
Continuous-time Games of Timing∗

Rida Laraki†, Eilon Solan‡ and Nicolas Vieille§

February 21, 2003

JEL Classification: C72, C73

Abstract
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Introduction

Many economic and political interactions revolve around timing. A well-known
example is the class of war of attrition games, in which the decision of each
player is when to quit, and the game ends in the victory of the player who held
on longer. These games were introduced by Maynard Smith (1974), and later
analyzed by a number of authors. Hendricks et al. (1988) provide a character-
ization of equilibrium payoffs for complete information, continuous time wars of
attrition played over a compact time interval. Several models that resemble wars
of attrition were studied in the literature. Ghemawat and Nalebuff (1985) analyze
the exit decision of two competing firms in a declining market, and assume that
the market will eventually not be profitable if none of the two firms ever drops
from the market, see also Fine and Li (1989). Fudenberg and Tirole (1986) look
at an incomplete information setup, in which there is a small probability that
either firm will find it dominant to stay in forever. More recently Bilodeua and
Slivinski (1996) studied a model where a volunteer for a public service is needed,
and Bulow and Klemperer (1999) consider multi-player auctions as generalized
wars of attrition.

Another important class of timing games are preemption games, in which each
player prefers to stop first. The analysis is then sensitive to the specification of
the payoff, were the two players to stop simultaneously, see Fudenberg and Tirole
(1985, 1991 p.126-128).

Yet another class of timing games consists of duel games. These are two-
player zero-sum games. In the simplest version, both players are endowed with
one bullet, and have to choose when to fire. As time goes, the two players get
closer and the accuracy of their shooting improves. These games are similar
to preemption games in that a player who decides to act may be viewed as
preempting her opponent. However, as opposed to preemption games, in duel
games a player has no guarantee that firing first would result in a victory. We
refer the reader to Karlin (1959) for a detailed presentation of duel games, and
to Radzik and Raghavan (1994) for an updated survey.

There are many timing games that do not fall neatly into any of these known
categories. Consider for instance the standard case of a declining market, with
two initially present firms. If the monopoly profits in that market are not de-
creasing – e.g. if the market has a cyclical component – or if the monopoly
profits remain consistently above the outside option, the game fails to be a war
of attrition (see Fudenberg and Tirole (1991), p. 122). In another setup, when
two firms compete on the patenting or the introduction of new technology, their
interaction has a flavor of a preemption game. But each such firm also has an
incentive to wait, since the probability of higher payoffs increases with time (and,
presumably, with product quality). LaCasse et al. (2002) studied a model where
volunteers for several jobs are needed. When only one volunteer is needed, the
model reduces to a standard war of attrition, but when there are several jobs,
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the strategic considerations are more complex.
The present paper addresses the question of existence of equilibrium in gen-

eral timing games. It provides a framework that unifies the specific classes of
timing games discussed in the literature. Moreover, it deals with the question of
equilibrium existence in many timing games that have not been studied before.

A continuous-time game of timing is described by a set I of players, and, for
each non-empty S ⊆ I, a function uS : [0,∞) → RI , with the interpretation
that uS(t) is the payoff vector if the players in S – called the leaders – are the
first to act, and they do so at time t. In addition, player i’s time-preferences are
described by a discount rate δi.

1

Our first result is a general existence result for two-player games: assuming
uS is continuous and bounded for each S, the game has a subgame-perfect ε-
equilibrium, for each ε > 0. This general result is tight in two respects. First, we
provide an example of a two-player zero-sum game where a Nash 0-equilibrium
does not exist. Second, we provide an example of a three-player zero-sum game
where a Nash ε-equilibrium does not exist, for every ε sufficiently small. In these
two examples, payoffs are constant over time.

For some classes of economic interest, we obtain stronger existence results.
For symmetric games, our existence result is valid irrespective of the number
of players, and the corresponding strategy profile is pure - but a symmetric ε-
equilibrium need not exist.

In some applications, the payoff ui
S(t), for i ∈ S, is the sum of a payoff

incurred up to t and of an outside opportunity - and therefore is independent
of the identity of the other leaders (i.e., the set S \ {i}).2 We call these games
games with cumulative payoffs. For such games, our existence result is valid for
any number of players.

We also address the issue of the existence of a Markov subgame-perfect ε-
equilibrium (see Maskin and Tirole (2001)). We provide a positive answer for
two-player games, for symmetric games, and for cumulative-payoff games with
non-constant payoff, but exhibit a cumulative-payoff game with constant payoff
with no Markov subgame-perfect ε-equilibria, provided ε is sufficiently small.

In most cases, the proofs we provide are constructive.
Finally, we provide a restrictive condition under which existence of a Nash

ε-equilibrium for every ε > 0 implies the existence of a Nash equilibrium. The
condition is that the function uS is constant for each S ⊂ I,and that players are
not discounting payoffs (but does not impose any restriction on the number of
players). Incidentally, this establishes the existence of a Nash equilibrium for the
corresponding class of two-player games – a class of games for which none of the

1The model that is described here is of a game with complete information. We shall argue
that some of our results extend to games with symmetric incomplete information.

2On the other hand, for i /∈ S, ui
S(t) can be interpreted as the sum of the payoff incurred

up to t, and of an equilibrium payoff to i in the smaller game obtained once S is gone. Hence
ui

S(t) depends on S.
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known sufficient conditions for equilibrium existence hold, see, e.g., Reny (1999).
We conclude this introduction by a conceptual point. Fudenberg and Tirole

(1985) discuss the relevance of continuous-time models of timing games, on the
following ground. Games in continuous time are best seen as idealized models for
games in discrete time, with very short time periods. As Fudenberg and Tirole
point out, in certain cases a limit of discrete-time equilibria has no equivalent
in the continuous-time model. This is best seen on the grab-the-dollar game.3

At each time t, each of two players (with the same discount rate) can grab a
dollar that lies between them. The game terminates once at least one of the
players grabs the dollar. If at that time only one player grabbed the dollar, he
receives 1, and his opponent receives 0. If both grabbed the dollar, both lose 1.
In the discrete-time version of this game, the players are only allowed to act at
exogenously given times (tn), where the sequence (tn) is increasing. The unique
symmetric equilibrium has both players grab the dollar with probability 1/2 at
every time tn (if the game still goes on at that stage) – yielding a payoff of
zero to both players.4 When the stage length decreases to zero, the symmetric
equilibrium strategies do not converge to any strategy profile of the continuous-
time version, since such a limit strategy would have to stop with probability 1/2 at
any time. Hence, the unique candidate would be the strategy profile in which both
players stop with probability 1 at time zero – but the payoff associated with this
profile differs from the limit of the discrete-time payoffs. Fudenberg and Tirole
define an enlarged strategy space, that may be viewed as a compactification of
the set of discrete-time strategy profiles.

This approach has been developed further by Simon and Stinchcombe (1989),
Bergin (1992), Stinchcombe (1992) and Bergin and MacLeod (1993) for repeated
games played in continuous time. In such games, a “naive” definition of a strategy
profile need not yield a well-defined outcome – a problem which does not arise
in timing games. These authors provide various restrictions that deal with this
problem, but lose the natural simplicity of the continuous-time framework.

In our view, the problem which arises in the grab-the-dollar game is best seen
as a lack of upper semi-continuity, as the stage length decreases to zero. However,
as also pointed out in Fudenberg and Levine (1986) in a different context, some
kind of lower semi-continuity holds: given any ε′ > ε > 0, any ε-equilibrium
profile for the continuous-time model is still, when discretized, an ε′-equilibrium in
the discrete-time versions of the game, provided the time period is short enough.

We here stick with the standard interpretation of continuous-time models,
viewed as an idealized framework allowing for the use of the powerful tools of
mathematical analysis. This enables us to provide a simple and general equilib-
rium analysis of timing games. Moreover, our equilibrium recommendation in the

3Our discussion follows closely the discussion in Fudenberg and Tirole (1985).
4In addition, there are non-symmetric equilibria: any pair of strategies in which at every

stage one of the players grabs the dollar and his opponent does not grab it is a subgame-perfect
equilibrium.
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continuous-time model approximately yields an equilibrium in all discrete-time
models, with sufficiently short time periods.5

The paper is organized as follows. In Section 1 we state our assumptions
and our results. All examples are collected in Section 2. Section 3 contains the
proof of the general existence result for two-player games while the discussion of
specific issues is postponed to Section 4. Finally, Section 6 concludes with few
extensions.

1 The Model and the Main Results

The set of non-negative reals [0,∞) is also denoted by R+, and for every t ∈ R+

we identify [t,∞] = [t,∞) ∪ {∞}.

1.1 The model

A game of timing Γ is given by:

• A finite set of players I, and a discount rate δi ∈ R+ for each player i ∈ I.

• For every non-empty subset ∅ ⊂ S ⊆ I, a continuous and bounded function
uS : [0,∞) → RI .

A pure strategy ti of player i is simply a time to act, namely an element of
[0,∞], where the alternative ti = ∞ corresponds to never acting.

Given a pure strategy profile (ti)i∈I , we let θ := mini∈I ti denote the terminal
time, and S∗ := {i ∈ I | ti = θ} be the coalition of leaders. We define the payoff
gi((tj)j) to player i to be e−δiθui

S∗(θ) if θ < ∞ – i.e., if the game terminates in
finite time – and 0 otherwise.

In most timing games of economic interest, the players incur costs, or receive
profits prior to the end of the game, and the discounted sum of profits/costs up
to t is bounded as a function of t. This case reduces to the case under study
here by deducting/adding the total cost/profit up to time t from the discounted
uS(t). Hence, our standing assumption that gi = 0 if θ = ∞ is a normalization
convention, and entails no loss of generality.

1.2 Strategies and payoffs

A mixed strategy for player i is a probability distribution σi over the set [0,∞].
The expected payoff given a strategy profile σ = (σi)i∈I is:

γi
0(σ) = E⊗i∈Iσi [gi(t1, . . . , tI)]. (1)

5This is also true when the time periods are not known in advance, but follow a stochastic
process with small increments; see Section 6.
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The subscript reminds that payoffs are discounted back to time zero. We denote
by γi

t(σ) = eδitγi
0(σ), the expected payoff discounted to time t.

Equivalently, a mixed strategy σi can be described by its c.d.f. (cumulative
distribution function), i.e., by the function F i : R+ → [0, 1] defined by F i

t =
σi([0, t]). Plainly, F i is right-continuous and non-decreasing. Note also that
1 − limt↗∞ F i

t is the probability under σi that player i never acts, and that F i
0

is the probability that player i acts immediately. We let F denote the set of all
such functions F i.

Given F ∈ F and t ∈ [0,∞], we let Ft− = lims↗t Fs denote the left-limit of
F at t (with F0− := 0 and F∞− = limt→∞ Ft) and we denote by ∆Ft := Ft − Ft−
the jump of F at t.

When expressed in terms of c.d.f’s, formula (1) reduces to

γl
0(F

1, . . . , F I) =
∑
i∈I

∫
[0,∞)

e−δltul
{i}(t)

∏
j 6=i

(1− F j
t )dF i

t

+
∑

S⊆I,|S|≥2

∞∑
t=0

ul
S(t)

∏
i∈S

∆F i
t

∏
i/∈S

(1− F i
t ),

where the integral is a Stieltjes integral w.r.t. F i (the notation
∫
[0,∞) stresses

that the jump of F i at zero is explicitly taken into account in the value of the
integral).

The notions of pure and mixed strategies do not suffice when studying subgame-
perfect equilibria. Indeed, pure and mixed strategies indicate when the player
acts for the first time. However, they do not indicate how the player plays if the
game starts at some time t > 0 which is beyond his acting time.

For every t ≥ 0, the subgame that starts at time t is the game of timing
Γt with player set I, where the payoff function when coalition S terminates is
u′S(s) = uS(t + s). Thus, payoffs are evaluated at time t.

Definition 1.1 A super strategy of player 1 is a function σ̂i : t 7→ σi
t that

assigns to each t ≥ 0 a mixed strategy σi
t that satisfies

• Properness: σi
t assigns probability one to [t,∞].

• Consistency: for every 0 ≤ t < s and every Borel set A ⊆ [s,∞], one has

σi
t(A) = (1− σi

t([t, s))σ
i
s(A).

The properness condition asserts that σi
t is a mixed strategy in the subgame

that starts at time t: the probability that player i acts before time t is 0. The con-
sistency condition asserts that as long as a strategy does not act with probability
1, later strategies can be calculated by Bayes’ rule.

Given a super-strategy profile σ̂, a player i ∈ I and t ∈ R+, we denote by
γi

t(σ̂) := γi
t(σt) the payoff induced by σ̂ in the subgame starting at time t.
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1.3 Results and outline

Let ε > 0 be given. A profile of mixed strategies is a Nash ε-equilibrium if
no player can profit more than ε by deviating to any other mixed strategy. This
condition is equivalent to saying that no player can profit more than ε by deviating
to any pure strategy.

A profile of super strategies σ̂ = (σt)t≥0 is a subgame-perfect ε-equilibrium if
for every t ≥ 0, the profile of mixed strategies σt is a Nash ε-equilibrium in the
subgame that starts at time t (when payoffs are discounted to time t).

In Section 2, we provide few examples, that show that our existence results
are tight. Section 3 contains the proof of our main existence result, stated below.

Theorem 1.2 Every two-player discounted game of timing in continuous time
admits a subgame-perfect ε-equilibrium, for every ε > 0. If δi = 0 for some i, the
game admits an ε-equilibrium, for each ε > 0.

The proof is essentially constructive. In many cases of interest, a pure subgame-
perfect ε-equilibrium exists.

In Section 4, we take a brief look at some classes of timing games of specific
interest. We first analyze games with cumulative payoffs, defined by the property
that for i ∈ S, the payoff ui

S(t) does not depend on which other player(s) happen
to act at that time. Formally, ui

S(t) = ui
{i}(t) whenever i ∈ S. This class includes

games in which each player receives a stream of payoffs until he/she exits from
the game (and the game proceeds with the remaining players). In particular,
it includes models of shrinking markets, (see, e.g., Fudenberg and Tirole (1986)
and Ghemawat and Nalebuff (1985)). It can also accommodate the case in which
there is a collection of winning coalitions S, and the game terminates at the first
time t in which the coalition of remaining players St is a winning coalition. One
model of this sort is the model of multi-object auctions studied in Bulow and
Klemperer (1999).

Theorem 1.3 Every game with cumulative payoffs has a subgame-perfect ε-
equilibrium, for each ε > 0. Moreover, there is a subgame-perfect ε-equilibrium
in which symmetric players play the same super strategy.6

In many cases of economic interest, the players enjoy symmetric roles, in the
sense that the payoff ui

S(t) to player i if S acts depends only on t, on the size of
S, and on whether i belongs or not to S. Formally, a symmetric I-player game
of timing is described by functions αk : R+ → R, βk : R+ → R, k ∈ {1, . . . , |I|},
with the interpretation that, for |S| = k, one has ui

S(t) = αk(t) if i ∈ S, and
ui

S(t) = βk(t) otherwise. For symmetric games, our existence result is surprisingly
strong.

6Players i and j are symmetric if (i) ui
S = uj

S , for every S that either contains both i and j,
or none of them, and (ii) ui

S∪{i} = uj
S∪{j} for every S that contains neither i nor j.
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Theorem 1.4 Every symmetric discounted game of timing admits a pure subgame-
perfect ε-equilibrium, for each ε > 0.

The grab-the-dollar game is an example of a symmetric game that does not
have a symmetric ε-equilibrium, provided ε is sufficiently small. To prove this
claim formally, one can use similar arguments to those we use in Section 2.2.

In Section 4.3 we prove that two-player games, as well as symmetric games
and games with non-constant cumulative payoffs, have a Markov subgame-perfect
ε-equilibrium, but that games with constant cumulative payoffs, need not have
one.

Finally, in Section 1.5, we prove that under somewhat restrictive assumptions,
the existence of an ε-equilibrium implies the existence of an equilibrium.

Theorem 1.5 Let I be a finite set of players, let uS(·) be a constant function
for each ∅ 6= S ⊆ I, and let δi = 0 for each i ∈ I. If the game of timing (I, (uS)S)
has an ε-equilibrium for each ε > 0, then it also has a zero equilibrium.

In particular, combined with Theorem 1.2, Theorem 1.5 implies that every
two-player, constant-payoff, undiscounted game of timing has a (mixed) Nash
equilibrium. This equilibrium existence result is not standard. It is worth noting
that it does not follow from the most general existence result due to Reny (1999).
Indeed, Theorem 3.1 in Reny assumes that both strategy spaces are compact
Hausdorff spaces, and that the game is so-called better-reply secure. In the
context of timing games, one is tempted to endow the mixed strategy spaces
with the topology of weak convergence.7 Consider the constant-payoff timing
game defined by u{1} = (3, 1), u{2} = (0, 0) and u{1,2} = (2, 3/2), and any strategy
profile σ where player 1 acts at time zero, but player 2 does not act at time zero:
σ1({0}) = 1 and σ2({0}) = 0. Plainly, σ yields the payoff (3, 1) but is not an
equilibrium. Since 3 is the highest payoff player 1 may possibly get in the game,
player 1 can not secure at σ a higher payoff, in the sense of Reny. On the other
hand, any strategy σ̃2 of player 2 that secures at σ a payoff strictly above one
must act with some positive probability η at time zero. Let now σ1

n be a sequence
of strategies that weakly converges to σ1 and with no atom at time zero. Plainly,
limn→∞ γ2(σ1

n, σ̃
2) = (1− η) < 1 – hence Reny’s condition does not hold.

2 Examples

In the present section we study several examples, which show that the results we
present in the paper are sharp. We first present a two-player zero-sum game that
has no Nash equilibrium. We then present a three-player zero-sum game with no
ε-equilibrium, provided ε is sufficiently small. As mentioned in the Introduction,

7As in the two-player zero-sum timing game of Example 5.1 in Reny.
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the grab-the-dollar game is a symmetric game with no symmetric ε-equilibrium,
but it does admit a pure (non-symmetric) equilibrium. Our third example is an
example of a two-player symmetric game with no pure equilibrium. We then
provide two examples of games with no Markov equilibrium (see Section 4.3 for
a definition of Markov equilibria in our context.) One game is a two-player game
with non-constant payoffs, and the other is a three-player game with cumulative
payoffs.

2.1 A two-player zero-sum game with no equilibrium

Consider the two-player zero-sum game defined by u1
S(t) = 1 if |S| = 1 and

u1
{1,2}(t) = 0, with δ1 > 0.

We first argue that player 1 can guarantee a payoff 1 − ε, for every ε > 0.
Indeed, consider the mixed strategy σ1 that acts at a random time in the interval
[0, η], where η > 0 satisfies e−δ1η ≥ 1 − ε. Formally, the corresponding c.d.f.
F 1 is defined by F 1

t = min{t/η, 1}. Since player 1 acts at a random time, the
probability that both players act simultaneously is 0, whatever be the strategy
used by player 2. Since the game terminates by time η, player 1’s payoff is 1 with
probability 1, and taking the discount rate into account, his expected payoff is
at least e−δ1η ≥ 1− ε. Since the highest payoff he can get in the game is 1, this
means that an ε-equilibrium exists for every ε > 0.

We now claim that player 1 cannot guarantee 1. Indeed, the discounted payoff
of player 1 is 1 only if, with probability one, the game terminates at time 0, and
only one player acts at that time. This can happen only if one player acts with
probability one at time 0, while the other does not act. However, if player 1 acts
with probability 1 at time 0, it is optimal for player 2 to act at time 0 as well,
whereas if player 1 does not act at time 0, it is optimal for player 2 not to act at
time 0 as well.

2.2 A three-player zero-sum game with no ε-equilibrium

We here analyze the three-player zero-sum game of timing with constant pay-
offs that is defined by8 ui

{i}(t) = 1, ui+1
{i} (t) = 0, ui+2

{i} (t) = −1, ui
{i,i+1}(t) = 0,

ui+1
{i,i+1}(t) = −1, ui+2

{i,i+1}(t) = 1 and ui
{1,2,3}(t) = 0 for every i ∈ I and every

t ∈ R+. The game is described by the following matrix

Act

Don’t Act

Don’t Act Act Don’t Act Act
Don’t Act Act

1, 0,−1 0,−1, 1

−1, 1, 0

−1, 1, 0

0,−1, 1

0, 0, 0

1, 0,−1

Figure 1

8Here addition is understood modulo 3.
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in which players 1, 2 and 3 choose respectively a row, a column and a matrix.
We assume that the three players have the same discount rate δ ≥ 0. The value
of δ plays no role in the analysis. In particular, we allow for the possibility that
δ = 0, allowing in effect for the case of an undiscounted game.

We prove that this game has no ε-equilibrium, provided ε > 0 is small enough.
It is interesting to recall that three-player games of timing in discrete time that
have constant payoff functions do have a subgame-perfect ε-equilibrium (see Solan
(1999)). Thus, this example stands in sharp contrast with known results in
discrete time.

We first verify that this game has no equilibrium. Let σ be a strategy profile.
If σ is an equilibrium, the probability that the game terminates at time 0 is below
one. Otherwise, at least one player, say player 1, would act with probability one
at time 0. By the equilibrium condition, player 2 would act with probability 0:
given that player 1 acts, act is a strictly dominated action for player 2. Hence,
player 3 would act with probability one at time 0, and player 1 would find it
optimal not to act at time 0 – a contradiction. Next, given that the game does
not terminate at time 0, each player i can get a payoff arbitrarily close to one,
by acting immediately after time 0, that is, by acting at time t > 0, where t is
sufficiently small so that the probability that σi+1 or σi+2 act in the time interval
(0, t] is arbitrarily small. Thus, the continuation equilibrium payoff of each player
must be at least one – a contradiction to the zero-sum property. Hence σ is not
an equilibrium.

We now prove that the game has no ε-equilibrium. For every w ∈ [−1, 1]3 let
G(w) be the one-shot game with payoff matrix as in Figure 1, where the payoff if
no player acts is w. We actually proved the following claim: for every w ∈ [−1, 1]3

with
∑3

i=1 wi = 0, the probability that the game terminates at time 0, under any
Nash equilibrium in G(w), is strictly less than 1. Since the correspondence that
assigns to each w ∈ [−1, 1]3 and every ε > 0 the set of ε-equilibria of the game
G(w) has a closed graph, there is ε > 0 such that for every w ∈ [−1, 1]3 with∑3

i=1 wi = 0, the probability that the game terminates at time 0, under any
ε-equilibrium in G(w), is strictly less than 1− 2ε.

Let σ be an ε-equilibrium of the timing game. In particular, the probabilities
σi({0}) assigned to act at time zero form an ε-equilibrium of the game G(w),
taking for w the continuation payoff vector in the game. Since the game is zero-
sum, the continuation payoff at time 0 of at least one player is non-positive. As
argued above, by acting right after time 0, this player can improve his payoff by
almost 1 if the game is not terminated at time 0. By the previous paragraph,
this event has probability at least 2ε, hence the deviation improves by more than
ε – a contradiction.
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2.3 A symmetric game with no pure equilibrium

We here provide a symmetric two-player game with no pure equilibrium. It is
defined by

α2(t) = 0 for every t : if both players act simultaneously, no-one gets anything;

α1(t) = t1t≤1 + (2− t)11<t<5/2 −
1

2
1t≥5/2 : if only one player is to act,

he will do it at time 1;

β1(t) =
1

4
1t≤1/4 + (

1

2
− t)11/4<t<3/2 − 1t≥3/2.

Graphically, the payoff functions look as follows.

α20

1

α1

�
�

�
�

�@
@

@
@

@
@

@

β1

@
@

@
@

@
@

1/4

−1

−1/2

We assume δ1 = δ2 = 0, but our arguments remain valid as long as the
discount rates are sufficiently small.

Observe that the strategy profile in which both players act at a random time
uniformly chosen from the interval [1/4, 1/4 + ε] is a symmetric ε-equilibrium.
Indeed, the corresponding payoff to both players is 1/4, whereas the best payoff
a player can get by deviating is at most 1/4 + ε. It is also easy to verify that
the strategy profile in which player 1 acts at time 1/4 and player 2 acts at time
1/4 + ε is an ε-equilibrium.

Assume that there is a Nash equilibrium in pure strategies.
If both players act simultaneously at time t∗ ∈ R+ ∪ {∞}, the equilibrium

payoff is 0. Since β1(t) > α2(t) for t < 1/2, we must have t∗ ≥ 1/2. Each player
would then rather act alone at some time 0 < t < min{2, t∗}.

Assume now that players 1 acts at time t∗, and player 2 acts at time t∗∗ > t∗,
possibly infinity. Since α2(t) > β1(t) for t > 1/2, we must have t∗ ≤ 1/2. Since
the function α1 increases until t = 1, player 1 is better off by acting at any time
t ∈ (t∗, min{t∗∗, 1}).

2.4 A game with cumulative payoffs and no Markov equi-
librium

Consider the following three-player game with constant cumulative payoffs.
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Act

Don’t Act

Don’t Act Act Don’t Act Act
Don’t Act Act

1,−5
2
, 2 1, 1, 2

2, 1,−5
2

1, 2, 1

−5
2
, 2, 1

1, 1, 1

2, 1, 1

As we argue in Section 4.3, when payoffs are constant, the only Markov super-
strategies σ̂i = (σi

t)t are (i) σi
t acts at time t, for every t, (ii) σi

t assigns probability
1 to ∞, for each t and (iii) σi

t is an exponential distribution over [t, +∞).
Fix ε sufficiently small.
One can verify that the only equilibrium of the corresponding game in discrete

time is to have each player act with probability 1/2 at each stage. It follows that
there is no ε-equilibrium in which all players play Markov strategies, and at least
one player plays the super strategy of type (i).

If the game terminates by a single player the sum of payoffs to the three
players is 1/2. In particular, if all players follow a super strategy of type (ii) or
(iii), the expected payoff of at least one player is below 1/2, but that player can
receive 1 by acting at time 0.

Consequently, the game admits no Markov ε-equilibrium. Observe that the
super-strategy profile that indicates each player to act with probability 1/2 when-
ever t is an integer, and not to act otherwise, is a non-Markovian equilibrium.

3 Subgame-perfect equilibria in two-player games

This section is devoted to the proof of Theorem 1.2. The proof combines a back-
ward induction argument with a compactness, or diagonal extraction, principle.
We provide here a brief outline.

We start with few definitions, that will be in use throughout the section.
We let a two-player game of timing (uS(·))∅6=S⊆{1,2} be given, together with the
discount rates δ1, δ2 > 0 of the two players. For ease of presentation, we denote
by a(·), b(·) and c(·) the three functions u{1}(·), u{2}(·) and u{1,2}(·) respectively.

Note that for every continuous function f : R+ → RN , and every η, δ > 0,
there is a strictly increasing sequence (tk)k, with limit ∞, such that for every k
and every tk ≤ s < t ≤ tk+1, ‖e−δ(s−t)f(s)− f(t)‖ < η.

Given ε > 0, we let η > 0 be small enough. We apply the previous paragraph
to the R6-valued function f = (a, b, c), to η and to δ = min{δ1, δ2}, and obtain a
sequence (tk)k that strictly increases to ∞.

The proof is divided into two parts. Given n ∈ N, we consider the version of
the timing game that terminates at time tn with a payoff of zero if no player acted
before. In this game with finite horizon, we define inductively, for 0 ≤ k < n,
a super-strategy profile σ̂k(n) over the time interval [tk, tk+1). We prove that
the profile obtained by concatenating the profiles σ̂k(n) is a subgame-perfect ε-
equilibrium in the game with finite horizon.
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Next, we let n go to ∞. We observe that, for fixed k, the sequence (σ̂k(n))n

takes only finitely many values, so that by a diagonal extraction argument a limit
σ̂ of σ̂(n) exists. This limit is our candidate for a subgame-perfect ε-equilibrium.

3.1 An auxiliary class of games

The induction step mentioned above takes as given a timing game played between
times tk and tk+1 and with a terminal payoff that may differ from zero. We deal
in this section with such games.

Given 0 ≤ τ < θ < ∞ and v ∈ R2, we define the induction game G([τ, θ); v)
to be the game that starts at time τ and ends at time θ, with a payoff of v if
no player acted in between. In this game, each player is allowed to act at any
time in [τ, θ), and the payoff is v if no one ever acts. Since the interval [τ, θ)
is homeomorphic to R+, the induction game is formally equivalent to a game of
timing, as introduced in Section 1, except that the terminal payoff may differ from
zero, and that discounting is not exponential. The definitions of a pure, mixed
and super strategy, as well as of a subgame-perfect ε-equilibrium, are analogous
to those given for infinite horizon games. Hence, a pure strategy in the induction
game is an element in [τ, θ) ∪ {∞}, and a super strategy of player i is a map σ̂i

that assigns to each t ∈ [τ, θ) a probability distribution over [τ, θ) ∪ {∞}, and
satisfies the analogs of the Properness and Consistency requirements of Definition
1.1.

We shall later obtain super-strategy profiles in the infinite-horizon game by
concatenating profiles of successive induction games. For clarity, we use the
letter g for the payoff function in G([τ, θ); v): given a super-strategy profile σ̂ in
G([τ, θ); v) and t ∈ [τ, θ), gt(σ̂) is the payoff induced by σ̂ in the subgame starting
from t, and evaluated at time t.

3.1.1 Classification

We will say that the induction game G([τ, θ); v) is of:

Type C if c1(τ) ≥ b1(τ) and c2(τ) ≥ a2(τ);

Type V if e−δ1(θ−τ)v1 + η ≥ a1(τ) and e−δ2(θ−τ)v2 + η ≥ b2(τ);

Type A1 if a1(τ) ≥ e−δ1(θ−τ)v1 + η and a2(τ) ≥ c2(τ);

Type B1 if b2(τ) ≥ e−δ2(θ−τ)v2 + η and b1(τ) ≥ c1(τ);

Type A2 if a1(τ) ≥ e−δ1(θ−τ)v1 + η and a2(τ) ≥ b2(τ);

Type B2 if b2(τ) ≥ e−δ2(θ−τ)v2 + η and b1(τ) ≥ a1(τ);

Type A3 if a1(τ) ≥ b1(τ) and a2(τ) ≥ c2(τ);

Type B3 if b2(τ) ≥ a2(τ) and b1(τ) ≥ c1(τ).

Each of these types may easily be interpreted. In a game of type C, the
players will agree to act simultaneously. In a game of type V, the players will
agree not to act on [τ, θ).

13



Each induction game has at least one type, and possibly several. Indeed,
assume that G([τ, θ); v) has no type. If a1(τ) ≥ e−δ1(θ−τ)v1 + η, one must have
a2(τ) < b2(τ) by A2, b1(τ) < c1(τ) by B3, a2(τ) > c2(τ) by C and a1(τ) <
e−δ1(θ−τ)v1 + η by A1 – a contradiction. If a1(τ) < e−δ1(θ−τ)v1 + η then one must
have b2(τ) ≥ e−δ2(θ−τ)v2 + η by V, so that by the previous chain of implications,
applied to player 2, one reaches a contradiction.

Plainly if (vn) is a convergent sequence in R2, with limit v, and if the induction
game G([τ, θ); vn) is of type T for every n, then G([τ, θ); v) is also of type T .

3.1.2 Definition of the super-strategy profile

We next proceed to define a super-strategy profile σ̂ in the game G([τ, θ); v). The
payoff that will correspond to (σ1

t , σ
2
t ) is c(t) (resp. v discounted to time t) if the

type is C (resp. V), and is approximately a(t) (resp. b(t)) if the type is A1, A2
or A3 (resp. B1, B2 or B3).

If the game is of

• type C, we let σi
t act with probability one at time t, for each t ∈ [t, θ), and

i = 1, 2; hence γt(σt) = c(t).

• type V, we let σi
t act with probability zero over the time interval [t, θ), for

each t and i = 1, 2; hence γi
t(σt) = e−δi(θ−t)vi.

• type A1, we let σ1
t act with probability one at time t, and σ2

t assign prob-
ability zero to [t, tk+1); hence γt(σ) = a(t).

• type A2, we let σ1
t be the uniform distribution over [t, θ), and σ2

t act with
probability zero over the time interval [t, θ); hence γt(σt) ≈ a(t) provided
the maximal variation of a over the interval [τ, θ) is small.

• type A3, we let σ1
t act with probability one at time t, and σ2

t be the uniform
distribution over [t, θ); hence γt(σt) = a(t).

Finally, the types B1, B2 and B3 correspond respectively to types A1, A2
and A3, when exchanging the roles of the two players, and the definition of σi

t for
those types is to be deduced from the definitions for their symmetric counterpart.

It is clear that σ̂ satisfies the Properness requirement, and one can verify that
it also satisfies the Consistency requirement.

As explained earlier, the inductive proof will apply this construction to time
intervals [τ, θ) over which the maximal variation of uS(·) is close to zero, for each
S. We now prove that, under such assumptions, the profile σ̂ is a subgame-perfect
ε-equilibrium of the game G([τ, θ); v).

Proposition 3.1 Let τ, θ ∈ R+ and v ∈ R2 be given. Assume that, for every
f ∈ {a, b, c}, and for δ = min{δ1, δ2}, and τ ≤ s < t < θ one has ‖e−δ(s−t)f(s)−

14



f(t)‖ < η and moreover that (1 − e−δ(θ−τ))‖v‖ < η. Then, for each t ∈ [τ, θ),
the profile (σ1

t , σ
2
t ) is a 4η-equilibrium of the game G([t, θ); v). Moreover, if σ2

t

assigns probability one to ∞, then player 1 does not profit by not acting, and the
same holds when exchanging the roles of the two players.

Proof. Let t ∈ [τ, θ) be arbitrary. We prove that no pure strategy of player
1 improves upon σt by more than 4η. The argument for player 2 is symmetric.

Assume that under σ2
t player 2 does not act in the interval [t, θ) (types V,

A1, A2). Any deviation of player 1 yields at most

max{e−δ1(θ−t)v1, sup
s∈[t,θ]

e−δ1(s−t)a1(s)} ≤ max{e−δ1(θ−t)v1, a1(t)}+ η, (2)

whereas the payoff to player 1 under (σ1
t , σ

2
t ) is e−δ1(θ−t)v1 if the type is V, a1(t)

if the type is A1, and at least infs∈[t,θ] e
−δ1(s−t)a1(s) ≥ a1(t) − η if the type is

A2. In each case, by the definition of the types, this payoff is higher than the
quantity in (2) minus 2η.

Observe that by not acting player 1 receives e−δ1(θ−t)v1 which is at most what
he receives in each of these cases. This establishes the second assertion of the
Proposition.

Assume next that under σ2
t player 2 acts at time t (types C, B1, B3). Any

pure deviation of player 1 yields either b1(t) or c1(t). However, the payoff to
player 1 under (σ1

t , σ
2
t ) is c1(t) (resp. b1(t)) if the type is C (resp. B1 or B3),

which, by the definition of the types, is equal in both cases to max{b1(t), c1(t)}.
Assume finally that σ2

t is the uniform distribution over [t, θ) (types A3, B2).
Any deviation of player 1 yields at most max{a1(t), b1(t)} + η. However, the
payoff to player 1 under (σ1

t , σ
2
t ) is at least a1(t)− η (resp. b1(t)− η) if the type

is A3 (resp. B2), which, by the definition of the types, is equal in both cases
to max{a1(t), b1(t)} − η. In particular, player 1 cannot gain more than 2η by
deviating.

3.2 The proof

We here explicit the induction and the limit argument that were sketched in the
introduction to this section.

Given n ∈ N, we associate to each k ∈ {0, . . . , n} a payoff vk(n) ∈ R2 and a
type jk(n), as follows:

• we set vn(n) := (0, 0);

• for k < n, we let jk(n) be a type of the induction game G([tk, tk+1); vk+1(n)),
and we let vk(n) be the payoff induced by the 4η-equilibrium that was
defined in Section 3.1.2: vk(n) = gtk(σtk).
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We now let n go to infinity. Since there are finitely many types, and since
payoffs are bounded, a diagonal extraction argument implies that there is an
increasing sequence of indices (nm)m∈N such that the sequences (vk(nm))m∈N

and (jk(nm))m∈N converge for every k ≥ 0. Denote for every k ≥ 0 vk =
limm→∞ vk(nm) and jk = limm→∞ jk(nm). By the remark at the end of Section
3.1.1, jk is a type of G([tk, tk+1); vk+1).

We next proceed to the definition of a super-strategy profile (σ̂1, σ̂2) in the
timing game (with infinite horizon). Given k ∈ N, we denote by (σ̂1,k, σ̂2,k) the
super-strategy profile in the game G([tk, tk+1); vk+1) corresponding to type jk, as
defined in Section 3.1.2. Note that, for i ∈ I and t ∈ [tk, tk+1), σi,k

t is a probability
distribution over [0,∞] which gives probability 1 to [t, tk+1) ∪ {∞}.

By Proposition 3.1, for each t ∈ [tk, tk+1), the profile (σ1,k
t , σ2,k

t ) is a 4η-
equilibrium of the game G([t, tk+1); vk+1).

Intuitively, we shall define σ̂i
t, t ∈ R+, as the concatenation of the different

super strategies (σ̂i,k)k∈N. Formally, this is achieved via the following construc-
tion.

Given a mixed strategy σi in an induction game G([t, t′); v) and a mixed
strategy σ′i in an induction game G([t′, t′′); v′), we define their concatenation
σi ◦ σ′i to be the strategy in G([t, t′′); v′) that assigns probability σi(A) to every
Borel set A ⊆ [t, t′), and probability (1− σi([t, t′))σ′i(A) to every Borel set A ⊆
[t′, t′′) ∪ {∞}. For every k and every t ∈ [tk, tk+1) define

σi
t = σi,k

t ◦ σi,k+1
tk+1

◦ σi,k+2
tk+2

◦ . . . .

One can verify that σ̂i = (σi
t)t∈R+ satisfies both the Properness and the Con-

sistency requirement in Definition 1.1. We omit this verification.

Proposition 3.2 The super-strategy profile σ̂ is a subgame-perfect ε-equilibrium
of the timing game.

Proof. We first claim that γtk(σ̂) = vk for each k ∈ N. Indeed, since σ̂ is
defined as the concatenation of the profiles σ̂k, the equation that links γtk(σ̂) to
γtk+1

(σ̂) is the same as the relation between vk and vk+1: if at least one player acts
with probability one on the interval [tk, tk+1), both vk and γtk(σ̂) coincide with
the corresponding payoff. On the other hand, if both players act with probability
zero on [tk, tk+1), then γi

tk
(σ̂) = e−δi(tk+1−tk)γi

tk+1
(σ̂) and vi

k = e−δi(tk+1−tk)vi
k+1.

Therefore, for a given k, either (i) there is k∗ > k such that at least one player
acts with probability one on the interval [tk∗ , tk∗+1), in which case reasoning
backwards from k∗ yields γtk(σ̂) = vk, or (ii) no such k∗ exists, in which case the
equality vi

k = e−δi(tl−tk)vi
l holds for each l > k. Since payoffs are bounded, by

letting l go to infinity we obtain vk = 0 for each k, so that as above γtk(σ̂) = 0.
Let k ∈ N and t ∈ [tk, tk+1) be given. We shall prove that, for each pure

strategy σ′1t in the timing game starting at t, one has

γ1
t (σ

′1
t , σ

2
t ) ≤ γ1

t (σ
1
t , σ

2
t ) + ε. (3)
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Since the roles of the two players are symmetric, this will imply that (σ1
t , σ

2
t ) is an

ε-equilibrium of the game starting at time t. Since t is arbitrary, the Proposition
will follow.

Since it is a pure strategy, σ′1t assigns probability one to some element t∗ ∈
[t,∞) ∪ {∞}. We first deal with the case t∗ < ∞.

Let k∗ ∈ N be the unique integer such that t∗ ∈ [tk∗ , tk∗+1). Let k∗∗ ≥ k be
the first integer such that the type of the game G([tk∗∗ , tk∗∗+1); vk∗∗+1) is either C,
B1, B2, A3 or B3 (with k∗∗ = ∞ if no such integer exists). By the definition of
the strategy of player 2, the game terminates before time tk∗∗+1 with probability
one, whatever player 1 plays. Set k̂ = min{k∗, k∗∗}.

We prove that for every k < k′ ≤ k̂, the expected payoff of player 1 if player
2 follows σ2

tk′
and player 1 acts at time t∗, discounted to tk′ , is at most v1

k′ + 4η.

For k′ = k̂ this follows since (σ1
t , σ

2
t ) is a 4η-equilibrium of the induction game

G([t
k̂
, t

k̂+1
); v

k̂+1
).9 Assume we proved the claim for k′ + 1. Since player 2 does

not act before time tk′+1, the type jk′ of the game G([tk′ , tk′+1); vk′+1) must be
V, A1 or A2. By the induction hypothesis, the expected payoff of player 1 if
player 2 follows σ2

tk′
and player 1 acts at time t∗, discounted to tk′ , is at most

e−δ1(tk′+1−tk′ )(v1
k′+1 + 4η) ≤ e−δ1(tk′+1−tk′ )v1

k′+1 + 4η. By the second assertion of
Proposition 3.1 this amount is at most v1

k′ + 4η, as desired. The same argument,
applied to the induction game G([t, tk+1); vk+1), delivers now (3).

For every t ∈ [0,∞] denote by δ(t) the pure strategy that acts at time t with
probability 1.

If t∗ = ∞, then, since δ1 > 0 and by the first part,

γ1
t (δ(∞), σ2

t ) = lim
t̃→∞

γ1
t (δ(t̃), σ

2
t ) ≤ γ1

t (σt) + 4η. (4)

Comment. We now argue that if δ1 = 0 (or δ2 = 0), that is, if at least one
of the players does not discount, then a Nash ε-equilibrium exists.

For every n and k, let (σ̂1,k(n), σ̂2,k(n)) be the super strategies defined in
Section 3.1 for type jk(n) in the game G([tk, tk+1); vk(n)). Denote σi

0(n) = σi,1
t1 (n)◦

σi,2
t2 (n)◦ . . .◦σi,n−1

tn−1
(n). If under (σ1

0(n), σ2
0(n)) both players act with probability 1

before time tn, the arguments we presented in the proof of Proposition 3.2 imply
that (σ1

0(n), σ2
0(n)) is an ε-equilibrium.

Assume, then, that under σ2
0(n) player 2 never acts, for every n. Then jk(n) is

V, A1 or A2 for every k and every n. The construction in Section 3.1.2 implies
that v1

k(n) ≥ 0 for every k and every n. In particular, the strategy δ(∞) that
never acts cannot be a profitable deviation of player 1. Let n be sufficiently large
such that for some t < tn one has a1(t) ≥ sups∈[0,∞) a1(s)−η and for some t′ < tn
one has b2(t′) ≥ sups∈[0,∞) b2(s) − η. In words, the best payoff by acting alone
occurs before time tn. One can verify that (σ1

0(n), σ2
0(n)) is a 5η-equilibrium.

9Strictly speaking, σi
t need not be an admissible strategy in G([t̂

k
, t̂

k+1
); v

k̂+1
), but it induces

one when collapsing [t̂
k+1

,∞] to ∞.
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Corollary 3.3 Assume that, for every t one has either (i) b1(t) ≥ c1(t) and
a2(t) ≥ c2(t), or (ii) b1(t) ≤ c1(t) and a2(t) ≤ c2(t). Then for every ε > 0,

• if min{δ1, δ2} > 0, there exists a pure subgame-perfect ε-equilibrium.

• if min{δ1, δ2} = 0, there exists a pure ε-equilibrium.

Observe that in wars of attrition, condition (i) holds for every t.
Proof. It suffices to show that all the induction games G([tk, tk+1), vk+1(n))

that appear in the proof are of type C, V, A1 or B1. This is a matter of
straightforward verification.

4 Special classes of games

Many proofs in this section are minor variations upon the proof of Theorem 1.2.
Hence few details will be omitted.

4.1 Games with cumulative payoff

We here prove Theorem 1.3. Let Γ be a game with cumulative payoffs. Fix
a strictly increasing sequence (sn) with s0 = 0 and limn→∞ sn = ∞ such that
supn supsn≤s<t≤sn+1

|e−δ(s−sn)ui
S(s) − ui

S(t)| < ε for every S and every i. Define
an auxiliary game Γ∗ in which players can act only at times {sn, n ≥ 0} and must
continue in all other times. The auxiliary game Γ∗ is equivalent to a discounted10

game Γ∗∗ in discrete time with countably many states sn. The stochastic game
Γ∗∗ has quite a specific structure: at state sn, each player can either act or not.
If at least one player acts, the game reaches an absorbing state. If no one acts,
the game moves to state sn+1.

Every strategy profile τ∗∗ in the game Γ∗∗ naturally induces a super-strategy
profile in the game Γ∗, and therefore it induces a super-strategy profile τ̂ in the
game Γ. Observe that for every n, the expected payoff under τ∗∗ starting from
state sn is equal to the expected payoff induced by τ̂ in Γ, starting from time sn.

By Fink (1964) the discounted stochastic game Γ∗∗ has a subgame-perfect 0-
equilibrium τ∗∗ = (τ i

∗∗)i∈I . Moreover, there is such a subgame-perfect 0-equilibrium
in which symmetric players play the same strategy.

Denote by σ̂ the profile of super strategies in Γ induced by τ∗∗. Then σ̂i = σ̂j

for every pair of symmetric players i 6= j. Moreover, under σ̂ players act only at
times (sn)n≥0, that is, the probability distribution σi

t gives weight one to the set
{sn, n ≥ 0}, for each t ∈ R+.

We will prove that σ̂ is a subgame-perfect ε-equilibrium. Let t ∈ R+ be given,
and let τ i be a pure strategy of player i in the subgame starting at time t, which
acts at time ti ∈ [t,∞].

10with a state-dependent discount factor
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We denote by τ̃ i the auxiliary pure strategy that acts at time sk, where k ∈
N∪{∞} is the minimal integer such sk ≥ ti. By construction, under both (σ−i

t , τ i)
and (σ−i

t , τ̃ i) no player in S \ {i} acts in the time interval (ti, sk). Therefore,

|γi
t(σ

−i
t , τ̃ i)− γi

t(σ
−i
t , τ i)| < |e−δi(sk−ti)ui

{i}(ti)− ui
{i}(sk)| ≤ ε. (5)

The pure strategy τ̃ i is a valid strategy in Γ∗, and therefore naturally induces a
pure strategy τ̃ i

∗∗ in Γ∗∗. Since τ∗∗ is a subgame-perfect 0-equilibrium, the payoff
induced by (τ̃ i

∗∗, τ
−i
∗∗ ) in the stochastic game Γ∗∗, starting from state sk, does not

improve upon the payoff induced by τ∗∗ in that game. Since these payoffs coincide
with γi

t(σ
−i
t , τ̃ i) and γi

t(σt) respectively, and by (5), one gets

γi
t(σ

−i
t , τ i) ≤ γi

t(σt) + ε,

as desired.

4.2 Symmetric games

We here prove Theorem 1.4. Let an I-player symmetric timing game be given.
We set

TI = {t ∈ [0,∞) | αI(t) ≥ βI−1(t)},

and

Tk = {t ∈ [0,∞) | αk(t) ≥ βk−1(t) and αk+1(t) ≤ βk(t)}, for k = 2, 3, . . . , I − 1.

If t ∈ TI then the strategy profile in which all players act at time t is a 0-
equilibrium in Γt. Indeed, under this profile the payoff for all players is αI(t),
while any deviator who will not act at time t will receive βI−1(t) ≤ αI(t).

Similarly, if t ∈ Tk, for k = 2, . . . , I−1, any strategy profile in which exactly k
players act at time t is a 0-equilibrium in the game starting from time t. Indeed,
any one of the k players who acts at time t receives αk(t), while if such a player
deviates and does not act at time t he will receive βk−1(t) ≤ αk(t). Any one of
the I − k players who does not act at time t receives βk(t), while if such a player
deviates and acts at time t he will receive αk+1(t) ≤ βk(t).

For k = 2, 3, . . . , I, we let T ∗
k be the closure of the interior of Tk. Then

each T ∗
k is the union of at most countably many disjoint closed intervals: T ∗

k =
∪∞n=1[c

k
n, d

k
n]. Set T̂k = ∪∞n=1[c

k
n, d

k
n).

We set T0 = [0,∞) \ ∪I
k=2T̂k. Observe that T0 = ∪∞n=1[c

0
n, d

0
n) is a union of

disjoint half-closed half-open intervals.
Given t ∈ R+, one has t ∈ ∪k≥2Tk as soon as α2(t) ≥ β1(t). Therefore,

α2(t) ≤ β1(t) for every t ∈ T0.
We already defined a pure 0-equilibrium for initial times t ∈ ∪kT̂k. To com-

plete the proof, it is now sufficient to prove that a subgame-perfect ε-equilibrium
exists in each game G([c0

n, d
0
n); v), where v is the equilibrium payoff we defined
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starting from time d0
n. If d0

n = ∞, we set this terminal payoff to zero. To prove
this claim, we shall mimic the proof of Theorem 1.2. We shall only sketch the
main steps of the proof. We let the game G([c0

n, d
0
n); v) and ε > 0 be given. Choose

η > 0 to be very small. Consider an increasing sequence (tk)k that converges to
d0

n and such that sups,t∈[tk,tk+1] |e−δ(s−tk)α1(s)− α1(t)| < η. If d0
n < ∞, we define

the sequence so that it contains only finitely many terms (tk)k≤K , with tK = d0
n.

In that case, the profile is constructed by backward induction, starting with the
game G([tK−1, d

0
n); v). If d0

n = ∞, the sequence (tk) contains infinitely many
terms, and the induction proceeds as in the proof of Theorem 1.2, as explained
below.

Fix k ∈ N, and look at the game G([tk, tk+1); vk(n)) that appears in the
induction step. We use the symmetry of the game to simplify the classification
into types. Specifically, we say that G([tk, tk+1); vk(n)) is of

Type V if e−δ(tk+1−tk) mini∈I vi
k(n) + η ≥ α1(tk).

Type 1i if e−δ(tk+1−tk)vi
k(n) + η < α1(tk).

Following the proof of Theorem 1.2, we define a pure super-strategy profile
in the game G([tk, tk+1); vk(n)), depending on the type of that game. If it is of
type V, we let σi

t act with probability zero on the time interval [t, tk+1), for each
t ∈ [tk, tk+1). If it is of type 1i for some i, we let σi

t act with probability one at t,
and σj

t act with probability zero on the time interval [t, tk+1), for each j 6= i and
t ∈ [tk, tk+1). The rest of the proof follows the proof of Theorem 1.2.

4.3 Markov equilibrium

We here discuss the existence of a Markov subgame-perfect ε-equilibrium in tim-
ing games. According to a Markov strategy, the behavior at time t depends only
on payoff relevant past events, see Maskin and Tirole (2001). In the context of
timing games, this requirement is expressed as follows. A real number T ∈ R+ is
a period of the game if uS(t + T ) = uS(t), for each t ∈ R+ and S ⊆ I. A super-
strategy profile σ is Markovian if, for every t ∈ R+ and every i ∈ I, the mixed
strategy σi

t+T is obtained from σi
t by translation: for each Borel set A ⊆ R+, one

has σi
t(A) = σi

t+T (A + T ). In this section, we provide a partial answer to the
existence problem of a Markov subgame perfect ε-equilibrium.

When payoffs are constant, one can provide an explicit characterization for
the set of Markov strategies. Let σ̂i be a Markov super-strategy of player i. If
σi

0(0) = 1 then σi
t(0) = 1 for every t ∈ R+: under σ̂i the player acts at every time

t.
If σi

0(0) < 1 then σi
0(η) < 1 for some η > 0 sufficiently small. By the

Markov requirement, this implies that σi
0(s) < 1 for every s ∈ R+; indeed, by

induction over k, σi
0((k + 1)η) = σi

0(kη) + (1− σi
0(kη))σi

0(η) < 1. Moreover, the
Markov requirement implies that (1−σi

0(t))(1−σi
0(s)) = 1−σi

0(t+s), so that by
the characterization of the exponential distribution (see, e.g., Billingsley, 1995,
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p.189) σ0 is an exponential distribution over R+, and for t > 0 σt is obtained by
translation. To summarize, if a super-strategy σ̂ is Markov, then σt is obtained
from σ0 by translation. Moreover, σ0 is either a unit mass located at 0 or ∞, or
is an exponential distribution over [0,∞). Conversely, any such super-strategy
has the Markov property.

Proposition 4.1 Every two player game function has a Markov subgame-perfect
ε-equilibrium, for each ε > 0.

Proof. We shall use the notations of section 3. We first assume that a(·), b(·)
and c(·) are constant, and we adapt the proof of Theorem 1.2. Since payoffs
are constant, it is sufficient for our proof to consider only one induction game
G([0,∞);~0). In most cases (i.e., C, V, A1, B1, A2 and B3 for player 2, A3
and B2 for player 1) the super strategies we defined are either never to act, or
always to act, which are Markov. In the other four cases replace the current
definition of σi

t by an exponential distribution over [t,∞) with sufficiently high
parameter α. Given ε > 0, if α is sufficiently high, then under the new definition
the game terminates before time t + ε with probability at least 1 − ε; since the
payoff functions are constant this implies that no player can profit in discounted
terms more than 3ε by deviating, provided ε is sufficiently small.

Next, we assume that the functions a(·), b(·) and c(·) have a common period
T < ∞. We shall discuss two cases. Up to symmetries, these cases exhaust all
possible cases.

Case 1: a1(t) ≤ b1(t) and a2(t) ≥ b2(t) for each t ∈ R+.
In a sense, each player would rather see his opponent stop. We adapt the

proof of Theorem 1.3, see section 4.1. We shall only sketch the proof, without
providing all the details. Given ε > 0, we let η > 0 be small enough, and let
0 = t0 < t1 < · · · < tn = T be a finite subdivision of [0, T ], such that a, b and c
do not vary by more than η on each subinterval [tk, tk+1], k = 0, 1, . . . , n− 1.

Consider the stochastic game Γ∗∗ with finitely many states labelled t0, . . . , tn−1

where (i) the game moves cyclically from one state to the next one in the sequence
(and from tn−1 to t0) as long as no player ever acts, (ii) player 1 (resp. player
2) can only act in states with odd index (resp. with even index), and (iii) the
payoff by acting at state tk is a(tk) or b(tk) depending on k. The game Γ∗∗ has a
subgame-perfect equilibrium σ̂ in stationary strategies – strategies that depend
only on the current state. When reverting to the interpretation of tk as a time
rather than a state, this profile corresponds to a periodic profile – still denoted
σ̂ – in the timing game. We derive a modified, periodic super-strategy profile
τ̂ as follows. Loosely, if player i stops with probability p at time tk under σ̂,
we will have him act under τ̂ with probability p over the whole time-interval
[tk, tk+1). Specifically, for k < n, the mixed strategy τ i

tk
has no atoms, assigns

to the interval [tk, tk+1) the probability σi
tk

({tk}) with which σi
tk

acts at time tk,
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and can be calculated using Bayes’ rule from τ i
tk+1

on the interval [tk+1,∞]. For
t 6= tk, τt is defined via Bayes rule. Note that, for each t ∈ R+, the payoffs γt(σ̂)
and γt(τ̂) differ by at most η.

We claim that τ̂ is a subgame-perfect ε-equilibrium, provided η is small
enough. Plainly, it is enough to prove that player 1 can not deviate profitably
in the game that starts at time 0. This claim is supported by the following
arguments.

Let τ̃ i
0 be a pure strategy of player 1 in the timing game. If it never acts, it

is payoff equivalent – up to η to the strategy in Γ∗∗ that never acts.11 If it acts
at time t ∈ [tk, tk+1) for some odd k, it is payoff-equivalent to the strategy in Γ∗∗

that acts at state tk. Finally, if it acts at time t ∈ [tk, tk+1) for some even k, it
yields a lower payoff than the strategy that acts at time tk+1, by the assumption
on payoffs.

Case 2: a2(t∗) < b2(t∗) for some t∗ ∈ R+.
We start with a simple observation. Assume that, for some t ∈ R+ and η > 0,

there is a super-profile σ̂ such that (i) σ̂ is a subgame-perfect ε-equilibrium in
G([t, t + η); v), irrespective of v and (ii) for each s ∈ [t, t + η), under σs, at least
one player will act before t + η. Then there is a Markov ε-equilibrium.

Indeed, by translation we can assume that t ≥ T . By the backward-induction
argument presented in section 3.2 we construct a pure ε-equilibrium in the period
[t + η − T, t + η]. By (2), the super-strategy profile in the original game that
is defined by repeating periodically this ε-equilibrium is a subgame-perfect ε-
equilibrium in the original game.

Given this fact, we shall mimic the proof of Theorem 1.2, see section 3.2, where
we choose the sequence (tk) so that t∗ = tk∗ for some k∗ ∈ N. If, for some n ∈ N,
the induction game G([tk∗ , tk∗+1); vk∗(n)) is either of type A3, B3 or C, we may
apply the above observation with [t, t + η) = [tk∗ , tk∗+1) and the result follows.
Otherwise, it must be that a1(t∗) < b1(t∗). Indeed, since a2(t∗) < b2(t∗), one first
has b1(t∗) < c1(t∗) by B3, next a2(t∗) > c2(t∗) by C, and finally a1(t∗) < b1(t∗)
by A3.

To conclude, we let [t, t + η) = [tk∗ , tk∗+1), and define a super-profile σ̂ in
G([t, t + η); v) by having both players acting time be distributed according to an
exponential distribution12 over [t, t+η). The parameter of player 2’s distribution
is chosen to be much larger than the parameter of player 1’s distribution. We
then apply the basic observation.

Next, we show that in symmetric games and in games with non-constant cu-
mulative payoff a Markov ε-equilibrium always exists, irrespective of the number

11To be precise: faced with τ−i
0 in the timing game, it yields approximately the same payoff

as the strategy never act in Γ∗∗, faced with σ̂−i

12To be precise, it is the image of an exponential distribution over R+ under an increasing
homeomorphism that maps R+ to [t, t + η).
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of players.

Proposition 4.2 Every multi-player symmetric game of timing has a pure Markov
subgame-perfect ε-equilibrium.

Proof. We modify the proof given in Section 4.2. If payoffs are constant, the
proof is similar to the proof of Proposition 4.1.

Assume now that the payoffs are periodic with period T > 0. We shall use
the observation made in Case 2 of the previous proof. Observe that if t ∈ Tk for
some k = 2, . . . , K, and if η > 0 is small enough, then the profile that requires k
players to act and I−k players to continue satisfies the two requirements of that
observation. Therefore, we can assume w.l.o.g. that T0 = [0,∞).

If sup α1(·) ≤ 0, there is a subgame-perfect equilibrium in which no player
ever acts. Thus, we may assume that sup α1 > 0. We divide the proof in three
cases. Since α1 and β1 are continuous, these exhaust all possible cases.
Case 1: α1(t) = β1(t) for some t.

We let η be small enough, and let (tn) be an increasing sequence with limit
t + η and such that t0 = t. We define σ as follows: player 1 (resp. player 2) acts
at each time s ∈ [tn, tn+1) for even n (resp. for odd n). Players 3, 4, . . . , I never
act. We then use the first observation.

Case 2: α1(t) > β1(t) for each t ∈ R+.
We divide the time interval [0, T ] into a large, finite, even number of intervals,

and define a periodic super-profile σ̂ as follows: player 1 (resp. player 2) acts at
each time s ∈ [tn, tn+1) for even n (resp. for odd n). Players 3, 4, . . . , I never act.
It is straightforward to check that σ̂ is a subgame-perfect ε-equilibrium, provided
the partition of [0, T ] is fine enough.

Case 2: α1(t) < β1(t) for each t ∈ R+.
Choose t∗ ≥ T such that α1(t∗) = supt∈R+ α1(t), and let η > 0 be small

enough. We divide the period [t∗−T + ε, t∗+ ε) into finitely many small intervals
[tk, tk+1), k = 0, . . . , k∗ and apply the backward construction that appears in the
proof of Theorem 1.4. We initialize the induction with player 1 acting at each
s ∈ [tk∗ , tk∗+1), while players 2, . . . , I do not act on [tk∗ , tk∗+1). Hence v1

k∗ =
α1(t∗), while vi

k∗ = β1(t∗) for each i = 2, . . . , I. One can check inductively that
0 < v1

k < vi
k for each k = 1, . . . , k∗ and i = 2, . . . , I – so that each induction

game is either of type 1-1 or C, while the last one, G([t0, t1); v1) is of type 1-1.
Therefore, this construction generates a periodic profile.

Proposition 4.3 In every multi-player game with non-constant cumulative pay-
offs a Markov subgame-perfect ε-equilibrium exists. Moreover, there is a Markov
equilibrium where symmetric players play the same super-strategy.
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Proof. The proof is essentially the same as the proof of Theorem 1.2. All one
should note is that since payoffs are periodic, one can construct the stochastic
game Γ∗∗ in discrete time to have finitely many states, that correspond to one
period of the game in continuous time.

5 An equilibrium existence result

We here prove Theorem 1.5. It will be helpful to explain first the gist of the
argument. In a sense, it relies on a compactness principle. We shall exhibit a
compact set G of profiles that satisfies:

a) if there is an ε-equilibrium, then there is an ε-equilibrium in G, and

b) the payoff function γ(·) is continuous on G.

The second property will imply that any accumulation point of ε-equilibria
in G, as ε goes to 0, is an equilibrium, while the first property, together with the
compactness of G, will imply that under the assumptions of Theorem 1.5 such an
accumulation point exists.

The set F I of all profiles, endowed with the weak topology, does not satisfy
the second property, since the payoff function is not continuous over F I . Discon-
tinuities may arise for two reasons. First, in the weak topology, several atoms
may merge to a single atom at the limit. Second, a sequence of non-atomic
distributions may weakly converge to an atomic distribution.

We illustrate these two phenomena with two examples. Both examples involve
two players. We let F = (F 1, F 2) be the profile in which both players act with
probability 1 at time 0: F i

t = 1 for every t ∈ R+.

Example 1: Player 1 acts with probability 1 at time 0, while player 2 acts
with probability 1 at time 1/n. Formally, for every n ∈ N, F 1(n) = F 1

whereas F 2
t (n) = 1t≥1/n. Plainly the sequence (F (n)) weakly converges to F ,

but γ(F (n)) = u{1} while γ(F ) = u{1,2}.

Example 2: Both players act uniformly in the interval [0, 1/n]. Formally,
F 1

t (n) = F 2
t (n) = min{1, nt}. The sequence (F (n)) weakly converges to F . Since

for every n ∈ N the probability that under F (n) both players act simultaneously
is 0, γ(F (n)) = 1

2
u{1} + 1

2
u{2}, while γ(F ) = u{1,2}.

Roughly speaking, the auxiliary space G contains all profiles G = (G1, . . . , GI)
that satisfy (A) if Gi has a jump of ∆Gi

t at t, then all Gj’s are constant in the
interval (t−∆Gi

t, t), and (B) the slope of 1
n

∑
i G

i is 1 whenever this function is
continuous.

The first requirement implies that as one goes to the limit, it cannot be that
two atoms merge. Indeed, if for each n ∈ N Gi(n) and Gj(n) have discontinuities
at tn and sn respectively, with tn < sn, then ∆Gj

sn
(n) is bounded by sn − tn.

Therefore, if lim sn = lim tn then the atom of Gj(n) at sn vanishes at the limit.
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The second requirement implies that a sequence of non-atomic distributions in
G cannot converge to an atomic distribution, since the slope of Gi(n) is uniformly
bounded by I.

We now turn to the formal presentation. Recall that F is the space of all
functions F : R+ → [0, 1] that are non-decreasing and right-continuous. It is
in bijection with the set of probability measures µ over [0, +∞]. We denote by
λ the Lebesgue measure over [0, +∞). The set of atoms of µi (or equivalently,
of discontinuities of F i) is denoted by Aµi . Let G ⊂ (F)I be the space of all
µ = (µ1, . . . , µn) that satisfy the following conditions.

0) The support of each µi is an interval [0, Ti], with Ti ≤ I.

A) For each i ∈ I and t ∈ Aµi , one has µj
[t−µi

t,t)
= 0 for every j ∈ I. Set

Tµ := R+ \
(
∪i ∪t∈Aµi

[t− µi
t, t]

)
.

B) One has 1
I

∑
i µ

i
A = 1

I

∑
i λA∩[0,Ti], for every A ⊆ Tµ.

By Helly’s Theorem (Billingsley, 1995, Theorem 25.9) and Theorem 25.10 in
Billingsley (1995), the set G is compact for the topology of weak convergence.

Plainly, Theorem 1.5 follows immediately from Lemmas 5.1 and 5.2 below,
using the compactness of G.

Lemma 5.1 Let ε > 0 be given. If the game has an ε-equilibrium, then it has an
ε-equilibrium in G.

The proof of this lemma appears in Section 5.1.
We denote by ∆i the set of pure strategies of player i.

Lemma 5.2 The payoff function γ is continuous over G. Moreover, let (G(n))n∈N

be a convergent sequence in G, with limit G, and let G̃i ∈ ∆i, for some i ∈ I .
Then there exists a sequence G̃i(n) ∈ ∆i, such that

lim
n→+∞

γi(G̃i(n), G−i(n)) = γi(G̃i, G−i).

The proof of this lemma appears in Section 5.2.

5.1 Time-changes

Our goal in this section is to prove Lemma 5.1. A time-change is a non-decreasing,
right-continuous function defined over some interval of R+, with values in R+.
Given an ε-equilibrium (F 1, . . . , F I), we shall construct a time-change u such that
the profile (G1, . . . , GI) defined by Gi

t = F i
u(t) is in G, and is an ε-equilibrium.

For s ∈ R+, we define the s-level set of F to be the interval F−1({s}).
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5.1.1 Straightening F

We here define a first time-change, relative to a given continuous function F ∈ F .
In effect, the clock will be adjusted in such a way that: (i) the duration of the
level sets of F will not be affected and (ii) the increasing portions of F will be
transformed into affine portions with slope one.

We first introduce a usual time-change (see, e.g., Revuz and Yor (2000), Chap-
ter 0):

Cs = inf{t ≥ 0 | Ft > s}, for s ∈ [0, F∞−).

The function C is defined on [0, F∞), with values in R+. It is increasing (since
F is continuous) and right-continuous. Moreover, the s-level set of F coincides
with the interval [Cs−, Cs).

Plainly, the function s 7→ FCs increases linearly from 0 to F∞−, at unit speed.
We now proceed to introduce the non-trivial level sets of F . More precisely, we
will let the value of F at time t be reached, under the time-change, at a time
which is the sum of two components, the time Ft− that is needed to reach the
level Ft− at unit speed, and the cumulative length of all level sets up to time t.

As mentioned above, the length of the Ft′-level set is ∆CFt′
. Therefore, the

cumulative length of all level sets up to time t is∑
t′<t

∆CFt′
+ t− CFt− :

the first summation is the total length of all level sets lying entirely to the left of
t, while t− CFt− is the time elapsed since the current level set was initiated.

This leads us to introduce the function v1 defined by

v1(t) := Ft +
∑
t′<t

∆CFt′
+ t− CFt− .

The next lemma lists few easy properties of v1. The proof is omitted.

Lemma 5.3 The function v1 is continuous and increasing. In addition, v1(0) =
0, and13 v1(∞−) is infinite or finite depending on whether F is eventually con-
stant or not.

5.1.2 Playing with level sets

We here define a second time-change, relative to an arbitrary F ∈ F . In effect,
we shall adjust the length of level sets of F to the size of nearby discontinuities.
Formally, the value of F at time t will be reached, according to the new clock,
at time s, which is obtained from t by substracting the cumulative length of all

13Recall that f(∞−) = limt→∞ f(t).
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level sets prior to t, and by adding the cumulative sum of jumps prior to time t.
That is, we set

v2(t) = t +
∑
t′<t

∆Ft′ −

∑
t′<t

∆CFt′
+ t− CFt−


= CFt− +

∑
t′<t

∆Ft′ −
∑
t′<t

∆CFt′

The proof of the following basic properties of v2 is left to the reader.

Lemma 5.4 The function v2 is non-decreasing and right-continuous.

5.1.3 Time-changes and the equilibrium property

We let here ε > 0 and an ε-equilibrium (F i)i∈I be given. Loosely speaking, our
goal is to show that applying the above time-changes to the profile (F i)i∈I does
not affect the ε-equilibrium property.

We will make extensive use of the following change-of-variable formula for
Stieltjes integrals, which is a minor variation upon Prop. 4.10 in Revuz and Yor
(2000, Chapter 0).

Lemma 5.5 Let u : [a, b] → R+ be a right-continuous, non-decreasing map. Let
F ∈ F and g be a bounded, Borel measurable map. Assume that Fu(t)− = Fu(t)

whenever ∆u(t) > 0. Then∫
[u(a),u(b)]

g(s)dFs =
∫
[a,b]

g(u(t))dFu(t).

For i ∈ I, we let F̃ i denote the continuous part of F i: F̃ i
t = F i

t −
∑

t′<t ∆F i
t

for t ∈ R+. Next, we set F̃ = 1
I

∑
i∈I F̃ i and consider the function v1 relative to

F̃ , as defined in section 5.1.1. Let u1 be the inverse map of v1.
For i ∈ I, we define Gi to be the image of F i under the time-change u1:

Gi
s = F i

u1(s) for s < v1(∞−) and Gi
s = F i

∞− for s ≥ v1(∞−). Plainly, Gi ∈ F for
each i ∈ I.

Lemma 5.6 The profile (Gi)i∈N is an ε-equilibrium.

Proof. We fix i ∈ I, and prove that player i has no pure deviation that
increases his payoff by more than ε. Let G̃i be a pure strategy.

Case 1: G̃i
s = 0 for every s ∈ R+ (player i never acts).

Since (F 1, . . . , F I) is an ε-equilibrium,

γi(G̃i, G−i) = γi(G̃i, F−i) ≤ γi(F i, F−i) + ε = γi(Gi, G−i) + ε,
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where the equalities follow by the change-of-variable formula.

Case 2: G̃i
s = 1s≥s0 for some s0 ∈ R+ (player i acts at time s0).

If s0 < v1(∞−), we set t0 = u1(s0) and we define F̃ i
t = 1t≥t0 .

Since (F 1, . . . , F I) is an ε-equilibrium,

γi(G̃i, G−i) = γi(F̃ i, F−i) ≤ γi(F i, F−i) + ε = γi(Gi, G−i) + ε,

where the equalities follow by the change-of-variable formula.
Assume now that s0 ≥ v1(∞−). In particular, v1(∞−) < ∞. For s̄ ≤

v1(∞−), define 1s̄ ∈ F by 1s̄
s = 1s≥s̄.

Plainly,

γi(G̃i, G−i) = γi(1v1(∞−), G−i)

= lim
s̄↗v1(∞−)

γi(1s̄, G−i) ≤ γi(Gi, G−i) + ε,

where the last inequality follows by the analysis of the case s̄ < v1(∞−).

We now analyze the impact of the second time-change on (Gi)i∈I . We let v2

be the time-change relative to 1
I

∑
i∈I Gi, as defined in section 5.1.2. We let u2

be the generalized inverse of v2: u2(s) = inf{t : v2(t) > s}. The function u2

is defined over [0, v2(∞−)), is right-continuous and non-decreasing. Note that a
level set of u2 with positive length corresponds to a jump in v2. Also, a jump in
u2 corresponds to a non-trivial level set of v2. For i ∈ I, we let H i

s = Gi
u2(s) for

s < v2(∞−) and H i
s = Gi(∞−) for s ≥ v2(∞−).

Lemma 5.7 The profile (H i)i∈I is an ε-equilibrium in G.

Proof. We prove that player i has no pure profitable deviation. Let H̃ i ∈ ∆i

be arbitrary. The case H̃ i = 0 can be dealt with as in the previous proof. Assume
now that H̃ i = 1s≥s0 for some s0 ∈ R+. As observed at the end of the previous
proof, it is enough to deal with the case s0 < v2(∞−). Set t0 = u2(s0). If u2

is continuous at s0, the inequality γi(H̃ i, H−i) ≤ γi(H i, H−i) + ε follows by the
change-of-variable formula.

If u2 is not continuous at s0, then the change-of-variable cannot be applied
(at least for the integral w.r.t. H̃ i). In that case, we let (sn) be a increasing
sequence of continuity points of u2, that converges to s0, and we let H̃ i,n

s = 1s≥sn .
It is not difficult to check that limn→∞ γi(H̃ i,n, H−i) = γi(H̃ i, H−i). Hence, by
the previous paragraph, γi(H̃ i, H−i) ≤ γi(H i, H−i) + ε. Therefore, (H i)i∈I is an
ε-equilibrium.
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5.2 Proof of Lemma 5.2

We shall only prove the first assertion of Lemma 5.2. The second one can be
established using similar ideas.

Let (F (n)) be a sequence in G that weakly converges to F ∈ G.
For every non-empty subset S of I we let πS be the probability that under F

the game terminates, and the terminating coalition is S. For n ∈ N, we denote
by πS(n) the analogous probability under F (n).

Since γ(F ) =
∑

S πSuS and γ(F (n)) =
∑

S πS(n)uS, it is enough to prove that
limn→∞ πS(n) = πS for every S.

Note first that F i
t = limn→∞ F i

t (n) for each i ∈ I and for every continuity
point t of F i. In particular, the equality holds for λ-a.e. t ∈ R+, which implies

lim
n→∞

F i
t−(n) = F i

t−, for every t ∈ R+ and every i ∈ I. (6)

Step 1: Relating atoms.
Let t be an atom of F i, for some i ∈ I. Set S∗ = {i ∈ I, ∆F i

t > 0} be the set
of i’s such that t is an atom of F i.

We show that for every n there is τ(t; n) ∈ R+ such that

A.i) limn→∞ τ(t; n) = t,

A.ii) limn→∞ ∆F i
τ(t;n)(n) = ∆F i

t for each i ∈ I, and

A.iii) limn→∞ F i
τ(t;n)(n) = F i

t for each i ∈ I.

Let ε ∈ (0, t) satisfy ∆F i
t > (2I + 5)ε for every i ∈ S∗.14 In addition, we

assume that both t + ε and t− ε are continuity points of F i.
For n large enough, F i

t+ε(n)−F i
t−ε(n) ≥ F i

t+ε−F i
t−ε−ε ≥ ∆F i

t −ε. Let τ i(t; n)
be the infimum over all discontinuities of F i(n) in the interval [t − ε, t + ε], and
set τ(t; n) = mini∈S∗ τ i(t; n). Since F (n) ∈ G, one has∑

s∈[t−ε,t+ε]

∆F i
s(n) ≥ F i

t+ε(n)− F i
t−ε(n)− 2Iε, and

∑
s∈(τ(t;n),t+ε]

∆F i
s(n) ≤ 2ε. (7)

Eq. (7) implies that ∆F i
τ(t;n) ≥ F i

t+ε(n)− F i
t−ε(n)− 2(I + 1)ε ≥ ∆F i

t − (2I + 3)ε.

Therefore, for i ∈ S∗, ∆F i
τ(t;n) > 0, so that τ i(t; n) = τ(t; n), and moreover

∆F i
τ(t;n)(n) ≥ ∆F i

t − 5ε.15 Therefore,

lim inf
n

∆F i
τ(t;n)(n) ≥ ∆F i

t − 5ε. (8)

14If t = 0, the condition ε < t is omitted, and in the sequel t− ε is replaced by t.
15For further use, we note the following additional consequence. Strictly speaking, the se-

quence (τ(t;n))n depends on ε, and should rather be denoted by (τ ε(t;n))n. For ε′ < ε, one
has τ ε(t;n) ≤ τ ε′(t;n) whenever the two sides are well-defined. The last inequality in the text
implies that τ ε(t;n) = τ ε′(t;n) for n large enough. In that sense, the sequence (τ ε(t;n))n is
(asymptotically) independent of ε.

29



This implies that limn→∞ τ(t; n) = t, so that (A.i) holds. Indeed, otherwise
there would be a subsequence of (τ(t; n))n – still denoted (τ(t; n))n – such that
limn→+∞ τ(t; n) = t′ 6= t. By repeating the above argument with ε′ ∈ (0, ε) small
enough so that t′ /∈ [t− ε′, t+ ε′], we would construct another sequence (τ ′(t; n))n

such that limn→+∞ ∆F i
τ ′(t;n)(n) = ∆F i

t , for each i ∈ I – a contradiction to the
second inequality in (7). By weak convergence, (A.i) implies that (A.ii) holds
whenever ∆F i

t = 0, or, equivalently, whenever i 6∈ S∗.
We now prove that (A.ii) holds for i ∈ S∗ as well. Since F i

t+ε−F i
t−ε ≤ ∆F i

t +Iε,
one has ∆F i

τ(t;n) ≤ F i
t+ε(n)−F i

t−ε(n) ≤ ∆F i
t +(I+1)ε, provided n is large enough.

Therefore, lim supn ∆F i
τ(t;n)(n) ≤ ∆F i

t + 2η, which, together with (8), and since
ε is arbitrary, yields

lim
n→+∞

∆F i
τ(t;n)−(n) = ∆F i

t , for each i ∈ I, (9)

so that (A.ii) holds.
Finally, we show that limn→∞ F i

τ(t;n)−(n) = F i
t−, for each i ∈ I, which, together

with (A.ii), implies that (A.iii) holds. W.l.o.g., we may assume that the sequence
(τ(t; n))n is monotonic. Assume first that it is non-decreasing, and let ε > 0 be
given. Choose t′ < t such that F i

t′− ≥ F i
t−− ε. Then, for n large enough, one has

by (6)
F i

t′− − ε ≤ F i
t′−(n) ≤ F i

τ(t;n)(n) ≤ F i
t−(n) ≤ F i

t− + ε.

If the sequence (τ(t; n))n is non-increasing, then F i
τ(t;n)−(n) = F i

t−(n) for n large,
hence by (6) the claim still holds.

Step 2: limn→∞ πS(n) = πS whenever |S| ≥ 2.
Suppose S ⊆ I with |S| ≥ 2. For the sake of clarity, we set gS

t :=
∏

j /∈S(1 −
F j

t )), and hS
t :=

∏
i∈S ∆F i

t for S ⊂ I and t ∈ R+.
Then

πS =
∑

t∈R+

∏
j 6∈S

(1− F j
t )

∏
i∈S

∆F i
t =

∑
t∈R+

gS
t hS

t ,

and a similar expression holds for πS(n).
Fix i ∈ S, and let ε > 0 be arbitrary. Let A ⊂ R+ be a finite set of atoms

that almost exhausts the atoms of F i:
∑

t∈A ∆F i
t ≥

∑
t∈R+ ∆F i

t − ε.
By (A.ii) and (A.iii), limn→+∞ gS

τ(t;n)(n)hS
τ(t;n)(n) = gS

t hS
t for every t ∈ R+. In

particular, since A is a finite set,

lim
n→∞

∑
t∈A

gS
τ(t;n)(n)hS

τ(t;n)(n) =
∑
t∈A

gS
t hS

t . (10)

Moreover, ∑
t6∈A

gS
t hS

t ≤
∑
t6∈S

∆F i
t < ε. (11)
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For n ∈ N set An := {τ(t; n) : t ∈ A}. Our goal is to prove that

lim
n→∞

∑
t6∈An

gS
t hS

t = 0, (12)

which, together with (10) and (11) implies that limn→∞ πS(n) = πS, provided
|S| ≥ 2.

Let δn := sup{∆F i
s(n) : s /∈ An, i ∈ I} (with sup ∅ = 0) be the maximal size

of the remaining discontinuities, and let tn achieve the supremum, up to 1/n. We
claim that limn→∞ δn = 0. Indeed, since the support of F i is included in [0, I],
the sequence (tn) converges, up to a subsequence, to some t ∈ R+. If ∆F i

t > 0 for
some i ∈ I, then limn→∞ ∆F j

tn(n) = 0 since tn 6= τ(t; n) for each n. If ∆F i
t = 0

then by weak convergence limn→∞ ∆F i
t (n) = 0. Therefore, limn→∞ δn = 0.

For every two sequences (xk, yk)
∞
k=1 such that 0 ≤ xk, yk ≤ δ < 1 and∑

k xk,
∑

k yk ≤ 1 one has
∑

k xkyk ≤ δ. Since |S| ≥ 2, and since gS
t (n)hS

t (n)
is non-zero on at most a countable set of t’s, (12) holds.

Step 3: limn→∞ πS(n) = πS whenever S = {i} is a singleton.
Let ε > 0 be arbitrary. We prove that π{i} − 3ε ≤ lim infn→∞ π{i}(n) and

lim supn→∞ π{i}(n) ≤ π{i} + 3ε.
As in step 2, let A ⊂ R+ be a finite set such that

∑
t∈A ∆F i

t ≥
∑

t∈R+ ∆F i
t −ε.

We assume that A contains 0 if ∆F i
0 > 0.

Since A is finite, we may assume w.l.o.g. that for every n, the finite set
{τ(t; n), t ∈ A} contains |A| different elements.

Denote F̂ i
t = F i

t −
∑

s<t,s∈A ∆F i
s and F̂ i

t (n) = F i
t (n)−∑

s<t,s∈A ∆F i
τ(s;n). This

is the part of F i (resp. F i(n)) without the atoms in A. Then (F̂ i(n)) weakly
converges to F̂ i.

Choose a finite sequence 0 < t1 < . . . < tK = I + 1 such that

B.i) F̂ i
tk+1

− F̂ i
tk

< ε for each k = 0, . . . , K − 1 (with F̂ i
t0

= 0).

B.ii) t1, . . . , tK are continuity points of F j, for every j ∈ I.

We now modify the distributions F i and (F i(n))n∈N, and construct completely

atomic distributions F
i
, F i, (F

i
(n))n∈N, and (F i(n))n∈N as follows.

• F
i
: every t ∈ A is an atom of F

i
with size ∆F i

t . In addition, each (tk)
K−1
k=1

is an atom; the weight of this atom is equal to F̂ i
tk+1

− F̂ i
tk

.

• F i: every t ∈ A is an atom of F
i
with size ∆F i

t . In addition, each (tk)
K
k=2

is an atom; the weight of this atom is equal to F̂ i
tk
− F̂ i

tk−1
.

• F
i
(n) and F i(n) are defined analogously w.r.t. F i(n).16

16Note that, for n large enough, the two sets {τ(t;n), t ∈ A} and {tk, k = 1, . . . ,K} are
disjoint.
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Thus, under F
i
player i acts earlier than under F i, whereas under F i he acts

later.
Observe that in this definition, we ignored the part of F̂ i prior to time t1,

but by (B.i) this part has small weight. Let π{i}, π{i}, π{i}(n) and π{i}(n) be

analogous to π{i} under (F
i
, F−i), (F i, F−i), (F

i
(n), F−i(n)) and (F i(n), F−i(n))

respectively.
By (B.i) we have

π{i} + ε ≥ π{i} ≥ π{i}, and π{i}(n) + ε ≥ π{i}(n) ≥ π{i}(n) ∀n ∈ N. (13)

Moreover,
π{i} − π{i} < 2ε. (14)

Since F
i
is completely atomic, we can derive an explicit formula for π{i}:

π{i} =
K−1∑
k=1

∏
j 6=i

(1− F j
tk)∆F

i
tk

+
∑
t∈A

∏
j 6=i

(1− F j
t )∆F

i
t. (15)

One has a similar expression for π{i}. For π{i}(n) one has

π{i}(n) =
K−1∑
k=1

∏
j 6=i

(1− F j
tk(n))∆F

i
tk

(n) +
∑
t∈A

∏
j 6=i

(1− F j
τ(t;n)(n))∆F

i
τ(t;n)(n). (16)

By (A.ii) and (A.iii), since (F i(n)) weakly converges to F i, and since (tk) are

continuity points of F i, limn→∞ ∆F
i
tk

(n) = ∆F
i
tk

(n). Since the (tk) are continuity

points of (F j)j 6=i, limn→∞ F
j

tk
(n) = F

j

tk
(n). Therefore, again using (A.ii) and

(A.iii), we obtain limn→∞ π{i}(n) = π{i}. Similarly, one obtains limn→∞ π{i}(n) =
π{i}. These two inequalities, together with (13) and (14), delivers the claim.

6 Comments and extensions

In this paper we analyzed continuous-time games of timing with complete in-
formation. In several classes of economic interest, we proved the existence of a
subgame-perfect ε-equilibrium for each ε > 0. We here conclude by discussing
which insights can be gained for the analysis of discrete time games with short
time periods, and some extensions of our results.

Let σ̂ be a subgame-perfect ε-equilibrium of a continuous-time game of timing.
Consider a discrete-time version of the game, in which the players are allowed
to stop only at times tn, n ∈ N, where (tn)n is a strictly increasing sequence in
R+. We denote by τ̂ the discretized version of σ̂, defined as follows: at time tn,
assuming no player acted before, player i acts with probability σi

tn−1
((tn−1, tn])

(and acts with probability σi
0({0}) at time zero, if t0 = 0). In words, at tn, player i
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assigns to act the probability with which he would have acted between tn−1 and tn,
had he been allowed to act at any time. Assuming all functions uS are continuous,
it is easy to check that τ̂ is, say, a subgame-perfect 2ε-equilibrium of the game
in discrete time, provided supn |tn − tn−1| is small enough. Moreover, this result
does not rely on the sequence (tn) being known ex ante. Specifically, assume that
the sequence (tn) is a random sequence that increases a.s. to ∞, and assume that
players get to know the value of tn at time tn only.17 Since the probability to act
at time tn is computed ex post, as a function of the interval (tn−1, tn], the profile
τ̂ is well-defined. Moreover, it is a subgame-perfect 2ε-equilibrium provided that,
with high probability, supn |tn − tn−1| is small enough. Thus, our analysis of
the continuous-time game gives an easy scheme for constructing approximate
equilibria in a large class of discrete time scenarios.

Finally, we discuss weakenings of the complete information assumption. Our
approach do not extend to games with asymmetric information. Nevertheless, it
yields partial results in the case of games with symmetric incomplete information.
In these games, uS is a stochastic process, for each S ⊂ I, whose law is publicly
known. At any time, all the players have the same information on the realization
of the payoff processes.18 These games were first introduced by Dynkin (1969)
in a two-player zero-sum discrete-time setting. Since then, they have come to
be known as Dynkin games in the theory of stochastic processes, and a very
extensive literature has been devoted to the zero-sum case, see Solan and Vieille
(2001) and the references therein. In a related work, we analyze two-player non-
zero-sum games under the assumption that, for each S, the stochastic process
uS is right-continuous with left-limits and satisfies a weak integrability condition.
We prove that techniques similar to the ones we developed in the present paper
can be applied to prove the existence of an ε-equilibrium for each ε > 0, see
Laraki et al. (2002).

17We need not assume that the players have any prior information on the law of the sequence
(tn).

18For example, they may know past and present values of uS , S ⊆ I, and therefore learn the
paths uS(·), for ∅ 6= S ⊆ I, as time unfolds.
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