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Abstract

We present recursive formulas giving the maximal number of leaves in
tree-like polyforms living in two-dimensional regular lattices and in tree-
like polycubes in the three-dimensional cubic lattice. We call these tree-
like polyforms and polycubes fully leafed. The proof relies on a combina-
torial algorithm that enumerates rooted directed trees that we call abun-
dant. In the last part, we concentrate on the particular case of polyforms
and polycubes, that we call saturated, which is the family of fully leafed
structures that maximize the ratio (number of leaves)/ (number of cells).
In the polyomino case, we present a bijection between the set of saturated
tree-like polyominoes of size 4k+1 and the set of tree-like polyominoes of
size k. We exhibit a similar bijection between the set of saturated tree-like
polycubes of size 41k+28 and a family of polycubes, called 4-trees, of size
3k + 2.

1 Introduction

Polyominoes and, to a lesser extent, polyhexes, polyiamonds and polycubes have
been the object of important investigations in the past 30 years either from a
game theoretic or from a combinatorial point of view (see [15, 14] and references
therein). Recall that a polyomino is an edge-connected set of unit cells in the
square lattice that is invariant under translation. There are two other regular
lattices in the euclidian plane namely the hexagonal lattice and the triangular
lattice which contain analogs of polyominoes respectively called polyhexes and
polyiamonds. All these connected sets of planar cells are known under the
name polyform. The 3D equivalent of a polyomino is called a polycube. It is a
face-connected set of unit cells in the cubic lattice, up to translation.

A central problem has been the search for the number of polyforms with n
cells where n is called the size of the polyform. This problem, still open, has been
investigated from several points of view; asymptotic evaluation [19], computer
generation and counting [17, 20, 23], random generation [16] and combinatorial
description [2, 13, 15]. Combinatorists have also concentrated their efforts in
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the description of various families of polyominoes and polycubes, such as convex
polyominoes [6], parallelogram polyominoes [1, 10], tree-like polyominoes [12]
and other families [7, 8, 9].

In this paper, we are interested in several related sets of polyforms: two-
dimensional tree-like polyforms and three-dimensional tree-like polycubes which
are acyclic in the graph theoretic sense. Our main results are recursive expres-
sions giving the maximal number of leaves of tree-like polyforms in the square,
hexagonal and triangular regular lattices and also of tree-like polycubes of size
n. A tree-like polyform of size n is called fully leafed when it contains the max-
imum number of leaves among all tree-like polyforms of size n. The function
Lf (n) which gives the number of leaves in a fully leafed two-dimensional tree-
like polyform with n cells in the regular lattice f is called the leaf function of
f . Simillarly we denote by Lcub(n) the leaf function of the cubic lattice.

We also present explicit expressions for the number of saturated tree-like
polyhexes and polyiamonds of given size n. The structure of tree-like polyforms
under investigation is similar to that which solves the maximum leaf spanning
tree problem in grid graphs, one of the classical NP-complete problems described
by Garey and Johnson in their seminal paper [11, 21]. Both problems are
concerned with the maximization of the number of leaves in subtrees, but they
present a fundamental difference. On one hand, spanning trees of a graph G
must contain all vertices of G. On the other hand, induced subtrees T of G
must contain every edge of G between two vertices of T . To our knowledge,
these new classes of polyforms which are induced subgraphs of infinite regular
lattice graphs present remarkable structure and properties that have neither
been considered nor investigated yet. For example, the snake in the box problem
[18], which searches induced subtrees of maximal size with two leaves deserve,
from our point of view, as much attention as the Hamiltonian path problem
which search spanning trees with two leaves.

The problem of finding the maximum number of leaves in tree-like poly-
forms extends naturally to the more general Maximum Leaves in Induced Sub-
trees (MLIS) problem, which consists in looking for induced subtrees having a
maximum number of leaves in any simple graph. Preliminary results about the
MLIS problem can be found in [21] and [22].

This document is organized as follows. In Section 2 we introduce the concepts
on graph theory and polyforms necessary for our treatment. In Section 3 we
study fully leafed polyominoes and we introduce a general methodology for our
proofs. Section 4 focuses on the case of polyhexes and polyiamonds. The more
intricate case of tree-like polycubes is discussed in Section 5. In particular, our
proofs rely on an operation called graft union, which allows to track efficiently
the number of leaves.

In Section 6 we shift our attention to the family of saturated tree-like poly-
forms and polycubes and establish bijections for polyominos and polycubes that
provide key informations for their enumeration. Finally in Section 7 we con-
clude with asymptotic lower and upper bounds for the numbers Ld(n) of leaves
of d-dimensional tree-like polycubes and we sketch some directions for future
work.

2



2

1

0
0

00

10

Figure 1: The depth of the vertices in a tree.

This manuscrit is an extended version of a paper presented at the 28th
International Workshop on Combinatorial Algorithms (IWOCA 2017), held in
Newcastle, Australia [5].

2 Preliminaries

Let G = (V,E) be a simple graph, u ∈ V and U ⊆ V . The set of neighbors of u
in G is denoted NG(u) and it is naturally extended to U by defining NG(U) =
{u′ ∈ NG(u) | u ∈ U}. For any subset U ⊆ V , the subgraph induced by U is the
graph G[U ] = (U,E∩P2(U)), where P2(U) is the set of 2-elements subsets of V .
The extension of G[U ] is defined by Ext(G[U ]) = G[U∪NG(U)] and the interior
ofG[U ] is defined by Int(G[U ]) = G[Int(U)], where Int(U) = {u′ ∈ U | NG(u′) ⊆
U}. Finally, the hull of G[U ] is defined by Hull(G[U ]) = Int(Ext(G[U ])).

The square lattice is the infinite simple graph G2 = (Z2, A4), where A4 is
the 4-adjacency relation defined by A4 = {(p, p′) ∈ Z2 | dist(p, p′) = 1} and
dist is the Euclidean distance of R2. For any p ∈ Z2, the set c(p) = {p′ ∈ R2 |
dist∞(p, p′) ≤ 1/2}, where dist∞ is the uniform distance of R2, is called the
square cell centered in p. The function c is naturally extended to subsets of
Z2 and subgraphs of G2. For any finite subset U ⊆ Z2, we say that G2[U ] is a
grounded polyomino if it is connected. The set of all grounded polyominoes is
denoted by GP. Given two grounded polyominoes P = G2[U ] and P ′ = G2[U ′],
we write P ≡t P ′ (resp. P ≡i P ′) if there exists a translation T : Z2 → Z2 (resp.
an isometry I on Z2) such that U ′ = T (U) (resp. U ′ = I(U)). A fixed polyomino
(resp. free polyomino) is then an element of GP/ ≡t (resp. GP/ ≡i). Clearly,
any connected induced subgraph of G2 corresponds to exactly one connected set
of square cells via the function c. Consequently, from now on, polyominoes will
be considered as simple graphs rather than sets of edge-connected square cells.

All definitions in the above paragraph are extended to the hexagonal lattice
with the 6-adjacency relation, the triangular lattice with the 3-adjacency relation
and the cubic lattice with the 6-adjacency relation. We thus extend the definition
of cell, grounded polyomino, fixed polyomino and free polyomino to these regular
lattices accordingly.

Grounded polyominoes and polycubes are connected subgraphs of G2 and
G3 and the terminology of graph theory becomes available. A (grounded, fixed
or free) tree-like polyomino is therefore a (grounded, fixed or free) polyomino
whose associated graph is a tree. Tree-like polyforms and polycubes are defined
similarly. Observe that if u, v are adjacent cells in a tree-like polyomino T then
degT (u)+degT (v) ≤ 6. This observation extends to polycubes in Zd with d ≥ 2
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where we have degT (u)+degT (v) ≤ 2d+2. In the figures, the vertices of graphs
are colored according to their degree using the color palette below.

Degree 1 2 3 4 5 6

Color

Let T = (V,E) be any finite simple non empty tree. We say that u ∈ V is a
leaf of T when degT (u) = 1. Otherwise u is called an inner vertex of T . For any
d ∈ N, the number of vertices of degree d is denoted by nd(T ) and n(T ) = |V |
is the number of vertices of T which is also called the size of T . The depth of
u ∈ V in T , denoted by depthT (u), is defined recursively by

depthT (u) =

{
0, if degT (u) ≤ 1;

1 + depthT ′(u), otherwise,

where T ′ is the tree obtained from T by removing all its leaves (see Figure 1).
Let C be a tree whose set of inner vertices is I. We say that C is a caterpillar
if C[I] is a chain graph.

3 Fully Leafed Tree-Like Polyominoes

In this section, we describe the number of leaves of fully leafed tree-like poly-
ominoes. For any integer n ≥ 2, let the function `squ(n) be defined as follows:

`squ(n) =


2, if n = 2;

n− 1, if n = 3, 4, 5;

`squ(n− 4) + 2, if n ≥ 6.

(1)

We claim that `squ(n) = Lsqu(n) is the maximal number of leaves of a tree-
like polyomino of size n. The first step is straightforward.

Lemma 3.1. For all n ≥ 2, Lsqu(n) ≥ `squ(n).

Proof. We build a family of tree-like polyominoes {Tn | n ≥ 2} whose number
of leaves is given by (1). For n = 2, 3, 4, 5, the polyominoes Tn respectively in
(a), (b), (c) and (d) of Figure 2 satisfy (1). For n ≥ 6, let Tn be the polyomino
obtained by appending the polyomino of Figure 2(c) to the right of Tn−4.

By induction on n, we have n1(Tn) = `squ(n) for all n ≥ 2, since the fact
that appending the T-shaped polyomino of Figure 2(c) adds 4 cells and 3 leaves,
but subtracts 1 leaf.

In order to prove that the family {Tn | n ≥ 2} described in the proof of
Lemma 3.1 is maximal, we need the following result characterizing particular
subtrees that appear in possible counter-examples of minimum size.

4



(a) (b)

(c) (d)

(e) (f) (g)

(h) (i)

Figure 2: Fully leafed tree-like polyominoes of size (a) 2, (b) 3, (c) 4 and (d)
5. The images (e), (f), (g), (h) and (i) depict the five cases of Lemma 3.3 (gray
cells are removed).

Lemma 3.2. Let T be a tree-like polyomino of minimum size such that n1(T ) >
`squ(n(T )) and let T ′ be a tree-like polyomino such that n(T ′) = n(T ) − i, for
some i ∈ {1, 3, 4}. Also, let ∆`squ(1) = 0, ∆`squ(3) = 1 and ∆`squ(4) = 2.
Then n1(T ) > n1(T ′) + ∆`squ(i).

Proof. It is easy to prove by induction that for any k ≥ 2, `squ(k+i) ≥ `squ(k)+
∆`squ(i), where i ∈ {1, 3, 4}. Therefore,

n1(T ) > `squ(n(T )), by assumption,

= `squ(n(T ′) + i), by definition of T ′,

≥ `squ(n(T ′)) + ∆`squ(i), by the observation above,

≥ Lsqu(n(T ′)) + ∆`squ(i), by minimality of n(T ),

≥ n1(T ′) + ∆`squ(i), by definition of Lsqu,

concluding the proof.

We are now ready to prove that the family {Tn | n ≥ 2} is maximal.

Lemma 3.3. For all n ≥ 2, Lsqu(n) ≤ `squ(n).

Proof. Suppose, by contradiction, that T is a tree-like polyomino of minimal
size such that n1(T ) > `squ(n(T )). We first show that all vertices of T of depth
1 have degree 3 or 4. Arguing by contradiction, assume that there exists a vertex
u1 of T such that depthT (u1) = 1 and degT (u1) = 2. Let T ′ be the tree-like
polyomino obtained from T by removing the leaf adjacent to u1 (see Figure 2(e)).
Then n(T ′) = n(T )− 1 and n1(T ′) = n1(T ), contradicting Lemma 3.2.

Now, we show that T cannot have a vertex of depth 2. Again by contra-
diction, assume that such a vertex u2 exists. Clearly, degT (u2) 6= 4, otherwise
u2 would have a neighbor of depth 1 and degree 2, which was just shown to
be impossible. If degT (u2) = 3, then we are either in case (f) or (g) of Fig-
ure 2. In each case, let T ′ be the tree-like polyomino obtained by removing the
four gray cells. Then n(T ′) = n(T ) − 4 and n1(T ′) = n1(T ) − 2, contradicting
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Lemma 3.2. Finally, if degT (u2) = 2, then either (h) or (i) of Figure 2 holds,
leading to a contradiction with Lemma 3.2 when removing the gray cells. Since
every tree-like polyomino of size larger than 6 has at least one vertex of depth
2, the proof is completed by exhaustive inspection of all tree-like polyominoes
of size at most 6.

Combining Lemmas 3.1 and 3.3, we have proved the following result.

Theorem 3.4. For all integers n ≥ 2, Lsqu(n) = `squ(n) and the asymptotic
growth of Lsqu is given by Lsqu(n) ∼ 1

2 · n.

4 Fully Leafed Tree-Like Polyhexes and Polyia-
monds

In the hexagonal and triangular lattices, the other two regular lattices of the
plane, the leaf functions for tree-like polyforms are easy to compute.

We first consider the hexagonal lattice Hex in which each cell is a regular
hexagon of radius 1. If p ∈ R2 is the center of a hexagonal cell, then the center
of its 6 neighbors are

p+ #»vθ, θ =
k · π

3
, k = 0, 1, 2, 3, 4, 5,

where #»vθ is the vector of norm
√

3 in the direction θ. This neighborhood defines
a 6-adjacency relation in Hex. Connected sets of hexagonal cells under this
relation are called polyhexes and we respectively denote byHext(n) andHexi(n)
the sets of fixed and free tree-like polyhexes of size n. The three lines supporting
the vectors #»vθ are called the axes of Hex.

We show next that the function `hex defined by

`hex(n) =

{
2, if n = 2, 3;

`hex(n− 2) + 1, if n ≥ 4.
(2)

=
⌊n

2

⌋
+ 1

gives the number of leaves in fixed fully leafed tree-like polyhexes.

Theorem 4.1. For all integers n ≥ 2, `hex(n) = Lhex(n).

Proof. We first prove that Lhex(n) ≥ `hex(n). We exhibit a family of polyhexes
that satisfies recurrence (2). For n even, Figure 3(b) shows a sample of a fully
leafed polyhex that contains an even number of cells and satisfies (2). This
polyhex can easily be modified to contain an arbitrary number k of cells of
degree three, no cell of degree two and k + 2 cells of degree one for a total of
2k + 2 cells. For n = 2k + 1 odd, we only have to remove one leaf from the
previous polyhex with k cells of degree 3 and k + 2 leaves (see Figure 3(c)) in
order to satisfy (2).

6



(a) (b) (c)

Figure 3: Fully leafed tree-like polyhexes.

It remains to show that Lhex(n) ≤ `hex(n). Arguing by contradiction, assume
that there exists a tree-like polyhex T of minimal size n ≥ 3 such that n1(T ) >
`hex(n(T )). Every polyhex of size n ≥ 3 contain at least one cell of depth one.
Let u be a vertex of T of depth 1. Notice that degT (u) ∈ {2, 3}. Assume first
that degT (u) = 2 and let T ′ be the tree-like polyhex obtained from T by remov-
ing the leaf adjacent to u. Then n1(T ′) = n1(T ) > `hex(n(T )) ≥ `hex(n(T ′)),
contradicting the minimality of n(T ). Finally, assume that degT (u) = 3 and let
T ′ be the tree-like polyhex obtained from T by removing the two leaves adjacent
to u. Then n1(T ′) = n1(T ) − 1 > `hex(n(T )) − 1 = `hex(n(T ′)), contradicting
the minimality of n(T ).

Being the dual graph of the hexagonal lattice, the triangular lattice, denoted
Triang, presents similar properties. Recall that the triangular lattice is the
result of the tessellation of the plane with equilateral triangles. We choose
triangles of radius one with sides of length

√
3, one of which is horizontal, and

where center to center distance between adjacent triangles is one. If c ∈ R is
the center of a triangular cell then the centers of its three adjacent triangles are

c+ #»vθ, θ = 2kπ/3, k = 0, 1, 2

where #»vθ is the vector of length 1 and direction θ. This defines a 3-adjacency
relation in Triang and connected sets of triangular cells under this relation are
called polyiamonds.

In the next theorem, the function `Triang(n) defined by the conditions

`Triang(n) =

{
2 if n = 2, 3,

`Triang(n− 2) + 1 if n ≥ 4.
(3)

=
⌊n

2

⌋
+ 1

is proved to be the leaf function of fixed tree-like polyiamonds.

Theorem 4.2. For all integers n ≥ 2, we have

`Triang(n) = LTriang(n).

Proof. As in theorem 4.1 we first prove that LTriang(n) ≥ `Triang(n) by exhibit-
ing a family of fixed polyiamonds satisfying recurrence 3. We skip the details
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(a) (b) (c) (d)

Figure 4: Fully leafed tree-like polyiamonds.

which are very similar to those in the proof of theorem 4.1. We then show by
contradiction that LTriang ≤ `Triang with an argument identical to the one in
theorem 4.1.

5 Fully Leafed Tree-Like Polycubes

The basic concepts introduced in Section 3 are now extended to tree-like poly-
cubes with additional considerations that complexify the arguments. Recall
that for all integers n ≥ 2,

Lcub(n) = max{n1(T ) | T is a tree-like polycube of size n}.

A naive tentative to extrapolate the ratio Lsqu(n)/n from polyominoes to poly-
cubes leads to the ratio Lcub(n)/n = 4/6 as n tends to infinity. In this section,
we show that this first guess is false and that the optimal ratio is actually 28/41
and we exhibit the geometric objects that carry this unexpected ratio.

Define the function `cub(n) as follows:

`cub(n) =


fcub(n) + 1, if n = 6, 7, 13, 19, 25;

fcub(n), if 2 ≤ n ≤ 40 and n 6= 6, 7, 13, 19, 25;

fcub(n− 41) + 28, if 41 ≤ n ≤ 81;

`cub(n− 41) + 28, if n ≥ 82.

(4)

where fcub(n) =


b(2n+ 2)/3c, if 0 ≤ n ≤ 11;

b(2n+ 3)/3c, if 12 ≤ n ≤ 27;

b(2n+ 4)/3c, if 28 ≤ n ≤ 40.

(5)

The following key observations on `cub prove to be useful.

Proposition 5.1. The function `cub satisfies the following properties:
(i) For all positive integers k, the sequence (`cub(n + k) − `cub(n))n≥0 is

bounded, so that the function ∆`cub : N→ N defined by

∆`cub(i) = lim inf
n→∞

(`cub(n+ i)− `cub(n))

is well-defined.
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Figure 5: Atomic tree-like polycubes up to isometry

(ii) For any positive integers n and k, if `cub(n + k) − `cub(n) < ∆`cub(k),
then n ∈ {6, 7, 13, 19, 25}.

Proof. (i). It is immediate that the sequence (`cub(n + k) − `cub(n))n≥0 is
bounded by k. (ii) is immediate from (4) and (5).

We now introduce rooted tree-like polycubes.

Definition 5.2. A rooted grounded tree-like polycube is a triple R = (T, r, #»u )
such that

(i) T = (V,E) is a grounded tree-like polycube of size at least 2;
(ii) r ∈ V , called the root of R, is a cell adjacent to at least one leaf of T ;
(iii) #»u ∈ Z3, called the direction of R, is a unit vector such that r + #»u is a

leaf of T .

When the triple R = (T, r, #»u ) is such that r + #»u is not a leaf of T , we say
that R is final. The height of R is the maximum length of a path from the root
r to some leaf. Rooted fixed tree-like polycubes and rooted free tree-like polycubes
are defined similarly. If R is a rooted, grounded or fixed, tree-like polycube, a
unit vector #»v ∈ Z3 is called a free direction of R whenever r − #»v is a leaf of
T . In particular, − #»u is a free direction of R. A rooted grounded, fixed or free,
tree-like polycube R is called atomic if its height is 1. The 11 atomic rooted
free tree-like polycubes are illustrated in Figure 5.

We now introduce an operation called the graft union of tree-like polycubes.

Definition 5.3 (Graft union). Let R = (T, r, #»u ) and R′ = (T ′, r′,
#»

u′) be rooted

grounded tree-like polycubes such that
#»

u′ is a free direction of R. The graft union
of R and R′, whenever it exists, is the rooted grounded tree-like polycube

R / R′ = (Z3[V ∪ τ(V ′)], r, #»u ),

where V , V ′ are the sets of vertices of T , T ′ respectively and τ is the translation

with respect to the vector
#  »

r′r −
#»

u′.

The graft union is naturally extended to fixed and free tree-like polycubes. In
the latter case however, R / R′ is not a single rooted free tree-like polycube, but
rather the set of all possible graft unions obtained from an isometry. Observe
that graft union is a partial application on rooted grounded tree-like polycubes,

9



/ =

Figure 6: A well-defined, non-final graft union of two rooted grounded tree-like
polycubes

i.e. the triple (Z3[V ∪ τ(V ′)], r, #»u ) is not always a rooted tree-like polycube.
More precisely, the induced subgraph Z3[V ∪ τ(V ′)] is always connected, but
not always acyclic. Also, r + #»u needs not be a leaf. Therefore, we say that a
graft union R / R′ is

(i) non-final if R / R′ is a rooted grounded tree-like polycube;

(ii) final if the graph G = Z3[V ∪ τ(V ′)] is a tree-like polycube,
#»

u′ = − #»u and
r + #»u is not a leaf of G;

(iii) well-defined if it is either non-final or final;
(iv) invalid otherwise.

Figure 6 illustrates a well-defined graft union of two rooted tree-like poly-
cubes. The graft union interacts well with the functions n(R) and ni(R) giving
respectively the total number of cells and the number of cells of degree i in T .

Lemma 5.4. Let R1, R2 be rooted grounded tree-like polycubes such that R1 /
R2 is well-defined. Then

n1(R1 / R2) = n1(R1) + n1(R2)− 2,

ni(R1 / R2) = ni(R1) + ni(R2), for i ≥ 2;

n(R1 / R2) = n(R1) + n(R2)− 2.

Proof. This is an immediate consequence of Definition 5.3.

We are now ready to define a family of fully leafed tree-like polycubes.

Lemma 5.5. For all integer k ≥ 2, Lcub(k) ≥ `cub(k).

Proof. We exhibit a family of tree-like polycubes {Uk | k ≥ 2} realizing `cub, i.e.
such that n1(Uk) = `cub(k) for all k ≥ 2. First, for k = 6, 7, 13, 19, 25, let Uk be
the tree-like polycubes depicted in Figure 7(a), (b), (c), (d) and (e) respectively.
It is easy to verify that n1(Uk) = `cub(k) in these cases.

Now, for k /∈ {6, 7, 13, 19, 25}, let q and r be the quotient and remainder of
the division of n− 2 by 41 and define the integers a, b, c, d, e as follow.

a = χ(r ≥ 10)

b = χ(r ∈ {1, 4, 7, 10, 11, 14, 17, 20, 23, 26, 27, 30, 33, 36, 39})
c = χ(r ∈ {2, 5, 8, 12, 15, 18, 21, 24, 28, 31, 34, 37, 40})
d = b(r − 10 (χ(r ≥ 10) + χ(r ≥ 26))) /3c
e = χ(r ≥ 26),

10



(a) U6 (b) U7 (c) U13 (d) U19 (e) U25

R12

a ≤ 1 time

/

R43

q times

/

R3

b time

/

R4

c time
b+ c ≤ 1

/

R5

d times

/

R12

e ≤ 1 time

(f)
k = 124
q = 2
r = 40
a = 1
b = 0
c = 1
d = 6
e = 1(g) U124

Figure 7: Fully leafed tree-like polycubes

where χ is the usual characteristic function. Let Uk be an unrooted tree-like
polycube obtained from a rooted grounded tree-like polycube Rk of the form

Rk = Ra12 / Rq43 / Rb3 / Rc4 / Rd5 / Re12, (6)

where, for k ∈ {3, 4, 5, 12, 43}, Rk is depicted in Figure 7(f), and the exponent
notation is defined by

Rαk =

{
R2, if k = 0;

Rk / ρ(Rα−1k ), if α ≥ 1.

where ρ is the rotation 90◦ about the “horizontal” axis in Figure 7 (f) and (g).
In other words, when several copies of R5 or R43 are grafted to themselves, the
old graft is rotated by 90◦ before being grafted again. We assume that the roots
and directions used for the graft union are respectively as depicted in Figure 7
(f) by red dots and blue arrows. Note also that the two rooted grounded tree-
like polycubes R12 at each end of Figure 7 (f) are shown in the proper position
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up to a rotation of 90◦. Clearly, all graft unions in Equation (6) are well-defined
and it follows from Lemma 5.4 that n(Rk) = 41q + 10(a+ e) + b+ 2c+ 3d+ 2
and n1(Rk) = 28q + 7(a + e) + c + 2d + 2 = `cub(n(Rk)) (The recursive part
in the definition of `cub(k) is straightforward since q is arbitrarily large and
n1(R43) = 28.) Hence, for k ≥ 2 and k /∈ {6, 7, 13, 19, 25}, we obtain Uk by
taking the unrooted version of Rk, concluding the proof. Figure 7(g) shows
the tree-like polycube U124 obtained from R124 in Equation (6) with k = 124,
and the values of q, r, a, b, c, d and e are indicated in the box to the bottom
right.

We now introduce a notation for the operation of graft factorization associ-
ated to the graft union of tree-like polycubes.

Definition 5.6 (Branch). Let T = (V,E) be a tree-like polycube and r, r′ two
adjacent vertices of T . Let Vr and Vr′ be the set of vertices of T defined by

(i) r ∈ Vr, r′ ∈ Vr′ ,
(ii) the subgraphs of T induced by Vr and Vr′ are precisely the two connected

components obtained from T by removing the edge {r, r′}.
Then the rooted tree-like polycube B = (T [Vr∪{r′}], r,

#  »

rr′) is called a branch

of T and the rooted tree-like polycube Bc = (T [Vr′ ∪ {r}], r′,
#  »

r′r) is called the
co-branch of B in T . When neither r nor r′ are leaves of T , then we say that
B and Bc are proper branches of T .

Proposition 5.7. Let T be a tree-like polycube and B a proper branch of T .
Then both B / Bc and Bc / B are well-defined and final, while their corre-
sponding unrooted tree-like polycube is precisely T .

Proof. This follows from Definitions 5.3 and 5.6.

We wish to identify branches appearing in potential counter-examples, which
would need to have many leaves with respect to their number of cells.

Definition 5.8. Let R,R′ be two rooted tree-like polycubes having the same
direction. We say that R is substitutable by R′ if, for any tree-like polycube T
containing the branch R, Rc / R′ is well-defined.

In other words, R can always be replaced by R′ without creating a cycle
whenever R appears in some tree-like polycube T . A sufficient condition for R
to be a substitutable rooted tree-like polycube is related to its hull (see the first
paragraph of Section 2).

Proposition 5.9. Let R and R′ be two rooted tree-like polycubes with respective
roots r and r′ and such that R′ \ {r′} is included in Hull(R \ {r}). Then R is
substitutable by R′.

Proof. Let T be any rooted tree-like polycube with a branch R. Then we can
write T = R / Rc with r, r′ the respective roots of R and Rc. We have to prove
that T ′ = R′ / Rc is a tree-like polycube. Clearly, T ′ is connected since it is
obtained by the union graft of two connected tree-like polycubes. It remains to
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prove that T ′ is acyclic. Arguing by contradiction, assume that there is a cycle
in T ′. Since both R′ and Rc are acyclic, the cycle must contain some edge {u, v}
of Tsqu such that u ∈ R′ \ {r, r′} and v ∈ Rc \ {r, r′}. But u ∈ Hull(R \ {r}) and
the definition of hull imply v ∈ Ext(R \ {r}), i.e., v is adjacent in Tsqu to some
cell in R \ {r}. This means, that there exists a cycle in R / Rc, contradicting
the acyclicity of T .

We are now ready to classify rooted tree-like polycubes.

Definition 5.10. Let R be a rooted tree-like polycube. We say that R is abun-
dant if one of the following two conditions is satisfied:

(i) R contains exactly two cells,
(ii) There does not exist another abundant rooted tree-like polycube R′, such

that R is substitutable by R′, n(R′) < n(R) and

n1(R)− n1(R′) ≤ ∆`cub(n(R)− n(R′)) (7)

Otherwise, we say that R is sparse.

The following observation is immediate.

Proposition 5.11.

All branches of abundant rooted tree-like polycubes are also abundant.

Proof. By contradiction, assume that R is an abundant tree-like polycube and
that S is a branch of R that is not abundant. Then, by Definition 5.10, S
has more than two cells and there must exist another abundant rooted tree-
like polycube S′ such that S is substitutable by S′, n(S′) < n(S) and n1(S)−
n1(S′) ≤ ∆`cub(n(S)−n(S′)). Let R′ be the rooted tree-like polycube obtained
from R by substituting its branch S by S′. Then, clearly, R is substitutable by
R′. Moreover, n(R)−n(R′) = n(S)−n(S′) and n1(R)−n1(R′)−n1(S)−n1(S′),
which implies n(R′) < n(R) as well as n1(R)− n1(R′) ≤ ∆`cub(n(R)− n(R′)),
contradicting the assumption that R is abundant.

Using Definition 5.10, one can enumerate all abundant rooted tree-like poly-
cubes up to a given height, both final and nonfinal, using a brute-force approach
as described by Algorithm 1. In Algorithm 1, for a given integer h > 0 and each
height i = 1, 2, . . . , h, the abundant final and nonfinal rooted tree-like polycubes
are stored respectively in the two lists F [i] and A[i].

Algorithm 1 was implemented in both Python [3] and Haskell [4] and run
with increasing values of h. It turned out that there exists no abundant rooted
tree-like polycube for h = 11, i.e. |A[11]| = |F [11]| = 0. Due to a lack of space,
we cannot exhibit all abundant rooted tree-like polycubes, but we can give some
examples. For instance, in Figure 7, any rooted version of the trees U6, U7 and
U12 is abundant, while rooted versions of U3, U4, U5, U13, U19, U25 and U43 are
sparse.

The following facts are directly observed by computation.

Lemma 5.12. Let T be an abundant rooted tree-like polycube. Then
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Algorithm 1 Generation of all abundant rooted tree-like polycubes.

1: function AbundantBranches(h : height) : pair of maps
2: For i = 1, 2, . . . , h, let A[i]← ∅ and F [i]← ∅
3: A[1], F [1]← {atomic free tree-like polycubes of size 5 and 6}
4: for i← 1, 2, . . . , h do
5: for each atomic rooted free tree-like polycube B do
6: for each B′ ∈ B / ∪i−1j=0A[j] of height i do
7: if B′ is abundant then
8: if B′ is final then F [i]← F [i] ∪B′
9: else A[i]← A[i] ∪B′

10: end if
11: end for
12: end for
13: end for
14: return (A,F )
15: end function

(i) The height of T is at most 10.
(ii) If T is final then n1(T ) ≤ `cub(n(T )).
(iii) If T = B / Bc and n(T ) ∈ {13, 19, 25}, then either B or Bc is sparse.

Proof. Let A =
⋃h
i=1A(i) and F =

⋃h
i=1 F (i), where A(i) and F (i) are

respectively the sets of abundant nonfinal and final rooted tree-like polycubes
computed by Algorithm 1 with h = 11. In particular, we have |A(i)|, |F (i)| > 0
for 1 ≤ i ≤ 10, but |A(11)| = |F (11)| = 0 (see [3, 4]). (i) By Proposition 5.11, it
is immediate that if |A(i)| = 0 then both |A(i+1)| = 0 and |F (i+1)| = 0 for any
i ≥ 1, so the result follows. (ii) By exhaustive inspection of F . (iii) Assume by
contradiction that both B and Bc are abundant. By inspecting F , we must have
T ∈ F , but F does not contain any final, abundant, rooted tree-like polycube
with 13, 19 or 25 vertices.

The nomenclature “sparse” and “abundant” is better understood with the
following lemma.

Lemma 5.13. Assume that there exists a tree-like polycube T of minimum size
such that n1(T ) > `cub(n(T )). Then every branch of T is abundant.

Proof. Let B be any sparse branch of T and Bc its co-branch so that T = B / Bc

so that B can be substituted by the abundant rooted tree-like polycube B′. Let
T ′ = B′ / Bc and suppose first that

`cub(n(B / Bc))− `cub(n(B′ / Bc)) ≥ ∆`cub(n(B)− n(B′)), (8)

Then Inequation (7) implies

∆`cub(n(B)− n(B′)) ≥ n1(B)− n1(B′),
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so that

`cub(n(T )) = `cub(n(B / Bc)) ≥ n1(B)− n1(B′) + `cub(n(B′ / Bc))

≥ n1(B)− n1(B′) + n1(B′ / Bc)

= n1(B / Bc) = n1(T ),

contradicting the hypothesis n1(T ) > `cub(n(T )). It follows that

`cub(n(B / Bc))− `cub(n(B′ / Bc)) < ∆`cub(n(B)− n(B′)). (9)

By Proposition 5.1(ii), this implies that n(B′ / Bc) ∈ {6, 7, 13, 19, 25}. Since
B′ is abundant, Lemma 5.12(iii) implies that Bc is sparse. Therefore, using
the above argument, either Inequations (8) are obtained by swapping B and
Bc, leading to a contradiction, or Bc can be substituted by some abundant
branch C such that n(B / C) ∈ {6, 7, 13, 19, 25}. Hence, n(B), n(Bc) ≤ 25. To
conclude, observe that B and Bc must be fully leafed for if B (or Bc) were not,
then Bc (or B) would be a counter-example of size n(Bc) < n(T ), contradicting
the minimality assumption of T . But exhaustive inspection of sparse and fully
leafed rooted tree-like polycubes of size at most 25 yields no counterexample T ,
concluding the proof.

The following fact, together with Lemma 5.5, leads to our main result.

Lemma 5.14. For all n ≥ 2, Lcub(n) ≤ `cub(n).

Proof. By contradiction, assume that there exists a tree-like polycube T of
minimum size such that n1(T ) > `cub(n(T )). By Lemma 5.13, every branch
of T is abundant, so that there must exist two abundant branches B and B′

such that T = B / B′ is final. The result follows from Lemma 5.12(ii).

Thus we have proved

Theorem 5.15. For all n ≥ 2, Lcub(n) = `cub(n) and the asymptotic growth
of Lcub is given by Lcub(n) ∼ 28

41n.

6 Saturated Tree-Like Polyforms

It was shown in the previous sections that the functions Lsqu, Lhex, Ltri and
Lcub all satisfy linear recurrences. Let L denote any of these four functions.
Then it is immediate that there exists two parallel linear functions L, L and a
positive integer n0 such that

L(n) ≤ L(n) ≤ L(n), for n ≥ n0,

In all four cases, if we add the constraint that there exist infinitely many positive
integers n > 0 for which L(n) = L(n) and L(n) = L(n), then the functions L(n)
and L(n) become unique. In this section, we are interested in polyforms and
polycubes of size n such that L(n) ≥ L(n).
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Definition 6.1 (Saturated tree-like polyforms and polycubes). A fully leafed
tree-like polyform or polycube T is called saturated when n1(T ) ≥ L(n(T )). We
denote by SATi(n) the set of saturated tree-like polyforms of size n up to an
isometry of the corresponding lattice.

Sets of saturated tree-like polyforms and polycubes possess structural prop-
erties that allow their bijective reduction to simpler polyforms. These bijections
are, to our actual knowledge, lattice dependent and are useful in the enumeration
of saturated tree-like polyforms. We describe these bijections in the subsections
that follow.

6.1 Saturated Tree-Like Polyominoes

The two bounding linear functions of the function Lsqu(n) are

Lsqu(n) =
n+ 3

2
and Lsqu(n) =

n+ 1

2
.

and for integers k ≥ 1, saturated tree-like polyominoes T have size n(T ) = 4k+1
and n1(T ) = 2k + 2 leaves.

Proposition 6.2. Let T be a saturated tree-like polyomino and u a vertex of
depth one of T . Then degT (u) = 4

Proof. The proof is done by contradiction, using a similar argument to the
one that is used in Lemma 3.3. More precisely, suppose that T is a saturated
tree-like polyomino of minimal size n(T ) = 4k + 1 and n1(T ) = 2k + 2 leaves
that contains at least one vertex v of depth one such that 2 ≤ deg(v) < 4. As
illustrated in Figure 2, since T is fully-leafed, it cannot contain a vertex of depth
one and degree 2. If deg(v) = 3, then v belongs to one of the three situations
depicted in Figure 2 (f), (g) and (i). If we remove the two leaves adjacent to v
then T looses two cells and one leaf which produces a tree that contradicts the
leaf-maximality of the function Lsqu. So there is no vertex of depth one and
degree 2 or 3 in T and the proof is complete.

Corollary 6.3. Let T be a saturated tree-like polyomino of size n(T ) = 4k +
1. Then T is the graft union of k saturated polyominoes of size 5 shown in
Figure 2(d), called crosses.

Proof. The proof is done by induction on k. This is immediate for k = 1. For
k ≥ 2, it follows from Proposition 6.2 that all vertices of T of depth one have
degree 4, we have T = B / T ′ for some branch B of size 5 and some saturated
polyomino T ′. By the induction hypothesis, T ′ is the graft union of crosses so
that T is the graft union of crosses as well.

Theorem 6.4 (Cross operator). There exists a bijection φsqu from the set
Tsqu(k) of tree-like polyominoes of size k and the set STsqu(4k + 1) of saturated
tree-like polyominoes of size 4k + 1:

Tsqu(k)
φsqu−−−→ STsqu(4k + 1)
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(a) T

↔

(b) I(T )

↔

(c) φsqu(T )

Figure 8: The cross map φsqu for tree-like polyominoes

Proof. Start from a tree-like polyomino T of size k (see Figure 8a)). Inflation :
between each pair of consecutive rows of T , insert a new empty row. Similarly,
between each pair of consecutive columns of the resulting rectangle, insert a
new empty column. We obtain a disconnected set of cells I(T ) with nearest
neighbours at distance two as shown in Figure 8b). Cross production: Fill
each empty unit square adjacent to a cell of I(T ) so that each cell of I(T ) has
now degree 4. This new set of cells is connected and forms a saturated tree-like
polyomino of size 4k+1 as shown in Figure 8c). φsqu(T ) is the sequence of these
two transformations starting from T and we call it the cross map. It is obvious
that φsqu in invertible i.e. starting from any saturated tree-like polyomino S of
size 4k+1, we can erase from S all cells of degree 1 and 2 and then remove empty
columns and rows to obtain the corresponding tree-like polyomino φ−1squ(S) of
size k. The map φsqu is thus a bijection.

From an enumeration point of view, Theorem 6.4 informs us that count-
ing saturated polyominoes of size 4k + 1 is precisely the same as counting the
number of tree-like polyominoes of size k. It would be interesting to obtain a
similar information on fully leafed tree like polyominoes that are not saturated.
Unfortunately, we do not have a complete answer at this time.

6.2 Saturated Tree-Like Polyhexes and Polyiamonds

Since the leaf functions of tree-like polyhexes and polyiamonds are equal, the
bounding linear functions Lhex(n) and Ltri(n) are also equal:

Lhex(n) = Ltri(n) =
n+ 2

2
and Lhex(n) = Ltri(n) =

n+ 1

2
.

This implies that for k ≥ 1, saturated polyhexes and polyiamonds T with k inner
cells have even size n(T ) = 2k and that their number of leaves is n1(T ) = k+ 1.

Proposition 6.5. Let T be a saturated tree-like polyhex or polyiamond and let
u be a vertex of depth one of T . Then degT (u) = 3

Proof. We proceed by contradiction. We know that any saturated tree-like
polyhex or polyiamond T have size n(T ) = 2k, for some integer k > 0. Let
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(a) (b)

Figure 9: Forbidden patterns of cells in fully leafed polyhexes

L(n) denote the leaf function of polyhexes and polyiamonds. Suppose that T
contains one vertex v of depth one such that deg(v) = 2. Since T is fully leafed,
if T ′ is the result of removing the leaf adjacent to v then n1(T ′) = n1(T ) >
L(2k − 1) = n1(T )− 1 which contradicts Equations 2 and 3.

Corollary 6.6. Let T be a saturated tree-like polyhex or polyiamond. Then all
inner cells of T have degree 3.

Proof. This result is immediate by induction on n(T ) and Proposition 6.5.

Define linear polyhex (respectively polyiamond) as saturated structures sim-
ilar to the one presented in Figure 3 (b) (resp. Figure 4 (b)), i.e., where the
set of inner cells of degree are placed in two staggered rows. In this subsection
we show that saturated tree-like polyhexes and polyiamonds are linear and we
exhibit a bijection between the two corresponding sets of free polyforms. Unfor-
tunately, we do not have yet a completely unified argument for the enumeration
of the two sets. We shall thus proceed separately for the enumeration of free
saturated polyhexes and polyiamonds.

In the set Hexi(n) of free tree-like polyhexes of size n, there exist forbidden
patterns for fully leafed tree-like polyhexes that restrict their shape.

Proposition 6.7. Let T be a fully leafed tree-like polyhex.
(i) Any connected subset of T of three cells of degree three cannot form a

straight line along one of the three axes of Hex (see Figure 9(a)).
(ii) Any connected subset of T of four cells of degree three cannot form a walk

that is the result of three consecutive steps with directions

#»vθ,
#»v θ+π/3,

#»v θ+2π/3 or #»vθ,
#»v θ−π/3,

#»v θ−2π/3

for any initial direction θ (see Figure 9(b)).
(iii) If T is saturated and n1(T ) > 10 then T is linear as shown in Figure 3

(b).

Proof. (i) and (ii) are immediate from geometric constraints (see Figure 9).
(iii) is deduced from the fact that, because of forbidden patterns, the tree in

Figure 3 (a) is terminal in the sense that no cell of degree three can be added
to form a saturated tree. From that observation it follows that any polyhex T
with more than 4 inner cells of degree three is linear.
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Proposition 6.7 provides a characterization of fully leafed polyhexes. Since
fully leafed polyhexes have zero or one cell of degree two, we have

n2(T ) =0⇔ n(T ) = 2n3(T ) + 2 and T is saturated,

n2(T ) =1⇔ n(T ) = 2n3(T ) + 3.

for any fully leafed polyhex T . The sets Hext(n) and Hexi(n) of respectively
fixed and free tree-like polyhexes of size n have been well-studied in [15].

In the set Trii of free polyiamonds, it is the small maximal value of the
degree of a cell that imposes important restrictions on the geometry of saturated
polyiamonds.

Proposition 6.8. Let T be a saturated, tree-like polyiamond of size n(T ) = 2k
different from 10. Then T is a caterpillar polyiamond.

Proof. All polyiamonds of size smaller than 10 are obtained through a simple
exploration. For n(T ) > 10, We first show that T must be a caterpillar by
observing that the only non-caterpillar tree-like polyiamond is shown in Figure
4 (d). This polyiamond cannot be extended without including a cell of degree
2, contradicting corollary 6.6 so that all saturated tree-like polyiamonds of size
n(T ) > 10 must be caterpillars. It is then easy to observe that all saturated
caterpillars are linear for otherwise they would contain a polyiamond isometric
to the one shown in Figure 4 (d) which would forbid them from being caterpil-
lars.

The last proposition completely defines the geometric structure of saturated
polyiamonds of size different from 10 which provides a singular counterexample.
This allows their complete enumeration which happens to be identical to that
of polyhexes.

Proposition 6.9. For positive integers k, the numbers shext(2k) and strit(2k)
of fixed saturated fully leafed polyhexes and polyiamonds of size 2k are given by
the single expression

shext(2k) = strit(2k) =


3 if k = 1, 3,

2 if k = 2,

8 if k = 5.

6 otherwise

Proof. From Propositions 6.7 (iii) and 6.8, we know that saturated tree-like
polyhexes and polycubes of size 2k are caterpillars except for k = 5. The cases
k = 1, 2, 3 are easy to verify. The exceptional case k = 5 comes from the addition
of the polyforms shown in Figures 3(a) and 4(d) which provide 2 additional fixed
polyforms to the set of linear caterpillars. The value shext(2k) = strit(2k) = 6
for the remaining values of k is the result of the six possible positions of fixed
linear caterpillars similar to Figures 3(b) and 4(d).
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Figure 10: The bijection from satured polyiamonds to saturated polyhexes.

Corollary 6.10. For positive integers k, the numbers shexi(2k) and strii(2k)
of free saturated tree-like polyhexes and polyiamonds of size 2k are given by the
single expression

shexi(2k) = strii(2k) =

{
2 if k = 5.

1 otherwise

Proof. This is immediate from Proposition 6.9.

Corollary 6.11. There exists a bijection from free and fixed saturated tree-like
polyiamonds to polyhexes.

Proof. The correspondance is established by simply truncating the triangles to
form hexagons, as shown in Figure 10. One can see that this correspondance
is well defined because a saturated polytriangle is linear and its image, being
linear, is also a saturated polyhex. It must also be one-to-one and onto because
of the linear shape of both families of saturated polyforms. Moreover since the
correspondance preserves adjacency, the image of a tree-like polyiamond is a
tree-like polyhex with the same degree distribution. Therefore the correspon-
dance is bijective.

6.3 Saturated Tree-Like Polycubes

In the polycube case, the leaf function is bounded by the linear functions

Lcub(x) =
28x+ 36

41
and Lcub(x) =

28x− 6

41
.

In particular, we have Lcub(n) ≥ Lcub(n) if and only if

n ∈ {6, 7, 13, 19, 25} ∪ {41k + 28 | k ∈ N}.

Let STcub,i(n) be the set of saturated tree-like free polycubes of size n.
The sets STcub,i(n) for n ∈ {6, 7, 13, 19, 25} are easily found by inspection (see
Figure 11). It is worth mentioning that, for all but one of these, the inner
cells have degree equal either to 2 or 6. In fact, the rightmost, lowest tree-like
polycube with 25 cells in Figure 11 is the smallest saturated polycube with cells
of degrees 3, 4 and 5, a degree distribution that becomes unavoidable in larger
saturated polycubes.

For the remainder of this subsection, we focus on saturated polycubes of size
n = 41k + 28, for nonnegative integers k. A first key observation is that the
branches occurring in such saturated tree-like polycubes are quite restricted.
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n = 6 n = 7

n = 13

n = 19
n = 25

Figure 11: All saturated tree-like free polycubes of size n ∈ {6, 7, 13, 19, 25}.

(a) (b) (c)

Figure 12: The saturated branch (a) is substitutable by the saturated branch
(b). (c) A saturated tree-like polycube of 28 cells.

Lemma 6.12. Let T ∈ STcubi(41k+ 28) for some integer k ≥ 0. Then at least
one of the following two conditions hold.

(i) T is the tree-like polycube depicted in Figure 12(c);
(ii) The rooted tree-like polycube T56 depicted in Figure 12(a) is a branch of

T .

Proof. If T56 is a branch of T , then the lemma follows immediately. Otherwise,
assume that A56 is not a branch of T . Using a slight variation of the program
described in Lemma 5.12, we observed that the only saturated branch (i.e., a
branch that occurs in a saturated tree-like polycube) that can be extended is
A56. Therefore, by exhaustive inspection of all generated final branches, one
notices that the only saturated examples are either those of Figure 11 or the
one in Figure 12(c).

A special family of tree-like polycubes is defined as follows.
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Definition 6.13 (4-cross and 4-tree polycubes). A tree-like polycube of 5 copla-
nar cells with exactly one inner cell of degree 4 is called a 4-cross. Moreover,
for any integer k ≥ 0, a tree-like polycube is called a 4-tree when it is the graft
union of k 4-crosses.

A 4-cross and a 4-tree are depicted in Figures 13a and 13b respectively.
It is easy to see that, for any 4-tree T and any vertex x ∈ V (T ), we have
degT (x) ∈ {1, 4}.

We claim that there exists a natural bijection between the set 4Ti(3k+ 2) of
free 4-trees and the set STcub,i(41k + 28) of free saturated tree-like polycubes.
For any integer k ≥ 0, let

φ : 4Ti(3k + 2)→ STcub,i(41k + 28).

be the function such that, for any T ∈ 4Ti(3k + 2) with vertex set V (T ), edge
set E(T ) and x ∈ V (T ),

φ(x) =

{
U15, if degT (x) = 1;

U17, if degT (x) = 4.
(10)

where U15 and U17 are illustrated in Figure 14 and for any edge {x, y} ∈ E(T ),

φ({x, y}) = φ(x) / φ(y).

so that we define φ(T ) as follow:

φ(T ) = /
{x,y}∈E(T )

φ({x, y}).

In other words, the function φ substitutes each leaf of T with a rooted, directed
fully leafed tree-like polycube of 15 cells. Each internal cell of T is replaced by
a 4-tree of 17 cells, and all these trees are grafted according to the adjacency
relation in T . It is worth mentioning that the result is unique up to isometry
since the orientation chosen for one edge induces the orientation of all other
edges in T . See Figure 15 for an illustration of the application of the map φ on
a 4-tree having 2 inner cells.

Theorem 6.14. For any integer k ≥ 0, the function φ is a bijection from
4Ti(3k + 2) to SATi(41k + 28).

(a) A 4-cross
(b) A 4-tree with 4 inner cells

Figure 13: 4-trees
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U15 U17

Figure 14: The two basic tree-like polycubes used in the bijection φ.

φ

7−→

Figure 15: The map φ applied to a 4-tree (the arrows indicate the graft sites).

Proof. Let T ∈ 4Ti(3k+ 2). We must verify that (i) φ(T ) is acyclic, (ii) φ(T ) is
saturated, (iii) φ is injective and (iv) φ is surjective.

(i) Arguing by contradiction, assume that there exists some cycle in φ(T ).
Since, for any edge e of T , φ(e) is acyclic, the cycle must necessarily contain two
adjacent cells in φ(x) and φ(y), for some x, y non adjacent in T . Clearly, the
cubic cells x and y must share a point or a segment for otherwise the cycle could
have adjacent cells from φ(x) and φ(y). But both φ(x) and φ(y) are contained
in translated copies Cx and Cy of the polycube depicted in Figure 16(a). These
copies Cx and Cy could share either a point or a segment, but they cannot share
a face, nor have intersecting cells. Hence, no cycle cannot exist in φ(T ).

(ii) Notice that T has 3k+2 cells, where k of them are inner cells while 2k+2
are leaves. Also, T contains 3k + 1 edges, which corresponds to the number of
graft unions performed in the construction of φ(T ). Finally, denote respectively
L15 = φ(x) and I17 = φ(y) the two images φ(x), φ(y) of the leaves x and he
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(a) (b) (c)

Figure 16: (a) A 3 × 3 cube with 6 extra cells. (b) and (c) φ(x) is included in
the polycube (a).

inner cells y of T shown in Equation 10. Then

n(φ(T )) = kn(L17) + (2k + 2)n(L15)− 2(3k + 1)

= 41k + 28,

n1(φ(T )) = kn1(L17) + (2k + 2)n1(L15)− 2(3k + 1)

= k · 12 + (2k + 2) · 11− 2(3k + 1)

= 28k + 20,

so that φ(T ) is indeed saturated.
(iii) The injectivity of φ follows directly from the definition of φ and the fact

that the sets 4Ti and STcubi are defined up to isometry. Indeed, if φ(T ) = φ(T ′)
for some T, T ′ ∈ 4Ti, then T and T ′ must be isometric.

(iv) The proof that φ is surjective follows from Lemma 6.12. More precisely,
let T ∈ STcubi(41k + 28). We proceed by induction on k. Basis. If k = 0,
then T is isometric to the polycube L15 / L15 depicted in Figure 12(c), so
that T = φ(U), for some tree-like polycube U of size 2. Induction. By
Lemma 6.12, the rooted tree-like polycube B = L15 / (L15 / L17 / L15)
shown in Figure 12(a) is a branch of T , which is substitutable by the saturated
branch L15 shown in Figure 12(b). Let T ′ be the polycube obtained from T by
the substitution of B by L15. By the induction hypothesis, there exists some
U ′ ∈ 4Ti such that φ(U ′) = T ′. Let U = U ′ / U5, where U5 is a 4-cross. U exists
because B is substitutable by B′ and the graft union U ′ / U5 is well defined so
that φ(U) = φ(U ′) / φ(U5). Hence T = φ(U), concluding the proof.

7 Concluding Remarks

Theorems 3.4 and 5.15 are giving the exact values for the ratios Lsqu(n)/n
and Lcub(n)/n which are respectively 1/2 and 28/41. For polycubes of higher
dimension d > 3, elementary arguments allow to find lower and upper bounds
for Ld(n)/n. Indeed, for any integer d > 2, it is always possible to build d-
dimensional tree-like polycubes by alternating cells of degree 2d and 2, as was
done in dimension 2 and 3 (see for example polycube U19 in Figure 7). Since
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this connected set of cells has the ratio

Ld(n)/n = (d− 1)/d,

this expression becomes a lower bound for Ld(n)/n in all dimensions d > 1.
Similarly the structure of the polycube R12 in Figure 7 can be extended in
all dimensions d > 3 as the graft union of three cells with respective degrees
2d−1, 3, 2d−1. Let T be some d-dimensional tree-like polycube whose inner cells
have degree 2d− 1, 3 and 2d− 1. By an inductive argument, it seems possible
to prove that the ratio of any d-dimensional tree polycube cannot exceed the
ratio n1(T )/n(T ) = (4d− 3)/4d.

Our future work on fully leafed polyforms will include the extension of the
present results to the regular lattices Zd, for d > 3, to nonperiodic lattices and
more generally to other families of graphs.
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