
Journal of Economic Theory Volume 118, Issue 1, September 2004,
Pages 61-79

1

Mixed Equilibria are Unstable in Games of
Strategic Complements ∗

Federico Echenique†and Aaron Edlin‡

November 3, 2003

Running Head: Mixed Equilibria are Unstable

∗We thank an associate editor and a referee for their thoughtful comments and suggestions.
Conversations with and comments of David Blackwell, Vince Crawford, Glenn Ellison, Jeff Ely,
Hugo Hopenhayn, Ilya Segal, Chris Shannon, and Matthew Rabin are gratefully acknowledged. We
also thank seminar audiences in Berkeley, Caltech, Northwestern, NYU, UCLA, and Universidad
Torcuato Di Tella for comments. Aaron Edlin thanks the Alfred P. Sloan Foundation for a faculty
fellowship.

†Humanities and Social Sciences, MC 228-77, California Institute of Technology, Pasadena CA
91125. email: fede@hss.caltech.edu

‡Department of Economics, University of California at Berkeley, 549 Evans Hall, Berkeley CA
94720-3880. email: edlin@econ.berkeley.edu

1



Abstract
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ing dynamics. Journal of Economic Literature Classification Numbers: C72,
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1 Introduction

Consider a market with n firms in price competition, selling imperfect substitutes—a

very common market structure. Economists normally analyze this market by char-

acterizing its Nash equilibria. Tirole [20], for example, proceeds by assuming that

firms’ payoff functions are smooth, and by using the first-order conditions of firms’

maximization programs, to characterize the Nash equilibria of the model.

What about properly mixed-strategy Nash equilibria (mixed-strategy equilibria

that are not in pure strategies, PMNE hereafter)? Tirole—and everyone else—ignores

PMNE in models like the one described. Tirole ignores PMNE because he does not

have methods for analyzing them, not because he knows that these equilibria are bad

predictions. Vives’s [24] recent textbook analyzes the price-competition model using

the newer “lattice programming” methods—but Vives also ignores PMNE.

In this paper, we show that PMNE are bad predictions in games of strict strategic

complements: We show that PMNE are unstable under a broad class of learning

dynamics. The pricing game described is—under quite natural assumptions—a game

of strict strategic complements [24]. Games of strategic complements were introduced

by Topkis [21] and Vives [23].

There are many economic models that can be formalized as games of strict strate-

gic complements (see Topkis [22] and Vives [24] for examples). Thus, we believe that

our result is useful for economists.

Crawford [3, 4, 5] was the first to study the stability of PMNE. He was followed

by Fudenberg and Kreps [9], Benaim and Hirsch [2], Kaniovski and Young [15], El-

lison and Fudenberg [7], and Hofbauer and Hopkins [13]. Except for Crawford’s and

Hofbauer and Hopkins’s papers, the literature has focused mostly on 2X2 and 3X3

games. Hofbauer and Hopkins’s is the paper closest to ours; they prove that PMNE

are unstable in two-player finite games of identical interests. Crawford proves that

PMNE are always unstable under gradient dynamics in finite games. We shall show

in section 5 that our result is different from Crawfords’ in important ways.

The more general games to which our instability results apply are of considerable

economic interest. For example, unlike with the prior literature, games of Bertrand

pricing competition among imperfect substitutes with arbitrary numbers of players
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INSERT FIGURE 1

Figure 1: Battle of the Sexes

and infinite dimensional strategy spaces fall into our framework. So too do games of

Cournot duopoly, Bulow Geanakoplos and Klemperer’s (1985) model of multimarket

oligopoly, and macroeconomic games of coordination failures (Cooper 1999). The

textbooks by Topkis (1998) and Vives (1999) provide still other examples.

The literature on learning PMNE has studied particular learning dynamics. Our

result, on the other hand, only imposes two assumptions on learning dynamics, and

lets the dynamics be otherwise arbitrary. We require players to be myopic—they

best-respond to current beliefs—and that their beliefs are monotone—they believe

that higher play (e.g. higher prices) are more likely after observing higher play.

We shall give a flavor of our results using the “Battle of the Sexes” game in

Figure 1. Players 1 and 2 each simultaneously choose an element from {O,B}. Payoffs

are specified in the bimatrix to the left. Let pi be the probability with which player

i selects O. The best responses are shown in Figure 1 on the right. When 2 plays

O with probability smaller than 2/3, 1 sets p1 = 0; when p2 equals 2/3 player 1 is

indifferent between O and B, so any choice of p1 is a best response; when 2 sets

p2 larger than 2/3, 1 will optimally respond by choosing p1 = 1. There are three

Nash equilibria of this game, indicated by the three points where the best-response

functions intersect: They are (0, 0), (1/3, 2/3) and (1, 1).

Battle of the Sexes is a game of strict strategic complements. To check for com-

plementarities we need an order on players’ strategies: say that O is “larger” than B.

Then the players’ best responses are monotone increasing. For example, if 1 increases

her strategy from B to O then 2 increases her best response from B to O. That

best-responses are increasing is only necessary for the game to have strict strategic

complementarities, but for now it will suffice.

Suppose that our prediction of play for Battle of the Sexes is the PMNE (p1, p2) =

(1/3, 2/3); but suppose that the players’ beliefs about their opponent’s play are

slightly wrong. In particular, suppose 1 believes 2 will select the larger action (O)

with probability 2/3+ ε and that 2 believes 1 will select the larger action with proba-
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bility 1/3+ ε. By choosing ε > 0 small enough, these perturbed beliefs are arbitrarily

close to the equilibrium beliefs. Now, as can be seen from the best-response functions

in Figure 1, given these beliefs both players will select O with probability 1.

We shall now argue that, if the players repeatedly play Battle of the Sexes, each

time best-responding (myopically) to their beliefs, they will move away from our

original prediction. Both players observed their opponent choosing O, so they might

infer that they were right in giving O larger weight than what (1/3, 2/3) does. They

might “update” their beliefs and give the larger action, O, more weight after observing

larger play (we will say that beliefs are monotone if they behave in this way). Suppose

that the game is repeated. Given these new beliefs, with O receiving yet higher

weight, play will still be (O,O). It is easy to see that repeated play of Battle of

the Sexes will then always reinforce the initial deviation from the Nash equilibrium

beliefs (1/3, 2/3)—so (1/3, 2/3) is unstable.

Note that there is nothing non-generic or knife-edge about the perturbations we

consider, it is plausible that players would end up with perturbed beliefs like those

above. As players start myopically playing the PMNE, they will play (O,O) with

probability 2/9, and any finite sequence of (O,O) play has positive probability. It is

plausible that, after observing several rounds of (O,O), players change their beliefs in

the direction of giving “my opponent plays O” larger probability. Our point is that

deviations like these will, under our assumptions, not be corrected by subsequent

play.

The paper is organized as follows. In Section 2 we give some basic definitions.

In Section 3 we describe the learning model that we will use. Section 4 contains the

main result, and gives some intuition for its proof. In Section 5 we consider purified

mixed-strategy equilibria. In Section 6 we justify the assumption of weakly monotone

beliefs. In Section 7 we prove Theorems 1 and 2.

2 Preliminaries

2.1 Lattice-theoretic definitions

The definitions in this subsection, and the application of lattice theory to game theory

and economics, is discussed at length in Topkis [22] and Vives [24]. A set X with a
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transitive, reflexive, antisymmetric binary relation � is a lattice if whenever x, y ∈
X, both x ∧ y = inf {x, y} and x ∨ y = sup {x, y} exist in X. It is complete if

for every nonempty subset A of X, inf A, supA exist in X. Note that any finite

lattice is complete. A nonempty subset A of X is a sublattice if for all x, y ∈ A,

x ∧X y, x ∨X y ∈ A, where x ∧X y and x ∨X y are obtained taking the infimum and

supremum as elements ofX (as opposed to using the relative order on A). A nonempty

subset A ⊆ X is subcomplete if B ⊆ A, B 6= ∅ implies infX B, supX B ∈ A, again

taking inf and sup of B as a subset of X. An interval [x, y] is the set of z ∈ X such

that x � z � y. The order-interval topology on a lattice is the topology obtained by

taking the closed order intervals as a sub-basis of the closed sets. In Euclidean spaces

the order-interval topology coincides with the usual topology. A lattice is complete if

and only if it is compact in its order-interval topology.

Let X be a lattice and T a partially ordered set; f : X → R is supermodular

if, for all x, y ∈ X f(x)+ f(y) ≤ f(x∧ y)+ f(x∨ y); f : X ×T → R has increasing

differences in (x, t) if, whenever x < x′, t < t′, f(x′, t)− f(x, t) ≤ f(x′, t′)− f(x, t′);

f : X × T → R has strictly increasing differences in (x, t) if x < x′, t < t′, then

f(x′, t) − f(x, t) < f(x′, t′) − f(x, t′); f : X × T → R satisfies the strict single-

crossing property in (x, t) if x < x′, t < t′, and 0 ≤ f(x′, t) − f(x, t) implies

0 < f(x′, t′)− f(x, t′).

For any E ⊆ X, we shall denote its complement, X\E, by Ec. Further, in any

partially ordered set X, x ≺ y if x � y and x 6= y.

2.2 Probability measures and first-order stochastic dominance

Let X be a lattice endowed with a topology finer than its order-interval topology. 1

Let P(X) denote the set of (Borel) probability measures over X. A subset A ⊆ X

is increasing if, for all x ∈ A, y ∈ X and x � y imply y ∈ A. For example, if

X ⊆ R, and R has the usual order, A is increasing if and only if it is an open or

closed half-interval, i.e. either of the form [x,∞) or (x,∞). For µ, ν ∈ P(X), µ is

1To check that a topology τ is finer than the order-interval topology it is sufficient to prove that
closed intervals are closed under τ—the order-interval topology is the coarsest topology for which
order intervals are closed. For example, if P(X) is ordered by first-order stochastic dominance it is
easy to show that its order-interval topology is coarser than its weak topology, see the remark below.
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smaller than ν in the first-order stochastic dominance order (denoted µ ≤st ν)

if, for all increasing sets A ⊆ X, µ(A) ≤ ν(A).

Let X be a complete lattice. The support of µ ∈ P(X) is the intersection of

all closed probability-one events; it is denoted supp (µ). 2 For any x ∈ X, the

singleton {x} is measurable, as it is a closed order interval, and thus closed in the

order-interval topology. Let δx ∈ P(X) denote the degenerate probability measure

that gives probability one to x. A probability measure µ ∈ P(X) is properly mixed if

supp (µ) is not a singleton.

Remark: If P(X) is ordered by first-order stochastic dominance, closed order-

intervals are weakly closed. That is, for any µ, µ′ ∈ P(X), [µ, µ′] is weakly closed.

Let A be the collection of all increasing subsets of X. Then, the order-interval [µ, µ′]

is:

[µ, ν] = ∩ ({p ∈ P(X) : µ(E) ≤ p(E)} ∩ {p ∈ P(X) : p(E) ≤ µ′(E)}) .
{E∈A}

But for all x, {p ∈ P(X) : µ(E) ≤ p(E)} and {p ∈ P(X) : p(E) ≤ µ′(E)} are weakly

closed sets (Aliprantis and Border [1] Theorem 14.6). Then, order-intervals are weakly

closed.

2.3 Complementarities, strategies and beliefs

A game in normal form is described by (N, {(Si, ui) : i ∈ N}), where N is a finite set

of players, and each player i ∈ N is endowed with a strategy space Si and a payoff

function ui : S = ×i∈NSi → R. Let n be the number of players in N .

Definition 1 A normal-form game Γ = (N, {(Si, ui) : i ∈ N}) is a game of strate-

gic complementarities (GSC) if, for all i ∈ N ,

1. Si is a complete lattice;

2. ui is bounded, si 7→ ui(si, s−i) is supermodular for all s−i ∈ S−i, (si, s−i) 7→
ui(si, s−i) has increasing differences, and

2Defined in this way, every measure has a non-empty support, in contrast with other definitions
of support, see e.g. Royden [19].
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3. si 7→ ui(si, s−i) is upper semicontinuous for all s−i ∈ S−i.

Γ is a game of strict strategic complementarities (GSSC) if it is a GSC

and, in addition, (si, s−i) 7→ ui(si, s−i) has strictly increasing differences.

The mixed extension of a game Γ = (N, {(Si, ui) : i ∈ N}) is the game (N,

{(P(Si), Ui) : i ∈ N}), where each player i is allowed to choose any mixed strategy

σi ∈ P(Si), and where a mixed-strategy profile σ = (σ1, . . . σn) gives player i the

payoff Ui(σ) =
∫
S
ui(s)d×i∈Nσi(si). We shall identify a vector of probability measures

σ = (σ1, . . . σn) ∈ ×n
i=1P(Si) with the corresponding product measure in P(S). So,

for example, Ui(σ) =
∫
S
ui(s)dσ(s).

Player i’s beliefs about her opponents’ play is represented by a probability dis-

tribution µi ∈ P(S−i). Belief space is then Ψ = ×i∈NP(S−i). A mixed-strategy

Nash equilibrium σ∗ = (σ∗1, . . . σ
∗
n) is a situation where i chooses the strategy σ∗i

optimally given that her beliefs about opponents’ play is “right”, that is i’s be-

lief is σ∗−i ∈ P(S−i). So there is a natural “copy” of σ∗ in belief space, the vec-

tor (σ∗−1, σ
∗
−2, . . . σ

∗
−n) ∈ Ψ. More generally, to each mixed strategy profile σ =

(σ1, . . . σn) ∈ ×n
i=1P(Si), there corresponds beliefs σ−i ∈ P(S−i) for player i. We shall

denote by ψ : ×n
i=1P(Si) → Ψ the map from strategy profiles to beliefs: ψiσ ≡ σ−i,

and ψσ ≡ (ψiσ)i∈N = (σ−1, σ−2, . . . σ−n).

The set of player i’s possible beliefs P(S−i) is endowed with the weak topology and

the first-order stochastic dominance order. Belief space, Ψ = ×i∈NP(S−i) is endowed

with the product topology and the product order.

3 Learning Model

Learning takes place through repeated play of a stage game, Γ = (N, {(Si, ui) : i ∈ N}).
In each stage, player i observes (privately) a signal ωi ∈ Ωi, given some probability

space (Ωi,Fi, pi). These signals are not payoff-relevant; player i uses them as ran-

domization mechanisms, making her choice of a pure strategy conditional on the

realization of the signal. If (Ωi,Fi, pi) is rich enough this does not restrict her choice

of randomization over pure strategies; so for any mixed strategy σi ∈ P(Si) there is a
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map—a random variable—from Ωi into Si that has σi as its probability distribution.

The set of all signal profiles is Ω = ×i∈NΩi.

At each stage, a pure-strategy profile s ∈ S results from the players’ choices.

Histories of play (s1, . . . st) are denoted ht. The set of all histories of length t is

H t = St andH = ∪∞t=0H
t is the set of all histories of finite length, includingH0 = {∅},

the “null history.”

Each player i chooses a repeated-game strategy ξi : Ωi×H → Si, and is endowed

with repeated-game beliefs µi : H → P(S−i). The interpretation is that, at each time

t and history ht, µi(h
t) ∈ P(S−i) represents i’s assessment of her opponents’ play in

stage t+ 1 of the game. Given this assessment, and the realization of ωt, she chooses

a stage-game strategy ξi(ωt, h
t) ∈ Si. Note that we allow player i to believe that her

opponents’ play is correlated—correlated beliefs arise naturally even if players mix

independently, see e.g. Fudenberg and Kreps [9].

Let ξ = (ξi)i∈N be a collection of strategies for all players and µ = (µi)i∈N be a

collection of beliefs. The pair (ξ, µ) is a system of behavior and beliefs. Note that

ξ : Ω×H → S and µ : H → Ψ.

Player i’s best-response correspondence βi : P(S−i) � Si is defined by

βi(νi) = argmaxs̃i∈Si

∫
S−i

ui(s̃i, s−i)dνi(s−i).

So, βi(νi) is the set of best responses to beliefs νi ∈ P(S−i) about opponents’ play.

The set of best responses to strategy s−i is then βi(δs−i
). The players’ joint best-

response correspondence is β : Ψ � S, defined as β(ν) = (βi(νi))i∈N .

Definition 2 A system of behavior and beliefs (ξ, µ) is myopic if for all i ∈ N ,

ht ∈ H and ωi ∈ Ωi,

ξi(ωi, h
t) ∈ βi(µi(ht)) = argmaxs̃i∈Si

∫
S−i

ui(s̃i, s−i)µi(h
t)(ds−i).

The assumption of myopic behavior is very common in the literature on learning in

games. It is restrictive because it implies that players do not attempt to manipulate

the future behavior of their opponents—they simply maximize current payoffs based

on current beliefs. Myopic behavior is usually justified by assuming that, in each
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period of time, players are selected at random from a large population to play the

stage game, so the likelihood that two particular players will meet more than once to

play the stage game is negligible (see chapter 1 of Fudenberg and Levine [10] for a

discussion).

Our results on learning will rely on an important assumption: if a player has a

certain prediction about her opponents’ play, and then observes play that is weakly

larger than any strategy she attached a positive probability to, then she will “up-

date” her beliefs about opponents’ behavior and predict weakly larger play. This

requirement on beliefs we call weak monotonicity. To be precise:

Definition 3 Beliefs µ are weakly monotone if, for all i ∈ N , and ht ∈ H,(
sup

[
supp µi(h

t)
]
≤ sτ−i for τ = t+ 1, . . . T

)
⇒ (µi(h

t) ≤st µi(h
T )).

Where hT is any history that coincides with ht in periods τ = 0, . . . t and where i’s

opponents play sτ−i in periods τ = t+ 1, . . . T .

The idea behind this definition is that, if µi(h
t) gives i’s beliefs at time t+ 1 and

history ht, and if play at times t + 1, t + 2, . . . T is weakly larger than any play i

believed possible at time t, then i will have weakly larger beliefs at time T .

Weak monotonicity is the only condition we need on beliefs, and it is rather mild.

Beliefs in Cournot best-response dynamics satisfy weak monotonicity. We show in

Section 6 that fictitious-play beliefs, and beliefs updated by Bayes’ rule, satisfy weak

monotonicity (see Fudenberg and Levine [10] for definitions and discussion of these

learning models). As a simple justification for weakly monotone beliefs, note that, if

beliefs are weakly monotone then play will, under our assumptions, be monotone, so

beliefs are “right” in being weakly monotone. Monotonicity is then, in a sense, self

enforcing.

Other results in the literature (Hopenhayn and Prescott [14] and Echenique [6])

require that any larger play produce larger beliefs. For example, if ht and ĥt are

two time-t histories, and ht is smaller than ĥt component by component (i.e. it is

a smaller vector of play) then µi(h
t) ≤st µi(ĥ

t). We have used the qualifier “weak”

to differentiate our condition from the stronger requirement. The stronger condition

does not arise naturally in standard learning models.
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INSERT FIGURE 2

Figure 2: Unstable mixed equilibrium

4 Instability of Mixed Equilibria

We now prove that, at any PMNE σ of a GSSC, there are arbitrarily small per-

turbations that set off learning dynamics so that strategies are always outside of a

neighborhood of σ. Ours is an instability result: these small perturbations from σ

are never “corrected” by subsequent dynamics. The perturbation takes the form of

slightly wrong beliefs. 3 We shall first give a heuristic argument for why the instability

obtains.

4.1 Intuition for the instability result

Let ({1, 2} , {(Si, ui) : i = 1, 2}) be a two-player GSSC. If each strategy space is a

subset of R, we can represent the joint strategy spaces in R2—see the drawing on

the left in Figure 2. Let σ be a PMNE where both players select a properly mixed

strategy. The set of pure-strategy best responses to σ, β(ψσ), is a subcomplete

sublattice [22], for example the rectangle in Figure 2. The support of σ must lie in

β(ψσ), and likewise sup β(ψσ) ∈ β(ψσ).

Lets perturb beliefs in the direction of the largest element in β(ψσ). Consider

beliefs µ0 = (1−ε)ψσ+εψδsupβ(ψσ). With beliefs µ0, player i mixes equilibrium beliefs

ψiσ with degenerate beliefs that i’s opponent will play their largest best responses to

their equilibrium beliefs. This was the perturbation we used in “Battle of the Sexes”

in the Introduction.

Observe that ψσ <st µ
0, and that, by choosing ε > 0 small enough, µ0 can be

taken arbitrarily close to ψσ. The support of µ0 lies in β(ψσ), which is crucial for

our results. On the left is the strategy space, where any best response to µ0 must lie

to the north-east of sup β(ψσ). On the right is belief space, Ψ—we represent Ψ as

3As an alternative, we could perturb behavior. It seems that, of the two equilibrium assumptions,
that behavior is rational given beliefs and that beliefs are “correct,” it is the second that most of the
non-equilibrium literature seeks to weaken. In any case, we obtain the same results if we perturb
behavior instead of beliefs.

11



a subset of the plane, which is inaccurate and just a means of visualizing the ideas

behind our results.

Consider any learning dynamics that starts off at the perturbed beliefs µ0. Because

complementarities are strict, any best response to perturbed beliefs µ0 is (weakly)

larger than any best response to ψσ. In particular, then, play is weakly larger than

any element in the support of µ0. Then, if beliefs are monotone, “updated” beliefs,

after observing first-period play, are weakly larger than µ0. Now the argument follows

by induction: if play in all periods 1, 2, . . . t− 1 is larger than sup β(ψσ), then period

t beliefs must be weakly larger than µ0, and period t play must be weakly larger than

sup β(ψσ). So, µt = µ(ht) is always to the north-east of µ0, and therefore beliefs

never approach ψσ.

If the perturbation µ0 = (1 − ε)ψσ + εψδsupβ(ψσ) seems arbitrary, note that any

beliefs in the interval
[
µ0, ψδsupβ(ψσ)

]
would work; the reason is that dynamics starting

at µ0 bound all dynamics starting at any point in
[
µ0, ψδsupβ(ψσ)

]
.

The crucial components of our argument are then:

1. Because σ is properly mixed, there is space in β(ψσ) so we can find perturbed

beliefs µ0 that are larger than ψσ, while still having support in β(ψσ). These

perturbed beliefs can be taken arbitrarily close to ψσ.

2. Strict complementarities between players’ choices implies that any best response

to µ0 is larger than sup β(ψσ). This “overshooting”—the response to the devi-

ation is larger than the deviation—is crucial in any proof of instability.

3. By monotone beliefs, the initial deviation toward larger play is reinforced. But

note that the monotonicity used is weak; since play is weakly larger than any

element in the support of µ0, beliefs in each moment t must be weakly larger

than µ0.

4.2 Main result

Here we formalize the heuristic argument just given, but we defer the proof to sec-

tion 7.
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Definition 4 Let (N {(Si, ui) : i ∈ N}) be a game. A mixed-strategy profile σ is un-

stable if, for every weak neighborhood V of ψσ in Ψ, there is µ′ ∈ V such that any

myopic system of behavior and beliefs (µ, ξ) with weakly monotone beliefs and µ0 = µ′,

remains outside of a neighborhood of ψσ. That is, there is a neighborhood W of ψσ

such that, for all t ≥ 1, µ(ht) /∈ W .

That σ is unstable means that there are arbitrarily close perturbed beliefs µ0 such

that, if learning starts at these perturbed beliefs, then beliefs never approach ψσ.

The definition of unstable equilibrium is an adaptation to the present context of the

definition of asymptotic instability used in the dynamical systems literature [12].

Theorem 1 Let Γ be a GSSC, and σ be a Nash Equilibrium of the mixed extension

of Γ. If at least two players’ strategies in σ are properly mixed, then σ is unstable.

Proof: See section 7.

Remarks:

1. The set of perturbations that give us instability is not small, it contains a non-

empty open interval. If the Si are finite, for any open neighborhood V of ψσ,

(µ, ξ) starting at µ0 ∈ V ∩ (ψσ, ψδsupβ(ψσ)) does not approach ψσ. 4

2. In finite games, for generic payoffs, there are no PMNE where only one player

selects a properly mixed strategy (because best responses to pure strategies are

generically unique). In many non-finite games, it is not hard to rule out that

only one player selects a properly mixed strategy.

Theorem 1 has a simple consequence for 2X2 games. For generic payoffs, 2X2

games either have a unique Nash equilibrium, or two pure equilibria and one PMNE.

In this last case, it is easy to order strategies so that the game is a GSSC. Thus:

Corollary 1 For generic payoffs, PMNE in 2X2 games are either unique or unstable.

4In non-finite games, the same is true for µ0 ∈ V ∩ ∪ε∈(0,1)(µ(ε), ψδsup β(ψσ)), where µ(ε) =
(1− ε)ψσ + εψδsup β(ψσ).
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Generically, then, a 2X2 game is either isomorphic to Matching Pennies or its

mixed equilibrium is unstable. 5 For 2X2 games, Fudenberg and Kreps [9] show that,

when the PMNE is the unique equilibrium, it is globally stable. This paper completes

the picture for all other 2X2 games.

5 Purified Mixed Equilibria

A textbook criticism of PMNE goes like this (see e.g. Osborne and Rubinstein [18]):

In a PMNE, each player i is required to randomize in exactly the way that leaves

the other players indifferent between the elements in the support of their equilib-

rium strategies. But i has no reason to randomize in this way, precisely because i

too is indifferent between the elements in the support of her equilibrium strategies.

The standard response to this criticism is Harsanyi’s Purification Theorem—if we

introduce a small amount of incomplete information, then pure-strategy equilibrium

behavior can resemble the original PMNE.

In this section we show that “purified” PMNE in GSSC are also unstable, with

the qualification that the size of the perturbation must be large in relation to the

amount of incomplete information introduced. First we explain the result using a

simple example, then we state the result, and finally we discuss our result in the

context of related literature.

Consider the Battle of the Sexes game from the Introduction, and let σ be its

PMNE. We shall first introduce incomplete information and “purify” σ. Let each

player i receive a payoff-relevant signal ωi. The signals are independently uniformly

distributed on [0, 1]. The players’ payoffs are in Figure 3; η > 0 is the parameter

that controls the importance of the signals, we shall call the game in Figure 3 the

η-augmented game.

It is easy to see that the pair of (pure) strategies (∫1, ∫2),

∫1(ω1) =

{
O if ω1 ≤ 2/3
B if ω1 > 2/3

∫2(ω2) =

{
O if ω2 > 2/3
B if ω2 ≤ 2/3

,

5For generic payoffs, if a 2X2 game has a unique equilibrium, and this equilibrium is a PMNE, then
there is a re-labeling of each player’s strategies into {Heads,Tails} so that the resulting preferences
over {Heads,Tails} equal the Matching Pennies preferences (i.e. one player wants to match and the
other wants to mis-match). This re-labeling is an isomorphism.
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INSERT FIGURE 3

Figure 3: Augmented Battle of the Sexes

is a Nash equilibrium of the augmented game, no matter the value of η. Note that,

for almost all ωi, player i is selecting a strict best response to ∫−i.
The distribution of (∫1(ω1), ∫2(ω2)) is the same as the PMNE distribution in the

original Battle of the Sexes. This is a particularly nice example of a purification;

we can be as close as we want to the original game by taking η small enough, get

the same prediction as the PMNE, and avoid assuming that players select arbitrarily

among a set of indifferent strategies.

Now, given ε > 0, consider a perturbation µ0 = (1− ε)ψσ+ εψδ(O,O). Doing some

algebra, it turns out that, if

η < min

{
2ε

2 + ε
,

9ε

1− ε

}
,

then, no matter the value of ωi, player i’s best response to beliefs µ0
i is to play O.

We can then repeat the argument in the Introduction (and in Section 4.1) that play

only reinforces the initial perturbed beliefs. So if behavior is myopic and beliefs are

weakly monotone, the purified equilibrium is unstable.

In this example, for each of our perturbations µ0 = (1− ε)ψσ+ εψδsupβ(ψσ), there

is η such that if η < η then the purified equilibrium in the η-augmented game is

unstable to the µ0 perturbation. Note that the order of limits matters: We do not

say that, for η small enough, the purified equilibrium is unstable to arbitrarily small

perturbations. 6

Now we present a general result for purified PMNE. For simplicity, we assume

finite strategy spaces. The setup is from Fudenberg and Tirole’s [11] presentation of

Harsanyi’s Purification Theorem. Let Γ0 = (N, {(Si, gi) : i ∈ N}) be a finite game.

For η > 0, Γη = (N, {(Si, uηi ) : i ∈ N}) is the η-augmented game, where each player i

is endowed with type space Ωi = [−1, 1]#Si and selects a strategy ∫ : Ωi → Si. Types

ωi ∈ Ωi are drawn independently according to probability distribution pi. Payoffs are

6This may be due to our brute-force approach to dealing with randomizations—we control best
responses at all values of ωi. It may be possible to do better with more sophisticated methods.
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uηi (si, s−i, ωi) = gi(si, s−i) + ηωi(si).

Harsanyi’s Purification Theorem says that, in generic finite games, for any PMNE

σ of Γ0, there is a collection (∫ η)η>0 such that: a) for all η, ∫ η is a (pure) equilibrium

of Γη; b) the distributions of ∫ η(ω) converge to σ as η → 0. We shall call (Γη, ∫ η)η>0

a purification sequence of σ.

We need to control the relative sizes of the perturbations in beliefs and the aug-

mentation of Γ0. The following definition helps us do that.

Definition 5 Let (N {(Si, ui) : i ∈ N}) be a game. A mixed-strategy profile σ is un-

stable to an ε-perturbation for ε > 0 if there is a strategy profile σ′ such that

any myopic system of behavior and beliefs (µ, ξ) with weakly monotone beliefs and

µ0 = (1 − ε)ψσ + εψσ′ remains outside of a neighborhood of ψσ. That is, there is a

neighborhood W of ψσ in Ψ such that, for every t, µ(ht) /∈ W .

Theorem 2 Let Γ0 be a finite GSSC, and σ be a Nash Equilibrium of the mixed

extension of Γ0 such that at least two players’ strategies in σ are properly mixed. Let

(Γη, ∫ η) be a purification sequence of σ. For any ε > 0, there is η > 0 such that if

η < η then ∫ η is unstable to an ε-perturbation.

Proof: See section 7.

The relative sizes of the perturbations in beliefs (ε) and the augmentation of Γ0

(η) matters. The purpose of Harsanyi purification is to approximate the PMNE. So,

given a source of perturbations (for example, the sequences of (O,O) mentioned in

the introduction), any purification that is close enough to the PMNE will not survive.

A number of papers on learning mixed strategy equilibria have focused on purified

mixed strategies, see for example Fudenberg and Kreps [9], Ellison and Fudenberg

[7], and Ely and Sandholm [8]. Ely and Sandholm [8] also find that the order of

limits matters; using best-response dynamics, they show that PMNE in symmetric

two-player games are stable when ε is small relative to η.

Crawford [3, 4, 5] proves that PMNE are unstable in all finite games—under a

class of gradient dynamics. Crawford’s result depends crucially on players’ indiffer-

ence between the elements in the support of their equilibrium strategies. Crawford’s

result does not survive in the context of purified mixed strategies—see for example
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Fudenberg and Kreps [9], who prove that PMNE in some of the games studied by

Crawford are stable once they are purified. Theorem 2 thus points out an important

difference between Crawfords’ results and ours.

6 Justifying Weakly Monotone Beliefs

We show that, in two specifications that are common in learning models, beliefs are

weakly monotone. In particular, we show in (1.) that fictitious-play beliefs are weakly

monotone, and in (2.) that beliefs in Bayesian learning are weakly monotone.

1. We shall first describe a model of fictitious play following Chapter 2 in Fu-

denberg and Levine [10]. Let (N, {(Si, ui) : i ∈ N}) be a normal-form game. Fix a

player i. Let κ0
i : S−i → R+ be an exogenous “initial weight function” that is not

identically zero. Player i’s weight function is updated each period t ≥ 1. So, if play

in t− 1 is ŝt−1
−i , then the period-t weight function is

κti(s−i) = κt−1
i (s−i) + χ{s−i=ŝ

t−1
−i }(s−i). (I)

The function χ{s−i=ŝ
t−1
−i } takes the value 1 if s−i = ŝt−1

−i and 0 if s−i 6= ŝt−1
−i .

Now we can define fictitious play beliefs. Player i’s beliefs at the null history are

µi(h
0)(s−i) =

κ0
i (s−i)∑

s−i∈S−i
κ0
i (s−i)

;

and, after history ht = ((s1
i , s

1
−i), (s

2
i , s

2
−i) . . . (s

t
i, s

t
−i)),

µi(h
t)(s−i) =

κti(s−i)∑
s−i∈S−i

κti(s−i)
,

where we get the κti weight function recursively from κ0
i and ht by formula I.

Proposition 1 Let (N, {(Si, ui) : i ∈ N}) be a game where each Si is a finite lattice.

Fictitious play beliefs in this game are weakly monotone.

Proof. Let ht be a history, and sup [supp µ(ht)] ≤ sτ , for τ = t + 1, . . . T . Fix a

player i. For each subset A of S−i, let κti(A) =
∑

s−i∈A κ
t
i(s−i).

Let E ⊆ S−i be an increasing set. Case 1. If E ∩ supp µ(ht) = ∅ then µ(ht)(E) =

0 ≤ µ(ht). Case 2. If E∩supp µ(ht) 6= ∅ then, becauseE is increasing, sup [supp µ(ht)] ∈
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E. Then, also because E is increasing, sτ ∈ E, for τ = t + 1, . . . T . Then κTi (E) =

(T − t) + κti(E), so

µ(hT )(E) =
κT

i (E)

κT
i (S−i)

=
(T−t)+κt

i(E)

(T−t)+κt
i(S−i)

≥ κt
i(E)

κt
i(S−i)

= µ(ht)(E);

the inequality is because x 7→ (a+x)/(b+x) is a monotone increasing function when

a ≤ b. We have shown that µ(ht)(E) ≤ µ(hT )(E) for every increasing set E, so

µ(ht) ≤st µ(hT ).

2. Now we show that Bayesian updating respects weak monotonicity. Let Πi ⊆
P(S−i) be a set of possible (correlated) strategies by i’s opponents. Suppose that i

has beliefs µi ∈ P(S−i) that she obtains from some prior distribution ηi over Πi. So,

ηi ∈ P(Πi) and µi(B) =
∫

Πi
π(B)dηi(π) for all events B ⊆ S−i.

We shall suppose that Π is totally ordered. So i has a ranking of possible opponents

in terms of how large strategies they will potentially play.

Suppose that, after an event E ⊆ S−i occurs, i updates her beliefs by Bayes’ rule.

The updated posterior ηi|E ∈ P(Πi) is

η|E(B) =

∫
B
π(E)dηi(π)∫

Πi
π(E)dηi(π)

,

whenever
∫

Πi
π(E)dηi(π) > 0. The resulting updated beliefs µi|E ∈ P(S−i) are defined

by µi|E(B) =
∫

Πi
π(B)dηi|E(π). When

∫
Πi
π(E)dηi(π) = 0, µi|E is arbitrary.

Theorem 3 Let S−i be a complete lattice, and let E ⊆ [sup supp µi, supS−i]. If Πi

is totally ordered by first-order stochastic dominance, then µi ≤st µi|E.

Proof. We shall drop the i-subindexes to simplify. Only if
∫

Π
π(E)dη(π) > 0 is there

something to prove. First we shall prove that η ≤st η|E.

Let D = [sup supp µ, supS−i]. Let B ⊆ Π be an increasing, measurable set.

Because Π is a chain under first-order stochastic dominance, and D is an increasing

set, π(D) ≤ π̂(D) for all π ∈ Bc, π̂ ∈ B (since π ≤st π̂). Then, integrating over

π̂ ∈ B on both sides,
∫
B
π(D)dη(π̂) = π(D)

∫
B
dη(π̂) ≤

∫
B
π̂(D)dη(π̂); so π(D)η(B) ≤∫

B
π̂(D)dη(π̂) for any π ∈ Bc. Similarly, η(B)

∫
Bc π(D)dη(π) ≤ η(Bc)

∫
B
π̂(D)dη(π̂).
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Now, µ(E) =
∫

Π
π(E)dη(π) > 0 implies that

∫
Π
π(E)dη(π) =

∫
Π
π(D)dη(π), or

we would not get
∫

Π
π([inf S−i, sup supp µ])dη(π) = µ([inf S−i, sup supp µ]) = 1. So,

η(B)
∫
Bc π(E)dη(π) ≤ η(Bc)

∫
B
π̂(E)dη(π̂). Then,

η(B)

∫
Bc π(E)dη(π)∫
Π
π(E)dη(π)

≤ η(Bc)

∫
B
π̂(E)dη(π̂)∫

Π
π(E)dη(π)

,

which implies that η(B)η|E(Bc) ≤ η(Bc)η|E(B). But η|E(B) + η|E(Bc) = η(B) +

η(Bc) = 1, so η(B) ≤ η|E(B). The increasing event B is arbitrary, so η(B) ≤st

η|E(B).

Let F be an increasing event in S−i, then the map π 7→ π(F ) is monotone increas-

ing, as Π is ordered by first-order stochastic dominance. Then, η ≤st η|E implies that∫
Π
π(F )dη(π) ≤

∫
Π
π(F )dη|E(π). By the definition of the player’s beliefs over S−i,

then, µ(F ) ≤ µ|E(F ). So, µ ≤ µ|E.

The requirement that Πi is totally ordered does not imply that the resulting beliefs

are totally ordered, only that all priors are ranked according to the “aggressiveness”

of the potential strategies.

The problem with the strong monotonicity condition “any larger play produce

larger beliefs” [14] is that it will not hold under Bayesian updating unless priors are

ordered according to monotone likelihood ratio [16].

7 Proofs

The proof of Theorem 1 requires two preliminary lemmas. Lemma 2 is of some interest

independent of Theorem 1. Both lemmas are used in the proof of Theorem 2 as well.

Lemma 1 Let X be a lattice and A ⊆ X a subcomplete sublattice. Let p ∈ P(X) be

properly mixed, and such that supp p ⊆ A. If λ ∈ (0, 1) then p <st (1−λ)p+λδsupA <st

δsupA.

Proof. Let E be an increasing subset of X. Since A is a subcomplete sublattice,

supA ∈ A. Case 1. If E∩A = ∅, then p(E) = δsupA(E) = 0, so [(1− λ)p+ λδsupA] (E) =

0. Case 2. If there is x ∈ E ∩ A, then x ≤ supA, so supA ∈ E, as E is increasing.
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Then δsupA(E) = 1, which implies that

p(E) = (1− λ)p(E) + λp(E) ≤ (1− λ)p(E) + λ
= (1− λ)p(E) + λδsupA(E) ≤ 1 = δsupA(E).

In either case, then, p(E) ≤ [(1− λ)p+ λδsupA] (E) ≤ δsupA(E) for every increasing

set E, so p ≤st (1− λ)p+ λδsupA ≤st δsupA.

Now we show that the inequalities are strict. Let Ẽ = {x ∈ X : supA ≤ x}.
Observe that supA ∈ Ẽ. Since p is properly mixed, p(Ẽ) = p

[
Ẽ ∩ supp (p)

]
≤

p({supA}) < 1. Then,

p(Ẽ) = (1− λ)p(Ẽ) + λp(Ẽ) < (1− λ)p(Ẽ) + λ < 1 = δsupA(Ẽ).

So, p <st (1− λ)p+ λδsupA <st δsupA.

Lemma 2 Let Γ = (N, {(Si, ui) : i ∈ N}) be a GSC. Suppose σ is a PMNE, and that

sup β(ψσ) ≤ inf β((1− ε)ψσ + εψδsupβ(ψσ)) (II)

for some ε > 0; then σ is unstable to an ε-perturbation.

Proof. Let µ0 = (1 − ε)ψσ + εψδsupβ(ψσ). Since Γ is a GSC, β is non-empty-,

subcomplete- and sublattice-valued. Also, the support of σ is contained in β(ψσ).

Then, by Lemma 1, ψσ <st µ
0 <st ψδsupβ(ψσ).

Let (µ, ξ) be a system of myopic behavior and monotone beliefs, with initial beliefs

µ0. Fix a sequence of realizations of type profiles (ω1, ω2, . . .) = ω∞ ∈ Ω∞. We will

show by induction that, if the sequence {st} with st = ξ(ωt, µ(ht−1)) is the realized

play, then sup β(ψσ) ≤ st and µ0 ≤st µ
t for every t.

First, we will show that sup β(ψσ) ≤ s1 and that µ0 ≤st µ
1 = µ(h1). By hypoth-

esis, sup β(ψσ) ≤ s̃ for all s̃ ∈ β(µ0). Then, sup β(ψσ) ≤ s1, as behavior is myopic,

so sup supp σ ≤ s1. Since h1 = (∅, s1), this implies, by monotonicity of beliefs, that

µ0 ≤st µ
1 = µ(h1), completing the first step of the proof by induction.

Second, suppose that for a given t ≥ 1, µ0 ≤st µ
t−1 = µ(ht−1), and sup β(ψσ) ≤ sτ

for τ = 1, 2, . . . t− 1. Γ is a GSC, so the map ψσ 7→ inf β(ψσ) is monotone increasing

(see e.g. Topkis [22]). Then, ψσ <st µ
0 ≤st µ

t−1 implies that

sup β(ψσ) ≤ inf β(µ0) ≤ inf β(µt−1) ≤ ξ(ωt, µt−1) = st.
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This inequality, and the inductive hypothesis, imply that µ0 ≤st µ
t+1 = µ(ht), as

beliefs are weakly monotone. By induction then, for every t, both µt and the copy in

belief space of the distribution of ω 7→ ξ(ω, ht) are larger than µ0.

Let W = [µ0, ψδsupS]
c
= {p ∈ Ψ : µ0 ≤st p}c. By the remark in Section 2, W is a

weak open neighborhood of ψσ in Ψ. We have shown that W satisfies the condition

in the definition of unstable to an ε-perturbation.

Remark: If a strategy profile σ is unstable to an ε-perturbation for all ε > 0, then

it is unstable. To see this, note that that (1− ε)ψσ + εψσ′ → ψσ as ε→ 0. 7 Then,

given a neighborhood V of ψσ, there is ε ∈ (0, 1) such that µ0 = (1−ε)ψσ+εψσ′ ∈ V .

Hence, for any neighborhood there is a point µ0 such that, if the dynamics start at

µ0, then the state of the system never lies in a neighborhood W of ψσ. Therefore,

learning never approaches ψσ. 8

Proof of Theorem 1. Let ε > 0, and consider any PMNE σ in the conditions of

the Theorem. We shall prove that the inequality II in Lemma 2 is satisfied.

Fix i ∈ N and let µ̂i = (1 − ε)ψiσ + εψiδ[supβ(ψσ)]. Since at least two players

select a properly mixed strategy, ψiσ is properly mixed. Γ is a GSC, so βi(µ̂i) is a

subcomplete sublattice, and supp (ψiσ) ⊆ [β(ψσ)]−i because σ is a Nash equilibrium.

Then, Lemma 1 implies that ψiσ <st µ̂i.

Let T = {ψiσ, µ̂i}, and Ui : Si×T → R be defined by Ui(si, τ) =
∫
S−i

ui(si, s−i)dτ(s−i).

Hence, βi(τ) = argmaxsi∈Si
Ui(si, τ) for τ ∈ T .

We claim that Ui satisfies the strict single crossing property in (si, τ). Let si < s′i

and suppose Ui(s′i, ψiσ) − Ui(si, ψiσ) ≥ 0. Since ψiσ <st µ̂i, to show that the strict

single-crossing property holds, we must show that Ui(s′i, µ̂i)− Ui(si, µ̂i) > 0. Denote

by l : S−i → R the function s−i 7→ [ui(s
′
i, s−i)− ui(si, s−i)]. So, for any τ ∈ T ,

Ui(s′i, τ)− Ui(si, τ) =

∫
S−i

[ui(s
′
i, s−i)− ui(si, s−i)] dτ(s−i) =

∫
S−i

l(s−i)dτ(s−i).

Now, Ui(s′i, µ̂i)− Ui(si, µ̂i) =

(1− ε)
∫
S−i

l(s−i)dσ−i(s−i) + ε
∫
S−i

l(s−i)dδsupβ(ψσ)−i
(s−i)

= (1− ε) [Ui(s′i, ψiσ)− Ui(si, ψiσ)] + εl(sup β(ψσ)−i).

7Since, for any bounded, continuous, real-valued g, (1− ε)
∫
gdσ + ε

∫
gdσ′ →

∫
gdσ.

8In fact, in our results the copy of the distribution of ω 7→ ξ(ω, µ(ht)) in belief space is not in W
either.
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Suppose, by way of contradiction, that Ui(s′i, µ̂i)− Ui(si, µ̂i) ≤ 0. Then Ui(s′i, ψiσ)−
Ui(si, ψiσ) ≥ 0 implies that l(sup β(ψσ)−i) ≤ 0.

Note that l is strictly increasing because Γ is a GSSC. Then l(s−i) < 0 for all

s−i ∈ β(ψσ)−i\ {sup β(ψσ)−i}, as l(sup β(ψσ)−i) ≤ 0. We claim that

σ−i(β(ψσ)−i\ {sup β(ψσ)−i}) = 0.

To see this, note that σ−i(β(ψσ)−i\ {sup β(ψσ)−i}) > 0 and l(s−i) < 0 for all s−i ∈
β(ψσ)−i\ {sup β(ψσ)−i} imply that

0 >
∫
β(ψσ)−i\{supβ(ψσ)−i} l(s−i)dσ−i(s−i)

≥
∫
S−i

l(s−i)dσ−i(s−i)

= Ui(s′i, ψiσ)− Ui(si, ψiσ).

The second inequality follows from l(sup β(ψσ)−i) ≤ 0 and supp σ−i ⊆ β(ψσ)−i. But

this violates that Ui(s′i, ψiσ)−Ui(si, ψiσ) ≥ 0, so it must be that σ−i(β(ψσ)−i\ {sup β(ψσ)−i}) =

0.

But supp σ−i ⊆ β(ψσ)−i, as σ is a Nash equilibrium. Then σ−i(sup β(ψσ)−i) = 1,

which is a contradiction because σ is properly mixed. This shows that Ui satisfies the

strict single-crossing property.

The strict single crossing of Ui implies, by Milgrom and Shannon’s [17] Mono-

tone Selection Theorem, that x ≤ x′ for every x ∈ βi(ψσ) and x′ ∈ βi(µ̂). Thus

sup βi(ψσ) ≤ inf βi(µ̂). This is true for all i, hence inequality II in Lemma 2 is

satisfied.

Proof of Theorem 2. In Step 1 we prove a mini-lemma, which we then use in Step

2 to prove the theorem.

Step 1. Let (µηi )η>0 be any collection of beliefs in Ψi such that µηi → µi, for some

µi ∈ Ψi, as η → 0. We shall first show that there is η̂ with the property that, for all

η < η̂, if ∫i is a best response to µηi in the η-augmented game, then ∫i(ωi) ∈ βi(µi) for

all ωi; where βi(µi) ⊆ Si is the set of best responses to µi in Γ0.

Let

k = inf

{∫
S−i

gi(s̃i, s−i)dµi(s−i)−
∫
S−i

gi(si, s−i)dµi(s−i) : si /∈ βi(µi), s̃i ∈ βi(µi)
}
.
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Since Si is finite, k > 0. Let 0 < η′ < k/4 and let η′′ > 0 be such that, if 0 < η < η′′

then |
∫
S−i

gi(si, s−i)dµi(s−i) −
∫
S−i

gi(si, s−i)dµ
η
i (s−i)| < k/4 for all si ∈ Si, which

again is possible because Si is finite. Let η̂ = min {η′, η′′}.
Let si /∈ βi(µi), s̃i ∈ βi(µi), and η < η̂. The gain to playing s̃i over si in the η-

augmented game, and in state ωi, is
∫
S−i

uηi (s̃i, s−i, ωi)dµ
η
i (s−i)−

∫
S−i

uηi (si, s−i, ωi)dµ
η
i (s−i) =∫

S−i
gi(s̃i, s−i)dµ

η
i (s−i)−

∫
S−i

gi(si, s−i)dµ
η
i (s−i) + η [ωi(s̃i)− ωi(si)]

≥
∫
S−i

gi(s̃i, s−i)dµ
η
i (s−i)−

∫
S−i

gi(s̃i, s−i)dµi(s−i)

+
∫
S−i

gi(s̃i, s−i)dµi(s−i)−
∫
S−i

gi(si, s−i)dµi(s−i)

+
∫
S−i

gi(si, s−i)dµi(s−i)−
∫
S−i

gi(si, s−i)dµ
η
i (s−i)− 2η

> −k/4 + k − k/4− 2k/4 = 0.

The first inequality obtains because ωi(si), ωi(s̃i) ∈ [−1, 1], the second because η < η̂.

We have shown that, for all η < η̂, no matter the value of ωi, any ŝi ∈ βi(µi) is

a better response to µηi than any si /∈ βi(µi). As ∫ ηi is a best response to beliefs µηi ,

this implies that ∫ ηi (ωi) ∈ βi(µi) for all ωi.

Step 2. For each η, let σηi be the distribution of ∫ ηi (ωi). Note that, for all η,

∫ ηi is a best response to beliefs ψiσ
η, and σ = limη→0 σ

η, as (Γη, ∫ η) is a purification

sequence of σ. By Step 1, there is η̂ such that, if η < η̂, then ∫ ηi (ωi) ∈ βi(ψiσ) for all

ωi ∈ Ωi. In particular, ∫ ηi (ωi) ≤ sup βi(ψiσ) for all ωi ∈ Ωi.

Let ∫̃ ηi be a best response to beliefs ν = (1 − ε)ψiσ + εψiδsupβ(ψσ), in the η-

augmented game. Beliefs ν do not depend on η, so applying Step 1 with µη = ν

for all η, there is η̃ such that, if η < η̃ then ∫̃ ηi (ωi) ∈ βi(ν) for all ωi. In particular,

inf βi(ν) ≤ ∫̃ ηi (ωi) for all ωi.

Let η = min {η̂, η̃}. Repeating the argument in the proof of Theorem 1, we have

that sup β(ψσ) ≤ inf β(ν). Then, if η < η, for every i and ωi, ω̃i ∈ Ωi, ∫ ηi (ωi) ≤ ∫̃ ηi (ω̃i).

By Lemma 2, we are done.
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Figure 1: Battle of the Sexes
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Figure 2: Unstable mixed equilibrium



Player 1

Player 2
O B

O 2, 1 + η(ω1 − 2/3) 0, 0
B 0, 0 1 + η(ω2 − 2/3), 2
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