routine for the well-
known time-expanded model along with an engineered query algorithm; (ii) we propose a new
graph-based model tailored for handling dynamic updates; (iii) we assess the effectiveness of
the proposed models and algorithms by an experimental study, which shows that both models
require negligible update time and a query time which is comparable to that required by some
array-based models.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G2.2.2 Graph
Theory, G.4 Mathematical Software

Keywords and phrases Timetabling, dynamic updates, queries, shortest paths

Digital Object Identifier 10.4230/OASIcs.ATMOS.2014.46

1 Introduction

Computing the best route in a public transportation system is a problem faced by everybody
who ever traveled. Nowadays, public transportation companies have on-line journey planners
which are able to answer to queries like “What is the best route from some station A to
some other station B if I want to depart at time t?”. Usually the best route is the one

∗ Research partially supported by the Italian Ministry of University and Research under Research Grants
2010N5K7EB PRIN 2010 (ARS TechnoMedia) and 2012C4E3KT PRIN 2012 (AMANDA), as well as
by EU FP7/2007-2013 under grant agreements no. 288094 (eCOMPASS), no. 609026 (MOVESMART),
and no. 621133 (HoPE).

© Alessio Cionini et al.;
licensed under Creative Commons License CC-BY

14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’14).
Editors: Stefan Funke and Matúš Mihalák; pp. 46–61

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2014.46
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

A. Cionini et al. 47

that minimizes the traveling time (earliest arrival time problem), or the number of times
that a passenger has to move from one train to another one (minimum number of transfers
problem), or both the previous objective function (multi-criteria problem). The input of
such problems is given by a timetable which consists of a set of stations (e.g. train stations,
bus stops, etc.), a set of vehicles (trains, buses, etc.), and a set of elementary connections
representing a vehicle that connects two stations without stops in between. All the above
optimization problems exist in two flavors: the basic and the realistic one [26]. The latter
introduces some additional constraints to take into account the time required by a passenger
for moving from one vehicle to another one within a station (transfer time). In this paper
we focus only on realistic models.

The models proposed in the literature to solve such problems can be broadly classified
into two categories: those representing the timetable as an array, and those representing
it as a graph [2]. Two of the most successful examples of the array-based model are the
Connection Scan Algorithm (CSA) [15] and the Round-bAsed Public Transit Optimized
Router (RAPTOR) [13]. CSA exploits the acyclic nature of some timetables to solve the
earliest arrival problem. In CSA all the elementary connections of a timetable are stored in a
single array which is scanned only once for each query. In RAPTOR the timetable is stored
as a set of arrays of trips and routes which are used by a dynamic programming algorithm to
solve the multi-criteria problem. The graph-based models store the timetable as a suitable
graph and execute a shortest path algorithm to compute an optimal route. There exist
two main approaches: the time-expanded and the time-dependent model [26]. The former
model explicitly represents each time event (departure or arrival) in the timetable as a node.
The arcs represent elementary connections between two events or waiting within stations,
and their weights usually represent the time difference between the corresponding events.
The latter model represents each station as a node and there is an arc between two nodes if
there exists at least one elementary connection between the two stations represented by such
nodes. The weight of an arc is time-dependent, i.e., it is a function that depends on the time
at which a particular arc is scanned during the shortest path search. The time-expanded
model produces a graph with a larger number of nodes and arcs and thus larger query times.
A variant of the realistic time-expanded model having a smaller number of nodes and arcs
(the so called reduced time-expanded model) has been proposed in [26].

From experimental results, it turns out that the approaches based on array representa-
tion are faster than those based on graphs [2, 13, 15]. Nevertheless, during the last years,
a great research effort has been devoted to devise many so-called speed-up techniques which
heuristically speed up the Dijkstra’s algorithm for shortest paths (see [2, 4]). These tech-
niques are mainly focused on finding optimal routes on road networks where they exhibit a
huge speed-up factor over the basic Dijkstra’s algorithm. Therefore, a promising approach
could be that of adapting the speed-up techniques devised for road networks to timetable
graphs [5, 12]. Following this direction, a modification of the realistic time-expanded model
has been proposed and shown to harmonize well with several known speed-up techniques [12].
However, the graph models are not suitable to incorporate dynamic changes in the timetable.
In fact, if the time duration of some connections changes (due to, e.g., the delay of a train),
the graphs do not properly represent the modified timetable and hence the computed route
could be not optimal or even not feasible. As an example, in a case study for the public
transport system of Rome it has been shown that exploiting the published timetable does
not lead to optimal or nearly-optimal routes [18]. Updating the graphs according to the
modification in the timetable is time-consuming and in many cases it requires topological
changes of the graph (i.e., arc or node additions and deletions) [11]. Moreover, the above

ATMOS’14

48 Engineering Graph-Based Models for Dynamic Timetable Information Systems

mentioned speed-up techniques are not able to handle possible changes in the timetable.
This is due to the fact that most of them are based on the pre-computation of additional in-
formation that are later exploited to answer queries. When a timetable modification occurs,
the preprocessed information are no longer reliable and must be re-computed from-scratch,
usually requiring a long computational time. Of particular impact are again the topological
changes in the graph. The dynamic behavior of Transfer Patterns, a speed-up technique
specifically developed for public transformation system [1], has been studied in [3]. It is
shown that without performing the preprocessing from-scratch that technique gives optimal
results for the vast majority (but not for all) of the queries. An online problem where delays
are continuously reported to the journey planner has been studied in [25]. Regarding array-
based models, RAPTOR is able to handle dynamic changes of the timetable since it is not
based on preprocessing. Moreover, some dynamic speed-up techniques have been proposed
for road networks which allow to handle dynamic updates [6, 9, 10, 14, 16, 28, 29].

This work aims at improving the performance of graph-based models under dynamic
changes in timetable information systems. Our contributions are threefold.

First, we focus on the realistic and reduced time-expanded models by providing a sim-
plified and optimized version of the update routine of [11]. This new routine is used in
combination with the dynamic graph structure of [24] which is able to efficiently handle
topological changes. Furthermore, we heuristically improve the query algorithm for the
time-expanded models, which significantly improves its query time.

Second, we propose a new graph-based model for representing timetable information,
called dynamic timetable model (dynTM), that reduces the number of changes needed in
the graph as a consequence of a timetable modification. Model dynTM does not require
any topological change and updates only few arc weights. At the same time, dynTM is
not based on time-dependent arc-weights, thus allowing to easily incorporate realistic con-
straints. Moreover, dynTM produces a smaller number of nodes and arcs compared to the
realistic and the reduced time-expanded models [26], and therefore, a smaller query time.

Both the above models are based on graph representations and therefore they are suitable
for combination and adaptation with known speed-up techniques. To demonstrate this fact,
we show how to adapt the unidirectional ALT algorithm [20] to such models. We have
chosen ALT since it supports dynamic changes [10] and since a careful implementation of it
can boost its performance [17].

Third, we conducted a comparative experimental study of all these implementations on
several long-distance and local European public transportation timetables. Regarding the
update time our study shows that both models require negligible update time after the
occurrence of a delay (order of microseconds). In particular, the time required by dynTM
is always the smallest one. Regarding the query time, the heuristic query algorithm for
the reduced time-expanded model combined with ALT outperforms the other methods and
needs a computational time that is comparable to that required by some array-based models.
Finally the experiments confirm that the space required by dynTM is smaller than that
required by the other models. Table 1 reports indicative results w.r.t. update time, query
time, and graph size achieved with the local public transportation system of London made
of about 14M of elementary connections. More results are presented in Section 6.

2 Preliminaries

A timetable consists of data concerning: stations, trains (or other means of transportation)
connecting stations, and departure and arrival times of trains at stations. More formally,

A. Cionini et al. 49

Table 1 Results for the public transportation system of London (14M elementary connections).

Time-exp. Time-exp. Time-exp. dynTM dynTM
(basic) (heuristic) (heuristic+ALT) (with ALT)

query (ms) 331.07 31.52 9.41 51.54 12.75
update (µs) 477.23 271.46
graph size n = 28M , m = 55M n = 14M , m = 42M

a timetable T is defined by a triple T = (Z,B, C), where Z is a set of trains, B is a set of
stations, and C is a set of elementary connections whose elements are 5-tuples of the form
c = (Z, Sd, Sa, td, ta). Such a tuple is interpreted as train Z ∈ Z leaves station Sd ∈ B at
time td, and the immediately next stop of train Z is station Sa ∈ B at time ta. If x denotes
a tuple’s field, then the notation x(c) specifies the value of x in the elementary connection
c (e.g., td(c) denotes the departure time in c). The departure and arrival times td(c) and
ta(c) of an elementary connection c within a day are integers in the interval {0, 1, . . . , 1439}
representing time in minutes after midnight. We assume that |C| ≥ max{|B|, |Z|}, as we do
not consider trains and stations that do not take part to any connection.

Given two time instants t1, t2, we denote by ∆(t1, t2) the time that passes between
them, assuming that t2 occurs after t1, i.e ∆(t1, t2) = t2 − t1(mod 1440). The length of an
elementary connection c, denoted by ∆(c), is the time that passes between the departure and
the arrival times of c assuming that c lasts for less than 24 hours, i.e ∆(c) = ∆(td(c), ta(c)).

Given an elementary connection c1 arriving at station S and an elementary connection
c2 departing from the same station S, if Z(c1) 6= Z(c2), it is possible to transfer from
Z(c1) to Z(c2) only if the time between the arrival and the departure at station S is larger
than or equal to a given, minimum transfer time, denoted by transfer(S). We assume
that transfer(S) < 1440, for each S ∈ B. An itinerary in a timetable T is a sequence of
elementary connections P = (c1, c2, . . . , ck) such that, for each i = 2, 3, . . . , k, Sa(ci−1) =
Sd(ci) and

∆(ta(ci−1), td(ci)) ≥
{

0 if Z(ci−1) = Z(ci)
transfer(Sa(ci−1)) otherwise.

We say that the itinerary starts from station Sd(c1) at time td(c1) and arrives at station
Sa(ck) at time ta(ck). The length ∆(P) of an itinerary P is given by the sum of the lengths
of its elementary connections, ∆(P) =

∑k
i=1 ∆(ci).

A timetable query is defined by a triple (S, T, tS) where S ∈ B is a departure station,
T ∈ B is an arrival station and tS is a minimum departure time. There are two natural
optimization criteria that are used to answer to a timetable query. They consist in finding
an itinerary from S to T which starts at a time after tS with either the minimum arrival
time or the minimum number of train transfers. Such two criteria define the following two
optimization problems ([26]):

The Earliest Arrival Problem (EAP) is the problem of finding an itinerary from S to T
which starts at a time after tS and has the minimum length. We assume that ∆(P) <
1440 for any minimum-length itinerary P .
The Minimum Number of Transfers Problem (MNTP) is the problem of finding an itin-
erary from S to T which starts at a time after tS and has as few transfers from a train
to another one as possible.

3 The Realistic Time-Expanded Model

In the realistic time-expanded model [26] a timetable is modeled as a directed graph, the
realistic time-expanded graph, as follows: for each elementary connection one departure and

ATMOS’14

50 Engineering Graph-Based Models for Dynamic Timetable Information Systems

10

15

26

30

10

15

25

20

33

37

26

40

50

5

8

5

10

6

7

13

7

1405

1416

5

3

32

15
45

7

13

10

5

14

10

6

4
10

15

25

32

45

8

26

40

50

0

0

0

0

0

0

0

0

5

8

5

3

6

15

2

3

Station B Station C Station A

6 5

Figure 1 Arrival, transfer, and departure nodes are drawn in blue, gray and yellow, respectively.
Connection and arrival-departure arcs are drawn in blue and green, respectively. Arcs with at least
one transfer node endpoint are drawn in black. The minimum transfer time is 5 mins.

one arrival node are created and a connection arc is inserted between them. For each
departure event, one transfer node is created which connects to the respective departure
node by a transfer-departure arc having weight 0. This is done to model transfers within
stations. Given a node u, t(u) denotes the time-stamp of u with respect to the original
timetable. To ensure a minimum transfer time at a station S, an arrival-transfer arc from
each arrival node u is inserted to the smallest (considering time) transfer node v such that
∆(t(u), t(v)) ≥ transfer(S).

To ensure the possibility to stay in the same train when passing through a station,
an additional arrival-departure arc is created which connects the arrival node with the
appropriate departure node belonging to this same train. Further, to allow transfers to
an arbitrary train, transfer nodes are ordered non-decreasing. Two adjacent nodes (w.r.t.
the order) are connected by an arc from the smaller to the bigger (in terms of time) node.
To allow transfers over midnight, an overnight-arc from the biggest to the smallest node is
created. For each arc e = (u, v) in the time-expanded graph the weight w(e) is defined as the
time difference ∆(t(u), t(v)). Hence, for each path from a node u to another node v in the
graph, the sum of the arc weights along the path is equal to the time difference ∆(t(u), t(v)).
Storing this graph requires O(|C|) space, as it has n = 3|C| nodes and 4|C| ≤ m ≤ 5|C| arcs.
Figure 1 shows a realistic time-expanded graph.

Given a realistic time-expanded graph G = (V,E) and a timetable query (S, T, tS), the
earliest arrival problem can be solved in the realistic time-expanded graph by finding a
shortest path from s to t, where s is the transfer node with the smallest time-stamp within
S such that t(s) ≥ tS (or, if no such node exists, s is the node among the transfer nodes of
S such that t(s) is minimum), and t is an arrival node within T with minimum distance to
s (i.e. the first node of T extracted from the Dijkstra’s queue).

The realistic time-expanded graph can be used to solve also MNTP. In fact, it is enough
to modify the weight function of the graph by setting a weight of 1 to any arc that models
a transfer in a station and a weight of 0 to any other arc. In particular, the weights of all
the incoming arcs of transfer nodes which come from an arrival node are set to 1.

4 The Reduced Time-Expanded Model

In order to decrease the graph size, we adopted an approach introduced in [26] called reduced
(realistic) time-expanded model and removed the transfer nodes and the transfer-departure

A. Cionini et al. 51

10

15

26

30

10

15

25 33

37

26

40

50

5

8

5

10

5

8

5

6

7

13

1405

1416

5

32

13

15
45

7

13

10

5

14

10

6

3

6

15

2

3
4

6

Station B Station C Station A

7

11
5

20

Figure 2 Arrival nodes are drawn in blue while departure nodes, ordered by departure time, are
drawn in yellow. Arrival nodes are now connected directly to departure nodes.

arcs. Departure nodes are merged with their corresponding transfer nodes, and arrival
nodes are connected directly to departure nodes. Also arrival-departure arcs of the original
realistic time-expanded graph connect now arrival nodes of neighboring stations such that
they belong to the same train route. This results in a reduction in the graph size of |C|
nodes and |C| arcs, and therefore in a shorter traversal time within the graph. Figure 2
shows the reduced time-expanded graph corresponding to the realistic time-expanded graph
of Figure 1.

Timetable queries. We propose a variant of the Dijkstra’s algorithm which exploits the
model structure and some restrictions to reduce the query time. In our implementation we
have adopted the following approaches.

In order to reduce the size of the priority queue of the Dijkstra’s algorithm, we insert in
it only arrival nodes. This can be beneficial because the computation cost of the algorithm
depends mostly from the priority queue updates and these in turn from queue size. To
preserve the correctness of the algorithm, only for the case of departure nodes, we extent
the arc relaxation depth to 2. That is, if during an arc relaxation, the head of the arc
is a departure node and its distance label is updated, we also relax its outgoing arcs by
exploiting a suitably defined acyclic component between neighboring stations (for example,
in Figure 2, the subgraph induced by arrival node 7 and departure nodes 15, 25, 32 in
station B and arrival nodes 20, 33, 37 in station C). In order to reduce the search space, we
also restrict the node exploration criteria. In more detail, taking as a reference the source
station sS , we keep track of the earliest arrival time to the currently reached stations by the
algorithm. In general, between two adjacent connected stations, sA and sB there may be
many multiple routes, at different departure times from sA. The purpose is to exclude, from
early on, the non-optimal ones. To achieve this, we can exploit that the departure nodes
are sorted by increasing time. Therefore, from this point onwards, we can skip the successor
departure nodes with departure time higher than the reached minimum arrival time to sB

plus (as offset for the realistic model case) the transit time of sB . Obviously, the skipped
departure nodes cannot provide an earliest arrival time to sB . These approaches can be
even independent or compatible with other speed-up techniques (such as ALT).

ATMOS’14

52 Engineering Graph-Based Models for Dynamic Timetable Information Systems

10

26

30

25

32

33

37

40

5

7

9

6

27

1405

5

13

3

10

7

15

6

6

23

35

15

10

5

5

5

8

10

45

15

40

46

50

5

1430

3

6

5

2

4

26

Station B Station C Station A

15

11
4

Figure 3 The arcs, departure and arrival nodes of the delayed train that need to be updated are
drawn in red. The delay is 20 mins.

Handling delays. A simple approach for handling delays in the time-expanded model was
proposed in [11]. When a train is delayed, the arcs of the time-expanded model within the
affected stations have to be updated. The update routine consists of three steps: (i) Update
the weight of the connection arc corresponding to the incoming delayed train. (ii) Update
the weights of arrival-transfer and transfer-departure arcs at all subsequent stations through
which the delayed train passes. (iii) Check for every updated arrival-transfer arc whether
the update still yields valid transfer times, i.e., the arc weight is still bigger than the transfer
time for this station; if not, then the arc has to be re-wired.

In this work, we have engineered, simplified, and optimized the above update routine
for the case of the reduced time-expanded graph, as follows. When an update is performed,
we reorder the departure nodes, in ascending order of (departure) time. Depending on the
magnitude of the delay, there can be at least one arrival node that should be linked with a
new earliest departure node. This requires a modification on the topology of the realistic
time-expanded graph, in order to remain valid. The affected arcs are those having tail
the delayed arrival node, head the delayed departure node (if the train continues its travel
to another station) and head the new successor departure node of the delayed departure
node. To maintain the invariant of keeping the departure nodes ordered according to time,
we have to move the delayed departure node in its proper position (in a way similar to
moving a node from one location to another in a linked list), and then we only need to link
the arrival tail nodes with the proper earlier departure nodes so that transfer times within
the station are respected. Alongside we update the arcs with the new correct weights.
This operation requires only changing the node pointers of the arcs and the weights, which
minimizes the update cost, and in contrast to the original approach it keeps the number
of the arcs constant. The only disadvantage is that the departure nodes may now be not
optimally sorted within the memory blocks and hence deteriorate the locality of references.
In order to reduce the consequent impact on the performance of the query time, we initially
group and pack together in memory all the departure nodes for each station. Preliminary
experiments showed that the new (simplified and optimized) routine is at least 50% faster
than the original one. Figure 3 illustrates the execution of the aforementioned algorithm,
on the reduced time-expanded graph of Figure 2, in case of a 20 minutes delay.

A. Cionini et al. 53

 SB

10

15

25

26

50

40

∞

∞

∞

5

8

5

∞

∞

∞
32

11

∞

45

∞

SC

3

6

2

15

5

3

11

Station B Station C Station A

4

Figure 4 Switch nodes are drawn in blue while departure nodes, ordered by arrival time, are
drawn in yellow. Inside each departure node the departure time of the corresponding elementary
connection is reported. Connection arcs are drawn in blue, switch arcs are drawn in black while
train arcs are drawn in green.

5 The Dynamic Timetable Model

In this section, we describe our new approach, called dynamic timetable model (dynTM for
short), to solve the EAP and the MNTP problems.

Timetable model Given T = (Z,B, C), we define a directed graph G = (V,E) called
dynamic timetable graph and a weight function w : E → N as follows.

For each station S in B, a node sS , called switch node of S, is added to V ;
For each elementary connection c = (Z, Sd, Sa, td, ta) ∈ C a node dc, called departure
node of c, is added to V and an arc (dc, sSa

) of c, called connection arc, connecting dc

to the switch node sSa
of Sa is added to E;

For each elementary connection c = (Z, Sd, Sa, td, ta) ∈ C an arc (sSd
, dc), called switch

arc, connecting the switch node sSd
of the departure station Sd to the departure node

dc of c is added to E;
For each train Z ∈ Z which travels through the itinerary (c1, c2, . . . , ck), an arc, called
train arc, connecting the departure node dci

of ci with the departure node dci+1 of ci+1
is added to E, for each i = 1, 2, . . . , k − 1.

For each connection arc (dc, sSa
), w(dc, sSa

) = ∆(ta(c), td(c)). For each train arc (dci
, dci+1),

w(dci
, dci+1) = ∆(td(ci), td(ci+1)). The weight of each switch arc is set to a default infinity

value. Moreover, for each switch node sS , we maintain the station S it is associated with
and for each departure node dc, we maintain the departure time td(c) and the train Z(c)
of connection c which dc is associated with. Figure 4 shows the dynamic timetable graph
corresponding to the realistic time-expanded graph of Figure 1.

The graph is stored by using a forward-star representation where, for each switch node
sS , the switch arcs (sS , dc) outgoing from sS are sorted according to the arrival time ta(c)
of the elementary connection c associated with node dc, in non-decreasing order.

The above data structure requires O(|C|) space as it needs to store a graph with n =
|B| + |C| nodes and m ≤ 3|C| arcs. The additional information requires O(|B|) space for
the station stored at each switch node and O(|C|) space for the information stored at each
departure node. We recall that |C| ≥ max{|B|, |Z|}.

ATMOS’14

54 Engineering Graph-Based Models for Dynamic Timetable Information Systems

Timetable queries. An EAP query (S, T, tS) is answered by executing a modified Dijkstra’s
algorithm in G starting from the switch node sS of S.

We use a vector of flags DS for each switch node sS . The size of DS is given by the
number of stations S′ such that there exists an elementary connection departing from S and
arriving at S′. We denote the element of DS associated to S′ as DS [S′]. Initially, all the
flags of DS are set to false, for each S ∈ B.

When a switch node sA is inserted or decreased in the Dijkstra’s queue during a relaxation
step, the algorithm maintains, along with the distance to sA, also the connection c′ such
that the arc (dc′ , sA) is the one that has been relaxed. We assume that the switch node sS

of the departure station S is inserted in the queue at the initialization step with distance 0
and connection c′ such that td(c′) + w(dc′ , sS) = tS . Moreover we set transfer(S) = 0.

Let us consider the time when a switch node sA, associated with station A ∈ B, is
extracted from the Dijkstra’s queue. Let dist(sS , sA) be the distance from sS to sA extracted
from the queue and let c′ be the elementary connection associated with dist(sS , sA). The
value of dist(sS , sA) corresponds to the minimum time required to reach station A from
station S, departing at time tS . The algorithm first computes the value x = td(c′) +
w(dc′ , sA)(mod 1440), which represents the arrival time of connection c′. Then, for each
switch arc (sA, dc) (i.e. for each elementary connection c such that Sd(c) = A), it compares
x with td(c) and enables the arc (sA, dc) if DS [Sa(c)] = false and

∆(x, td(c)) = td(c)− x(mod 1440) ≥
{

0 if Z(c) = Z(c′)
transfer(A) otherwise. (1)

The arc (sA, dc) is enabled by setting w(sA, dc) to ∆(x, td(c)).
The switch arcs (sA, dc) are scanned according to their ordering in the forward star

representation (that is according to the arrival time ta(c)), starting from the first arc such
that td(c) ≥ x. If (sA, dc) is the first arc to be enabled w.r.t. some station S′ = Sa(c) (i.e.
the one with the smallest arrival time), then the value of DA[S′] is set to true when the
first arc (sA, dc′) such that Sa(c′) = S′ and ∆(ta(c), ta(c′))(mod 1440) > transfer(S′) is
scanned. The time instants ta(c) and ta(c′) can be computed by using the value of x, td(c)
and td(c′) and the arc weights. The scanning of switch arcs of a station A is stopped when
the vector DA has only true elements and the Dijkstra’s search is then pruned.

Therefore, if two switch arcs (sA, dc1) and (sA, dc2) (corresponding to two elementary
connections c1 and c2) lead to the same station B, fulfill Inequality 1, and have two arrival
times that differ for a value greater than transfer(B), then only the one with smallest
arrival time is enabled. In other words, if x ≤ min{td(c1), td(c2)} and ta(c1) < ta(c2) +
transfer(B)(mod 1440), then w(sA, dc1) = td(c1) − x and w(sA, dc2) = ∞ ties are broken
arbitrarily. If we assume that ta(c2) is the smallest arrival time that fulfills the above
condition, then the value of DA[B] is set to true when arc (sA, dc2) is scanned.

Note that, the above behavior is performed also for the switch node sS of the departure
station S, given the initialization values of the queue. The Dijkstra’s search is stopped as
soon as the switch node sT associated to the arrival station T is extracted from the queue
and the arrival time tT is given by dist(sS , sT).

The proof of the following theorem will be given in the full paper.

I Theorem 1. The modified Dijkstra’s algorithm solves EAP in O(|C| log |C|) time.

An MNTP query (S, T, tS) can be solved similarly to an EAP one. The only differences
are: (i) We do not use vector D and then all the switch arcs that satisfy transfer time

A. Cionini et al. 55

 SB

10

25

32

46

50

40

∞

∞

∞

8

5

5

∞

∞
35

11

∞

45

∞

SC

3

6

2

15

5

23 ∞

Station B Station C Station A

31

4

Figure 5 A delay of 20 minutes induces two arc weight changes and the update of the time
associated to the corresponding departure nodes (red nodes).

constraints (Inequality 1) are enabled and (ii) when a switch node sA is extracted from the
queue with associated connection c′, the weight of each switch arc (sA, dc) is set to 0, if
Z(c) = Z(c′), and to 1 otherwise.

Handling delays. Let us assume that we are given a timetable T represented as above and
a delay occurs on a connection c. The delay is modelled as an increase of d minutes on
the arrival time, t′a(c) = ta(c) + d(mod 1440). The timetable is then updated according to
some specific policy which depends on the network infrastructure. The obtained timetable
is called disposition timetable T ′ and it differs from T for the arrival and departure times of
the trains that depend on Z(c) in T (see e.g. [7, 8, 19, 23, 27] for examples of policies used
to update a timetable).

In our model, it is enough to update the time associated to the departure node dc′ , the
weight of the connection arc (dc′ , Sa(c′)), and the weight of the train arc (dc′ , dc′′), for each
connection c′ that changed from T to T ′. This can be done in linear time by performing a
graph search onG starting from the departure node dc associated with c. In the case thatG is
used to answer to EAP queries some further computation is needed as the array representing
the arcs must be sorted according to the new values of the arrival times. This can be done
in O(|C| log |C|) time as, if mi denotes the number of nodes outgoing from each switch
node si, then

∑
i∈Bmi ≤ m and hence the overall time is given by O(

∑
i∈Bmi log(mi)) =

O(logm
∑

i∈Bmi) = O(m logm) = O(|C| log |C|). Hence, the overall time needed to update
the timetable is O(|C|) in the case that the model is exploited to answer to MNTP queries,
and O(|C| log |C|) in the case that it is exploited for EAP queries. We remark that this is an
upper bound which is far from being realistic as the stations that change some time references
are much less than |B|, especially thanks to robust design of timetables [7, 8, 19, 23, 27].
Figure 5 shows how dynTM handles a delay on the dynamic timetable graph of Figure 4.

In the experimental section, we assume that the policy adopted is that no train waits for
a delayed one. Therefore, the only time references which are updated are those regarding
the departure times of Z(c). Moreover, we assume that the policy does not take into account
any possible slack times and hence the time references are updated by adding d(mod 1440).

Comparison with the time-expanded models. In this section, we compare dynTM with
the realistic and the reduced time-expanded models.

ATMOS’14

56 Engineering Graph-Based Models for Dynamic Timetable Information Systems

First, in case of delays, the time-expanded models require, after a reordering of the
arrival, departure, and transit nodes, also an update (insertion/deletion) of arcs of the graph
(see e.g. [11]). This behavior could imply a large computational time which depends on the
way the graph is stored. On the contrary, dynTM is able to keep updated its data structure
in case of delays in almost linear time and without any change in the graph topology. In
fact, a delay in the timetable induces few arc weight changes and the update of the time
associated to the corresponding departure nodes. Note that, this last operation can require,
in some cases, a reordering step in the departure nodes of the stations involved by the change
with respect to new arrival times.

Second, although dynTM and the two time-expanded models asymptotically require the
same space complexity, the graph in the new model has a smaller number of nodes and
arcs. In fact, the realistic time-expanded model requires 3|C| nodes and at least 4|C| arcs,
the reduced time-expanded model requires 2|C| nodes and at least 3|C| arcs, while dynTM
requires |B|+ |C| nodes and at most 3|C| arcs (we recall that |C| ≥ |B|). On the other hand,
Dijkstra’s algorithm executed in dynTM must perform the additional step of enabling arcs
and computing the weights of the switch arcs.

Adapting to speed-up techniques. As already mentioned, one of the advantages of graph-
based models for timetable information systems over the faster array-based ones is that the
former models can exploit the so-called speed-up techniques for shortest path developed
during the last years. Indeed, many of such techniques can be easily adapted to be used in
combination with dynTM and thus improve the query time. To motivate this statement,
in the following we show how to adapt one of the simplest speed-up techniques (namely
ALT [20]) to dynTM. The idea behind the ALT algorithm is to direct the Dijkstra’s search
towards the target t of the query by adding a feasible potential to the priority of each node
in the queue. In ALT, the feasible potentials are computed as follows. Given a set of
nodes L ⊆ V called landmarks, the feasible potential of a node u ∈ V towards a target
t is computed as πt(u) = max`∈L max{d(u, `) − d(t, `); d(`, t) − d(`, u)}. By the triangle
inequality follows that πt(u) is a lower bound to the distance d(u, t) and this is enough to
prove the correctness of the shortest path algorithm (see [20] for more details).

The adaptation of ALT to the time-expanded models is pretty easy, and several variants
have already been proposed, e.g. in [12].

In our approach, we select as landmarks the switch nodes, each of which represents the
arrival node group of a station. Therefore the lower bound distance, dist(sA, sB), between
two switch nodes, sA and sB , denotes the minimum travel time, from any arrival node of
station A to any arrival node of station B. These lower bound distances can be computed
during the preprocessing phase by running single-source queries from each switch node. The
tightest lower bounds, with this method, can be obtained by storing all pair station distances
O(|B|2). This makes sense particularly when the stations are relatively few in number.

We also used ALT along with the restricted node exploration, described in Section 4, for
both the reduced time-expanded graphs and dynTM. The contribution of ALT is that of
making the goal-directed search pulling faster towards the target station. The contribution
of node pruning, instead, is that of removing several non-optimal arrivals between adjacent
stations. The combination of the approaches reduces much more the search space size and
leads to a more efficient algorithm.

A. Cionini et al. 57

Table 2 Tested timetables and sizes of the corresponding graphs; orig = original, red = reduced.

type T |B| |C|
TE (orig) TE (red) DynTM

|V| |E| |V| |E| |V| |E|

train
efz 2 198 41 613 124 839 208 065 83 226 159 290 43 811 124 839
d0i 6 493 428 982 1 286 946 2 144 910 857 964 1 668 171 435 475 1 286 946
eur 7 786 596 129 1 788 387 2 912 210 1 192 258 2 316 081 603 915 1 719 952

bus
bts 716 12 689 38 067 63 445 25 378 49 862 13 405 38 067
ks 1 865 44 744 134 232 223 720 89 488 175 536 46 609 134 232
bvb 2 874 292 542 877 626 1 462 710 585 084 1 154 792 295 416 877 626

mixed Berlin 6 113 3 887 965 11 663 895 19 439 825 4 085 900 6 128 800 2 044 637 4 586 247
London 11 561 13 995 098 41 985 294 69 599 780 27 990 196 55 604 682 14 006 659 41 609 584

6 Experimental Analysis

In this section we report the results of our experimental study. Our experiments have been
performed on a workstation equipped with an Intel Quad-core i5-2500K 3.30GHz CPU and
12GB of main memory, and our implementations were done in C++ (gcc compiler v4.6.3 with
optimization level O4).

Input data and parameters. As input data to our experiments we used 3 train and bus
timetables from a large data set provided by HaCon [21] for scientific use. We also used
two different source timetable data sets in General Transit Feed (GTFS) format, containing
various means of transportation. We built, for each timetable T , a realistic time-expanded,
a reduced time-expanded, and a dynamic timetable graph. For representing the graphs,
we used a packed memory graph [24] for the time-expanded graphs, and a forward-star
representation for the dynamic timetable graph. We used a binary heap when a priority
queue was needed.

In Table 2 detailed information about the timetables and the corresponding graphs are
reported. In particular, we report, for each timetable, the number of stations and the
number of elementary connections between stations, the number of nodes and arcs of the
corresponding graph for each model. Table 2 confirms the analysis reported in Sections 4
and 5, regarding the sizes of the models. In fact, for each timetable T = (Z,B, C), we notice
that the number of nodes is exactly 3|C|, 2|C|, and |B| + |C| while the number of arcs is
always smaller than 5|C|, 4|C|, and 3|C| for the realistic, the reduced time-expanded, and
dynTM models, respectively.

Timetable queries. In order to test the performance of the three models, we carried out,
for each timetable, EAP queries and evaluated the time required for answering them. For
each timetable, we generated 1, 000 EAP queries between pairs of stations, randomly chosen
with uniform probability distribution, and measured the time for executing, on each type
of graph, the corresponding modified Dijkstra’s algorithm. The used algorithms in the
experiments are a) D: the proposed Dijkstra’s algorithm variant and b) ALT: uni-directed
ALT, both of them combined with the restricted node exploration technique.

The results of our experiments are summarized in Table 3. Since in [26] it has been shown
that the reduced model is always better than the realistic model, in this table we report
only the results on the reduced time-expanded model and dynTM. In particular, we report
the average computational time per query for train, bus and mixed instances, respectively.
We omit results concerning MNTP queries as they lead to similar analysis.

Our experiments show that: (i) combining ALT with the restricted node exploration

ATMOS’14

58 Engineering Graph-Based Models for Dynamic Timetable Information Systems

leads to a significant speed-up in query time; (ii) dynTM query time is comparable to that
of the reduced time-expanded model. Moreover, in [26] it has been shown that queries on
time-dependent graphs are faster than those on time-expanded graphs by a small constant
factor in the realistic setting. It follows that dynTM query time is also comparable to that of
the time-dependent model. Our experiments also show that the query time of both reduced
time-expanded model and dynTM is comparable to that of array-based approaches. In fact,
for example, the query time of CSA is 2 ms on an instance of London with around 5 millions
connections [2], while the query time of reduced time-expanded model and dynTM is 9.41 ms
and 12.75 ms, respectively, on an instance of London with almost 14 millions connections.

Notice that, the overhead w.r.t. query time of dynTM is due to the fact that there are
no separated arrival to departure arcs. Taking as reference the start time within the station,
in order to take the next valid departure times after start time, there is a need for looking
up many departure nodes, in non-increasing order of departure time. This makes each step
of algorithms more expensive than its reduced time-expanded graph variant. Therefore, the
arrival node contraction results in this disadvantage.

Timetable updates. As described in Section 5, our new model is able to efficiently handle
dynamic updates to the timetable. Hence, in order to evaluate the performance of the
updating algorithm, we performed a set of experiments as follows: for each timetable, we
randomly selected 1,000 elementary connections and, for each elementary connection, we
randomly generated a delay affecting the corresponding train or bus, chosen with uniform
probability distribution between 1 and 360 minutes. For each change in the timetable, we
ran the algorithm for updating the dynamic timetable graph and measured the average
computational time and the number of arcs affected by the change, that is the number of
arcs associated to the same train or bus which has experienced the delay. For the reduced
time-expanded model we used the engineered, simplified and optimized version of the update
algorithm in [11], presented in Section 4.

The experimental results are shown in Table 3. In this case dynTM outperforms the
reduced time-expanded model w.r.t. the update time. The results confirm that the upper
bound given in Section 5 for the computational time of the updating algorithm is really far
from being realistic, thus making dynTM suitable to be used in practice. In fact, even in
the biggest network (London), the updating algorithm requires 271.46 µs. Moreover, only
few arc weights need to be changed in the original graph to keep the EAP queries correct,
on average 9.1 in train timetables and 13.5 in bus timetables. This is due to the fact that
the number of stations where something changes, as a consequence of a delay, is small with
respect to the size of the whole set |B|.

7 Conclusions

In this paper we studied graph-based models for timetable information systems which are
able to handle dynamic updates and experimentally showed their effectiveness in terms of
both query and update times.

We have shown that graph-based models can be combined with known speed-up tech-
niques developed for road networks, by implementing ALT and showing its effectiveness.
Therefore, a possible future work is that of combining other known speed-up techniques to
the tested graph-based models. In this regards, the most promising ones are those based on
Arc-flags [22] as they can be combined with ALT [12] and support dynamic updates [9]. Fur-
thermore, the efficient implementation of ALT given in [17] would further improve the query

A. Cionini et al. 59

Table 3 Comparison between reduced time-expanded graphs and dynamic timetable graphs with
respect to average query time, average update time and affected arcs, respectively.

type T
query (ms) update (µs)

TE (red) dynTM TE (red) dynTM
ALT D ALT D time arcs time arcs

train
efz 0.43 0.97 0.97 1.27 25.31 30.9 2.25 7.2
d0i 1.53 6.35 3.76 8.94 40.32 32.2 7.17 7.6
eur 1.69 7.66 3.71 9.74 43.10 33.5 8.07 9.1

bus
bts 0.17 0.28 0.29 0.43 34.47 37.7 2.19 8.8
ks 0.67 1.34 0.78 1.36 39.49 53.8 3.04 11.1
bvb 1.56 2.67 2.92 3.89 95.98 63.5 15.17 13.5

mixed Berlin 9.90 21.67 13.17 37.85 194.54 61.6 80.23 9.9
London 9.41 31.52 12.75 51.54 477.23 130.4 271.46 29.0

time. Given these combinations, it would be also interesting to experimentally compare the
models studied in this paper with both array-based and time-dependent approaches.

We focused on the earliest arrival problem to demonstrate the potential of the graph
based models. Therefore, another possible future work could be that of tackling the multi-
criteria problem.

In addition, we plan to extend the study by: (i) analyzing different types of timetable
modifications corresponding to different policies for delay management; (ii) taking into ac-
count possible slack/buffer times in the timetable; (iii) considering footpaths between sta-
tions in dynTM. To this regard, we believe that footpaths can be easily incorporated to our
graph based models in an efficient way.

References
1 Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Harrelson, Veselin

Raychev, and Fabien Viger. Fast routing in very large public transportation networks using
transfer patterns. In 18th Annual European Symposium on Algorithms (ESA 2010), volume
6346 of LNCS, pages 290–301. Springer, 2010.

2 Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Mueller-Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato Werneck. Route planning in trans-
portation networks. Technical Report MSR-TR-2014-4, Microsoft Research, 2014.

3 Hannah Bast, Jonas Sternisko, and Sabine Storandt. Delay-Robustness of Transfer Pat-
terns in Public Transportation Route Planning. In 13th Work. on Algorithmic Approaches
for Transportation Modelling, Optimization, and Systems (ATMOS), pages 42–54. Schloss
Dagstuhl, 2013.

4 Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik Schultes,
and Dorothea Wagner. Combining hierarchical and goal-directed speed-up techniques for
dijkstra’s algorithm. ACM J. Exp. Alg., 15:Article 2.3, 2010.

5 Reinhard Bauer, Daniel Delling, and Dorothea Wagner. Experimental study of speed up
techniques for timetable information systems. Networks, 57(1):38–52, 2011.

6 F. Bruera, S. Cicerone, G. D’Angelo, G. Di Stefano, and D. Frigioni. Dynamic multi-level
overlay graphs for shortest paths. Math. Comp. Sc., 1(4):709–736, 2008.

7 Serafino Cicerone, Gianlorenzo D’Angelo, Gabriele Di Stefano, Daniele Frigioni, and Al-
fredo Navarra. Recoverable robust timetabling for single delay: Complexity and polynomial
algorithms for special cases. Journal of Combinatorial Optimization, 18(3):229–257, 2009.

ATMOS’14

60 Engineering Graph-Based Models for Dynamic Timetable Information Systems

8 Serafino Cicerone, Gianlorenzo D’Angelo, Gabriele Di Stefano, Daniele Frigioni, Alfredo
Navarra, Michael Schachtebeck, and Anita Schöbel. Recoverable robustness in shunting
and timetabling. In Robust and Online Large-Scale Opt., volume 5868 of LNCS, pages
28–60. Springer, 2009.

9 Gianlorenzo D’Angelo, Mattia D’Emidio, and Daniele Frigioni. Fully dynamic update of
arc-flags. Networks, 63(3):243–259, 2014.

10 D. Delling and D. Wagner. Landmark-based routing in dynamic graphs. In 6th Work. on
Experimental Algorithms, LNCS, pages 52–65. Springer, 2007.

11 Daniel Delling, Kalliopi Giannakopoulou, Dorothea Wagner, and Christos Zaroliagis.
Timetable Information Updating in Case of Delays: Modeling Issues. Technical Report
ARRIVAL-TR-0133, ARRIVAL Project, 2008.

12 Daniel Delling, Thomas Pajor, and Dorothea Wagner. Engineering time-expanded graphs
for faster timetable information. In Robust and Online Large-Scale Optimization, volume
5868 of LNCS, pages 182–206. Springer, 2009.

13 Daniel Delling, Thomas Pajor, and Renato F. Werneck. Round-Based Public Transit Rout-
ing, pages 130–140. SIAM, 2012.

14 Daniel Delling and Renato F. Werneck. Faster customization of road networks. In 12th
Symp. Exp. Alg. (SEA), volume 7933 of LNCS, pages 30–42. Springer, 2013.

15 Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Intriguingly simple
and fast transit routing. In 12th Symp. Exp. Alg. (SEA), volume 7933 of LNCS, pages
43–54. Springer, 2013.

16 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable contraction hierarchies.
In 13th Int. Symp. on Exp. Alg. (SEA), volume 8504 of LNCS, pages 271–282. Springer,
2014.

17 Alexandros Efentakis and Dieter Pfoser. Optimizing landmark-based routing and prepro-
cessing. In 6th ACM SIGSPATIAL Int. Work. on Computational Transp. Science. ACM,
2013.

18 Donatella Firmani, Giuseppe F. Italiano, Luigi Laura, and Federico Santaroni. Is Time-
tabling Routing Always Reliable for Public Transport? In 13th Work. on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems (ATMOS), pages
15–26. Schloss Dagstuhl, 2013.

19 Matteo Fischetti, Domenico Salvagnin, and Arrigo Zanette. Fast approaches to improve
the robustness of a railway timetable. Transportation Science, 43(3):321–335, 2009.

20 A. Goldberg and C. Harrelson. Computing the shortest path: A* search meets graph theory.
In ACM-SIAM Symposium on Discrete Algorithms (SODA05), pages 156–165. SIAM, 2005.

21 HaCon - Ingenieurgesellschaft mbH. http://www.hacon.de, 2008.
22 U. Lauther. An extremely fast, exact algorithm for finding shortest paths. Static Networks

with Geographical Background, 22:219–230, 2004.
23 Christian Liebchen, Michael Schachtebeck, Anita Schöbel, Sebastian Stiller, and André

Prigge. Computing delay resistant railway timetables. Computers & OR, 37(5):857–868,
2010.

24 Georgia Mali, Panagiotis Michail, Andreas Paraskevopoulos, and Christos Zaroliagis. A
new dynamic graph structure for large-scale transportation networks. In 8th Int. Conf. on
Algorithms and Complexity (CIAC), volume 7878 of LNCS, pages 312–323. Springer, 2013.

25 Matthias Müller-Hannemann and Mathias Schnee. Efficient timetable information in the
presence of delays. In Robust and Online Large-Scale Optimization, volume 5868 of LNCS,
pages 249–272. Springer Berlin Heidelberg, 2009.

26 Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Efficient models
for timetable information in public transportation systems. ACM J Exp Alg, 12(2.4):1–39,
2008.

http://www.hacon.de

A. Cionini et al. 61

27 Michael Schachtebeck and Anita Schöbel. To wait or not to wait - and who goes first?
delay management with priority decisions. Transportation Sc., 44(3):307–321, 2010.

28 D. Schultes and P. Sanders. Dynamic highway-node routing. In 6th Workshop on Experi-
mental Algorithms (WEA), LNCS, pages 66–79. Springer, 2007.

29 Dorothea Wagner, Thomas Willhalm, and Christos D. Zaroliagis. Geometric containers for
efficient shortest-path computation. ACM J. Exp. Alg., 10(1.3):1–30, 2005.

ATMOS’14

	Introduction
	Preliminaries
	The Realistic Time-Expanded Model
	The Reduced Time-Expanded Model
	The Dynamic Timetable Model
	Experimental Analysis
	Conclusions

