
ar
X

iv
:1

30
9.

40
55

v2
 [

cs
.F

L
]

 2
9

Se
p

20
13

Searching of gapped repeats and

subrepetitions in a word

Roman Kolpakov
Lomonosov Moscow State University

Leninskie Gory, Moscow, 119992 Russia
foroman@mail.ru

Mikhail Podolskiy
Lomonosov Moscow State University

Leninskie Gory, Moscow, 119992 Russia
mpodolskii@inbox.ru

Mikhail Posypkin
Institute for Information Transmission Problems
Bolshoy Karetny per., Moscow, 127994 Russia

mposypkin@gmail.com

Nickolay Khrapov
Institute for Information Transmission Problems
Bolshoy Karetny per., Moscow, 127994 Russia

nkhrapov@gmail.com

Abstract

A gapped repeat is a factor of the form uvu where u and v are
nonempty words. The period of the gapped repeat is defined as |u|+ |v|.
The gapped repeat is maximal if it cannot be extended to the left or to
the right by at least one letter with preserving its period. The gapped
repeat is called α-gapped if its period is not greater than α|v|. A δ-
subrepetition is a factor which exponent is less than 2 but is not less than
1 + δ (the exponent of the factor is the quotient of the length and the
minimal period of the factor). The δ-subrepetition is maximal if it cannot
be extended to the left or to the right by at least one letter with pre-
serving its minimal period. We reveal a close relation between maximal
gapped repeats and maximal subrepetitions. Moreover, we show that in
a word of length n the number of maximal α-gapped repeats is bounded
by O(α2n) and the number of maximal δ-subrepetitions is bounded by
O(n/δ2). Using the obtained upper bounds, we propose algorithms for
finding all maximal α-gapped repeats and all maximal δ-subrepetitions
in a word of length n. The algorithm for finding all maximal α-gapped
repeats has O(α2n) time complexity for the case of constant alphabet size
and O(n log n + α2n) time complexity for the general case. For finding

1

http://arxiv.org/abs/1309.4055v2

all maximal δ-subrepetitions we propose two algorithms. The first algo-
rithm has O(n log logn

δ2
) time complexity for the case of constant alphabet

size and O(n log n+ n log log n

δ2
) time complexity for the general case. The

second algorithm has O(n log n+ n

δ2
log 1

δ
) expected time complexity.

1 Inroduction

Let w = w[1]w[2] . . . w[n] be an arbitrary word. The length of w is denoted
by |w|. A fragment w[i] · · ·w[j] of w, where 1 ≤ i ≤ j ≤ n, is called a factor
of w and is denoted by w[i..j]. Note that for factors we have two different
notions of equality: factors can be equal as the same fragment of the original
word or as the same word. To avoid this ambiguity, we will use two different
notations: if two factors u and v are the same word (the same fragment of the
original word) we will write u = v (u ≡ v). For any i = 1, . . . , n the factor
w[1..i] (w[i..n]) is called a prefix (a suffix) of w. By positions in w we mean the
order numbers 1, 2, . . . , n of letters of the word w. For any factor v ≡ w[i..j]
of w the positions i and j are called start position of v and end position of v
and denoted by beg(v) and end(v) respectively. The factor v covers a letter
w[k] if beg(v) ≤ k ≤ end(v). For any two factors u, v of w the factor u is
contained (is strictly contained) in v if beg(v) ≤ beg(u) and end(u) ≤ end(v) (if
beg(v) < beg(u) and end(u) < end(v)). Let u, v be two factors of w such that
beg(v) = end(u)+1. In this case we say that v follows u. The number end(u) is
called the frontier between the factors u and v. A factor v contains a frontier j
if beg(v)− 1 ≤ j ≤ end(v). If some word u is equal to a factor v of w then v is
called an occurence of u in w.

A positive integer p is called a period of w if w[i] = w[i + p] for each i =
1, . . . , n− p. We denote by p(w) the minimal period of w and by e(w) the ratio
|w|/p(w) which is called the exponent of w. A word is called primitive if its
exponent is not an integer greater than 1. By repetition in a word we mean
any factor of exponent greater than or equal to 2. Repetitions are fundamental
objects, due to their primary importance in word combinatorics [18] as well
as in various applications, such as string matching algorithms [9, 3], molecular
biology [10], or text compression [19]. The simplest and best known example
of repetitions is factors of the form uu, where u is a nonempty word. Such
repetitions are called squares. We call the first (second) factor u of the square
uu the left (right) root of this square. Avoiding ambiguity1, by the period of a
square we mean the length of its roots. A square is called primitive if its roots are
primitive. The questions concerned to squares are well studied in the literature.
In particular, it is known (see, e.g., [3]) that a word of length n contains no more
than logϕ n primitive squares. In [2] an O(n log n)-time algorithm for finding
of all primitive squares in a word of length n is proposed. In [11] an algorithm
for finding of all primitive squares in a word of length n with time complexity
O(n + S) where S is the size of output is proposed for the case of constant
alphabet size.

1Note that the period of a square is not necessarily the minimal period of this word.

2

A repetition in a word is called maximal if this repetition cannot be extended
to the left or to the right in the word by at least one letter with preserving its
minimal period. More precisely, a repetition r ≡ w[i..j] in w is called maximal
if it satisfies the following conditions:

1. if i > 1, then w[i − 1] 6= w[i − 1 + p(r)],

2. if j < n, then w[j + 1− p(r)] 6= w[j + 1].

Maximal repetitions are usually called runs in the literature. Since runs contain
all the other repetitions in a word, the set of all runs can be considered as a
compact encoding of all repetitions in the word which has many useful applica-
tions (see, for example, [6]). For any word w we will denote by R(w) the set of
all maximal repetitions in w and by E(w) the sum of exponents of all maximal
repetitions in w. The following facts are proved in [13].

Theorem 1 E(w) = O(n) for any w.

Corollary 1 |R(w)| = O(n) for any w.

Moreover, in [13] an O(n) time algorithm for finding of all runs in a word
of length n is proposed for the case of constant alphabet size (in the case of
arbitrary alphabet size all runs in a word of length n can be found in O(n log n)
time). Further many papers were devoted to obtaining more precise upper
bounds on E(w) and |R(w)|. In our knowledge, at present time the best upper
bounds for these values are obtained in [5] and [7].

A natural generalization of squares is factors of the form uvu where u and v
are nonempty words. We call such factors gapped repeats. In the gapped repeat
uvu the first (second) factor u is called the left (right) copy, and v is called the
gap. By the period of this gapped repeat we will mean the value |u|+ |v|. For a
gapped repeat σ we denote the length of copies of σ by c(σ) and the period of σ
by p(σ). By (u′, u′′) we will denote the gapped repeat with the left copy u′ and
the right copy u′′. Note that gapped repeats with distinct periods can be the
same factor, i.e. can have the same both start and end positions in the word. In
this case, for convenience, we will consider this repeats as different ones, i.e. a
gapped repeat is not determined uniquely by its start and end positions in the
word because this information is not sufficient for determining the both copies
and the gap of the repeat. For any real α > 1 a gapped repeat σ is called α-
gapped if p(σ) ≤ αc(σ). Analogously to repetitions, we can introduce the notion
of maximality for gapped repeats. A gapped repeat (w[i′..j′], w[i′′..j′′]) in w is
called maximal if it satisfies the following conditions:

1. if i′ > 1, then w[i′ − 1] 6= w[i′′ − 1],

2. if j′′ < n, then w[j′ + 1] 6= w[j′′ + 1].

In other words, a gapped repeat in a word is maximal if its copies cannot be
extended to the left or to the right in the word by at least one letter with
preserving its period. Note that any α-gapped repeat is contained either in a

3

determined uniquely maximal α-gapped repeat with the same period or, oth-
erwise, in a determined uniquely maximal repetiton which minimal period is
a divisor of the period of the repeat. Therefore, for computing all α-gapped
repeats in a given word it is enough to find all maximal α-gapped repeats and
all maximal repetitions in this word. Thus, taking into account the existence
effective algorithms for finding of all runs in a word, we can conclude that the
problem of computing all α-gapped repeats in a word is reduced to the problem
of finding all maximal α-gapped repeats in a word. The set of all maximal α-
gapped repeats in w will be denoted by GRα(w). The problem of finding gapped
repeats in a word was investigated before. In particular, it is shown in [1] that
all maximal gapped repeats with a gap length belonging to a specified interval
can be found in a word of length n with time complexity O(n log n+ S) where
S is the size of output. An algorithm for finding in a word all gapped repeats
with a fixed gap length is proposed in [14]. The proposed algorithm has time
complexity O(n log d+ S) where d is the gap length, n is the word length, and
S is the size of output.

Another natural generalization of repetitions is factors with exponents
strictly less than 2. We will call such factors subrepetitions. More precisely,
for any δ such that 0 < δ < 1 by δ-subrepetition we mean a factor v such that
1+δ ≤ e(v) < 2. Note that the notion of maximal repetition is directly general-
ized to the case of subrepetitions: maximal subrepetitions are defined exactly in
the same way as maximal repetitions. Further we reveal a close relation between
maximal subrepetitions and maximal gapped repeats. Some results concerning
the possible number of maximal subrepetitions in words were obtained in [16].
In particular, it was proved that the number of maximal δ-subrepetitions in a
word of length n is bouned by O(nδ logn).

The aim of our research is to develop effective algorithms of finding maximal
gapped repeats and maximal subrepetitions in a given word. Firstly we estimate
the number of maximal α-gapped repeats in a word of length n. In the paper
we prove O(α2n) upper bound on this number. From this bound we derive
O(n/δ2) upper bound on the number of maximal δ-subrepetitions in a word of
length n. Using the obtained bound on the number of maximal gapped repeats
in a word, we show that in the case of constant alphabet size all maximal α-
gapped repeats in a word of length n can be found in O(α2n) time. For finding
all maximal δ-subrepetitions in the word we propose two algorithms. The first
algorithm has time complexity O(n log logn

δ2) in the case of constant alphabet

size and O(n log n + n log logn
δ2) in the general case. The second algorithm has

O(n logn+ n
δ2 log

1
δ) expected time complexity.

2 Auxiliary definitions and results

Further we will consider an arbitrary word w = w[1]w[2] . . . w[n] of length n.
Recall that any repetition r in w is extended to just one maximal repetition
r′ with the same minimal period. We will call the repetition r′ the extension
of r. We will use the following quite evident fact on maximal repetitions (see,

4

e.g., [15][Lemma 8.1.3]).

Lemma 1 Two distinct maximal repetitions with the same minimal period p
can not have an overlap of length greater than or equal to p.

For primitive words the following well-known fact takes place (see, e.g., [4]).

Lemma 2 (primitivity lemma) If u is a primitive word, then u can not be
strictly contained in the square uu.

Using Lemma 2, it is easy to prove

Proposition 1 If a square uu is primitive, for any two distinct occurrences v′

and v′′ of uu in w the inequality |beg(v′)− beg(v′′)| ≥ |u| holds.

Corollary 2 If a square uu is primitive, any factor v contains no more than
|v|/|u| occurrences of uu.

Let r be a repetition in the word w. We call any factor of w which has the
length p(r) and is contained in r a cyclic root of r. The cyclic root which is
the prefix (suffix) of r is called prefix (suffix) cyclic root of r. Note that for any
cyclic root u of r the word r is a factor of the word uk for some big enough k.
So it follows from the minimality of the period p(r) that any cyclic root of r
has to be a primitive word. Hence any two adjacent cyclic roots of r form a
primitive square with the period p(r) which is called a cyclic square of r. The
cyclic square which is the prefix (suffix) of r is called prefix (suffix) cyclic square
of r. The following proposition can be easily obtained from Lemma 2.

Proposition 2 Two cyclic root u′, u′′ of a repetition r are equal if and only if
beg(u′) ≡ beg(u′′) (mod p).

Thus we have

Corollary 3 Any repetition r contains no more than |r|/p(r) equal cyclic roots.

For obtaining our results, we introduce the following classification of maximal
gapped repeats. We say that a maximal gapped repeat is periodic if the copies
of this repeat are repetitions. The set of all periodic maximal α-gapped repeats
in the word w is denoted by PPα. A gapped maximal repeat is called prefix
(suffix) semiperiodic if the copies of this repeat are not repetitions, but these
copies have a prefix (suffix) satisfying the following conditions:

1. this prefix (suffix) is a repetition;

2. the length of this prefix (suffix) is not less than the half of the copies
length.

5

In a copy of a prefix semiperiodic repeat the longest prefix satisfying the above
conditions is called periodic prefix of this copy. The periodic prefixes of the
copies of a prefix semiperiodic repeat are also called periodic prefixes of this
repeat. The set of all prefix (suffix) semiperiodic α-gapped maximal repeats
in the word w is denoted by PSPα (SSPα). A gapped maximal repeat is
called semiperiodic if it is either prefix or suffix semiperiodic. The set of all
semiperiodic α-gapped maximal repeats in the word w is denoted by SPα.
Gapped maximal repeats which are neither periodic nor semiperiodic are called
ordinary. The set of all ordinary α-gapped maximal repeats in the word w is
denoted by OPα.

Let δ < 1 and r be a maximal δ-subrepetition in w. Then we can consider
in w the repeat σ ≡ (w[beg(r)..end(r) − p(r)], w[beg(r) + p(r)..end(r)]). It
follows from e(r) < 2 that σ is gapped. Moreover, p(σ) = p(r) and, since r
is maximal, it is obvious that σ is maximal. Since r is a δ-subrepetition, we
have also that |r| − p(r) ≥ δp(r), so c(σ) = |r| − p(r) ≥ δp(r) = δp(σ), i.e.
p(σ) ≤ 1

δ c(σ). Thus, σ is a maximal 1
δ -gapped repeat in w. We will call the

subrepetition r and the repeat σ respective to each other. Note that for each
maximal δ-subrepetition r there exists a maximal 1

δ -gapped repeat σ respective
to r. Moreover, the subrepetition r is determined uniquely by the repeat σ, so
the same repeat can not be respective to different subrepetitions. Thus we have

Proposition 3 Let 0 < δ < 1. Then in any word the number of maximal
δ-subrepetitions is no more then the number of maximal 1/δ-gapped repeats.

On the other hand, it is easy to see that a maximal gapped repeat can
have no a respective maximal subrepetition. Maximal gapped repeats which
have respective maximal subrepetitions will be called principal. Thus we have
the one-to-one correspondence between maximal δ-subrepetitions and principal
1
δ -gapped repeats in a word. It is easy to check the following fact.

Proposition 4 A maximal gapped repeat σ in w is principal if and only if
p(w[beg(σ)..end(σ)]) = p(σ).

Let σ be a maximal gapped repeat, and r be a maximal repetition or sub-
repetition. We will say that σ is stretched by r if σ is contained in r and
p(r) < p(σ) and call σ stretchable if σ is stretched by some maximal repetition
or subrepetition. It follows from Proposition 4 that σ is not principal if and only
if p(w[beg(σ)..end(σ)]) < p(σ), i.e. σ is contained in some maximal repetition
or subrepetition with minimal period less than p(σ). So we obtain

Proposition 5 A maximal gapped repeat is principal if and only if it is not
stretchable.

We will say that a gapped repeat σ is stretched by a gapped repeat σ′ if σ
is contained in σ′ and p(σ′) < p(σ). It is easy to see that a gapped repeat is
stretched by a subrepetition if and only if this repeat is stretched by the gapped
repeat respective to this subrepetition. Using this observation, we can derive
the following

6

Proposition 6 A maximal δ-gapped repeat is stretchable if and only if it is
stretched by either a maximal repetition or a maximal δ-gapped repeat.

3 Estimation of the number of maximal repeats

and repetitions

In this section we estimate the number of maximal α-gapped repeats in a word.
For convenience sake we assume that α is integer although our proof can be easily
generalized to the case of any α. More precisely, we prove that for any integer
k ≥ 2 the number of maximal k-gapped repeats in the word w is O(nk2). To
obtain this bound, we estimate separately the numbers of periodic, semiperiodic
and ordinary maximal k-gapped repeats in w.

First we estimate the number of periodic maximal k-gapped repeats in w.
Let σ = (v′, v′′) be an arbitrary repeat from PPk. Then the both copies v′,
v′′ of σ are repetitions in w which are extended respectively to some maximal
repetitions r′, r′′ with the same minimal period in w. If r′ and r′′ are the same
repetition r then we call σ private repeat and we say that σ is generated by r .
Othervise σ is called non-private. To estimate the number of private maximal
k-gapped repeats in w, we use

Lemma 3 Any maximal repetition r generates no more than e(r)/2 different
private gapped maximal repeats.

Proof. Let r be a maximal repetition in w with the minimal period p, and
σ ≡ (v′, v′′) be a private maximal gapped repeat generated by r. Denote by
u′ and u′′ the prefixes of length p in v′ and v′′ respectively. Note that u′ and
u′′ are equal cyclic roots of r, so by Proposition 2 we have beg(u′) ≡ beg(u′′)
(mod p). Thus beg(v′) ≡ beg(v′′) (mod p). Therefore, if beg(v′) > beg(r)
then w[beg(v′)−1] = w[beg(v′′)−1] which contradicts that σ is maximal. Thus
beg(v′) = beg(r), i.e. v′ is a prefix of r and u′ is the prefix cyclic root of r.
Similarly we can prove that v′′ is a suffix of r. Thus σ is determined uniquely
by the cyclic root u′′ which is equal to the prefix cyclic root of r. Moreover,
since σ is gapped, u′′ has to be contained in the suffix of length ⌊|r|/2⌋ in r. By
Corollary 3 there exist no more than |r|/2p = e(r)/2 cyclic roots satisfying the
above conditions for u′′. Thus there exist no more than e(r)/2 private maximal
gapped repeats generated by r.

Lemma 3 implies immediately that the number of private maximal gapped
repeats in w is not greater than E(w)/2. Thus, taking into account Theorem 1,
we obtain

Corollary 4 The number of private maximal gapped repeats in w is O(n).

Now let σ be non-private, i.e. r′ and r′′ be different maximal repetitions.
Then we choose from the repetitions r′ and r′′ the shortest repetition (if |r′| =
|r′′| we choose any of these repetitions) and say that σ is generated by the
choosen repetition. More precisely, if the chosen repetition is r′ (r′′) we will say

7

that σ is generated from the left (from the right) by the repetition r′ (r′′). We
prove the following fact.

Lemma 4 For any maximal repetition r the number of non-private maximal
k-gapped repeats generated by r is O(ke(r)).

Proof. Let r be an arbitrary maximal repetition with the minimal period p
in w. We will prove that the number of non-private maximal k-gapped repeats
generated from the left by r is O(ke(r)). Since the number of non-private max-
imal k-gapped repeats generated from the right by r can be estimated similary,
it will imply the statement of the lemma. Denote by P (r) the set of all non-
private maximal k-gapped repeats generated from the left by r. Let σ ≡ (v, v′)
be an arbitrary repeat from P (r). Denote by r′ the extension of v′ which is the
maximal repetition with the same minimal period p. If beg(v) > beg(r) and
beg(v′) > beg(r′) then

w[beg(v)−1] = w[p+beg(v)−1] = v[p] = v′[p] = w[p+beg(v′)−1] = w[beg(v′)−1]

which contradicts that σ is maximal. Thus we have either beg(v) = beg(r)
or beg(v′) = beg(r′). We can prove similary that either end(v) = end(r) or
end(v′) = end(r′). Thus we can consider the following four possible cases.

1. beg(v) = beg(r) and end(v) = end(r);
2. beg(v) = beg(r) and end(v′) = end(r′);
3. beg(v′) = beg(r′) and end(v) = end(r);
4. beg(v′) = beg(r′) and end(v′) = end(r′).
Note that in the case 4 we have |r′| = |v′| = |v| ≤ |r|. Therefore, since

|r| ≤ |r′| by the definition of generated repeat, in this case we obtain that
|r| = |r′| = |v|, i.e. beg(v) = beg(r) and end(v) = end(r). So the case 4 is
actually a subcase of the case 1. Thus P (r) = P1(r) ∪ P2(r) ∪ P3(r) where
Pi(r) the set of all repeats from P (r) which satify the case i. We will estimate
separately |P1(r)|, |P2(r)|, and |P3(r)|.

Let σ ∈ P1(r), i.e. v ≡ r. Denote by u and u′ the prefixes of length 2p in
v and v′ respectively. Note that in this case σ is determined uniquely by the
factor u′. Note also that u = u′ and u is the prefix cyclic square of r. Thus u′ is
a primitive square with period p which is equal to the prefix cyclic square of r.
Moreover, since σ is k-gapped, u′ is contained in w[end(v) + 1..end(v) + k|v|].
Therefore, by Corollary 2 the number of different factors satisfying the above
conditions required for u′ is not greater than

1

p
|w[end(v) + 1..end(v) + k|v|]| =

1

p
k|v| =

1

p
k|r| = ke(r).

Thus |P1(r)| ≤ ke(r).
Now let σ ∈ P2(r). Denote again by u (u′) the prefix of length 2p in v

(v′). Note that in this case v′ is determined as w[beg(u′)..end(r′)] where r′

is determined as the extension of u′. Thus σ is determined uniquely by the
factor u′. As in the case 1, we have that u′ is a primitive square with period p

8

which is equal to the prefix cyclic square of r. Moreover, since σ is k-gapped
and, according to Lemma 1, r′ can not overlap with r by at least p letters, u′

is contained in the factor w[end(r) + 1 − p..end(r) + k|v|] which is contained
in w[end(r) + 1 − p..end(r) + k|r|]. Therefore, by Corollary 2 the number of
different factors satisfying the conditions required for u′ is not greater than

1

p
|w[end(r) + 1− p..end(r) + k|r|]| =

1

p
(k|r|+ p) = ke(r) + 1.

Thus |P2(r)| ≤ ke(r) + 1.
Finally let σ ∈ P3(r). Denote by u and u′ the suffixes of length 2p in v and

v′ respectively. Note that in this case v′ is determined as w[beg(r′)..end(u′)]
where r′ is determined as the extension of u′. Thus σ is determined uniquely
by the factor u′. Since u = u′ and u is the suffix cyclic square of r, the factor
u′ is a primitive square with period p which is equal to the suffix cyclic square
of r. Moreover, since σ is k-gapped, u′ is contained in the factor w[end(r) +
1..end(r) + k|v|] which is contained in w[end(r) + 1..end(r) + k|r|]. Therefore,
as in the case 1, we obtain that the number of different factors satisfying the
conditions required for u′ is not greater than ke(r). Thus |P3(r)| ≤ ke(r).

Summing up the obtained bounds for |P1(r)|, |P2(r)|, and |P3(r)|, we con-
clude that |P (r)| ≤ 3ke(r) + 1.

Since any non-private maximal gapped repeat is generated by some maxi-
mal repetition, Lemma 4 implies immediately that the number of non-private
maximal k-gapped repeats in w is O(kE(w)). Therefore, from Theorem 1 we
derive

Corollary 5 The number of non-private maximal k-gapped repeats in w is
O(kn).

From Corollaries 4 and 5 we have

Corollary 6 |PPk| = O(kn).

To estimate the number of semiperiodic maximal k-gapped repeats in w, we
estimate separately the numbers of prefix semiperiodic and suffix semiperiodic
maximal k-gapped repeats in w. Let σ ≡ (v′, v′′) be an arbitrary maximal repeat
from PSPk, and p be the minimal period of periodic prefixes of σ. Denote by u′

(u′′) the periodic prefix of v′ (v′′), and by r′ (r′′) the extension of r′ (r′′) in w.
Note that r′ and r′′ are maximal repetitions of w with the minimal period p.
From v′[|u′| + 1] = v′′[|u′′| + 1] 6= v′[|u′| + 1 − p] = v′′[|u′′| + 1 − p] we have
w[end(u′)+ 1] 6= w[end(u′) + 1− p] and w[end(u′′)+ 1] 6= w[end(u′′) + 1− p], so

end(r′) = end(u′), end(r′′) = end(u′′). (1)

Thus r′ and r′′ are different maximal repetitions in w. If |r′| ≤ |r′′|, we will
say that σ is generated from the left by the repetition r′ per the repetition r′′.
Otherwise we will say that σ is generated from the right by the repetition r′′ per
the repetition r′. A maximal repeat σ from PSPk is generated by a repetition r
if σ is generated from the left or from the right by r.

9

Proposition 7 If a maximal repeat from PSPk is generated by a repetition r
then r coincides with the periodic prefix of this repeat contained in r.

Proof. Assume that the maximal repeat σ from PSPk is generated from
the left by the repetition r′ (the case when σ is generated from the right by
the repetition r′′ is considered analogously). According to (1), we have that
end(r′) = end(u′). Let beg(r′) < beg(u′). Then from relations (1), u′ =
u′′, and |r′| ≤ |r′′| we obtain that beg(r′′) < beg(u′′). So w[beg(u′) − 1] =
w[beg(u′)− 1 + p] and w[beg(u′′) − 1] = w[beg(u′′)− 1 + p]. Since u′ = u′′ we
have also that w[beg(u′) − 1 + p] = u′[p] = u′′[p] = w[beg(u′′) − 1 + p]. Thus
w[beg(u′)−1] = w[beg(u′′)−1], which contradicts that the repeat σ is maximal.
Hence beg(r′) = beg(u′), i.e. r′ ≡ u′.

Proposition 8 For any maximal repetitions r′, r′′ in w, at most one maximal
repeat from PSPk can be generated from the left by r′ per r′′.

Proof. Let σ ≡ (v′, v′′) be an arbitrary maximal repeat from PSPk gen-
erated from the left by a repetition r′ per a repetition r′′. Then, using rela-
tions (1) and Proposition 7, we obtain that beg(v′) = beg(u′) = beg(r′) and
beg(v′′) = end(r′′)−|u′′|+1 = end(r′′)−|r′|+1. Denote by x the suffix of v′ and
v′′ such that v′ = u′x = u′′x = v′′. Using relations (1) and taking into account
that the repeat σ is maximal, it is easy to see that end(v′) = end(r′) + |x|,
end(v′′) = end(r′′)+ |x|, and x is the greatest common prefix of w[end(r′)+1..n
and w[end(r′′) + 1..n. Thus the copies v′ and v′′ of the repeat σ are uniquely
defined by the repetitions r′ and r′′ which implies Proposition 8.

If some maximal repeat from PSPk is generated from the left by a repe-
tition r′ per a repetition r′′, we call the repetition r′′ left associated with the
repetition r′.

Proposition 9 If a repetition r′′ is left associated with a repetition r′ then
end(r′) < end(r′′) ≤ end(r′) + 2k|r′|.

Proof. Let some maximal repeat σ ≡ (v′, v′′) from PSPk be generated from
the left by the repetition r′ per the repetition r′′. It follows from relations (1)
that end(r′′)− end(r′) is the period of σ. Therefore, since σ is k-gapped,

0 < end(r′′)− end(r′) ≤ k|v′| ≤ 2k|u′| ≤ 2k|r′|.

These inequalities imply Proposition 9.

Lemma 5 For any maximal repetition r in w there exist no more than 4k
repetitions left associated with r.

Proof. Let p be the minimal period of r, and r1, r2, . . . , rs be all repetitions
in w which are left associated with r and sorted in non-decreasing order of their
end positions, i.e. end(r1) ≤ end(r2) ≤ . . . ≤ end(rs). Recall that according to
the definition of left associated repetitions all the repetitions r1, r2, . . . , rs are
maximal repetitions with the minimal period p which are not shorter than r.

10

So, by Lemma 1, the overlap of each adjacent repetitions ri−1 and ri is less
than p. Therefore

end(ri)− end(ri−1) > |ri| − p ≥ |r| − p ≥ |r|/2.

Thus, taking into account Proposition 9, we have

end(r) < end(r1) < end(r2) < . . . < end(rs) ≤ end(r) + 2k|r|

where end(ri) > end(ri−1)+ |r|/2. These inequalities imply that s < 2k|r|
|r|/2 +1 =

4k + 1, i.e. s ≤ 4k.
From Lemma reflemonPSP and Proposition 8 we immeditely obtain that for

any maximal repetition r in w there exist no more than 4k repeats from PSPk

which are generated from the left by r. In the symmetrical way we can prove
that for any maximal repetition r in w there exist no more than 4k repeats
from PSPk which are generated from the right by r. Thus, any maximal repe-
tition in w can generate no more tnan 8k repeats from PSPk. Therefore, since
any repeat from PSPk is generated by some maximal repetition in w, from
Corollary 1 we obtain

Corollary 7 |PSPk| = O(kn).

In an analogous way we can prove that |SSPk| = O(kn). Thus we have

Corollary 8 |SPk| = O(kn).

For estimating the number of ordinary maximal k-gapped repeats in w we
use the idea which was used before in [17]. Namely, we consider pairs of positive
integers (j, p). We call such pairs points. For any two points (j, p′), (j′′, p′′) we

say that the point (j′, p′) covers the point (j′′, p′′) if p′ ≤ p′′ ≤ p′ − p′

4k and

j′ − p′

3k ≤ j′′ ≤ j′. Let Q be the set of all points (j, p) such that 1 ≤ j, p ≤ n.
We represent any maximal repeat σ from OPk by the point (j, p) in Q where j
is the end position of the left copy of σ and p is the period of σ. It is obvious
that σ is uniquely defined by the values j and p, so two different repeats from
OPk can not be represented by the same point. A point is covered by σ if the
point is covered by the point representing σ. By V [σ] we denote the set of all
points covered by the repeat σ. We show that any point from Q can not be
covered by two different repeats from OPk.

Lemma 6 Two different repeats from OPk can not cover the same point.

Proof. Let σ′, σ′′ be two different repeats from OPk covering the same
point (j, p). Let v′ ≡ w[i′..j′] (v′′ ≡ w[i′′..j′′]) be the left copy of σ′ (σ′′), and
p′ (p′′) be the period of σ′ (σ′′). Thus σ′ and σ′′ are represented respectively in
Q by the points (j′, p′) and (j′′, p′′).

First we consider the case p′ = p′′. In this case we obviously have j′ 6=
j′′, and without loss of generality we assume that j′ < j′′. From inequalities

11

j′′ − p′′

3k ≤ j ≤ j′ < j′′ and |v′′| ≥ p′′

k we obtain that the letter w[j′ + 1]
is contained in v′′. Hence w[j′ + 1] = w[j′ + 1 + p′′] = w[j′ + 1 + p′] which
contradicts the maximality of σ′. Thus the case p′ = p′′ is impossible.

Now consider the case p′ 6= p′′. Without loss of generality we assume that

p′ > p′′. Define δ = p′ − p′′ > 0. From the inequalities p′ − p′

4k ≤ p ≤ p′′ < p′ we

obtain that δ < p′

4k . To prove that this case is also impossible, we show that in
this case either σ′ or σ′′ has to be periodic or semi-periodic which contradicts
that both σ′ and σ′′ are ordinary. We consider separately the following four
subcases.

Subcase 1. Let j′′ ≥ j′ and i′′ ≥ i′. Denote by u the overlap w[i′′..j′] of

the factors v′ and v′′. From the inequalities j′′ − p′′

3k ≤ j ≤ j′ ≤ j′′ we have

j′′ − j′ ≤ p′′

3k ≤ |v′′|
3 , so

|u| = |v′′| − (j′′ − j′) ≥
2|v′′|

3
≥

2p′′

3k
.

Since p′ − p′

4k ≤ p ≤ p′′, we have also p′′ ≥ p′ 4k−1
4k . Thus

|u| ≥ p′
4k − 1

4k
·
2

3k
>

p′

2k
> 2δ.

Sinse u is contained in the both left copies v′ and v′′, we obtain that u =
w[i′′ + p′′..j′ + p′′] = w[i′′ + p′..j′ + p′]. Thus, δ is a period of u and |u| > 2δ,

i.e. u is a repetition. Therefore, since |u| ≥ 2|v′′|
3 > |v′′|

2 , we conclude that in
this case σ′′ has to be semi-periodic or periodic.

Subcase 2. Let j′′ ≥ j′ and i′′ < i′, i.e. v′ is contained in v′′. Therefore,
v′ = w[i′ + p′′..j′ + p′′] = w[i′ + p′..j′ + p′], so δ is a period of v′. Note also that

|v′| ≥ p′

k > 4δ. Thus v′ is a repetition, so σ′ is periodic in this case.
Subcase 3. Let j′′ < j′ and i′′ ≥ i′, i.e. v′′ is contained in v′. Therefore,

v′ = w[i′′ + p′′..j′′ + p′′] = w[i′′ + p′..j′′ + p′], so δ is a period of v′′. Note also

that p′′ ≥ p′ 4k−1
4k > 3

4p
′, so v′′ ≥ p′′

k > 3
4kp

′ > 3δ. Thus v′′ is a repetition, so σ′′

is periodic in this case.
Subcase 4. Let j′′ < j′ and i′′ < i′. Denote by u the overlap w[i′..j′′] of

the factors v′ and v′′. From the inequalities j′ − p′

3 ≤ j ≤ j′′ < j′ we have

j′ − j′′ ≤ p′

3k ≤ |v′|
3 , so

|u| = |v′| − (j′ − j′′) ≥
2|v′|

3
≥

2p′

3k
>

8

3
δ.

Sinse u is contained in the both left copies v′ and v′′, we obtain that u =
w[i′ + p′′..j′′ + p′′] = w[i′ + p′..j′′ + p′]. Thus, δ is a period of u and |u| > 2δ,

i.e. u is a repetition. Therefore, since |u| ≥ 2|v′|
3 > |v′|

2 , we conclude that in this
case σ′ has to be semi-periodic or periodic.

From Lemma 6 we obtain

Lemma 7 |OPk| = O(nk2).

12

Proof. To prove the lemma, we assign to each point (j, p) the weight
ρ(j, p) = 1/p2, and for any finite set A of points we define

ρ(A) =
∑

(j,p)∈A

ρ(j, p) =
∑

(j,p)∈A

1

p2
.

Let σ be an arbitrary repeat from OPk. Then

ρ(V [σ]) =
∑

j− p

3k
≤i≤j

(

∑

p− p

4k
≤q≤p

1

q2
)

>
p

3k

∑

p− p

4k
≤q≤p

1

q2

where (j, p) is the point representing σ. For further estimating of ρ(V [σ]) we
consider separately the cases p < 4k and p ≥ 4k. Let p < 4k. Then

p

3k

∑

p− p

4k
≤q≤p

1

q2
=

p

3k
·
1

p2
=

1

3kp
>

1

12k2
.

Now let p ≥ 4k. Then

∑

p− p

4k
≤q≤p

1

q2
=

p
∑

q=p−⌊ p

4k
⌋

1

q2
>

∫ p

p−⌊ p

4k
⌋

1

x2
dx

=
1

p− ⌊ p
4k ⌋

−
1

p+ 1
=

1 + ⌊ p
4k⌋

(p− ⌊ p
4k ⌋)(p+ 1)

>
p/4k

(p− 1)(p+ 1)
>

p/4k

p2
=

1

4kp
.

Therefore,
p

3k

∑

p− p

4k
≤q≤p

1

q2
>

p

3k
·

1

4kp
=

1

12k2
.

Thus, for any repeat σ fromOPk we have ρ(V [σ]) > 1
12k2 . Using this estimation,

we obtain that
∑

σ∈OPk

ρ(V [σ]) >
|OPk|

12k2
. (2)

Note that any point covered by repeats from OPk belongs to Q. On the other
hand, by Lemma 6, each point of Q can not be covered by two repeats from
OPk. Therefore,

∑

σ∈OPk

ρ(V [σ]) ≤ ρ(Q) =
n
∑

j=1

n
∑

p=1

1

p2
= n

n
∑

p=1

1

p2
< n

∞
∑

p=1

1

p2
=

nπ2

6
.

Thus, using inequality (2), we can conclude that |OPk| < 2π2nk2.
Summing up Corollaries 6 and 8 and Lemma 7, we obtain that for any integer

k ≥ 2 the number of maximal k-gapped repeats in w is O(k2n). This upper
bound is obviously generalized to the case of maximal α-gapped repeats for any
real α > 1. Thus we can conclude

13

Lemma 8 For any α > 1 the number of maximal α-gapped repeats in w is
O(α2n).

From Lemma 8, using the Proposition 3, one can easily derive the following
upper bound for maximal δ-subrepetitions.

Corollary 9 Let 0 < δ < 1. Then the number of maximal δ-subrepetitions in w
is O(n/δ2).

4 Computing of maximal gapped repeats

In this section we propose an algorithm for finding of all maximal α-gapped
repeats in the given word w for a fixed value of α. The proposed algorithm is
actually a modification of the algorithm described in [15] for finding all repeats
with a fixed gap in a given word. In particular, the two following basic tools are
used in this modification.

The first tool is special functions which are defined as follows. Let u, v be
two arbitrary words. For each i = 2, 3, . . . , |u| we define LPu(i) as the length of
the longest common prefix of u and u[i..|u|]. For each i = 1, 2, . . . , |u| − 1 we
define LSu(i) as the length of the longest common suffix of u and u[1..|u|−i]. For
each i = 0, 1, . . . , |u|− 1 we define LPu|v(i) as the length of the longest common
prefix of u[|u|− i..|u|]v and v. For each i = 1, 2, . . . , |v| we define LSu|v(i) as the
length of the longest common suffix of u and uv[1..i]. The functions LPu and
LSu can be computed in O(|u|) time and the functions LPu|v and LSu|v can be
computed in O(|u|+ |v|) time (see, e.g., [15]).

The second tool is a factorization f ≡ f1f2 . . . ft of the word w which is
called non-overlapping s-factorization and defined inductively as follows:

• f1 ≡ w[1].

• Let for i > 1 the factors f1, . . . , fi−1 are already computed, and w[j] be
the letter which follows the factor fi−1 in w. Then fi ≡ w[j] if the letter
w[j] has no occurences in f1f2 . . . fi−1; otherwise fi is the longest factor
in w which follows fi−1 and has an occurence in f1f2 . . . fi−1.

The factorization f can be computed in O(n) time for the case of constant
alphabet size and in O(n log n) time for the general case (see, e.g., [15]). By
ai (bi) we denote the start (end) position of the factor fi. The length of fi is
denoted by li. For i = 1, 2, . . . , t− 1 we will consider also the factor w[ai..bi+1]
which is denoted by f ′

i .
For convenience sake we consider the case when α is integer, i.e. for any

integer k ≥ 2 we describe the algorithm of finding in w all repeats from GRk(w).
To this purpose we divide the set GRk(w) into the following two nonoverlapping
subsets: FGR is the set of all repeats from GRk(w) which are not strictly
contained in any factor fi of the factorization f , and SGR is the set of all repeats
from GRk(w) which are strictly contained in factors of the factorization f . To
compute the set GRk(w), we compute separately the sets FGR and SGR. For

14

each i = 2, 3, . . . , t we define in the set FGR the following subsets: FGR′
i is the

set of all repeats σ from FGR such that

1. bi−1 < end(σ) ≤ bi;

2. beg(σ) ≤ ai;

and FGR′′
i is the set of all repeats σ from FGR such that

1. end(σ) = bi;

2. beg(σ) > ai.

It is easy to see that all the subsets FGR′
i and FGR′′

i are nonoverlapping.
Moreover, taking into account that the factor f1 consists of only one letter, we
have that FGR =

⋃t
i=2 FGR′

i ∪
⋃t

i=2 FGR′′
i . To compute the set FGR, we

compute separately the sets FGR′
i and FGR′′

i for i = 2, 3, . . . , t.
To compute FGR′

i, we consider in this set the following nonoverlapping
subsets: FGRlrt

i is the set of all repeats from FGR′
i which left copies contain

the frontier between the factors fi−1 and fi, FGRrrt
i is the set of all repeats

from FGR′
i which right copies contain the frontier between the factors fi−1 and

fi, and FGRmid
i is the set of all repeats σ from FGR′

i such that neither left
nor right copies of σ contain the frontier between the factors fi−1 and fi. It
is obvious that FGR′

i = FGRlrt
i ∪ FGRrrt

i ∪ FGRmid
i . We compute separately

the considered subsets of FGR′
i.

1. Computing the set FGRlrt
i . Let σ ≡ (w[i′..j′], w[i′′..j′′]) be a repeat

from FGRlrt
i with a period p. Note that in this case p ≤ li, so c(σ) < li.

Thus, σ is strictly contained in the factor w[ai − li..ai+1] ≡ gif
′
i where gi ≡

w[ai− li..bi−1]. Since w[i
′..j′] contains the frontier between fi−1 and fi, we have

i′ − 1 ≤ bi−1 ≤ j′. Thus, we can consider the factors w[ai..j
′] and w[i′..bi−1].

Note that w[ai..j
′] = w[ai + p..j′′] and w[j′ + 1] 6= w[j′′ + 1]. Moreover, from

the condition end(σ) ≤ bi we have j′′ ≤ bi. Therefore, w[ai..j
′] is the longest

common prefix of f ′
i and f ′

i [p+1..l′i], i.e. |w[ai..j
′]| = |w[ai+p..j′′]| = LPf ′

i
(p+1).

Note also that w[i′..bi−1] = w[i′′..bi−1 + p] and w[i′ − 1] 6= w[i′′ − 1]. Moreover,
|w[i′..bi−1]| ≤ c(σ) < li. Therefore, w[i′..bi−1] is the longest common suffix
of the words gi and gifi[1..p], i.e. |w[i′..bi−1]| = |w[i′′..bi−1 + p]| = LSgi|fi(p).
Thus,

σ ≡ (w[ai − L̂S(p)..bi−1 + L̂P(p)], w[ai + p− L̂S(p)..bi−1 + p+ L̂P(p)]) (3)

where L̂P(p) = LPf ′

i
(p+1) and L̂S(p) = LSgi|fi(p), i.e. σ is defined uniquely by

the period p. Since L̂P(p) + L̂S(p) = c(σ) and σ is a k-gapped repeat, we have
the following restrictions for L̂P(p) and L̂S(p):

p/k ≤ L̂P(p) + L̂S(p) < p. (4)

Moreover, from the condition end(σ) ≤ bi we have the restriction

L̂P(p) ≤ li − p. (5)

15

On the other hand, if for some p such that p ≤ li the conditions (4) and (5)
hold, in the set FGRlrt

i there exists the maximal k-gapped repeat (3) with the
period p. Thus, to compute FGRlrt

i , for each p = 1, 2, . . . , li we compute the
values L̂P(p) and L̂S(p) and check the conditions (4) and (5). If these conditions
are valid we add the corresponding repeat (3) to FGRlrt

i . As noted above, all
the values L̂P(p) and L̂S(p) can be computed in O(|gi| + |f ′

i |) = O(li) time,
and all the conditions (4) and (5) can be checked in O(li) time. Thus, the set
FGRlrt

i can be computed in O(li) time.
2. Computing the set FGRrrt

i . Let σ ≡ (w[i′..j′], w[i′′..j′′]) be a repeat
from FGRrrt

i with a period p. Then for σ we have the following

Proposition 10 The right copy of σ doesn’t contain the frontier between the
factors fi−2 and fi−1.

Proof. Assume that the right copy w[i′′..j′′] contains the frontier between
fi−2 and fi−1. Then we can consider the factor u′ ≡ w[ai−1..j

′′] which is a
suffix of the right copy. Since u′ is also a suffix of the right copy of σ, in
f1f2 . . . fi−2 there is an occurrence of u′. Moreover, the factor u′ immediately
follows f1f2 . . . fi−2 and |u′| > |fi−1| because of j′′ = end(σ) > bi−1. This
contradicts the definition of the factor fi−1.

From Proposition 10 and the condition end(σ) ≤ bi we immediately obtain

Corollary 10 c(σ) < li−1 + li.

Thus, p ≤ kc(σ) < k(li−1 + li) and i′′ > ai−1 by Proposition 10. Therefore,
i′ = i′′−p > ai−1−k(li−1+ li), i.e. σ is strictly contained in the factor w[ai−1−
k(li−1 + li)..ai+1] ≡ g′if

′
i where g′i ≡ w[ai−1 − k(li−1 + li)..bi−1]. Since w[i′′..j′′]

contains the frontier between fi−1 and fi, we can consider the factors w[ai..j
′′]

and w[i′′..bi−1]. Note that w[ai..j
′′] = w[ai − p..j′] and w[j′ + 1] 6= w[j′′ + 1].

Moreover, j′′ ≤ bi. Therefore, |w[ai..j
′′]| = |w[ai − p..j′]| = LPg′

i
|f ′

i
(p − 1).

Note also that w[i′′..bi−1] = w[i′..bi−1 − p] and w[i′ − 1] 6= w[i′′ − 1]. Thus
|w[i′′..bi−1]| = |w[i′..bi−1 − p]| = LSg′

i
(p). Hence

σ ≡ (w[ai − p− L̂S(p)..bi−1 − p+ L̂P(p)], w[ai − L̂S(p)..bi−1 + L̂P(p)]) (6)

where L̂P(p) = LPg′

i
|f ′

i
(p− 1) and L̂S(p) = LSg′

i
(p), i.e. σ is defined uniquely by

the period p. As in the the case of computing FGRlrt
i , we have for the period p

the restristions (4). Moreover, since bi−1 < j′′ ≤ bi, we have the following
additional restriction:

0 < L̂P(p) ≤ li. (7)

On the other hand, if for some p such that p < k(li−1 + li) the conditions (4)
and (7) hold, in the set FGRrrt

i there exists the k-gapped repeat (6) with the
period p. Thus, to compute FGRrrt

i , for each p < k(li−1 + li) we check the
conditions (4) and (7) for the values L̂P(p) and L̂S(p). If these conditions hold
we add the corresponding repeat (6) to FGRrrt

i . Note that all the values L̂P(p)
and L̂S(p) can be computed in O(|g′i|+ |f ′

i |) = O(k(li−1 + li)) time, and all the

16

conditions (4) and (7) can be checked in O(k(li−1 + li)) time. Thus, the set
FGRrrt

i can be computed in O(k(li−1 + li)) time.
3. Computing the set FGRmid

i . Note that the right copies of all repeats
from FGRmid

i are strictly contained in f ′
i . Let q = ⌊log k/(k − 1)li⌋. We denote

by ds the position ⌊((k − 1)/k)sli⌋ + 1 for s = 0, 1, . . . , q and divide the set
FGRmid

i into nonoverlapping subsets MP1,MP2, . . . ,MPq where MPs is the

set of all repeats from FGRmid
i which right copies cover the letter f ′

i [ds] but
don’t cover the letter f ′

i [ds−1].

Proposition 11 FGRmid
i =

⋃q
s=1 MPs.

Proof. Let σ ≡ (w[i′..j′], w[i′′..j′′]) be a repeat from FGRmid
i . Since the

right copy w[i′′..j′′] doesn’t cover the letter f ′
i [d0] ≡ w[ai+1], for proving the

proposition we have to show that w[i′′..j′′] covers at lest one of the letters
f ′
i [d1], f

′
i [d2], . . . , f

′
i [dq]. Let w[i′′..j′′] do not cover any of these letters. It is

easy to check that dq ≤ 2, so w[i′′..j′′] can not be to the left of the letter f ′
i [dq].

Thus, w[i′′..j′′] has to be situated between some letters f ′
i [ds] and f ′

i [ds−1]. Then

c(σ) = |w[i′′..j′′]| ≤ ds−1 − 1− ds =

⌊

(

k − 1

k

)s−1

li

⌋

−

⌊(

k − 1

k

)s

li

⌋

− 1

<

(

k − 1

k

)s−1

li −

(

k − 1

k

)s

li =

(

k − 1

k

)s−1
li
k
.

Moreover, since the left copy w[i′..j′] is to the left of the letter w[ai], we have

p(σ)− c(σ) ≥ ds >

(

k − 1

k

)s

li > (k − 1)c(σ).

Thus p(σ) > kc(σ), which contradicts the assumption that σ is k-gapped.
Using Proposition 11, for computing FGRmid

i we compute separately the sets
MP1,MP2, . . . ,MPq. In order to compute the set MPs, consider an arbitrary
repeat σ ≡ (w[i′..j′], w[i′′..j′′]) with a period p in this set. Note that in this case
the right copy of σ is strictly contained in f ′

i [1..ds−1], so c(σ) < ds−1. Thus,
j < kds−1 and σ is strictly contained in

w[ai − kds−1..bi−1]f
′
i [1..ds−1] ≡ hish

′
is

where his ≡ w[ai−kds−1..bi−1]f
′
i [1..ds−1] and h′

is ≡ f ′
i [ds..ds−1]. Since w[i

′′..j′′]
covers the letter f ′

[ds] we can consider the factors w[i′..bi−1 + ds − p], w[ai−1 +

ds − p..j′], w[i′′..bi−1 + ds], w[ai−1 + ds..j
′′] and note that

|w[i′..bi−1 + ds − p]| = |w[i′′..bi−1 + ds]| = LShis
(p),

|w[ai−1 + ds − p..j′]| = |w[ai−1 + ds..j
′′]| = LPhis|h′

is
(p− 1).

Thus, σ is defined uniquely by the period p as

(w[ai+ds−p−L̂S(p)..bi−1+ds−p+L̂P(p)], w[ai+ds−L̂S(p)..bi−1+ds+L̂P(p)])
(8)

17

where L̂S(p) = LShis
(p) and L̂P(p) = LPhis|h′

is
(p − 1). Since the repeat σ is

k-gapped, the conditions (4) have to be valid for the period p. Moreover, p has
to satisfy the additional restrictions

L̂P(p) ≤ p− ds, (9)

0 < L̂P(p) ≤ ds−1 − ds, (10)

L̂S(p) < ds − 1, (11)

following from the definition of the set MPs. On the other hand, for each p
satisfying the inequality p < kds−1 and the conditions (4), (9), (10), and (11),
there exists the k-gapped repeat (8) with the period p in the set MPs. Thus, to
compute MPs, we check the conditions (4), (9), (10), and (11) for each p such
that p < kds−1. If for some p these conditions hold we add the corresponding
repeat (8) to MPs. Note that the time required for computing the involved
values L̂P(p) and L̂S(p) is bounded by O(|his|+ |h′

is|) = O(kds−1) and the total
time required for checking these conditions is bounded by O(kds−1). Thus, MPs

can be computed in O(kds−1) = O(((k − 1)/k)s−1kli) time. Hence, taking into
account that

q
∑

s=1

(

k − 1

k

)s−1

kli < kli

∞
∑

s=0

(

k − 1

k

)s

= k2li,

by Proposition 11 we obtain that FGRmid
i can be computed in O(k2li) time.

Summing up the obtained time bounds for computing the sets FGRlrt
i ,

FGRrrt
i and FGRmid

i , we conclude that FGR′
i can be computed in O(kli−1 +

k2li) time.
It is easy to note that the set FGR′′

i can also be computed in O(li) time by
a simplified version of the described above algorithm for computing FGRrrt

i .
The set SGR is also divided into nonoverlapping subsets

SGR2,SGR3, . . . ,SGRt where SGRi is the set of all repeats from SGR
which are strictly contained in fi. These subsets are computed separately by
the procedure described below.

Now we give a general description of the algorithm for computing GRk(w).
Initially we compute the factorization f for w. During the computation of f ,
for each factor fi such that |fi| > 1 we store a pointer to an occurrence of
fi in f1f2 . . . fi−1 (such occurence exists by the definition of non-overlapping
s-factorization and will be denoted by vi). More exactly, we store the difference
∆i between the start positions of fi and vi. Computation of values ∆i does
not affect the time complexity of computing the factorization f . Further we
execute the following procedure of finding all repeats from GRk(w). During
this procedure all found repeats are stored in lists start[j] for j = 1, 2, . . . , n
where start[j] is a list of all found repeats with the start position j sorted in
non-decreasing order of their end positions. The pocedure consists of t − 1
consecutive steps. At the i− 1-th step we find all repeats σ from GRk(w) such
that ai ≤ end(σ) ≤ bi, i.e. after i − 1-th step we have found all repeats σ

18

from GRk(w) such that end(σ) ≤ bi. Thus, after the last step all repeats from
GRk(w) are found. The i − 1-th step is executed as follows. First we compute
the set FGR′

i as described above. During the computation all found repeats
from FGR′

i are initially stored in auxiliary lists fin[j] for j = ai, ai + 1, . . . , bi
where in the list fin[j] we store all found repeats with the end position j. After
the computation we process consecutively all lists fin[j] in the increasing order
of j by replacing all found repeats from these lists into the lists start[j] according
to their start positions. The auxiliary sorting through the lists fin[j] guarantees
that all found repeats will be placed into the lists start[j] in the required order.
Further, if |fi| > 1, we compute the set SGRi. For computing this set consider
an arbitrary repeat σ ≡ (u, v) from SGRi. Since σ is strictly contained in fi,
there exists the occurence

σ′ ≡ (w[beg(u)−∆i..end(u)−∆i], w[beg(v)−∆i..end(v)−∆i]

of σ which is strictly contained in vi, i.e. beg(σ′) > beg(v′) and end(σ′) <
end(v′) ≤ endfi−1. It is obvious that σ

′ is also a maximal k-gapped repeat from
GRk(w), so it has to be found before the i− 1 step. Thus σ′ is contained in the
list start[beg(σ)−∆i]. On the other hand, for each repeat σ′ ≡ (u′, v′) which is
contained in a list start[j] where beg(v′) < beg(σ′) < end(v′) ans satisfies the
condition end(σ′) < end(v′) = bi −∆i there exists the repeat

σ ≡ (w[beg(u′) + ∆i..end(u
′) + ∆i], w[beg(v

′) + ∆i..end(v
′) + ∆i] (12)

in the set SGRi. Thus, to compute SGRi it is enough for any j such that
ai < j < bi to copy each repeat σ′ ≡ (u′, v′) from the list start[j−∆i] such that
end(σ′) < bi −∆i into the new list start[j] as the repeat σ defined in (12) with
preserving the order of repeats in the lists. It can be done in O(li + |SGRi|)
time, so SGRi can be computed in this time. Finally we compute the set FGR′′

i

in O(li) time. During the computation of this set each found repeat σ is placed
into the respective list start[beg(σ)]. It is easy to see that at the i − 1-th step
all repeats σ from GRk(w) such that ai ≤ end(σ) ≤ bi will be found and placed
into the lists start[j] in the required order. The time complexity bound for the
i − 1-th step is O(kli−1 + k2li + |SGRi|). It easily implies O(k2n + |SGR|)
total time complexity bound for all steps. Sinse |SGR| < |GRk(w)| = O(k2n)
by Lemma 8, we obtain O(k2n) time complexity bound for the the described
procedure of finding all repeats from GRk(w). Taking into account the time for
constructing the factorization f , we conclude that GRk(w) can be computed in
O(k2n) time for the case of constant alphabet size and in O(n logn+ k2n) time
for the general case.

For convenience sake we have considered the case of maximal k-gapped re-
peats where k is integer but it easy to see that the proposed algorithm can be
directly generalized to the case of maximal α-gapped repeats for real α > 1 with
preserving the upper bound for time complexity. Thus we have

Theorem 2 For any real α > 1 all maximal α-gapped repeats in w can
be computed in O(α2n) time for the case of constant alphabet size and in
O(n logn+ α2n) time for the general case.

19

Now consider the problem of finding all maximal δ-subrepetitions in a word
for a fixed δ. Because of the established above one-to-one correspondence be-
tween maximal δ-subrepetitions and principal 1

δ -gapped repeats, this problem is
reduced to computing all principal 1

δ -gapped repeats in a word. We propose the
following algorithm for computing all principal 1

δ -gapped repeats in the word w.
Further, for convenience, by the period of a repetition we will mean its minimal
period. First we compute the ordered set OSRδ of all maximal repetitions and
all maximal 1

δ -gapped repeats in w such that all elements of OSRδ are ordered
in non-decreasing order of their start positions and, furthermore, elements of
OSRδ with the same start position are ordered in increasing order of their pe-
riods (it is easy to note that any element of OSRδ determined uniquely by its
start position and its period, so the introduced order in OSRδ is uniquely de-
fined). To compute OSRδ, we find in w all maximal repetitions and all maximal
1
δ -gapped repeats. Using Theorem 2 and the algorithm for finding maximal rep-
etitions proposed in [13], it can be done in O(n/δ2) time for the case of constant
alphabet size and in O(n log n+n/δ2) time for the general case. Then we arrange
the found repetitions and repeats in the order required for OSRδ. By Lemma 8
the number of the maximal 1

δ -gapped repeats is O(n/δ2) and by Corollary 1 the
number of the maximal repetitions is O(n), so |OSRδ| = O(n/δ2). Therefore,
using backet sort, the required arrangement can be done in O(n+ |OSRδ|) time
which is bounded by O(n/δ2). Thus, OSRδ can be computed in O(n/δ2) time
for the case of constant alphabet size and in O(n logn + n/δ2) time for the
general case. Note that by Proposition 5 for discovering all principal repeats
from the maximal 1

δ -gapped repeats it is enough to compute all stretchable 1
δ -

gapped repeats in w. To compute stretchable 1
δ -gapped repeats, we maintain

an auxiliary two-way queue SRQ consisting of elements from OSRδ. Elements
from OSRδ are presented by pairs (p, q) where p and q are respectively the
period and the end position of the presented element (it is easy to note that any
element of OSRδ determined uniquely by its period and its start position, so
two different elements can not be presented by the same pair in SRQ). At any
time the queue SRQ has a form:

(p1, q1), (p2, q2), . . . , (ps, qs) (13)

where p1 < p2 < . . . < ps and q1 < q2 < . . . < qs. Starting from empty SRQ,
we try to insert in SRQ each element of OSRδ in the prescribed order by the
following way. The first element of OSRδ is simply inserted in empty SRQ. Let
an element τ with period p and end position q be the next candidate for inser-
tion in the queue SRQ presented in (13). Firstly we find the periods pi and pi+1

such that pi ≤ p < pi+1 and2 compare q with qi. If q ≤ qi we establish that τ is
a stretchable repeat3 and don’t insert τ in SRQ. Othervise we insert τ in SRQ
and remove from SRQ all pairs (pj , qj) such that j > i and qj ≤ q in order to
preserve SRQ in the proper form. Using Proposition 6, one can check that the

2We describe our algorithm for the general case when both pi and pi+1 are exist. The

cases when eigther pi or pi+1 does not exist are easily derived from this general case.
3It is easy to check that in this case τ can not be a repetition.

20

described procedure compute correctly all stretchable repeats from OSRδ which
allows to compute all principal 1

δ -gapped repeats in w. For effective execution of
operations required in this procedure we use the data structure proposed in [8].
This data structure can be constructed in O(n log logn) time and allows to ex-
ecute the operations of finding pi, inserting an element to SRQ and removing
an element from SRQ in O(log logn) time. Note that in the described proce-
dure no more than one of each of these three operations is required for treating
any element from OSRδ. Thus, the time required for computing all stretch-
able repeats in OSRδ is O(n log logn + |OSRδ)| log logn), so can be bounded
by O(n log logn/δ2). Summing up this time bound with the time bound for
computing the set OSRδ, we obtain

Theorem 3 Let 0 < δ < 1. Then all maximal δ-subrepetitions in w can be
computed in O(n log logn

δ2) time for the case of constant alphabet size and in

O(n logn+ n log logn
δ2) time for the general case.

Another algorithm for computing all principal 1
δ -gapped repeats in a word

is based on Proposition 4. By this proposition, in order to check if a max-
imal gapped repeat σ in w is principal we can compute the minimal period
of w[beg(σ)..end(σ)] and compare this period with p(σ): if these periods are
equal then σ is principal; otherwise σ is not principal. The problem of effective
answering to queries related to minimal periods of factors in a word is stud-
ied in [12]. In particular, in [12] a hash table data structure is proposed for
resolving this problem. This data structure can be constructed in O(n logn) ex-
pected time and allows to compute the minimal period p of a required factor u

in O(log(1 + |u|
|u|−p)) time. Note that for any 1

δ -gapped repeat σ in w we have

p(w[beg(σ)..end(σ)]) ≤ p(σ) ≤ |σ|
1+δ , so p(w[beg(σ)..end(σ)]) can be computed in

O(log(1+ 1
δ)) time. Therefore, using the data structure from [12], for any maxi-

mal 1
δ -gapped repeat σ in w we can check if σ is principal in O(log(1+ 1

δ)) time.
Thus, in our second algorithm we compute the set GR1/δ(w) and for each re-
peat σ from GR1/δ(w) check, as described above, if σ is principal. By Theorem 2
the set GR1/δ(w) can be computed in O(n log n+ n

δ2) time. The expected total

time for checking all repeats from GR1/δ(w) is O(n log n+|GR1/δ(w)| log(1+
1
δ)),

so this time can be bounded by O(n log n+ n
δ2 log

1
δ) since |GR1/δ(w)| = O(n

δ2)
by Lemma 8. Thus we have

Theorem 4 Let 0 < δ < 1. Then all maximal δ-subrepetitions in w can be
computed in O(n logn+ n

δ2 log
1
δ) expected time.

5 Conclusion

One of our results is the O(α2n) upper bound on the number of maximal α-
gapped repeats in a word of length n. On the other hand, it is easy to see that
this number can be at least4 Ω(αn), so we have a gap between upper and lower

4We will naturally assume that α ≤ n and δ ≥ 1/n.

21

bounds on this number. Thus we have an open question on the optimality of
the obtained upper bound. The performed computer experiments show that
the order of growth for the maximal number of maximal α-gapped repeats in
a word of length n is αn. It would imply that the order of growth for the
maximal number of maximal δ-subrepetitions in a word of length n is O(n/δ).
Checking this conjecture would be of interest to us. We assume also that the
proposed algorithms are not time optimal, so improving these algorithms is
another direction for further research.

Acknowledgments

This work is partially supported by Russian Foundation for Fundamental Re-
search (Grant 11-01-00508).

References

[1] G. Brodal, R. Lyngso, C. Pedersen, J. Stoye, Finding Maximal Pairs with
Bounded Gap, Journal of Discrete Algorithms 1(1) (2000), 77–104.

[2] M. Crochemore, An optimal algorithm for computing the repetitions in a
word, Information Processing Letters 12 (1981), 244–250.

[3] M. Crochemore, W. Rytter, Squares, cubes, and time-space efficient string
searching, Algorithmica 13 (1995), 405–425.

[4] M. Crochemore, C. Hancart, T. Lecroq, Algorithms on Strings, Cambridge
University Press, 2007.

[5] M. Crochemore, L. Ilie, and L. Tinta, Towards a solution to the ”runs”
conjecture, Lecture Notes in Comput. Sci. 5029 (2008), 290–302.

[6] M. Crochemore, C. Iliopoulos, M. Kubica, J. Radoszewski, W. Rytter,
T. Walen, Extracting powers and periods in a string from its runs structure,
Lecture Notes in Comput. Sci. 6393 (2010), 258–269.

[7] M. Crochemore, M. Kubica, J. Radoszewski, W. Rytter, T. Walen, On the
maximal sum of exponents of runs in a string, Lecture Notes in Comput.
Sci. 6460 (2011), 10–19.

[8] P. van Emde Boas, R. Kaas, E. Zulstra, Design and Implementation of an
Efficient Priority Queue, Mathematical Systems Theory 10 (1977), 99-127.

[9] Z. Galil, J. Seiferas, Time-space optimal string matching, Journal of Com-
puter and System Sciences 26(3) (1983), 280–294.

[10] D. Gusfield, Algorithms on Strings, Trees, and Sequences, Cambridge Uni-
versity Press, 1997.

22

[11] D. Gusfield, J. Stoye, Linear time algorithms for finding and representing all
the tandem repeats in a string, Journal of Computer and System Sciences
69(4) (2004), 525–546.

[12] T. Kociumaka, J. Radoszewski, W. Rytter, T. Walen, Efficient Data Struc-
tures for the Factor Periodicity Problem, Lecture Notes in Comput. Sci.
7608 (2012), 284-294.

[13] R. Kolpakov, G. Kucherov, On Maximal Repetitions in Words, Journal of
Discrete Algorithms 1(1) (2000), 159–186.

[14] R. Kolpakov, G. Kucherov, Finding Repeats with Fixed Gap, Proceedings
of 7th International Symposium on String Processing and Information Re-
trieval (SPIRE’00) (2000), 162–168.

[15] R. Kolpakov, G. Kucherov, Periodic structures in words, chapter for the 3rd
Lothaire volume Applied Combinatorics on Words, Cambridge University
Press, 2005.

[16] R. Kolpakov, G. Kucherov, P. Ochem, On maximal repetitions of arbitrary
exponent, Information Processing Letters, 110(7) (2010), 252–256.

[17] R. Kolpakov, On primary and secondary repetitions in words, Theoretical
Computer Science, 418 (2012), 71–81.

[18] M. Lothaire, Combinatorics on Words, volume 17 of Encyclopedia of Math-
ematics and Its Applications, Addison Wesley, 1983.

[19] J. Storer, Data compression: methods and theory, Computer Science Press,
Rockville, MD, 1988.

23

	1 Inroduction
	2 Auxiliary definitions and results
	3 Estimation of the number of maximal repeats and repetitions
	4 Computing of maximal gapped repeats
	5 Conclusion

